MINES LIBRART Thesis 3450

University of Nevada

Reno

FRACTAL CHARACTER OF LANDSLIDE BLOCK DISTRIBUTION

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geological Engineering

by

Yoshihiro Yokoi

Dr. Robert J. Watters, Thesis Adviser

May 1995

UNIVERSITY LIBRARY UNIVERSITY OF NEVADA, RENO RENO, NV 89557 The thesis of Yoshihiro Yokoi is approved:

Thesis Advisor

Richard h Schwenkur

Department Chair

red C. Del

Dean, Graduate School

University of Nevada

Reno

May 1995

# ACKNOWLEDGEMENTS

First of all, I would like to thank Dr. Bob Watters for his encouragement and guidance. His enthusiasm for research spurred on my interest in my studies and his open mindedness created good environment for my creative thinking. I learned a great deal about geological engineering and consulting through our conversations, despite the difficulties of communication we encountered due to my Japanese English and his Scottish accent.

I also would like to thank Dr. Carr for his patient advice about fractals, numerical analysis, and modeling. I could never accomplish my thesis without his help. In addition to that, his encouragement of my writing a paper for an academic journal gave me a lot of confidence. The advice of Dr. Gary Norris, one of the members of my committee, improved my thesis.

#### stilly, I would like on theme my with Look and the Call, whi

Dr. Nobuyuki Takahama of Niigata University and Dr. Yukinori Fujita, who were my undergraduate advisers, and Mr. Tomio Ohtsuka, a Niigata University graduate geologist, helped me conduct field work in Los Angeles last summer and advised me about landslide development process. They gave me important hints and inspirations for my work. My employer, Kisojiban Consultants Co., Ltd., has given me generous support financially. My colleagues in Hiroshima and Matsuyama, Japan, sent me detailed landslide data and encouragement.

Special thanks are due to Dr. William Gate; the Ministry of Agriculture of Japan - Hokuriku Branch; Dr. Nobuyuki Takahama, Niigata University; Nittoc Construction Co., - Toyama Geotechnical Laboratory; and the Ministry of Construction of Japan - Public Works Research Institute, who sent me the unpublished data about landslides that form the basis of my thesis.

My friends Mr. Sangwon Cheong, Mr. Tomoaki Miura, and Mr. Rolf Swainston have always advised and encouraged me. I would have gone crazy without conversation and drinking parties with them.

Finally, I would like to thank my wife Leah and our cats, who came here with us. In first place, I wouldn't have come to a university in U.S. without my wife. Then, there is no way I would have undertaken or been able to complete my studies without Leah's support. In paticular, what I wrote couldn't have been understood without her turning my Japanese English into English. Our older cat, Lorenzo, kept me amused and irritated by walking on and messing up my papers. The biggest sacrifice for my work was made by our little cat, Chibi, who died during last Thanks giving week.

At Paul Laxalt Mineral Research Center 165D, UNR Reno, Nevada March 22, 1995

Yoshihiro Yokoi

### ABSTRACT

Landslide blocks can be classified into first, second, and third levels. Not only whole blocks but also second and third level blocks have unique fractal dimensions. The fractal dimension is reversely proportional to the logarithm of standard deviation of the blocks' size. Numerical analysis revealed that fractal dimension correlates to the geometry of the landslide, discontinuities of the base rock, and activity of the landslide. Fractal dimension is independent of the size of the landslide, angle of slide surface and slope, and geology of the base rock. The fractal character of landslide block distribution can be explained by self-similar geometry, the unique fractal dimension made by combining second and third level blocks, and fractal erosional process. Fractal character of landslide block distribution can be used to identify potential landslides and can be used as a numerical index to describe landslides including their level of activity.

# TABLE OF CONTENTS

|         |                                                | PAGE |
|---------|------------------------------------------------|------|
| CHAPTER | ONE: INTRODUCTION                              | 1    |
|         |                                                |      |
| CHAPTER | TWO: CLASSIFICATION OF MASS MOVEMENTS          | 3    |
| 2.1     | Introduction                                   | 3    |
| 2.2     | Discriminating Factor for the Classification   | 4    |
| 2.3     | The Classifications Used in This Thesis        | 7    |
|         |                                                |      |
| CHAPTER | THREE: FRACTALS AND FRACTAL DIMENSION          | 13   |
| 3.1     | Definition                                     | 13   |
| 3.2     | Self-similarity and Self-affinity              | 14   |
| 3.3     | Fractal Dimension                              | 15   |
| 3.4     | Statistical Self-Similarity and Scale Limits   | 22   |
|         |                                                |      |
| CHAPTER | FOUR: HISTORY OF STUDY                         | 23   |
| 4.1     | Fractals in Geology and Geological Engineering | 23   |
| 4.2     | Fractals in Slope Stability                    | 24   |
|         |                                                |      |
| CHAPTER | FIVE: METHOD OF STUDY                          | 30   |
| 5.1     | Introduction                                   | 30   |
| 5.2     | Data Collection                                | 31   |
| 5.3     | Measuring Fractal Dimension                    | 36   |

