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ABSTRACT

Three manuscripts are presented describing the application of fractal mathematics to soil 
hydraulic properties. The results indicate that the pore space of many field soils can best be rep­
resented by a self-sim ilar or fractal geometry. The solid phase of the soil, i.e. the soil grains, is less 
amenable to fractal scaling and only a narrow range of typically encountered field soils are likely 
to be well described by fractal geometry. In the first manuscript, a simple self-similar model, the 
Sierpinski carpet is used to represent the pore number and pore size distribution o f typical field 
soils. The soil water retention function is theoretically developed and shown to be equivalent to 
the power law empirical model for retention developed by Brooks and Corey (1964) and Campbell 
(1974). These results are extended to data reported on field soils and a relation between the frac­
tal dim ension and soil texture is presented. The results indicate an increasing fractal dimension  
with finer soil texture.

In the second manuscript, fractal scaling arguments are used to develop a theoretical basis 

for Arya and Paris’ (1981) curve fitting coefficient, Oi. This term is shown to be equivalent to the 
fractal dim ension o f the pore trace and is consistent with the ideas of a scale-dependant tortuos­
ity ( W heatcraft and Tyler, 1988). To estimate the fractal dimension, the fractal scaling often seen 
in particle size distributions (PSD), is utilized as a surrogate measure of the pore space fractal 
dim ension. Ten soils were analyzed for fractal behavior, five reported by Arya and Paris (1981) 
and five reported by Mualem (1976). Of these ten soils, nine clearly showed fractal scaling in their 
particle number verses size. Good agreement between measured and predicted water retention 
was observed in nine out of the ten soils when the fractal dimension of the pore trace was esti­

mated from the particle size distribution.

The third manuscript examines, in detail, the concepts o f self-similarity in particle size dis­
tributions. It is shown that self-similarity in grain number verses grain size may be limited to a 

narrow range o f typically encountered field soils. Theoretical results show that the fractal dimen­
sion for PSDs must range between 0.0 and 3.0, with typical soils ranging from 2 to 3. The analysis 
suggests that m ost soils do not behave as fractal porous media, rather only the void space (poros­
ity) o f the soil displays fractal behavior. This conclusion suggests that fractal will play an impor­

tant role in the estim ation of hydraulic and transport properties of soils.
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CHAPTER 1

INTRODUCTION

In the following chapters, three manuscripts are presented discussing the concepts of fractal math­

ematics and its applications to the understanding of soil hydraulic properties, specifically the retention 

of water under capillary tensions.The burgeoning field of fractal mathematics has seen little application 

to date in the study of soil physical properties and it is hoped that the work presented here will shed new 

light on the understanding of fluid/solid interactions in the strongly disordered material we call soil. The 

results of this research suggest in many cases, orderly prediction of hydraulic properties can be made 

when self-similar transformations such as those embodied in fractal concepts are invoked.

The work to follow represents three separate manuscripts on the study of fractal behavior in soils. 

The manuscripts represent a continuum of ideas, beginning with a theoretical approach to soil porosity, 

followed by an application to an existing model of soil porosity and grain structure and finishing with a 

discussion of the relationship between soil grain structure and soil porosity. The first (Chapter 2) pres­

ents a simple theoretical model of fractal pore size and pore number distribution which is theoretically 

equivalent to the empirical water retention relations developed by Brooks and Corey (1964) and Camp­

bell (1974). This paper will appear in Water Resources Research in the summer of 1990.

The second paper (Chapter 3) represents an application of fractal mathematics to the understand­

ing of the scale dependant tortuosity embodied in the the Arya and Paris (1981) model of water retention. 

This paper clearly shows that the empirical coefficient used in the Arya and Paris model is the fractal 

dimension of the pore trace. The paper then suggests a relation between the grain and pore size distribu­

tion to estimate this fractal dimension. This paper appeared in Soil Science Society of America Journal in 

July-August, 1989.

The third and final manuscript (Chapter 4) looks into detail at the implications of the relationship 

between grain and pore size for field soils. The simple relation suggested in Chapter 3 is shown to be a 

special case resulting in the development of both fractal scaling in the grain size distribution and the pore 

size distribution. This special case results in the development of a fractal porous medium, which is shown 

to be limited to a narrow rang of typically encountered field soils. This manuscript will be submitted to 

Soil Science Society of America Journal.



CHAPTER 2

FRACTAL PROCESSES IN SOIL WATER RETENTION

2

Scott W. Tyler 
Stephen W. Wheatcraft

ABSTRACT
Numerous empirical models exist for soil water retention and unsaturated hydraulic conductivity 

data. It has generally been recognized that the empirical fitting coefficients in these models are somehow 

related to soil texture. However, the fact that they are empirical means that elaborate laboratory experi­

ments must be performed for each soil to obtain values for the parameters. Moreover, empirical models 

do not shed insight into the fundamental physical principles that govern the processes of unsaturated 

flow and drainage. We propose a physical conceptual model for soil texture and pore structure that is 

based on the concept of fractal geometry. The motivation for a fractal model of soil texture is that some 

particle size distributions in granular soils have already been shown to display self-similar scaling that is 

typical of fractal objects. Hence it is reasonable to expect that pore size distributions may also display 

fractal scaling properties. The paradigm that we use for the soil pore size distribution is the Sierpinski 

carpet, which is a fractal that contains self similar “holes” (or pores) over a wide range of scales. We 

evaluate the water retention properties of regular and random Sierpinski carpets and relate these prop­

erties directly to the Brooks and Corey (or Campbell) empirical water retention model. We relate the 

water retention curves directly to the fractal dimension of the Sierpinski carpet and show that the fractal 

dimension strongly controls the water retention properties of the Sierpinski carpet “soil”. Higher fractal 

dimensions are shown to mimic clay-type soils, with very slow dewatering characteristics and relatively 

low fractal dimensions are shown to mimic a sandy soil with relatively rapid dewatering characteristics. 

Our fractal model of soil water retention removes the empirical fitting parameters from the soil water 

retention models and provides parameters (fractal dimension) which are intrinsic to the nature of the 

fractal porous structure. The relative permeability functions of Burdine and Mualem are also shown to 

be fractal directly from the fractal water retention results.

INTRODUCTION
The analysis and estimation of soil water retention properties has received considerable attention 

for more than 60 years (Gardner et al., 1922). The literature contains many articles describing the reten­

tion process of various soils (for example, Mualem, 1976), the relationship between soil texture and re­
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tention properties (e.g., Gupta and Larson, 1979), and the functional form of the retention data (Brooks 

and Corey, 1964; van Genuchten, 1980; etc.).

In recent years, considerable attention has been focused towards the development of functional 

relationships between water content and capillary pressure for modeling purposes and the development 

of simple methods to predict the hydraulic conductivity of the soils (van Genuchten and Nielsen, 1985). 

Many functional forms have been proposed to represent soil retention data, each with varying degrees of 

success. Lacking in most of these analyses however, is a development from fundamental principles. Most 

functional forms have been empirical, curve-fitting equations which produce the lowest mean-square 

error and highest r-squared for actual soil data. Other functional forms (for instance, van Genuchten, 

1980) have been developed to be compatible with the conductivity models developed by Burdine (1953) 

and Mualem (1976). Such models, however, tend to require a greater number of empirical curve fitting 

parameters and there is less emphasis on their physical significance. A fundamental problem with all 

empirically-based relationships is that laboratory measurements must be made for each soil to deter­

mine the degree of confidence in the empirical relation. If relationships can be obtained that have a 

physical basis, it may be possible to determine retention parameters via indirect methods such as textural 

analysis.

The Brooks and Corey (1964) or Campbell (1974) power-law function has been widely used to pre­

dict the water retention properties of soils. The two functions are:

where ©* and tya are the saturated water content and air entry pressure, respectively. These two func­

tions are equivalent as:

The fitting parameter, bc , has been called the pore-size distribution index although little consideration 

has been given to its physical significance.

The power—law function (Eq. la or lb) has considerable advantages in its simplicity and in- 

tegrability in conductivity models. The function has been shown to accurately fit retention properties in

( la )

( lb )

(2)
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the dry regions, however it often faUs to represent the slope of many experimental results near satura­

tion.

The value of bc has been shown by many workers to be related to soil texture. Average values of bc 

reported by Clapp and Homberger (1978) range from 4.05 for sand to 11.5 for clay soils. No theoretical 

model has been developed to predict bc based from basic soil properties, however. Our objective in this 

paper is to develop an approach to understanding the physical significance of the fitting exponent and to 

simplify the actual soil pore structure for the prediction of unsaturated conductivity.

In the following sections, we employ simple fractal models to show the relationship of bc to the 

geometry and distribution of soil pore structure. Using these models, based upon the Sierpinski carpet, 

we suggest that the geometry of complex porous media may be represented with fractal scaling concepts. 

In the first section, we introduce fractal concepts and develop retention properties for Sierpinski carpets, 

a pure fractal form. In the second section we then develop an approximate solution to pore-size/pore- 

number distribution for the Sierpinski carpet and show the soil retention equation of Brooks and Corey 

(1964) and Campbell (1974) to be based upon fractal concepts of pore distribution. The new fractal model 

of retention (instead of a fitting equation) is then used to estimate the hydraulic conductivity of porous 

media based upon the models of Burdine (1953) and Mualem (1976).

FRACTAL CONCEPTS
Fractals and the concepts of self-similar scaling have been applied to a wide range of natural proc­

esses (Feder, 1988). The basic premise upon which fractal concepts are based is the notion of self-similar­

ity. The term self-similarity (or statistical self-similarity) implies that regular (or statistically regular) 

patterns appear in nature at all scales of observation. For example, a coastline exhibits statistical self­

similarity since irregularities (bays, estuaries, wave scallops) can be found at any scale of observation. It 

has been found that the traditional notion of length in this case is meaningless without specifying the 

scale at which the length measurement was made. The length of the coastline, L(e), as a function of the 

scale of measurement, e, has been found (Mandelbrot, 1983) to obey a power-law relation of the form:

L(e) = FeUD (3)

where D represents the fractal dimension and F is a constant. It is clear that the dimension may be esti­

mated (3) from the slope of a log-log plot of L versus e. The reader is referred to Feder (1988); 

Wheatcraft and Tyler (1988); and Jacquin and Adler (1987) for a more complete review of fractal con­

cepts as they apply to geologic systems.
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In recent years, a great deal of attention has been placed on fractal scaling in porous media. In 

detailed studies of solid-pore interfaces, Katz and Thompson (1985); Thompson et al. (1987); Krohn 

(1988a, b) have shown that these interfaces can often be described with fractal scaling. They found that 

fractal scaling was valid at microscopic scale for several types of geologic porous media.

Similar power-law relations have been reported for particle-size distributions (Turcotte, 1986; 

Tyler and Wheatcraft, 1989) where instead of a measurement of length, the measured quantity is the 

number of particles greater than a specific size, e. In these approaches, the scale dependent measure, 

L(e) is the number of particles, while the measurement scale, e, is a characteristic particle diameter.