vi

| P                                                                 | PAGE |
|-------------------------------------------------------------------|------|
| CHAPTER SIX: LANDSLIDE DATA AND FRACTAL DIMENSIONS                | 41   |
| 6.1 Landslide Data                                                | 41   |
| 6.2 Fractal Character of Landslide Block Distribution             | 48   |
| 6.3 Fractal Dimension of Landslide Block Distribution             | 54   |
| 6.4 Fractal Dimension of Lineament                                | 59   |
| 6.5 Fractal Dimension of Rock Fall, Debris Flow, and              |      |
| Fracture                                                          | 64   |
|                                                                   |      |
| CHAPTER SEVEN:<br>ANALYSIS OF LANDSLIDES USING FRACTAL DIMENSIONS | 69   |
| 7.1 What is Fractal Dimension of Landslide Block                  |      |
| Distribution?                                                     | 69   |
| 7.2 Relationship between Fractal Dimension and Other              |      |
| Properties                                                        | 72   |
| 7.2 Fractal Models for Landslide Block Distribution               | 102  |
| 7.4 Analysis of Block Development Process                         | 112  |
|                                                                   |      |
| CHAPTER NINE: CONCLUSION AND FURTHER STUDY                        | 117  |

REFERENCES

121

vii

#### APPENDICES

| A: | Outline | of | Landslides, | Block | Distribution | Maps, |
|----|---------|----|-------------|-------|--------------|-------|
|    |         |    |             |       |              |       |

Lineament Maps, and Sampling Maps

- B: Log(N(r)) versus Log (r) Plots of Landslide blocks
- C: Log(N(r)) versus Log (r) Plots of Rock Falls, Debris Flows, and Fractures
- D: Log(N(r)) versus Log(r) Plots of Lineaments
- E: Log(N(r)) versus Log (r) Plots of Model B
- F: Statistical Data of Landslides
- G: Fractal Dimension Lists
- H: Correspondence Analysis Result
- I: Discriminant Analysis Result
- J: Abbreviation List

[22]

| FIG | JUR | ES |
|-----|-----|----|
|-----|-----|----|

| FIGURE NUMBER | TITLE | [PAGE] |
|---------------|-------|--------|
|               |       |        |

Filmers s. > Construction of starplant, same

Figure 2.1 Conceptional pictures of the cycle of landslide process [7]

Figure 2.2 Classification of mass movement by Varnes (1978) (pictorial) [9]

Figure 2.3 Distribution of slide-blocks of No. 34 Ohbora Landslide [10]

Figure 3.1 Interpretation of standard integer dimension figures in terms of exact self-similarity and extension to non-integer dimensional fractal [17]

Figure 3.2 The construction of the Koch curve proceeds in stages [18]

Figure 3.3 Diameter distribution of craters on the Moon [19]

Figure 3.4 The wild structure with two underlying grids and its log(N(r)) versus log(r) plot [20]

Figure 3.5 Fractal geometry with dimension,  $D_s = \log(13)/\log(3) = 2.335$  [21]

Figure 4.1 Relationship between  $\alpha_0$  and amount of rainfall per day [26]

Figure 4.2 Relationship between number of slope failures and total amount of failed debris of each fractal dimension. [27]

Figure 5.1 Location maps of landslides

[33]

Figure 5.2 Conceptional pictures of ideal self-similar landslide. [38] Figure 5.3 Construction of Sierpinski Gasket [38] Figure 5.4 log(N(r)) versus log(r) plot of Sierpinski Gasket or ideal self-similar landslide with b = 3, s = 2. [39] Figure 5.5 Measurement of block width and block length [40] Figure 6.1 Measurement of attributes of landslide [42] Figure 6.2 Classification of topography [43] Figure 6.3 Classification of block shape [43] Figure 6.4 Relationship between scale of map or aerial photography and fractal character limit [49] Figure 6.5 Classification of shape of log(N(r)) versus log(r)plot [50] Figure 6.6 Relationship between fractal dimension of width and length. [57] Figure 6.7 Relationship between fractal dimension of whole blocks; and second and third level blocks. [58] Figure 6.8 Relationship between fractal dimension of lineament,  $D_{Lin}$  and fractal dimension of landslide block. [62] Figure 6.9 a) X coefficient and b) coefficient of correlation of fractal dimension of lineament and fractal dimension of landslide blocks [63] Figure 6.10 Relationship of fractal dimension between rock

fragment of rock fall and fractures at the origin of the rock fragments. [67]

X

Figure 7.1 Relationship between fractal dimension and logarithm of variance of landslide blocks [70]

Figure 7.2 Conceptional pictures of fractal dimension and variance of landslide blocks [71]

Figure 7.3 Correspondence Analysis plot [75]

Figure 7.4 Metric attributes and fractal dimension plots [78]

Figure 7.5 a) X coefficient and b) coefficient of correlation of metric attribute and fractal dimensions of landslide blocks [82]

Figure 7.6 Conceptional pictures for explanation of relationship between length/width and fractal dimension. [84]

Figure 7.7 Plot of two bivariate distributions, showing overlap between group A and B along both variables  $X_1$  and  $X_2$  [85]

Figure 7.8 Mean of fractal dimensions and length/width of each geology. [87]

Figure 7.9 Relationship between mean of length/width and gap of  $D_{W-mean}$  and  $D_{L-mean}$  [88]

Figure 7.10 Mean of  $\alpha_0$  of each geology [90]

Figure 7.11 Mean of fractal dimensions and length/width of each dipping type of base rock [92]

Figure 7.12 Relationship between base rock apparent dip and length/width [92]

Figure 7.13 Mean of fractal dimensions and length/width of each topography type. [94]

Figure 7.14 Mean of fractal dimensions and length/width of each block shape type. [96]

xi

Figure 7.15 Mean of fractal dimensions and length/width of each activity level. [99]

Figure 7.16 Conceptional illustration of log(N(r)) versus log(r) plot to explain how activity and fractal dimension correlate each other [100]

Figure 7.17 a) The Gull Lake, Ontario, Canada. b) The fractal analysis of its shoreline (Kent and Wong, 1982; reprinted from Korvin, 1992) [101]

Figure 7.18 Hypothetical model for the change of slope of log(N(r)) versus log(r) plot with geological time [102]

Figure 7.19 Conceptional illustration of a) Model A and b) Model B [103]

Figure 7.20 Relationship of fractal dimension of actual landslide and Model A [108]

Figure 7.21 Relationship of fractal dimension of actual landslide and Model B [111]

Figure 7.22 Conceptional landslide block development process [116]

[ + + 0

| xi                                                                                                                    | ii       |
|-----------------------------------------------------------------------------------------------------------------------|----------|
| TABLES                                                                                                                |          |
| TABLE NUMBER TITLE [PAG]                                                                                              | E)       |
| Table 2.1 Comparison of discriminating factor for mas<br>movement classification [5                                   | 35<br>5] |
| Table 2.2 Classification of mass movement by Varnes (1978<br>(verbal)                                                 | 3)<br>3] |
| Table 2.3 Classification of landslide based on multiple levelcharacteristics[1]                                       | ≥l<br>L] |
| Table 5.1 Landslide data list [35                                                                                     | 5]       |
| Table 5.2 Fractal dimension calculation of ideal self-simila<br>landslide.                                            | ir<br>9] |
| Table 6.1 Landslide data list [45                                                                                     | 5]       |
| Table 6.2 List of shape of $log(N(r))$ versus $log(r)$ plot [52]                                                      | 2]       |
| Table 6.3 List of combination of $log(N(r))$ versus $log(r)$ ploshapes of whole, second-, and third-level blocks [53] | )t       |
| Table 6.4 Fractal dimension of landslide block distributio                                                            | )n<br>5] |
| Table 6.5 Fractal dimension of lineament and landslide blocdistribution[60                                            | :k<br>]  |
| Table 6.6 Fractal dimension of rock fragment[66                                                                       | ]        |
| Table 6.7 Fractal dimension of fracture[66                                                                            | ]        |
| Table 7.1 Mean and standard deviation of fractal dimension<br>of each geology [87                                     | s<br>]   |

Table 7.2 Mean and standard deviation of  $\alpha_0$  of each geology [90]

Table 7.3 Mean and standard deviation of fractal dimensions of each dip type [91]

Table 7.4 Mean and standard deviation of fractal dimensions of each topography [94]

Table 7.5 Mean and standard deviation of fractal dimensions of each block shape [96]

Table 7.6Mean of and standard deviation of fractaldimensions of each activity level[98]

Table 7.7 Model A calculation[106]

Table 7.8 Fractal dimension of Model A [107]

Table 7.9 Fractal dimension of Model B and actual fractal dimension [110]

termi is assure over. Love). A few redesiding complex forms the distribution of Insisilie Biosis Indicites frechel main but (Denn and others, 1991; Highel and others, 1994; Found and storrs, 1991).

The purpose of this themin is to investigate the fractal manacter of lendsites blocks, analyze the relationship metware inactal and other ettributes (properties) of lendsities, and diamone landsities block development process.

Therefore, Gas objective of this investigation is to:

xiv

#### CHAPTER ONE: INTRODUCTION

"Fractal geometry is not just a chapter of mathematics, but one that helps Everyman to see the same old world differently.", Mandelbrot, B. B., from Foreword of "An Eye for Fractals", (Mcguire, 1991).