APPLICATION TO SYNTHETIC MEDIA
To investigate the impacts of fractal scaling upon water retention relations, a two-dimensional rep­

resentation of a porous medium was developed based upon the fractal Sierpinski carpet. The Sierpinski 

carpet represents a fractal geometric pattern in which successively smaller “holes” are cut out of the 

plane to produce a pattern which is self-similar at all scales smaller than the initial size of the carpet. The 

recursion, if carried to infinity, yields a pattern which is everywhere filled with holes.

The carpet of size a by a is formed by initially subdividing the carpet into b 2 subsquares, each of

a a a
size by . From the original carpet, l\, subsquares are removed and represent a pore of size by

—  2 u2^  . The remaining b f - 1 \subsquares are then each divided into b \  subregions and /i subsquares are

removed from each of the original subregions. Such a recursion algorithm, if carried out to M steps 

where M  is very large, results in a carpet everywhere filled with holes (pores) of all sizes, with a predomi­

nance of small holes. Figure 1 shows a typical Sierpinski carpet carried to four levels of recursion and 

begins to show the large number of small holes developed by the algorithm. In this carpet, the dark areas 

represent pore spaces.

Once the carpet is generated, its fractal scaling is borne out in its porosity. The number of squares

of size needed to cover the pores equal to or larger than is given by /. Subscripts are removed

from both b and / to indicate that they may take on a range of values. The number needed to cover the 

solid phase is therefore b 2 -  / .  It can be shown (Mandelbrot, 1983) that there exists a power-law scaling 

between the scale of measurement (b) and the solid phase of the form:

bD =  b2 - 1 (4a)
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Figure 1. Sierpinski carpet carried to four levels of recursion. The fractal 
dimension for this carpet is ~  1.893.

where D represents the fractal dimension of the carpet. The fractal dimension is easily obtained by rear­

ranging Eq. (4a) as:

_  lo g {b2- l )  
lo g {b)

(4b )

The fractal dimension is determined by the recursion algorithm. As an example, Figure 1 shows a

carpet with four levels of recursion. The initial algorithm divided the carpet into (3 2) subregions and one 

subregion removed. Using Eq. (4b), the fractal dimension is approximately 1.893. At the second itera­

tion, the region is subdivided into (9 2) subregions and 1 subregion is removed from the remaining 8 solid

regions. The number of subregions of size 

obtained by rearranging Eq. (4a):

needed to cover the open area larger than ( ~ ) 2 may be

{feW

i
i

f
t

.
s

u



l = b 2 - b D (5)

In this case, / = (9 2) -  (9 )L893 or 17 squares of size ( ^ ) 2. The fractal scaling described by Eq. (5)

may be used to estimate the total cross-sectional area of pores greater than any arbitrary size ( ~ ) 2.

Our subsequent hydraulic investigations on the retention properties of Sierpinski carpets are 

based upon a class of porous media shown in Figure 2. The Sierpinski carpet forms a lattice-like bundle 

of capillary tubes with tube size and distribution determined by the recursion algorithm. This approach is 

in contrast to that proposed by Adler (1986) and Adler and Jacquin (1987) in which the stippled phase of 

Figure 2 was chosen to have finite permeability and the void phase or holes shown in Figure 2 was consid­

ered impermeable. Our approach allows direct development of simple analytical solutions to retention 

and conductivity and eliminates the need for numerical iterations, although it ignores pore interactions.
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ITie areal porosity of the carpet, as measured by squares of characteristic size ( ~ ) 2 is given

by:

& (b) ~  -
b 2

(6)

In Eq. (6) only holes (pores) of size greater than ( , ) 2 are counted towards the porosity. It is impor-

,U\2
tant to note that / represents the number of squares of size (—) needed to cover the open area or poros-

ity. Pores which are smaller than \~ )  are not counted. The size defined by (—) is analogous to the

resolving power of a microscope. Pores smaller than the resolving power are not discernible and are 

therefore not included in the porosity estimation.

Combining Eqs. (4a) and (6) yields a simple form for the porosity:

<D(Z>) =  l - b D-2

In the limit as b goes to infinity:

lim  <£(£) =  lim (1 ~ b D 2) - 1

(7)

(8)

m**

pro

where 1 ^ D  <2.

In contrast to soils, true Sierpinski carpets are everywhere filled with holes and therefore have a

/Q\ 2
porosity equal to unity. If pores greater than a characteristic size {—) are dewatered by applying a ten­

sion to the water column, the water content 0 ( b )  is given by:

0 ( b )  = $ ( « > )  -  <&(b) 

or

©(/,) = ! - $ ( & )  = b D- 2 (9)
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The water retention characteristics for the Sierpinski carpet can easily be developed given that the 

water content, as a function of b, may be estimated from Eq. (9). First, we assume that the pores, as a 

function of the characteristic size, b, will drain at a pressure prescribed by the capillary rise equation:

xp{b) 2a  cos fi
( 10)

where R represents the radius of the pore, a  is the surface tension of the fluid interface and (3 is the 

contact angle.

In order to simplify the analysis, we next assume that instead of pores with square cross sections, 

the pores are cylindrical. The pore radius, R(b), is chosen such that the circular cross section is equivalent 

to the original square area, i.e.:

(f)2 =  ® [w 2]
or

RW =Tn (f }
Replacing Eq. (11) in Eq. (10) and solving for b yields:

(11)

b _  H>(b)a 
2 a  Jtz cos ft

(12)

By replacing b in Eq. (9) with the expression in Eq. (12) we yield a simple expression for the water reten­

tion relation:

^  (i3> 

Most retention data display a region of complete saturation between atmospheric pressure and 

some critical tension, often referred to as the air entry pressure, % .  If we assume that the carpet re­

mains fully saturated until tya is exceeded, Eq. (13) may be written in this range as:

« «  ■ 1 -  a 4 )

where b \ represents the largest pore size present in the carpet and P̂a represents the traditional defini­

tion of an air entry pressure. Dividing Eq. (14) into Eq. (13) yields the familiar Brooks and Corey or 

Campbell power-law expression for the water retention function:
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* (15)

where D is the fractal dimension of the carpet, — —  is equivalent to -bc of the Campbell (1974) model

1
or “  J  of the Brooks and Corey (1964) model, and 0S is equal to unity.

Water retention data were calculated for four example carpets shown in Figures 3a-d using Eqs. 

(9) and (15). The carpets are shown in increasing order of fractal dimensions. The first two carpets (3a 

and 3b) both have equivalent b\ values of 3 and result in initially large pores. In carpet 3a, l\ is equal to 4, 

while carpet 3b has an initial l\ value of 1. This results in carpet 3a draining a significant portion of its 

water content under low capillary pressures. Carpet 3b dewaters more slowly since fewer larger pores are 

present.

Carpets 3c and 3d both begin with b\ equal to 15. This results in a smaller initial pore size than the 

carpets shown in Figures 3a-b. Consequently, the air entry pressure is higher by the factor

bi(3c, 3d) 15
, ----- T7T or “TrThe rate of drainage as a function of capillary pressure is larger in carpet 3c than
b \\jU , 5b) 3

3d since the initial number of pores of size b\ is larger in carpet 3c than in carpet 3d.

Water retention curves for the Sierpinski carpets shown in Figures 3a-d are shown in Figure 4. 

Recalling from Eq. (4) that the value of D represents a measure of the ratio between characteristic pore 

size (b2) and pore area (/); the fractal dimension maybe considered a measure of the soil texture. A value

approaching unity suggests that the pore space is dominated by large pores, i.e., b 2 -  / approaches b. 

The cross section of the carpet takes on a very sparse appearance at large scales of measurement. In 

essence, the pore space of carpet does a poor job of filling the plane. As D approaches two, the pore space 

grows only slowly with decreasing measurement scale, i.e., large b. For two carpets with equal b i values 

(corresponding to equal air entry pressures), the carpet with the largest /i value will dewater faster with 

respect to capillary pressure since a larger percentage of the water is held in large voids. For carpets with 

dissimilar values of b \, initial dewatering will occur first in the carpet with the smaller b \ value (Eq. 14). 

The fractal dimension therefore, strongly controls the water retention properties of the Sierpinski car­

pet. Each Sierpinski carpet shown in Figures 3a-d has a slightly different generating algorithm and 

therefore a different fractal dimension. The retention curves presented in Figure 4, however, show the 

importance of the fractal dimension in determining the shape of the retention function. For a fractal

5*
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Carpet generator is defined by:
0

Figure 3a. Sierpinski carpet for Soil A. The fractal dimension of 
the carpet is ~  1.46.

Carpet generator defined by: | B  |

Figure 3b. Sierpinski carpet for Soil B. The fractal dimension of 
the carpet is ~  1.89.
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Carpel generator is defined by:

Figure 3c. Sierpinski carpet for Soil C. The fractal dimension of 
the carpet is ~  1.96.

Carpel generator Is denned by: |*«*|

Figure 3d. Sierpinski carpet for Soil D. The fractal dimension of 
the carpet is ~  1.99.

I 
I

M
D
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A R EA L  SATU RAT IO N

Figure 4. Calculated retention curves for the carpets shown in Figures 3a-d.

dimension near 1.5, the synthetic soil closely matches that of a coarse sand while a fractal dimension 

approaching 2 produces a retention function of a fine textured or clay soil.

The analysis presented above neglects water held as films on the pore walls already drained. Water 

held in films will become a dominant fraction of the volumetric water content in real soils at low capillary 

pressures. The contribution of Films to the total water content is often lumped into the residual water 

content term. In this analysis, however, we limit our concern to that portion of the retention curve where 

water is filling the capillary pores.

i 
i iu

 u



PiBWR1

14

PORE NUMBER DISTRIBUTION
Now that we have developed a retention relation for any Sierpinski carpet, it is of interest to inves­

tigate the pore-size/pore-number distribution directly. Such an analysis will directly lead to applications 

in real soils and porous media.

Let N p(l)  represent the number of pores (holes) in the carpet of a given size R(l)- At each recur­

sion, N p(i)  is given (from (5)) by:

where b \ and l \  represent the first recursive level values of b and /, respectively.

Equation (16) is easily shown by inspection for the simple carpet shown in Figure 1. For this carpet, 

b \  = J a n d / i  = 1. At the first recursion (i = 1), the number of pores of size b, is ! •  (9-1)°  or 1. At the

W )  = h ( b 2t - h ) ‘- '

or

M i )  = / i W - 1 ( 16)

r

(  ^  \2
This results in 64 new holes of size (t ~) , in agreement with Eq. (16), i.e., 1 • (9 -  l ) 2.

(17)

Recalling that the Sierpinski generating algorithm is developed using.
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bi = M (18 )

and using Eq. (11) allows us to rewrite Eq. (17) to show the relation between the number of pores equal to

It is interesting to compare Eq. (19) and Eq. (9). While the porosity or open area described in Eq. 