The distribution of landslide blocks seems random and chaotic. This apparent random and chaotic distribution was analyzed using fractals. Fractals provide a workable new middle ground between the excessive geometric order of Euclid and the geometric chaos of roughness and fragmentation (Mandelbrot, 1990). Furthermore, fractals provide both a description and mathematical model for many of the seemingly complex forms found in nature (Voss, 1988). A few researches suggested that the distribution of landslide blocks indicates fractal character (Ueno and others, 1993; Higaki and others, 1994; Yokoi and others, 1995).

The purpose of this thesis is to investigate the fractal character of landslide blocks, analyze the relationship between fractal and other attributes (properties) of landslides, and discuss landslide block development process.

Therefore, the objective of this investigation is to:

1) collect slide-block distribution data from huge landslides through interpretation of areal photography and topography maps, field investigation, and the available literature on the subject;

2) determine the fractal character, if any, of these landslide block distribution and calculate their fractal dimensions;

3) conduct statistical analyses to find the relationship between their fractal dimensions and other properties;

4) analyze the landslide block distribution using fractal models; and

5) analyze block development process of landslides

# CHAPTER TWO: CLASSIFICATION OF MASS MOVEMENT

# 2.1 INTRODUCTION

Mass movement, like other natural phenomena, is difficult to classify. Many researchers have tried to classify mass movement and their efforts have contributed to our understanding of it.

Not all researchers agree on the definition of mass movement. Varnes (1978) believed that the term mass movement is not proper because it includes subsidence and he proposed the alternate term *slope* movement. On the other hand Hutchinson (1968) defined mass movement as not including the subsidence (Hansen, 1984). Mass movement is used to mean the movement of slope material except subsidence and tectonic movement. This means that mass movement includes falls, topples, slides, spreads, flows, and creep.

Many researchers, including Sharp (1938), Varnes (1978), and Zaruba and Mencl (1969), use the term *landslide* interchangeable with mass movement. Hutchinson (1988) divided mass movement into rebound, creep, sagging of mountain slopes, landslides, debris movements of flow-like form, topples, and falls. He limited the concept of *landslide* to rotational slips, transnational slides, and compounds of these. Japanese researchers divide mass movement into rockfall, debris flow, and landslides. The Japanese term for landslide, jisuberi, has a similar connotation to Hutchinson's landslide plus sagging or Varnes' slide. In this paper, landslide is used with same definition as the slide and creep of Varnes (1978), because my study is focused on slides; and the broader meaning of landslide can be expressed by mass movement.

2.2 DISCRIMINATING FACTORS FOR THE CLASSIFICATION

Table 2.1 shows the discriminating factors used for classification of mass movement.

Most researchers agree in using the type of movement as the discriminating factor. Many American and European researchers have used the material moved as the discriminating factor, whereas their Japanese counterparts have used the base rock geology. In Japan, the distribution of landslides is concentrated in tertiary mudstone areas, metamorphic areas, and altered volcanic rock areas (Kotachibana, 1979). Therefore, it is convenient to classify landslides by base rock geology.

# Table 2.1 Comparison of discriminating factors for mass movement classification

| Auther           | Climate | Material | Coherence   | Size of  | Geology | Type of  | Speed of    | Water/  | Triggering | Morphologica | Process of  | ISize of |
|------------------|---------|----------|-------------|----------|---------|----------|-------------|---------|------------|--------------|-------------|----------|
|                  |         | moved    | of material | material |         | movement | movement    | air/ice | mechanism  | attribute    | development | block    |
| Heim             |         | XX       |             |          |         | XX       |             |         |            |              |             |          |
| (1882)           |         |          | 1.211.028   | 1.1      |         | 1.00     | Contraction | 101     |            | 0101         |             |          |
| Ladd             |         |          |             |          | XX      |          |             |         | X          |              |             |          |
| (1935) *         |         |          |             |          |         |          |             |         |            |              |             |          |
| Sharpe           |         |          |             | X        |         | XX       | X           | XX      |            |              |             | 1        |
| (1938) *         |         |          |             |          |         | 1        |             |         |            |              |             |          |
| Ward             | X       | X        |             |          |         | XX       |             | X       |            |              |             |          |
| (1945) *         |         |          |             |          |         | 11111    |             |         |            |              | 11-1 11     | 1.11     |
| Zaruba and       |         | XX       | XX          |          | X       | X        |             |         |            |              |             |          |
| Menci (1969)     |         |          |             |          |         | 1. 1     | _           |         |            |              |             |          |
| Blong            | -       |          |             | X        |         | XX       |             |         |            | XX           |             |          |
| (1973) *         |         |          |             |          |         |          |             |         |            |              |             |          |
| Crozier          |         |          |             |          |         | XX       |             |         |            | XX           |             | 1        |
| (1973) *         |         |          |             |          |         |          |             |         |            |              |             |          |
| Coates           |         | XX       | X           | X        |         | XX       | X           |         |            |              |             |          |
| (1973) *         |         | 1.11     |             | 1000     |         |          |             |         | _          |              |             |          |
| Vames            |         | XX       |             |          |         | XX       | X           | X       |            | -            |             |          |
| (1978)           |         |          |             | 1        |         |          | â           | î î     | 1 (        | -            |             |          |
| Huchinson        |         |          |             | X        |         | YX       |             |         |            |              |             |          |
| (1988)           |         |          |             |          |         | 101      |             |         |            |              |             |          |
| Wakimizu         |         | XX       |             |          |         |          |             |         |            |              |             |          |
| (1912) **        |         |          |             | 1.5.711  |         | ~~       | 1.000       |         |            |              |             |          |
| Nakamura         |         |          |             |          | XX      | XX       | X           |         |            |              |             |          |
| (1955) **        |         |          |             |          |         |          |             |         |            |              |             |          |
| Koide            |         |          |             |          | XX      | X        |             |         |            |              | ~~~~        | <u>+</u> |
| (1955) **        |         |          |             |          |         | n        |             |         |            |              | ~~          |          |
| Takano           |         |          |             |          |         | X        | XX          |         |            |              |             |          |
| (1960) **        |         | 1        |             |          |         |          |             |         |            | ~            |             |          |
| Taniguchi        |         |          |             |          | XX      | XX       |             |         |            |              |             |          |
| (1963) **        |         | [        |             |          |         |          |             |         |            |              |             |          |
| Akutagawa,       |         |          |             |          | XX      | XX       | X           |         |            |              |             |          |
| Kaneko (1965) ** |         |          |             |          |         |          |             |         |            |              |             |          |
| Kuroda           |         |          |             |          | XX      | XX       |             |         |            |              | ~           |          |
| (1968) **        |         |          |             |          |         |          |             |         |            |              |             | -        |
| Miyazaki, **     |         | X        |             |          |         | Y        |             |         |            |              | ~~~~~       |          |
| Takahashi (1970) |         |          |             |          |         | ~        |             |         |            |              | ~~          |          |
| Watari           |         | - xx     |             |          |         | 77       |             |         |            |              | ~~~         |          |
| (1977)           |         |          |             |          |         | ~        |             |         |            |              | ~           |          |
| Takahama.        |         |          |             |          |         |          |             |         |            |              |             | ~ 1      |
| to (1989)        |         |          |             |          |         |          |             |         |            |              | ~           | ~        |

Reference

\* Hansen (1984) \*\* Konuki (1971)

XX: Main factor X: Secondary factor

The unique factor used by Japanese researchers is the process of development. There are two variations of this concepts. One is the cycle of the landslide which is landslide version of the cycle of erosion (Davis, 1923). The other is the multiple level character of the landslide, which is explained in the next section. Figure 2.1 shows a conceptional picture of the cycle of the landslide process. Watari (1977) indicated that landslides begin as a huge rock slide (young stage). After initial failure, the landslide body is weathered mainly by ground water permeating through cracks and becomes weathered rock (mature stage). In the weathered rock type slide, many small rotational slides occur and the landslide body becomes colluvial and then muddy soil (old and ultimate stage).

1.3 THE CLARPSPICATION FRED IN THIS PRECIS

Consisting a second of the sec



a) YOUNG STAGE Landslide begin as a huge rock slide.

b) MATURE STAGE
Weathered rock slide

c) OLD STAGE Debris slide

+

d) ULTIMATE STAGE Clayish soil slide

Figure 2.1 Conceptional picture of the cycle of landslide process (reprinted from Watari, 1977)

# 2.3 THE CLASSIFICATION USED IN THIS THESIS

Varnes' classification (1978) is used to describe the landslides because it is well organized and widely used. The classification based on the multiple level character of landslides is also used because it is useful in analyzing the fractal character of landslides.

# THE CLASSIFICATION OF VARNES (1978)

The chief criteria in classification are type of movement and type of material. The type of mass movement is expressed as a combination of these two criteria. Types of movement are divided into five main groups: falls, topples, slides, spreads, and flows; slides are further divided into rotational and translational. Materials are divided into two classes: rock and engineering soil; soil is further divided into debris and earth. Varnes added the complex type which is the combination of two or more principal types of movement (Table 2.2, Figure 2.2).