(9) shows power-law scaling based solely upon the smallest pore size, the cumulative number of pores 

(Eq. 19) does not show simple power scaling behavior due to the summation process. Equation (19) shows 

that the number of pores greater than a characteristic size, R(i) is a polynomial containing information 

from all pore-size classes larger than R(i). As such, Eq. (19) is not as useful or simple as Eq. (9). Fortu­

nately, it is obvious that the i'h term in the series in Eq. (19) dominates the sum. This fact is easily visual­

ized in Figure 1 where the ratio of the number of smallest pores to the total number of pores goes as 8/9, 

64/73, 512/585. Approximately 88 percent of the pores are of the smallest size. Such dominance suggests 

that an approximation of the form:

could be used in place of Eq. (19). Equation (20) will be advantageous since the pore number distribution 

is solely dependent upon the smallest pore size, and unlike Eq. (19), is not subject to the distribution of 

pore sizes larger than R(i).

To show the validity of Eq. (20), two examples used are shown in Figures 5a and 5b. Pore number 

relations for two soils representing a sand (D = 1.465) and a clay (D = 1.994) were generated using Eq.

(19) and are represented by crosses. Shown plotted along with the calculated data is Eq. (20) using the 

true input fractal dimension. From the two plots, it is clear that little error is associated with the use of 

Eq. (20) and errors are likely to be masked by errors in measurement. It is also interesting to note that Eq.

(20) was fit to the calculated data to determine the error in fractal dimension estimation. For the sandy 

soil (Figure 5a), the estimated dimension was 1.464 while the actual dimension was 1.465. The clay soil 

dimension was estimated to be 1.992 while the input value was 1.998. Such errors in fractal dimension

or larger than a characteristic radius, R(i):

(19)

Np(R >R(i)) a  R(i)-D (20)
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Figure 5b. Comparison of exact pore size/number distribution with approximation 

developed in (20) for a carpet of fractal dimension of 1.998.



estimation are well within the range of errors often reported in the fractal literature when dealing with 

real systems (Feder, 1988).

APPLICATIONS TO SOILS AND POROUS MEDIA
The retention properties of Sierpinski carpets developed in the previous sections match very well 

the behavior of many soils. However, a true Sierpinski carpet yields a saturated water content or porosity 

of unity (Eq. 14) which is not representative of porous media. To make the transition to real soils, an 

important concept must be introduced. In the following sections, we will use the Sierpinski carpet to 

represent only the pores of porous media. As a result, only the pore number and pore size distribution of 

a Sierpinski carpet (Eq. 20) will be compared to the pore distribution of real soils. Using such an ap­

proach, conflicts between real and synthetic porosity or saturated water content are avoided.

The simplification derived in the previous section suggests a simple derivation of the retention 

properties of real soils. The incremental number of pores, dNp from Eq. (20) is given by:

dNp = -  CDR(i)~D~l dR (21)

where C

The incremental pore area, dAp associated with dNp  is simply:

dAp =  7iR{i)2dNp (22)

The water content per unit length of porous media as a function of the capillary radius is:

O

(23)

R

where A j  represents the total cross-sectional area.

Substituting Eq. (22) into Eq. (23) and integrating yields an expression for the water content:
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The saturated water content, ©* is given by:

(25)

where Ra represents the pore size associated with the air entry pressure. Dividing Eq. (24) and Eq. (25)

and relating R to ip via the equation of capillary rise yields the Brooks and Corey or Campbell power- 

law expression for the water retention function:

1
where D-2 is analogous to Campbell’s ^ and 0S represents the saturated volumetric water content of

porous medium.

These results indicate that the power-law function suggests fractal scaling of pore size and number 

of pores. Clapp and Homberger (1978) report values of b to range from 4.05 to 11.4. These correspond to 

fractal dimensions ranging from 1.75 to 1.91 in good agreement with the Sierpinski carpet range of di­

mensions. These results closely agree with the data shown in Figure 4 and suggest that finer textured 

soils will have characteristically higher fractal dimensions.

The simulation of soil water retention with the geometrically regular Sierpinski carpet improves 

the basic understanding of retention properties by suggesting a simple scaling relation for pore size and 

pore number. The power-law model of either Brooks and Corey or Campbell has gained wide accep­

tance for modeling retention data, particularly outside of the nearly saturated region. In this range, the 

analogy between real soils and Sierpinski carpets indicates that the pore size/number distribution may 

follow fractal scaling concepts. In soils which do not display a distinct air entry pressure, the pore size/ 

number relations do not appear to follow fractal concepts. In these soils, particular fine textured soils, 

other forces beside capillary forces may be influencing the retention properties. Such processes as con­

solidation may also affect experimental results of retention. The use of Eq. (20) to estimate the pore- 

number relation may also affect the simulated retention curves, particularly at the very wet end of the

swra-;-

m
. it

curve.
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It is important to recognize the physical significance of the parameters a, b \, and l \  in the fractal 

dimension calculation. The term a can be directly linked to the concept of a representative elementary 

volume (REV). Above the scale defined by a 2, the medium’s pore-number and pore-size distributions 

are additive and the synthetic porous medium resembles a tiled floor (often called a spatially periodic 

porous medium). Below the size defined by a} , any samples of the pore structure will fail to provide a 

complete picture of the pore structure. In this manner, the carpet size, a, defines the REV for the pore 

structure. The characteristic length of the REV of the porous medium is simply defined as the square 

root of the ratio of a to the areal porosity of the actual soil or porous medium. The characteristic scale 

may also be considered as the “window of observation” (Cushman, 1987) through which the porous me­

dium is viewed. Similarity at scales above this window (be they fractal or spatially periodic) cannot be 

discerned. The term b \  is directly linked to the air entry pressure and is a measure of the characteristic 

size of the largest pores in the soil. The term / j is related to the rate of change of the water content as a 

function of the capillary pressure. The relationship between these two initial conditions, as defined by 

the fractal dimension (Eq. 4b) then defines the retention properties over the full range of tension and 

water content for a fractal porous medium. This behavior suggests that for many soils displaying power 

law scaling, particularly unstructured soils, retention data collected over a small range in tensions can be 

used to provide insight into the pore structure over a much wider range of tensions. If fractal scaling of 

the pore structure can be shown, higher confidence can be placed on such extrapolations.

EXTENSIONS TO HYDRAULIC CONDUCTIVITY
Several theoretical models for prediction of hydraulic conductivity from water retention data of 

soils have been developed since the pioneering work of Childs and Collis-George (1950). Of these vari­

ous models, the work of Burdine (1953) and Mualem (1976) have been most widely applied due to their 

suitability in deriving a closed form conductivity function (van Genuchten and Nielsen, 1985). These two 

methods differ significantly in their approaches towards pore interaction terms and, as a result, develop 

different integral expressions for the relative hydraulic conductivity. Closed form solutions of these inte­

gral expressions have been presented by Brooks and Corey (1964), Campbell (1974), Mualem (1976) and 

van Genuchten (1980) using the empirical power-law model. When the power-law model is used, the 

two techniques produce a power-law scaling for relative conductivity, both as a function of capillary pres­

sure and water content. The two models differ slightly in the magnitude of the exponent. In light of the 

relationship between the empirical pore distribution parameter (Brooks and Corey s X or Campbell s bc ) 

and the fractal dimension developed in this paper in Eq. (26), it is simple to insert this relationship into
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the relative conductivity models developed by Burdine (1953) and Mualem (1976). The functional rela­

tionships, in terms of water content and capillary pressure, are shown in Eqs. (27a, b) for the Burdine 

formulation and Eqs. (28a, b) for the Mualem formulation.

Burdine Model:
AJ»(0)

W )

(27a)

(27b)

Mualem Model:

W V )

(28a)

(28b)

The conductivity models shown in Eqs. (27a, b) and (28a, b) represent the relative conductivity of a 

soil displaying fractal scaling in its pore size/number distribution. The conductivity is defined by the frac­

tal dimension which, in turn, is controlled by b\ and / 1. Both b \ and / 1 control the retention curve behav­

ior in the vicinity of the air entry pressure. These relationships suggest that data collected near saturation 

can be used to extrapolate soil behavior far beyond these low tension regimes. Since it is often more 

difficult to measure conductivity properties at very negative tensions, the fractal analysis presented in 

this paper suggests that behavior in the region may be estimated under the assumption of fractal or self­

similar behavior.

CONCLUSIONS
The use of a simple fractal geometry (Sierpinski carpet) clearly shows the fractal scaling properties 

of soil pore size and distribution underlying the power function equation developed by Brooks and Corey 

and Campbell to water retention properties. For those soils where Eq. (la) or (lb) are appropriate, the 

pore-size distribution is shown to be fractal. The fractal dimensions of typical soils range from 1.71 to 

1.95 with the highest dimensions associated with the finest textured soils. The power-law function, while 

in use for many years, had not previously been physically based and little could be inferred from the 

empirical fitting coefficient. The application of fractal approaches suggests that a more complete under­

standing of the pore-size/pore-number distribution may be obtained by applying simple models such as 

the Sierpinski carpet to complex soils and porous media.
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For soils displaying fractal pore distributions, the analyses shown in this paper suggest that soil 

retention properties may be estimated over a wide range of capillary pressures, based upon very limited 

data. The relationship of the fractal dimension to the initial recursion parameters b i and l\  suggest that 

retention data can be estimated from soil behavior near saturation. The characteristic length of the car­

pet, a, may be shown to be directly related to the representative elementary volume concept for porous 

media. Both b \  and l \  represent soil behavior around the air entry pressure (the air entry pressure and 

the slope of the retention curve at the air entry pressure, respectively). Although there are experimental 

difficulties in this region, the fractal model suggested in this paper may reduce the need to conduct re­

tention experiments over the wide range of capillary pressures traditionally conducted. Experiments 

conducted over a narrow range of tensions can easily be extended under the assumption of fractal scaling 

of the pore structure. This reduction in time-consuming laboratory efforts may lead to the concentration 

in efforts towards a better understanding of the impacts of variability of retention and conductive proper­

ties of field soils.
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CHAPTER 3

APPLICATION OF FRACTAL MATHEMATICS TO 
SOIL WATER RETENTION ESTIMATION

Scott W. Tyler 
Stephen W. Wheatcraft

ABSTRACT
In this paper, we present an analysis correlating the fitting parameter a  in the Arya and Paris 

(1981) soil water retention model to physical properties of the soil. Fractal mathematics are used to show 

that a  is equal to the fractal dimension of the pore trace and expresses a measure of the tortuosity of the 

pore trace. The fractal dimension of the particle-size distribution can be easily measured and related to 

the a  parameter of the Arya and Paris model. By suggesting a physical significance of the coefficient, the 

universality of the model is greatly improved. Soil water retention data, estimated strictly from particle- 

size distributions, are proven to match measured data quite well. The fractal dimension of pore traces 

range from 1.011 to 1.485 for all but one soil tested.