Table 2.2 Classification of mass movement by Varnes (1978) (verbal)

| TYPE OF MOVEMENT |                |       | TYPE OF MATERIAL          |                                          |                    |  |
|------------------|----------------|-------|---------------------------|------------------------------------------|--------------------|--|
|                  |                |       | BEDBOCK                   | ENGINEERING SOILS                        |                    |  |
|                  |                |       |                           | PREDOM. COARSE                           | PREDOMINANTLY FINE |  |
|                  | FALLS          |       | ROCK FALL                 | DEBRIS FALL                              | EARTH FALL         |  |
|                  | TOPPLES        |       | ROCK TOPPLE               | DEBRIS TOPPLE                            | EARTH TOPPLE       |  |
|                  | ROTATIONAL     | FEW   | ROCK SLUMP                | DEBRIS SLUMP                             | EARTH SLUMP        |  |
| SLIDES           | TRANSLATIONAL  |       | ROCK BLOCK<br>SLIDE       | DEBRIS BLOCK SLIDE                       | EARTH BLOCK SLIDE  |  |
|                  |                | UNITS | ROCK SLIDE                | DEBRIS SLIDE                             | EARTH SLIDE        |  |
| L                | ATERAL SPREADS | 5     | ROCK SPREAD               | DEBRIS SPREAD                            | I EARTH SPREAD     |  |
|                  | FLOWS          |       | ROCK FLOW<br>(DEEP CREEP) | DEBRIS FLOW   EARTH FLOW<br>(SOIL CREEP) |                    |  |
|                  | COMPLEX        | CO    | MBINATION OF TW           | O OR MORE PRINCIPAL                      | TYPES OF MOVEMENT  |  |

8

THE SECTION PRODUCT CHARACTER OF CAMPETINE

super, almost all monority survey includes are



Figure 2.2 Classification of mass movement by Varnes (1978) (pictorial) (reprinted from Hansen, 1984)

Figure 1.1 Distribution of stand-timent of No. 14, Cheore Londellde (rescinted from Descent and Fox, 1989) If First Level Starty as German merni mission 31 Tated Fastel Start

# THE MULTIPLE LEVEL CHARACTER OF LANDSLIDE

In Japan, almost all presently active landslides are considered reactivation of parts or entire ancient huge (primary) landslides (Nakamura, 1963, quoted in Takahama, 1993). Takahama and Ito (1988) indicated that the slide-blocks can be classified into three levels: first level; second level; and third level. Typically, second level blocks occur in first level blocks and third level blocks occur in second level blocks. They call this characteristic the multiple level character of landslides (Figure 2.3).



Figure 2.3 Distribution of slide-blocks of No. 34, Ohbora landslide (reprinted from Takahama and Ito, 1989) 1: First level block; 2: Second level block; 3: Third level block

Takahama and Ito classified first, second, and third level blocks mainly by absolute size and activity age of the blocks (Table 2.3). However, the relationship of the levels are relative. Therefore, I decided that it is more convenient and applicable to classify these blocks by relative size and relative activity age of the blocks. In this thesis, first level blocks are defined as blocks which cover more than 50% of the landslide area; second level blocks as blocks whose area is 50-3% of the first level block and in which third level blocks occur; and third level blocks as blocks whose area is less than 5% of the first level blocks. Landslide blocks can sometimes be classified into four levels. However, all landslides were classified into three levels in this thesis because it is difficult to divide the fourth level from the third level and it is convenient to compare landslides with each other.

Table 2.3 Classification of landslide blocks based on multiple level characteristics (modified Takahama and Ito, 1989)

|      | First Level Block       | Second Level Block       | Third Level Block    |                |  |
|------|-------------------------|--------------------------|----------------------|----------------|--|
| Area | Greater than 1 km       | 100,000 - 10,000 m       | 10,000 - 100 m       | Takahama       |  |
| Age  | Ancient                 | Ancient, Present         | Ancient, Present     | and Ito (1989) |  |
| Area | Greater than 50% of     | 50 - 3 % of              | Less than 5% of      |                |  |
|      | landslide area          | landslide area           | landslide area       | This thesis    |  |
| Age  | Initial (ancient) Block | Develp inside 1st level  | Don't include blocks | 1              |  |
|      |                         | Include 3rd level blocks | inside               |                |  |

The concept of the multiple level characteristics of landslides combines both size and age criteria; consequently, the level of the blocks is not classified objectively and mechanically but rather subjectively and experimentally.

12

#### CHAPTER THREE: FRACTAL

#### 3.1 DEFINITION

The term *fractal* was coined by Mandelbrot (1977). It is derived from the Latin word *frangere*, which means to break (Peitgen and others, 1992). Mandelbrot himself is reluctant to define *fractal*, saying, "I continue to believe that one (fractal) would do better without definition." (Mandelbrot, 1977). However, for the purposes of this thesis, it is necessary to define the term as clear and simple as possible.