INTRODUCTION
Numerous attempts have been made to relate particle-size distribution to soil water retention 

data (Hall et al., 1977; Clapp and Homberger, 1978; Gupta and Larson, 1979). The relative ease with 

which this data may be attained, as well as the similarity in shape of the retention and cumulative distri­

bution curves for soils, suggested such efforts were justified. In recent years, two approaches, Arya and 

Paris (1981) and Haverkamp and Parlange (1986), have been presented that show significant promise in 

relating the particle-size distribution data to the retention curve in non-swelling soils. These simplified 

techniques provide a valuable method for bridging the data availability gap. Traditional soil surveys pro­

vide a wealth of spatially variable particle-size distribution data, but are often lacking in retention data. 

Studies of flow and transport in field soils, however, require input data on the variability of hydraulic 

properties (retention and conductivity data). Techniques that can bridge this data gap are therefore criti­

cal in estimating the impacts of agriculture and industry on soil and ground-water quality.

The Arya and Paris model (reviewed below) has received some criticism (Haverkamp and Par­

lange, 1982,1986; Arya and Paris, 1982) for its empiricism. In this paper, we significantly reduce this em­

piricism. We propose that the technique is physically sound and provides a valuable alternative when it is 

necessary to estimate soil water retention when such data are lacking. This paper focuses on the tech­

nique of Arya and Paris (1981) to apply physical significance and develop estimative techniques for their
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curve fitting parameter, a . The physical significance is based upon the concepts of fractal mathematics 

and scaled similarities.

MODEL DESCRIPTION
Arya and Paris (1981) present a physicoempirical” approach to water retention data. The underly­

ing assumption of the model is that the soil particle size is related to a corresponding pore diameter. This 

forms the physical basis for the model. The model treats the soil as a bundle of capillary tubes. Each 

capillary tube corresponds to a user-defined particle-size class. The capillary tube volume is taken to be 

a function of the particle size, the weight fraction of the particle size and an empirical fitting coefficient, 

a. The fitting parameter is derived from least squares regression of the predicted water content to the 

measured water content. This term forms the “empirical” side of the model. As correctly pointed out by 

Haverkamp and Parlange (1982), this technique is somewhat sensitive to the user- defined particle-size 

classes. In this paper, we recognize this limitation, however, we show that the model is conceptually 

based on physical principles.

Upon division of the particle-size distribution data into M size fractions, the solid mass in the 

ph particle class is equated to the mass of N\ spherical particles of radius R j . Their volume, Vp . is given 

by:

v„ =  j  N, X Rf (1)

The volume of the voids, Vv ., is represented by a single capillary tube of radius r j :

K, =  n  rf hi (2)

where hj is the capillary tube length. The length (h;) of a straight capillary tube in a cubic close-packed 

arrangement, as measured in units of R j , is simply the product of the number of particles of radius Rj 

multiplied by their diameter (2Rj). Arya and Paris (1981) assume that the particles are not spherical and 

represent the true capillary pore length of the Rj class as:

hi =  2 Ri N r (3)
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where a  is an empirical constant between one and two. The use of Eq. (3) is justified by Arya and Paris to 

account for the nonspherical nature of the particles.

By combining Eqs. (1), (2), and (3), the authors arrive at an expression for the capillary tube radius,

n Nj <1- a )
' 1/2

(4)

where e is the sample void ratio. The void ratio for each pore class is assumed constant and equal to the 

bulk sample void ratio. The tube radius is then related to the capillary pressure, \|rj, via the equation of 

rise in a capillary tube. The water content corresponding to the capillary pressure r|q-, is evaluated by 

summing the available pore space contained in all particle classes from the smallest class to the ith class.

The technique does not account for hysterisis nor entrapped air. The latter condition maybe over­

come by assuming that any entrapped air is equally divided among all pore classes (Haverkamp and Par- 

lange, 1986). By the application of the equation of capillary rise (and assuming a zero contact angle), the 

technique most closely models the main drying curve for a nonswelling soil.

EVALUATION OF THE a  TERM
The power law relationship given by Eq. (3) indicates that as R j decreases (assuming TV) increases 

proportionally) hj will grow exponentially. This apparent length-increase behavior has received consid­

erable attention through the subject of fractal mathematics (Mandelbrot, 1983).

The development of fractal mathematics has shown that highly irregular features such as coast­

lines, rivers and fractures (and capillary tubes) can be categorized and quantified in a fundamentally new 

and different way (Mandelbrot, 1983). One of the most important features of a fractal object is that its 

“degree of irregularity” is independent of scale.

In normal Euclidean geometry, we can easily measure the length of a straight line of length L. If 

our measuring unit is of length e (e.<L), then:

L(e) =  N el =  constant (5)

where N  is the number of measuring units needed to cover the straight line and the exponent of unity is 

consistent with the topologic dimension of a line. This analogy may be expanded to two or three dimen­
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sions (a plane or cube, respectively) where the exponent refleas exactly the topological dimension 

(plane =  2.0 and cube = 3.0).

If the line we are measuring is irregular, Eq. (5) remains true except that the length, L(e), for any e 

is not constant. It has been found that the following relationship holds true for irregular lines, such as a 

coastline:

F =  Ne° = constant (6)

By analogy with Eq. (5), F is taken to be a measure of the line length which is independent of e, and D is 

taken to be the dimension which yields the constant length (F) of the line.

By combining Eqs. (5) and (6), we obtain:

L (e) = FeUD (7)

which can be thought of as a transformation relationship between the topological dimension of one and 

the fractal dimension of D for a fractal line. The reader is referred to Mandelbrot (1983) and Feder (1988) 

for a more complete review of fractal concepts.

Instead of the straight capillary tube approach of Arya and Paris (1981), fractal measures can be 

used to evaluate the pore length as a function of measuring scale. In this approach, smaller and larger 

particles line the pore wall. Figure la represents a Euclidean (nonfractal) pore wall whose length is inde­

pendent of the scale at which it is measured. The volume of the pore space is easily measured and con­

stant. Figure lb, however, represents a more realistic soil pore. Both large and small grains line the pore. 

If we magnified any portion of the pore, we would see yet more small grains lining the pore wall. The 

volume of such a pore is therefore a function of the scale at which it is measured. Its length is also a 

function of scale. The pore length and radius are “measured” in a retention experiment by varying the 

tension applied to the soil water. An equivalent radius may be estimated from Laplace’s equation, while 

pore length may be estimated from the change in water content. The left hand trace in Fig. lb is shown 

measured with a ruler length of e1t and the total pore length, ht, is simply A, e,. The right hand side of 

Fig. lb shows the same pore as measured with a smaller ruler size, e2. As we decrease the ruler size from 

e1 to e2, it is clear that the estimated pore trace length, h2 will be larger than/;, since we can more closely 

follow the irregularities of the pore wall. In contrast, as e is made smaller in Fig. la, the estimate of the
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line length (or pore trace) does not change. For the fractal pore trace in Fig. lb however, the length 

continues to increase as e is made smaller due to irregularities that exist at all scales. The pore trace is 

therefore defined as nonrectifiable. These concepts of fractal measures are physically related to a meas­

ure of tortuosity (Wheatcraft and Tyler, 1988).

I'he true length of the pore channel, Aj *, as a function of Rj is given by Eq. (7) as:

hi = F[2R iy-D (8)

where we have replaced e with 2Rj , the measuring unit. The constant Fmay be evaluated from Eq. (6) by 

setting our measuring length, 2Rj , equal to the straight line length of A; *. In this case; N[ = 1 and:

F =  hi D (9)

Substitution of Eq. (9) into Eq. (8) yields an expression for the true fractal pore length at the 

ith scale of measurement in terms of the particle size and straight line length:

hi  =  /tf(27?1) 1-°  (10)

But the estimated length A;, as given by Arya and Paris is simply equal to 2R[ N \ ; (Fig. la). Arya and Paris 

invoke a power law scaling relationship with the justification that this will account for nonspherical parti­

cles suggesting that Aj is longer than 2R[ Nj. This same scaling relation also defines a fractal scaling or 

self-similar pore channel. The term self-similarity implies that the pore trace contains quantifiable ir­

regularities at all scales of observation. By substituting the relationship that A/ = 2R[ N( into Eq. (10), we 

obtain equivalent results to Arya and Paris based upon fractal concepts:

h- =  2 /^ A f (11)

The exponent D in Eq. (11) is the fractal dimension describing the tortuosity of the pore channels 

and is equivalent to Arya and Paris’ a (Eq. (3)). A low fractal dimension indicates a fairly straight path 

while a D of 1.5 yields a very tortuous path. Numerical experiments (Wheatcraft and Tyler, 1988) indicate 

that a fractal dimension greater than 1.5 appears to yield physically unrealistic pore channel representa­

tions.

The volume of the fractal pore channel, Vv . can now be expressed as:
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K  = n rj N?2R, (12)

We now replace Eq. (2) with Eq. (12) in the Arya and Paris model which results in a similar equation for 

the effective pore radius:

r, =  R, (13)

The difference, however, is that the exponent D is a true measure of scale-dependent tortuosity of 

the pore trace.

The capillary pressure, r|rj, in terms of equivalent height of water for the corresponding pore ra­

dius, /■;, is obtained using the equation of rise in a capillary tube and is given below:

2ycos/?
QwgRi

(14)

where y is the surface tension of water, (3 is the contact angle, pw is the density of water and g is the 

acceleration due to gravity.

In order to apply Eq. (14), it is necessary to assume that the bulk sample void ratio is equivalent to 

the void ratio of each particle class. This assumption, in light of the power law scaling used to estimate the 

pore length, has interesting ramifications. Most pore-size/grain-size relations (for example, see

Haverkamp and Parlange, 1986) assume a linear relationship of the form: r,- =  C R j , where C is a con­

stant indicative of the grain packing. Such linear behavior is not preserved in porous media exhibiting 

fractal pores.

Assuming a constant void ratio for all pore classes, Eqs. (1) and (12) may be used to show the rela­

tionship of pore size to grain size. The void ratio is given as:

7t rj N? 2 Ri

Rearranging terms yields:

Ti =  c 7 a P  Ri (16)
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where: C

The relationship between pore and grain size is now a function of the distribution and number of 

soil grains. Equation (16) shows several interesting features. For soils exhibiting nonfractal pores (D = 

1), Eq. (16) reduces to the traditional linear proportionality of grain size to pore size. The same is also 

true if the soil exhibits a constant number of grains in each particle-class size. Such a soil would be domi­

nated (on a weight basis), however, by a few large grains.

Most soils, however, show an increasing number of grains with decreasing grain size. For such soils, 

Eq. (16) indicates a more rapid decrease in effective pore radius with decreasing grain size than a purely 

linear decrease. Such behavior is consistent with fractal pore traces. Such traces will show increased tor­

tuosity as the scale of observation is decreased. This increased tortuosity effectively lengthens the pore, 

resulting in a smaller cross-sectional area (pore radius) necessary to maintain the assumption of a con­

stant void ratio.

ESTIMATION OF THE FRACTAL DIMENSION
Arya and Paris (1981), in their study of soils and soil moisture, based their estimates of a (our D) on

a mean squared difference between measured and predicted capillary pressures. Water content at each 

capillary pressure was estimated based upon the particle mass at the î * particle size and the sample void 

ratio. Based upon this, Arya and Paris report good agreement between measured and predicted water 

retention data on most of the 15 soils reported. Their fitting coefficient, a , was found to vary between 0.9 

and 1.5.

If fractal concepts are to be of use in estimating a, it is necessary that an estimation technique be 

available for the fractal dimension. Turcotte (1986) has shown that particle sizes of geologic material 

exhibit fractal behavior of the form:

=  constant (17)

where N  is the total number of particles of radius greater than and D is the fractal dimension of the 

particle-size distribution. The fractal dimension defines the distribution of particles by size. For D = 0, 

the distribution is composed solely by particles of equal diameter. When the fractal dimension is equal to 

3.0, the number of particles greater than a given radius doubles for each corresponding decrease in parti­

cle mass by one-half (or particle radius decrease of (M)1/3 )• Afractal dimension between 0 and 3.0 there­

fore reflects a greater number of larger grains, while a dimension greater than 3.0 reflects a distribution
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dominated by smaller particles. Turcotte (1986) presents data on the fractal dimension of 21 particle-size 

distributions. Of the distributions presented, those representing soils had fractal dimensions approach­

ing 3.0.

It is possible to estimate the fractal dimension of the particle-size distribution by plotting the cu­

mulative number of particles larger than a given sieve size. Equation (17) may be rearranged and plotted 

on a log-log scale. The fractal dimension D will be equivalent to the negative of the slope. Since me­

chanical sieving yields a distribution of particle sizes between two successive sieves and it is impractical to 

count the number of particles directly, it is necessary to choose a “representative” particle radius for a 

given sieve size. For this analysis, this radius was chosen as the arithmetic mean between two successive 

sieve sizes. The number of particles assigned to each sieve was calculated by dividing the retained weight 

by the weight of a particle of mean radius between the two successive sieve sizes. The particle density was 

assumed to be 2.65 gr/cm3 for all analyses in this paper.

The choice of an arithmetic mean particle size to estimate the fractal dimension is consistent with 

the Arya and Paris method of representative radii of successive pore classes. Other averages (harmonic, 

geometric, etc.) could be used, however, it would also be necessary to estimate R[ (Eq. (14)) using an 

equivalent averaging process. The use of the mean particle radius will have some affect on the estimated 

fractal dimensions. We are currently investigating various other techniques to more uniquely define the 

dimension from particle-size distributions.

In our case, it is necessary to estimate the fractal dimension of the one-dimensional trace of the 

pore channel. The scale of the measurement unit (2/?;) will determine the pore channel length. Man­

delbrot et al. (1984) has suggested that the difference between an object’s fractal dimension and its tradi­

tional topologic dimension (D j ) be denoted as the fractal increment, D\. It has also been suggested

(Mandelbrot et al., 1984) that this fractal increment can be used to estimate the fractal dimension of 

lower topological-dimensioned objects taken from the original fractal process. For example, the fractal 

dimension of a profile taken across a fractal surface will have the same fractal increment as the surface. If 

the fractal dimension of the surface is 2.5 (a highly irregular surface), the fractal increment is then 0.5 

and the profile’s fractal dimension would be 1.5 (1 + 0.5). This “slit island” technique has been used 

extensively in the literature to estimate the fractal dimension of surfaces and volumes from transects, 

cross sections, and contours. In this study, we make the assumption that the fractal increment (D -  D j ) 

obtained from the grain-size distribution may be used to estimate the fractal dimension of the pore trace 

where D is the fractal dimension of the particle-size distribution. Since a particle-size distribution repre-
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sents a three-dimensional collection of soil grains {Dj = 3), the fractal increment is given by D-3. The 

fractal dimension of the pore trace (viewed as a one-dimensional transect through a three-dimensional 

soil matrix) is then 1 + Dj. The fractal dimension of the pore trace can range from one (a pore trace 

whose length is independent of measurement scale) to two (a trace which completely fills the plane).

MODELS AND MATERIALS
Aiya and Paris (1981) present complete cumulative distribution data and water retention data for 

five soils (Soils B-F). Both particle-size and water retention data were digitized from their original pa­

per for calculation and comparison. In addition, five soils cataloged in Mualem (1976) were analyzed. 

The soils ranged in texture from sand (Oakley Sand) to silty clay loam (Arya and Paris’ Soil B). Cumula­

tive number of particles (N) were calculated based upon 1 gram samples and an assumed particle density 

of 2.65 gr/cm3. Particle-size classes (R{) were chosen as the mean radius between successive sieve sizes.

The fractal dimensions (D) of the particle-size distributions were calculated from the slope of the 

log particle size versus log number of particles. A least squares regression was used to estimate D from 

the log-log plot.

The capillary pressure for the f t  particle-size class was calculated using Eq. (14) assuming a zero 

contact angle and fluid properties at 25 °C. The soil water content 6/, for each was calculated as in

Arya and Paris (1981) by summing the available pore space from the smallest size class up to the class. 

The void ratios were estimated from bulk density or saturated water content data depending upon the 

data source. The resulting pairs of capillary pressure and water content (\(rf-, 6 j) were fitted using van 

Genuchten’s retention model (1980):

where a, n, and m , and 0r were taken to be fitting parameters.

The fitted equation was used to estimate root mean squared (RMS) error between measured and 

predicted water retention data using the fractal approach to the Arya and Paris model. RMS error was 

calculated as:

1/2

(19)



p v M a B B — M

where A> is the number of measured pairs of water content and pressure head, with four degrees of 

freedom removed due to the fitting parameters used in Eq. (18). For two soils, saturation data were used 

to improve the fit of the data. In these cases, RMS error was calculated in terms of saturation(s) divided 

by the arithmetic mean of reported saturated water content and bulk density-derived porosity.
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RESULTS AND DISCUSSION
Fractal particle-size relations are shown in Figs. 2a-d, 3a-d, and 4a, b for the 10 soils analyzed. 

With the exception of the Sable de Riviere sand (Fig. 4b), the soils showed clear fractal behavior accord­

ing to Eq. (17). The fractal dimension of the distributions ranged from 2.7 to 3.485, while fractal dimen­

sions of the estimated pore traces ranged from 0.7 to 1.485. The fractal dimensions (D) of all but the 

Sable de Riviere sand were greater than 3.0. It is interesting to note that the power function fit is rather 

poor for this soil. Tible 1 shows the distribution of fractal dimensions for the soils analyzed. The fractal 

dimensions of the particle- size distributions were generally larger than those reported by Turcotte 

(1986). It is not clear if these differences are related to the choice of the mean particle radius or the more 

coarse texture of soil investigated by Turcotte (1986)

Calculated water retention data for each of the 10 soils are shown along with reported retention 

data in Figs. 5 through 14. Of the 10 soils analyzed, 7 showed good to excellent agreement with the meas­

ured retention data. The three soils showing poor agreement were the Sable de Riviere, Oakley Sand, 

and Arya and Paris Soil F. These are the coarsest textured soils investigated. These soils generally also 

had the lowest fractal dimensions. Since the pore trace dimension of the Sable de Riviere sand was less 

than 1.0, implying nonfractal behavior, water retention data was calculated using both D = 0.7 and D = 

1.0 (Fig. 14). It is apparent, however, that a poor agreement exists using either D = 0.7 or D = 1.0. The 

reasons for this are unclear, however, the low fractal dimension of the particle-size distribution (2.7) 

indicates that the soil is predominantly composed of larger particles, with a significantly decreasing num­

ber of smaller size particles. This is not surprising since the soil is a sand and therefore it may not be 

appropriate to apply the scale-dependent tortuosity concepts inherent in the Arya and Paris model.

This soil was also poorly fit by Eq. (17) and therefore the assumption of fractal scaling for this soil is 

suspect. This soil exhibits a very sharp retention curve implying a very narrow range of pore sizes which 

may not be distinguishable with a relatively coarse sieve analysis. These results are consistent with Schuh 

et al. (1988) who reported fitted values of a to be highly variable near saturation for coarse textured soils. 

Schuh et al. (1988) also suggests that a (in our study D) was not constant over all pore classes and gener­

ally increased with decreasing pore size. Although the fractal approach presented in this paper permits



Figure 2a-d. Fractal particle distributions for (a) Ayra and Paris soil B; (b) Arya and Paris soil C; (c) Ayra and Paris soil D; and (d) Arya and Paris soil E. ^
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Figure 3a-d. Fractal particle distribution for (a) Arya and Paris soil F; (b) Columbia silt; (c) Gilat sandy loam; and (d) Yolo ligtht day.
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Fgiure 4a,b. Fractal particle distribution for (a) Oakley sand and (b) Sable de Riviere sand.
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Figure 5. Predicted and measured retention data for Arya and Paris soil B.

Figure 6. Predicted and measured retention data for Arya and Paris soil C.
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Figure 7. Predicted and measured retention data for Ayra and Paris soil D.

Figure 8. Predicted and measured retention data for Ayra and Paris soil E.
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Figure 9. Predicted and measured retention data for Arya and Paris soil F.

Figure 10. Predicted and measured retention data for Columbia Silt.
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Figure 11. Predicted and measured retention data for Gilat sandy loam.

Figure 12. Predicted and measured retention data for Yolo light clay.
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Figure 13. Predicted and measured retention data for Oakley sand.

Figure 14. Predicted and measured retention data for Sable de Riviere sand.
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the fractal dimension to vary, the estimation from particle-size distribution may not be straightforward. 

It is important to note, however, that in the range of-10 to -1,000 cm of tension, Schuh et al. (1988) found 

that a  was fairly constant with values similar to those found in this study. Such behavior suggests that a 

constant value of a  as determined from particle-size distribution may be appropriate over the range of 

tensions typically found in many soil water problems. The finer textured soils which showed a wider dis­

tribution in particle sizes (and hence, a larger variety of pore classes) showed characteristically higher 

fractal dimensions, while the coarse textured soils showed smaller fractal dimensions.

TABLE 1. FRACTAL DIMENSIONS FROM PARTICLE-SIZE DATA.

Soil
Type

Particle Fractal 
Dimension 

(D)

Pore Fractal 
Dimension 

(D -  2)

Sand
Sable de Riviere 2.70 0.70
Oakley Sand 3.138 1.138

Sandy Loam 
A/P Soil F 3.011 1.011
Gilat Sandy Loam 3.160 1.160

Clay Loam
Yolo Light Clay 3.071 1.071

Silty Clay Loam 
A/P Soil B 3.404 1.404

Loam
A/P Soil D 3.264 1.264
A/P Soil E 3.163 1.163

Silty Loam 
A/P Soil C 3.419 1.419

Silt
Columbia Silt 3.485 1.485

Based upon these results, it appears that the applicability of the fractal model can be determined 

by inspection of the plot of particle number versus particle size. Soils exhibiting fractal increments close 

to or less than zero are likely to produce poor approximations while increments in the range of 0.1 to 0.5 

should produce accurate retention data. Particular interest is called to the Yolo Light Clay Soil (Figs. 3d 

and 12). The fractal dimension as well as the water retention data were calculated using only three parti-
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cle size classes: sand, silt, and clay. Even with such minimal data, the calculated retention data closely 

fits the measured data. It is important to note that the Oakley Sand and Columbia Silt are plotted as 

saturation. Based upon the bulk densities reported for these soils, the retention experiments did not 

completely saturate the soils. Table 2 shows the RMS error for each of the soils analyzed.