Some of the definitions Mandelbrot offered were, "Something that exhibits invariance under contraction or dilation" (Mandelbrot, 1989, quoted in Carr, 1994) and "A fractal is shape made of parts similar to the whole in some way" (Mandelbrot, 1987, quoted in Feder, 1988). Other definitions have included, "A fractal looks the same whatever the scale" (Feder, 1988) and "A fractal is a geometrical figure in which an identical motif repeats itself on an ever diminishing scale" (Lauwerier, 1991). A neat and complete characterization of fractals is still lacking (Mandelbrot, 1987, quoted in Feder, 1988). In this thesis, The term *fractal* is used in accordance with the rather broad definitions mentioned above or more practically that geometry whose log(N(r)) versus log(r) plot (see Section 3.3) can be approximated to (a)
line(s).

# 3.2 SELF-SIMILARITY AND SELF-AFFINITY

Fractals are characterized by so-called 'symmetries', which are invariance under dilation and/or contractions (Mandelbrot, 1990). These so-called 'symmetries' can be divided to two categories: self-similarity and self-affinity.

Self-similarity expresses the idea that each part is a linear geometric reduction of the whole, with the same reduction ratios in all directions (Mandelbrot, 1990). It can be expressed using mathematical symbols as follows. A similarity transformation transforms points  $x = (x_1, \ldots, x_E)$  in *E*-dimensional space into new points  $x' = (rx_1, \ldots, rx_E)$  with the same value of scaling ratio r > 0. (Mandelbrot, 1977; Feder, 1988).

Self-affinity expresses the idea that each part is still a linear geometric reduction of the whole but the reduction ratios in different directions are different (Mandelbrot, 1989). It can be expressed using mathematical symbols as follows. An affine transformation transforms points x = $(x_1, \ldots, x_E)$  into new points  $x' = (r_1 x_1, \ldots, r_E x_E)$ , where the scaling ratios  $r = (r_1, \ldots, r_E)$  are not all equal (Mandelbrot, 1977; Feder, 1988).

We can treat self-affine geometry as self-similar as long as the scale of the x axis and y axis of two topological dimensions is the same (Carr and Warriner, 1989). For simplicity the word *self-similar* is used for both self-similar and self-affine geometry. When a strict distinction between self-similar and self-affine is required, the distinction is made clear.

3.3 FRACTAL DIMENSION

The fractal dimension of a set is a number which tells how densely the set occupies the metric space in which it lies. It is invariant under various stretching and squeezing of the underlying space. This makes the fractal dimension meaningful as an experimental observable (Barnsley, 1988).

Three kinds of fractal dimensions are characterized by the calculation method. They are similarity dimension,  $D_s$ ; divider dimension,  $D_d$ ; and box-counting dimension,  $D_b$  (Peitgen and others, 1992).

# 1) SIMILARITY DIMENSION

Voss (1988) explained concept of similarity dimension,  $D_s$ , as follows:

An object normally considered as one-dimensional, a line segment, for example, also possesses a similar scale property. It can be divided into N identical parts each of which is scaled down by the ratio s = 1/(N) from the whole. Similarly, a two-dimensional object, such as a square area in the plain, can be divided into N self-similar parts each of which is scaled down by a factor  $s = 1/(\sqrt{N})$ . A three dimensional object like a solid cube may be divided into N little cubes each of which is scaled down by a ratio  $s = 1/(\sqrt[3]{N})$ .

With self-similarity the generalization to fractal dimension is straight forward. A *D*-dimensional self-similar object can be divided into *N* smaller copies of itself each of which is scaled down by a factor *s* where  $s = 1/({}^{D}\sqrt{N})$ 

 $N = 1/(s^D)$ .....Eq. 3.1

Taking logarithm of both sides of Equation 3.1,

 $\log(N) = \log(1) - D * \log(s) \dots Eq. 3.2$ Then, similarity dimension,  $D_s$ , is given by

 $D_s = \log(N) / \log(1/s)$  .... Eq. 3.3



Figure 3.1 Interpretation of standard integer dimension figures in terms of exact self-similarity and extension to non-integer dimensioned fractal (reprinted from Peitgen and others, 1992).

For example, in a classic fractal figure, Koch coastline (Figure 3.2), a segment is replaced by 4 new segments (N = 4) and scaled down ratio, s, is 1/3, then similarity dimension is

 $D_s = \log(4) / \log(3) = 1.2618...$ 

17



Figure 3.2 The construction of the Koch curve proceeds in stages. In each stage the number of line segments increases by a factor of 4 (reprinted from Peitgen and others, 1992).

#### 2) DIVIDER DIMENSION

The statistical number-size distribution for a large number of objects, such as rock fragments or craters, can be fractal. It is expressed as

where N(r) is the number of objects whose size (diameter) is greater than r. C is a constant and  $D_d$  is divider dimension (Turcotte, 1992).

When we plot the statistical number-size distribution on log(N(r)) versus log(r) diagram, the plot can be approximated by a straight line which has negative slope (Figure 3.3). Divider dimension,  $D_d$ , is obtained as absolute value of the slope.