The apparent residual water contents predicted with the fractal model were generally less than the 

reported water contents at high tensions. This is not unreasonable since the Arya and Paris model as­

sumes complete desorption of all pores of a given class size at the critical pressure. At low tensions, this 

assumption appears reasonable, however, at high tensions, a significant percentage of water maybe held 

as films and in dead-end or poorly-connected pores. As a result, the model will tend to underpredict the 

water content in the high tension regions. Fortunately, the range of interest for many flow and transport 

problems is at low to intermediate tensions where the model appears to be most accurate.

The sensitivity of the analysis to the fractal dimension is shown in Fig. 15. Water retention data 

were calculated for Arya and Paris’ Soil B for three different values of D (1.0,1.2, and 1.6) and are shown 

in comparison to the retention data generated with the fractal dimension estimated from the particle- 

size distribution (D = 1.404). Figure 15 shows the extreme sensitivity to the fractal dimension and clearly 

shows that the fractal dimension obtained independently from the particle-size distribution is appropri­

ate to estimate the retention data.

* Calculated from saturation data and the average of calculated and reported saturated water con-

TABLE 2. CALCULATED RMS ERROR (IN WATER CONTENT).

Soil RMS (cm3/cm3)

Gilat Sandy Loam 
Yolo Light Clay 
Oakley Sand

Arya and Paris Soil B 
Arya and Paris Soil C 
Arya and Paris Soil D 
Arya and Paris Soil E 
Arya and Paris Soil F 
Columbia Silt

0.014
0.0403
0.037
0.077
0.141
0.023*
0.064
0.038
0.137*

Sable de Riviere Sand 0.249 (D = 0.7)

tent.



Figure 15. Sensitivity of predicted water content to the fractal dimension.

CONCLUSIONS
The empirical constant (a) used in the Arya and Paris model is shown to be equivalent to the frac­

tal dimension of a tortuous fractal pore. This analysis significantly reduces the empiricism of their water 

retention model. A relationship is developed to estimate the pore trace fractal dimension and hence, the 

pore channel length which is strictly scale-dependent based upon the mean particle radius. The concepts 

of fractal pore spaces also imply a nonlinear relationship between grain size and equivalent pore radius in 

conflict with traditional analysis.

A simple method is presented to relate the fractal dimension of the particle-size distribution to the 

dimension of the fractal pore trace. The relationship between particle-size distribution and pore geome­

try reduces the model input variables to bulk density and cumulative particle-size distribution data.

Ten soils in which retention and particle-size data were available were analyzed to obtain both the 

fractal dimension and, subsequently, the water retention data using the Arya and Paris model. The soil
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textures ranged from sand to silty clay loam to silt. The fractal dimension of the particle-size distribu­

tions generally increased with decreasing texture. Of the soils investigated, all but one soil showed clear 

fractal or power law scaling behavior. Pore fractal dimensions ranged from less than 1.0 to 1.4, in agree­

ment with other reported data. Using the fractal dimension from the particle-size distribution, the esti­

mated water retention data closely matched the observed data for all but the three coarsest soils. For 

most of the soils analyzed, the water contents at high tensions were slightly underestimated. The results 

are consistent with those reported by Schuh et al. (1988) suggesting that a constant value of a  (equivalent 

to the fractal dimension in our model) may not be appropriate at high soil water tensions.

These results indicate that water retention data may be estimated with reasonable accuracy for 

soils in which the particle-size data shows power law scaling with a fractal dimension of greater than 3.0. 

Such soils are those with a wide range of particle sizes. The results also indicate that a nonlinear relation­

ship between pore and grain size is appropriate for such soils and should be incorporated into retention 

and conductivity models. Such work is currently underway.

With the physical significance of the empirical term explained, the Arya and Paris model is shown 

to be physically based and should prove useful for efficient estimation of water retention data where field 

or laboratory measurements are not available.
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CHAPTER 4

FRACTAL SCALING OF SOIL PARTICLE-SIZE DISTRIBUTIONS (PSD)
ANALYSIS AND LIMITATIONS

S.W. Tyler 
S.W. Wheatcraft

ABSTRACT
In this paper, the concepts of fractal particle size distributions (PSD) are developed and related to 

actual soil PSD. Using the assumption of fractal scaling of the number of soil grains of a given size, the 

corresponding relations of mass distribution, a more commonly used relation, are developed. These de­

velopments are used to provide limits on the range of the fractal dimension, D and also on the range of 

soils which can truly exhibit fractal scaling. The results indicate that fractal scaling in soil PSD’s comprise 

a fairly limited range of textures and fractal scaling may not be applicable to many soils. Based upon these 

results, we revisit our earlier work (Tyler and Wheatcraft, 1989) and discuss the results of apparent frac­

tal scaling of soil PSD studied in the work. The fractal scaling and magnitude of the fractal dimensions 

found in our previous work are shown to be more representative of the plotting and fitting algorithms 

rather than the actual fractal nature of the PSD. As a result, the technique of estimation of the pore- 

trace fractal dimension, a hydraulic property of soils crucial to the estimate of water retention from PSD 

data alone, is not robust.

INTRODUCTION
PSD and textural analysis form one of the most common describers of field soils. The textural 

triangle (USDA, 1975) provides a natural language through which scientists, agronomists and the lay 

public may succinctly describe the major physical properties of soils. To the soil scientist, the PSD has 

been used routinely to predict physical properties such as water retention (Clapp and Homberger, 1979), 

bulk density, permeability and porosity. These approaches generally require the PSD to be quantified by 

certain parameters such as the mean grain diameter, the uniformity coefficient, the liquid limit, and in 

recent years, the fractal dimension (Turcotte, 1986; Tyler and Wheatcraft, 1989). In this paper, we will 

examine in detail, the derivation of fractal scaling for PSDs, its implications, and its limitations. Our 

primary objective is to relate the fractal dimension of the PSD to textural and other soil descriptors 

where possible, and to clearly define the range of fractal applicability.

Fractal Scaling of the PSD
Fractals (Mandelbrot, 1983) have become a widely accepted scaling treatment of physical systems. 

The concepts of fractals are based on the notion of scale-invariant transformations. Scale-invariant
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transformations map objects or processes onto themselves, independent of scale. As a result, fractal ob­

jects appear similar (either in shape or with respect to some intrinsic statistical property) at all scales of 

observation. In a soil PSD, the concept of fractal scaling suggests that at any scale of observation the solid 

phase of the soil will appear similar. This diverges somewhat from the more traditional Miller and Miller 

scaling, in which two different soils display similar pore geometry and are related by a linear scaling coef­

ficient. In a fractal soil, similarity in shape are exhibited in a single soil over a wide range of scales of 

observation. For example, take a slice through a soil core (assume the soil pores have been treated with 

epoxy such that the physical structure of the soil is rigid). If the soil grains display fractal scaling in its 

PSD, the ratio of the area comprising the solid phase would appear constant at any scale of magnifica­

tion. The term “at any scale of magnification” naturally has limits, and we will discuss these limits further 

on in the paper. The behavior of a non-fractal soil will be significantly different. For example, if we inves­

tigate a soil made up of single grain size, as we increase our magnification, we will either zoom in on a 

grain or void with the resulting void ratio approaching zero or one, respectively. In the fractal soil, the 

higher magnification shows no change in void ratio. This is equivalent to smaller grains filling the void 

spaces between the larger grains. Such a physical description of soil is, on the surface, very consistent 

with our intuitive understanding of soil as a porous medium. As we shall see later, rigorous fractal or 

self-similarity in particle size may apply to only a small fraction of real soils. In addition fractal scaling in 

both particle size and pore size is required to consider the soil to be a fractal porous medium. Fortunate­

ly, understanding the hydraulic behavior of soils is most closely tied to the pore space, which has been 

shown to be fractal in many cases (Katz and Thompson, Tyler and Wheatcraft, 1989, 1990, and Jacquin 

and Adler, 1987). In Figure 1, we show a typical cross section through a soil displaying a fractal number 

distribution in its pore size distribution. In this figure, we see pores of a wide range of sizes. In the two-di­

mension plane, the fractal dimension of the pore projection in Figure 1 was calculated as 1.80.

Fractal scaling arguments and analysis by Tyler and Wheatcraft (1990) and Toledo et al. (1990) 

suggest that the shaded area of Figure 1, A, (R) given by N*R2, where N is the number of tiles of charac­

teristic size R, is given by:

where C and A. are constants relating to the shape factors and total range of scale, and D is the fractal 

dimension. Note that if D is equal to 2.0 (the limiting case for this figure), the pore area is zero and is

(la)
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Figure 1. Hypothetical soil pore distribution. Areal fractal dimension is 1.89.

therefore independent of the measuring scale. If D is less than 2.0, the pore area grows as the measuring 

scale is decreased. The same analogy can easily be carried to a soil PSD. At a given sieve radius Rj, soil 

grains of size Ri or greater are retained. Grains greater than Ri are not detected. Picturing the sieve 

openings as tiles of size Ri, by Ri, the number of sieve openings covered by soil grains will follow equa­

tion (la). As the sieve size is decreased, A(R) grows (more slowly as R becomes very small) and asymptot­

ically reaches a constant value, related to the porosity. For simplicity, we assume that at R = 0, the soil 

grains are arranged such that they are everywhere one-layer deep.

To carry the analogy to three dimensions, the volume, V(r > R) of cubes of size R needed to fill the 

soil grains of size R or larger is given by:



50

V[r > R) = C (lb)

In the limiting case, D = 3, we see that the volume of the soil grains does not increase with decreas­

ing scale of resolution. In this case, the soil PSD would be composed of soil grains of strictly one size.

It is also possible that the fractal dimension will change as a function of R. For example, soil PSDs 

are bounded distributions, i.e. the maximum and minimum grain size is generally fixed by the analysis 

techniques, such a sieving on the < 2mm fraction. If a soil contains little or no clay size fragments for 

example, the fractal dimension will approach 3 in equation (lb). At the value of 3, no new detail (grains) 

are discemable as the scale of resolution is further decreased. Below this scale, the distribution of soil 

grains is not scale-invariant, but rather translationally invariant.

In the next section, we will look in more detail at the range of values that D, the fractal dimension, 

may take on in real soil distributions.

Analysis of Number and Mass Relations
Turcotte (1986) and Mandelbrot (1983) suggest the fractal relationship for PSD’s of the form:

where N(r > R) is the number of particles of size R or greater and D is the fractal dimension. For D = 0, 

the number is independent of the scale of observations, while D > 0 implies additional detail with a finer 

scale of observation, i.e., a smaller value of R. The relationship is directly analogous to the distribution of 

pores of the Menger sponge (Mandelbrot, 1983) or Sierpinski carpet (Tyler and Wheatcraft, 1990). In 

most soils analysis, it is not feasible to count the number of grains of a particular size and in addition, the 

soil grains span a spectrum of sizes and shapes. Instead, we measure the mass of grains whose size ranges 

between an upper and lower boundary defined by the sieve diameters or settling times (Gee and Bauder, 

1986). To calculate the number of particles, N(r > R), we must make an estimate of some characteristic

grain size, R whose volume and density is used to calculate N (r>R ) via:

N  ( r  > R)  cc R ~D (2)

N  ( R\ < r < R 2) =
M (Rj  < r < R2 ) 

j  ji R3 Qp
(3)
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where M (R i < r < R2) represent the mass of soil grains between two upper and lower sieve diameters 

and Pi is the grain density. As will be discussed further in this paper, such an analysis may lead to physical­

ly unrealistic results.

The cumulative number of soil grains greater than the characteristic size R is given by:

where Rl is the largest grain radius present in the distribution. Immediately, we see from equation (3)

that our calculation of N ( r > R) is strongly dependent upon our choice of R, especially when R  is small, 

since it is cubed in equation (3).

This approach is somewhat different than that stated in equations (la) and (lb). Equations (la) or 

(lb) state that the area covered by grains of size R or larger is calculated by tiling, or covering the area 

with tiles of size R. Equation (2), on the other hand, states strictly that the number of grains larger than R 

will be proportional to R-D. From equation (lb), the total number of cubes of size R needed to fill the 

volume of grains to a size R is given by:

Equation (5) represents strict self similarity while equation (2) is an approximation. Using these 

two approaches will yield different values of D for the same set of data.

To avoid these difficulties, it is more appropriate to investigate the PSD’s in terms of mass, a more 

easily measured quantity. From equation (lb), the mass M(r > R) is simply:

R
N(r > R) = £  N CRi < r < Ri+1) (4)

R=Rl

(5)

N ( r >  R) = C'[R~3 -  XD~3R~D]

where C =  -j

(6)
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where p p represents the average grain density. In most cases, the grain density vs. grain size is not mea­

sured and is therefor taken to be constant. Such an assumption may also introduce significant error.. The

The constant \  may be easily evaluated if we choose an upper limit Rl for fractal behavior. For a

equivalent to Rl-

Equation (8) is easily rearranged to provide the more typically reported PSD data of “% mass less 

than” or M(r< R) by noting that:

This result is equivalent to Turcotte (1986) in form, however, strict self similarity has been pre­

served in the analysis. In Turcotte (1986), strict geometric similarity is not preserved in grain number 

verses characteristic size, however, mass based similarity is preserved.

Equations (2) and (9) provide insight into the limiting values of the fractal dimension of the PSD 

which have not been clearly reported in the past. Equation (2) suggests that D may range from zero to 

infinity. For a negative value of D, the cumulative number of grains greater than R decreases as R is 

decreased; a non-physical situation. At D = 0, the distribution is independent of observation size, R and

total mass, Mx is:

Mt = QpC

Equation (6) may be normalized by equation (7) to yield:

M(r > R) 
M j (8)

typical PSD, Rl is often the very coarse sand fraction. At R = Rl ------—
M j is zero and X. must be

M(r < R) _ M(r > R)

or (9)
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behaves in a Euclidean or regular geometry. In the case of equation (2), the number of grains remains 

unchanged as R is decreased, while equation (5) shows strict euclidean behavior. At D = 0, equation (5) 

reduces approximately to:

N(r > R ) - R 3 = constant (10)

which is consistent with traditional geometry.

Equation (9) on the other hand, bounds the fractal dimension at 3. For a value of D greater than 3, 

the cumulative mass exceeds the total mass with decreasing observation size, another physically impossi­

ble situation. At the limiting value of 3, the distribution is also independent of scale. Equation (9) does 

not, however, provide a lower bound on the value of D. Combining the limiting values obtained via obser­

vation of the number and mass based relations (equations (2) and (9), respectively), the range of soil PSD 

fractal behavior is strictly limited to:

0 < D  < 3 (11)

These results will be used in a later section to discuss the apparent anomalous results of fractal 

scaling of PSD reported in Tyler and Wheatcraft (1989).

Applications to Real Soil PSD’s
In the past, use of equation (2) has led to conclusions regarding scale-invariant behavior of soils 

and particulates (Turcotte, 1986; Tyler and Wheatcraft, 1989). In Tyler and Wheatcraft (1989), log-log 

plots of particle numbers verses effective or average particle radius most often showed linear behavior. 

In addition, for all but one soil tested, the fractal dimensions estimated from least squares regression 

exceeded 3.0. We suggested at that time that the particle fractal dimension could be directly used to 

estimate the fractal dimension of the pore tortuosity term of the Arya and Paris (1981) model. As we shall 

see in this manuscript, the robustness of such an extrapolation from particle size to pore geometry ap­

pears limited.

For most soils in the textural triangle, the size of the fragments range from 2 mm to less than 2 

microns. For a given soil sample, one can expect to find the mass of solids to be distributed over this 

range. In general, coarse textured soils are more likely to have fragments of 2 mm or greater comprising a 

large percentage of the total weight, while fine textured soils may have very little mass concentrated at 

the 2 mm size. However, most fine textured soils will have some fragments in the sand size range.
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With this preface on the nature of soils typically encountered, we must re-look at the scaling impli­

cations of equation (9). For example, if we encounter a soil with some fraction of sand size fragments, we 

begin to fix the upper bound of equation (9). Given a fixed point (the characteristic grain size below which 

100 percent of the mass is found), then it is clear from equation (9) that the only variable remaining is the 

fractal dimension, which we have constrained to 0 < D < 3. By choosing various values of D, we can easily 

show the dependance of texture upon D, and also the limited range of soil textural classes which truly 

follow the fractal scaling arguments. Figure 2a shows equation (9) for soils with largest grain diameters of 

2 mm (radius of 1 mm), the top of the sand classification (USDA.1975), while Figure 2b shows the same 

fractal dimensions with largest fragments of only 1 mm in diameter. In each figure, a fairly narrow range 

of fractal dimensions span the commonly encountered textures. Given the curves of Figures 2a-b, it is a 

simple matter to pick off (or calculate from equation (9)) the percent passing the silt and clay size frac­

tions and translate these distributions to the textural triangle shown in Figures 3a and b. For soils with 

coarsest fragments (coarse sand) at the 2 mm diameter true-self similar or scale-invariant behavior fol­

lows a semi-circle from sand to clay soils. The same is true for finer-textured soils (largest grain diameter 

= 1 mm), however, the self-similar curve moves inward slightly towards the silts. It is clear that fractal 

dimensions approaching 3 are associated with fine-textured soils. Well graded soils such as loams, and 

silty loam, however, are not self similar (Tyler and Wheatcraft, 1989) in their particle-size distributions as 

described by equation (9). Given these restrictions in soil texture, it becomes apparent that difficulties 

may arise in using fractals as unique descriptors of particle-size distributions.

As a counter example, the particle-size distribution for sandy clay loam, clay loam and silty clay 

loam are shown in Figure 4. In each case, fractal dimensions may be estimated for these soils via a least 

squares regression on the log transformed PSD data. For these three soils, the least squares estimated 

fractal dimensions are nearly identical (2.82) yet Figure 5 shows the relation of these soils to equation (9) 

(with RL = 1 mm) on the textural triangle. It is clear from the figure that these soils do not fit the scale 

invariance requirement, and worse, all suggest (via regression) poor sensitivity relating the estimated 

fractal dimension and soil texture.

Re-evaluation of the PSD Dimensions
In an earlier work (Tyler and Wheatcraft. 1989), we suggested that PSD’s would be valuable to

predict the fractal dimension of the pore trace as defined by the Arya and Paris (1981) model of soil water 

retention. It appeared from plots of N(r > R) verses R that clear fractal behavior described by equation 

(2) were evident in at least 9 of the ten soils analyzed . In each of these 9 soils, the estimated fractal
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Figure 2a. Mass verses particle radius for Rl = 1.0 mm.

Figure 2b. Mass verses particle radius for Rl = 0.5 mm.
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Figure 3a. Soils displaying fractal scaling in PSD; R l =  1.0 mm.

Figure 3b. Soils displaying fractal scaling in PSD, R l =  0.5 mm.
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Figure 4 PSDs for Sandy clay loam, clay loam and silty clay loam.

Figure 5. The relationship o f sandy clay loam, clay loam and silty clay to 
soils displaying fractal scaling with R l  =  1.0 mm
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dimension exceeded 3.0. Such behavior, based upon the bounding conditions developed in this paper, is 

not physically realistic. In the following section, we will discuss the reasons for such behavior.

Thbles la through lc show the PSD data used in Tyler and Wheatcraft (1989). In Tyler and Wheat-

TABLE la . PARTICLE-SIZE DISTRIBUTION FOR ARYA A N D  PARIS SOILS.

M(r <  R) (%)

Radius (mm)

Soil 0.001 0.0025 0.010 0.025 0.0625 0.125 0.250 0.500
Soil B 36.8 49.2 66.0 77.2 88.0 95.0 99.0 100.0
Soil C 15.0 - 50.0 82.0 95.0 99.0 - 100.0
Soil D 24.0 31.0 47.0 61.0 79.0 93.0 99.0 100.0
Soil E 12.0 - 32.0 52.0 76.0 90.0 97.0 100.0

Soil F 13.6 17.2 30.0 42.8 69.0 88.0 96.0 100.0

TABLE lb . PARTICLE-SIZE DATA FOR SOILS U SE D  IN  TYLER A N D  
_____________WHEATCRAFT, 1989._____________________________________________

M(r <  R) (%)

Radius (mm)

Soil 0.0005 0.001 0.025 0.05 0.125 0.25 1 5
Oakley
Sand 4.0 8.6 12.1 32.5 77.6 92.9 102.8 103.0

Gilat Sandy 
Loam 19.0 45.0 _ 90.0 _ 100.0 —

Yolo Light 
Clay 31.2 77.2 — - - 101.0 -

craft (1989), some of the values of R were rounded off and in one case, incorrectly reported (Yolo light 

clay). As a result, the estimated values of D using equation (2) may be slightly different than those re­

ported earlier. As shown in Tyler and Wheatcraft, strong linearity was noted in log-log plots of N(r > R) 

verses R. Such linearity, however, appears to be strongly influenced by the range of the values of

N(r > R) which is typically 6 to 10 orders of magnitude. Figures 6a-b show N(r > R) for the 10 soils inves­

tigated and, the slopes are all quite similar and confidently fit with linear regression. These data were

calculated using equation (2) and plotted as N(r > R) verses arithmetic average of two successive sieve
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TABLE lc . PARTICLE-SIZE DATA FOR COLUM BIA SILT A N D  SABLE de 
_____________RIVIERE.________ _______________________________________________

M(r < R) (%)

Radius (mm)

Soil 0.016 0.025 0.05 0,0715 0,1 0,1425 0.21 0.25 0.5 0.585
Columbia
Silt 6.0 14.0 34.6 50.0 66.0 80.0 90.0 93.0 99.3 100.0

M(r <  R) (%)

Radius (mm)

Soil 0.025 0.03 0.04 0.05 0.075 0.1 0.15 0.25 0.35 0.5 0.6 0.75 1.0

Sable de Riviere
Sand 4.0 4.2 5.0 8.0 9.5 13.5 29.0 54.0 70.5 84.8 90.0 95.5 100.0

sizes. Using the arithmetic average assumes that the PSD is not continuous with equal size particles in 

between each sieve size. In reality, the PSD is continuous with soil grains of all sizes making up the mass 

between successive sieve sizes. Therefore, the number method based (equation (2)) introduces errors 

from the outset.

To eliminate these initial errors, one may use equation (9) directly and plot percent mass passing, 

M(r< R) verses R where R now correctly represents the upper sieve radius. Figures 7a-b show the 10 

soils of Table 1 fitted using equation (9). The data are no longer clearly linear, and show a wide degree of 

scatter. The estimated fractal dimensions from the slopes of both Figures 6a-b and 7a-b and their corre­

sponding R2 values are given in Table 2. There is a significant discrepancy between the estimated fractal 

dimensions when the two methods are compared.

The basis for this discrepancy lies in the range of the ordinate axis and the errors introduced in 

estimating the number of grains of any characteristic size for the number based approach. Using the 

number based approach, apparent linearity is almost guaranteed due the range (up to 10 orders of magni­

tude) of the ordinate when compared to the range of the abscissa (generally 3 orders of magnitude). 

Slopes and, therefore, fractal dimensions, are dominated in the least squares analysis by the values of

N(r > R) at the smallest value of R. Therefore, choice of R for the clay-size fraction will control the 

value of the slope of the fitted line. The choice of R for the clay fraction will dominate the calculated
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Figure 6a. N(r > R) for the 5 Ayra and Paris soils discussed in Tyler and Wheatcraft(1989).
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Figure 7a. M(r< R) for the 5 Ayra and Paris’ soils discussed in Tyler and Wheatcraft(1989).

log R(i) (mm)

Figure 7b. M(r< R) for the 5 soils described by Mualem (1976) and discussed in 
Tyler and Wheatcraft (1989).
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TABLE 2. ESTIM ATED SOIL PSD FRACTAL DIM ENSIO N FRO M  EQUATIONS 2 
A N D  9.

Soil

D  from
Number Based 

(eq. 2) R2

D  from  
M ass Based  

(eq. 9) R2
Arya & Paris Soil B 3.404 0.995 2.839 0.938
Arya & Paris Soil C 3.419 0.984 2.685 0.835
Arya & Paris Soil D 3.263 0.988 2.754 0.970
Arya & Paris Soil E 3.164 0.992 2.642 0.951
Arya & Paris Soil F 3.011 0.989 2.646 0.977
Sable de Riviere 2.682 0.958 2.006 0.972
Oakley Sand 3.098 0.974 2.620 0.875
Gilat Sandy Loam 3.046 0.995 2.745 0.943
Columbia Silt 3.499 0.959 2.271 0.839
Yolo Light Clay 3.042 0.999 2.832 0.887

value of N(r > R) since its value is cubed (equation (3)) while the magnitude of the actual mass of the clay

fraction will have much less of an impact on N(r > R). To more clearly demonstrate this behavior, Figures 

8a-b were developed using a modified mass relationship of the form:

R -3 M(r < R) = DAR'd (12)

This modified mass relation introduces no errors in choosing R, while at the same time allowing 

the ordinate representing the cumulative mass to range over roughly the same orders of magnitude as 

calculated from the number based approach. As can be seen in Figures 8a-b, the appearance of linearity 

is returned, however poor was the linearity of the untransformed data. Since the non-linearity is appar­

ently reduced, the apparent accuracy of the least squares fit, as represented by the r-squared coefficient, 

is better. The resulting slopes, however, are numerically equivalent to that estimated by equation (9).

The mass-based analysis introduces little error and no assumptions are necessary to calculate 

m(r < R) or R. As a result, this approach should be used. Unfortunately, the mass based approach clearly 

shows that many soil PSD’s do not fit the criteria for strict fractal behavior over the breadth of the size 

distributions. Some useful insight may be gained from those portions of the PSD’s exhibiting fractal scal­

ing, particularly in the interpolation of intermediate mass fractions or the interpolation to finer incre­

ments between sieve cuts. It appears unlikely, however, that the fractal dimension obtained from the 

PSD is directly applicable to the estimation of the pore-trace dimension needed in the model of soil
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Figure 8a. R3 M(r <  R) verses R for the 5 Ayra and Paris soils.

Figure 8b. R 3 M(r <  R) verses for the 5 soils described by M ualem (1976).
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water retention developed by Tyler and Wheatcraft (1990). As with other attempts to relate particle size 

to pore size for retention estimation, the fact that the PSD’s do not contain information on packing and 

pore geometry makes estimation of retention, which is dominated by pore structure, difficult without 

further insight.

Given this re-look at estimation and fractal behavior of the PSD, it is clear that the fractal dimen­

sions in excess of 3.0 from Figures 6a-b and Figures 2-4 of Tyler and Wheatcraft (1989) are the result of

the dominance of the clay-size fraction estimate needed to calculate N(r > R). These values tend to de­

crease the apparent slope which results in a larger fractal dimension. At the time of our development of 

the fractal component of the Arya and Paris model, we were quite hopeful that the PSD’s could yield the 

dimension of the pore trace. It appears from these results that the apparent linearity, combined with the 

significant degree of similarity between the fractal increment of the the PSD and the pore trace as re­

flecting the empirical coefficient, a , maybe coincidental. The obvious relation between texture and frac­

tal dimension ( coarse texture/low D, fine texture/high D) suggests that further investigation may devel­

op a relationship between the hydraulic nature of the pore space and the solid phase, but it will be neces­

sary to include further information regarding the nature of the packing of the solid phase. In a recent 

paper, (Tyler and Wheatcraft, 1990) we have suggested a simple relationship between water retention 

and fractal scaling of pore size and pore number, based upon the power-law retention models of Brooks 

and Corey (1964) and Campbell (1974). This approach looks directly at the pore structure as a fractal, 

while ignoring the solid phase (soil grains) in its analysis. As such, it is much less dominated by the PSD. 

Chang and Uehara (personal communication, 1989) have suggested that a relation exists between the 

slope of the PSD and the slope of the power-law retention curve. Further attention needs to be given to 

this area to test the robustness of these relations. It is clear that other methods must be developed to 

estimate the pore trace fractal dimension since methods may prove to be very useful in developing new 

models of unsaturated hydraulic conductivity from water retention data.

FUTURE IMPLICATIONS
Now that we have shown the inherent difficulties in fractal particle size analysis, it is important to 

consider this in light of prediction of the hydraulic properties of soils. We have shown in our earlier work 

that both the Ayra and Paris model (Tyler and Wheatcraft, 1989) and the Brooks and Corey model (Tyler 

and Wheatcraft, 1990) of soil water retention embody fractal scaling in their treatment of the soil’s pore 

structure. We have also suggested that the apparent fractal PSD data could be used to estimate the 

fractal nature of this pore structure. Bridging this gap between fractal particles sizes and fractal pore



structure in reality imposes a very strong restriction on the porous medium, i.e. the porous medium must 

be fractal. Such an assumption may be too stringent for most soils. We examine the necessary conditions 

for such behavior below.

For the case of fractal porous medium, both the solid phase (PSD) and the void phase (pores) must 

follow a power law scaling of the form:

Ns (r > Rs) oc R f  (13)

N v (r > Rv) a  R~d (14)

where the subscripts s and v stand for solid and void, respectively. In order that the porous medium 

display fractal scaling in its intrinsic properties, i.e. porosity and bulk density, etc., the following relation­

ship between the characteristic scales must be operative:

Rv = A Rs (15)

where X. is a linear scaling coefficient. By fixing the relation between the solid and void scales, the bulk 

medium can be described with either the solid or void phase properties. With this relation invoked, the 

porous medium will be self similar, i.e. the porous structure will look the same independent of the scale 

of observation. The implications of fractal scaling for both solid and void space at the same time are a 

medium whose porosity will grow in increasing scale of observation while concurrently, the bulk density 

will decrease with increasing scale of observation.. These properties will necessarily scale as a power 

function of the scale of observation. Invoking this rather special case of fractal behavior, although ap­

pealing from the standpoint of estimating hydraulic behavior from grain size behavior, may be too limit­

ing.

At this time, the evidence is quite clear that many natural porous media display fractal scaling in 

their pore structure, but the jury is not yet in on the evidence of fractal scaling in their interactions with 

the solid phase i.e. the traditional definitions of a porous medium. Although at first disappointing, many 

of our studies concentrate on the way in which fluids move through the void spaces of soils and aquifers 

and the applicability of fractal scaling to this structure is significant. The fractal behavior of water reten­

tion, pore trace tortuosity, and differential advection of solutes gives the soil physicist and hydrogeologist 

a powerful new tool to understand transport in spatially variable soils and aquifers. We must continue to
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explore techniques to extract the necessary scaling information (fractal dimension, range of fractal scal­

ing, etc.) from easily measured quantities in the field. Such approaches may rely on both PSD data and 

information on the porous media behavior, such as bulk density. From information on both the solid 

phase and the bulk behavior, the pore structure behavior may be extractable. It is clear that these as well 

as other approaches need to be initiated.

CONCLUSIONS
In this review of fractal scaling of soil particle-size distributions, we have developed bounding val­

ues for the range of physically plausible fractal dimensions. Dimensions previously reported in our work 

routinely exceeded these boundaries and are the result of error introduced in using the traditional num­

ber-based approach to estimate the fractal dimensions. Based upon these introduced errors, we suggest 

using a mass based approach to estimate the fractal dimension of the PSD. Using this unbiased approach, 

we have shown that strict fractal or self similar behavior in soil PSD’s are restricted to a narrow spectrum 

of soils found in nature. As a result, the estimation of the pore-trace fractal dimension from the PSD as 

suggested in our earlier work (Tyler and Wheatcraft, 1989) does not appear to be a robust estimator. 

Research to date strongly supports the notion that many soils and porous media display fractal scaling in 

their pore space, however, such is not a sufficient condition to insure that the solid phase (PSD) is also 

fractal. Further research is, therefore, needed to develop techniques to extract the pore-trace dimen­

sion since it should also be useful in development of models relating retention, unsaturated conductivity 

and other hydraulic properties critical to the understanding of fluid and contaminant transport in soils 

and aquifers.
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