Figure 3.3 Diameter distribution of craters on the Moon (Mizunashi, 1980; reprinted from Takayasu, 1992)

#### 3) BOX-COUNTING DIMENSION

The box-counting dimension,  $D_d$ , is the one most used in measurements in all of the sciences. I will explain the box-counting method by paraphrasing Peitgen and others (1992).

We put the structure onto a regular grid with mesh size r, and count the number of grid boxes which contain some of the structure. This gives a number N(r), which depends on our choice of r. Change r to progressively smaller sizes and corresponding number N(r). When we plot the measurement in a  $\log(N(r))$  versus  $\log(r)$  diagram, the slope of the best fitting straight line of the plots is the box-counting dimension,  $D_b$ .

Figure 3.4. shows a wild structure with two underlying grids. The box-counting dimension,  $D_b$ , which is the negative of the slope of  $\log(N(s))$  versus  $\log(1/s)$  plot, is 1.55.





Figure 3.4 The wild structure with two underlying grids and its log(N(s)) versus log(1/s) plot.  $D_b = 1.55$ . (reprinted from Peitgen and others, 1992)

4) RELATIONSHIP OF SIMILARITY, DIVIDER, AND BOX-COUNTING DIMENSIONS

The three kinds of fractal dimensions sometimes indicate the same number and sometimes not. The divider and box-counting

dimensions of the coastline of Great Britain are almost the same. On the other hand, the box-counting dimension will never exceed two, but similarity dimension and divider dimension can exceed two for a curve in the plane when the curve has an overlapping part. For example, the similarity dimension of the curve generated in Figure 3.5 is  $D_s = \log(13)/\log(3) = 2.335$  (i.g., s = 1/3 and N = 13). We must, therefore, be very careful when dealing with different kinds of fractal dimensions (Peitgen and others, 1992).



Figure 3.5 Fractal geometry with dimension,  $D_s = \log(13)/\log(3) = 2.335$  (reprinted from Peitgen and others, 1992).

21
# 3.4 STATISTICAL SELF-SIMILARITY AND SCALE LIMITS

No ideal fractal geometry exists in nature. Ideal fractal geometry, such as the Koch island, is fundamentally different from fractal geometry in nature, such as a rocky coast line. The primary difference between the Koch island and a rocky coastline is that between the ideal and the statistical. The Koch island is identically scale invariant at all scales, so its shape is the same at any scale. The shapes of a rocky coastline at different scales look the same but are never exactly the same. Thus a rocky coastline and all fractal geometry in nature are statistically self-similar (Voss, 1988; Turcotte, 1992).

A second difference between the Koch island and a rocky coastline is the range of scales over which scale invariance extends. Although a Koch island has the maximum scale of the origin triangle, the construction can be extended over an infinite range of scales. Whereas a rocky coastline has both a maximum and a minimum scale limit. The maximum scale would be the size of the continent or island considered. The minimum scale would be the scale of the gain of the rocks. The existence of both upper and lower bounds is a characteristic of all naturally occurring fractal systems (Voss, 1988; Turcotte, 1992).

# CHAPTER FOUR: HISTORY OF STUDY

"Self-similarity method are a potent tool in study of chance phenomena, including <u>geostatistics</u>, as well as economics and physics." In "How Long is the Coast of Britain?: Statistical Similarity and Fractional Dimension". Mandelbrot (1967)

# 4.1 FRACTALS IN GEOLOGY AND GEOLOGICAL ENGINEERING

Mandelbrot (1967) discussed Richardson's work, in which characteristics of coast lines are expressed by the negative slope of log(total length) versus log(length of ruler). Mandelbrot named this scale invariant characteristic *fractal*, and showed that very naturalistic landscapes of islands, planets, and canyons can be produced using fractals in "The Fractal Geometry of Nature" (Mandelbrot, 1982). These landscape pictures offer convincing evidence of fractal geometry's importance as a tool for the description of nature (Feder, 1988).

#### THE R. P. LEWIS

Feder (1988) showed the application of the fractal to fluid mechanics, drainage systems, and weather. Turcotte (1992) and Korvin (1992) showed the application of the fractal to geological and geophysical phenomena such as rock fragmentation, tectonics, fracture, earthquake, and ore grade. In the geological engineering field, the fractal has been used for analysis of rock fragmentation (ex. Turcotte, 1986), fracture (ex. Merceron and Velde, 1991), fault system (ex. Aviles and Scholz, 1987). Carr and Warriner (1987) and Watters and others (1990) showed that the fractal dimension is effective in measuring the roughness of discontinuities surfaces subjectively and that it can be applied to rock mass classification.

## 4.2 FRACTALS IN SLOPE STABILITY

A few studies about fractal application to slope stability problems have been done. Some of the studies are in Japanese and are not familiar to the English-speaking scientific community so I will introduce them rather in detail.

#### SASAKI AND OTHERS (1991)

Sasaki and others (1991) showed that the slope failure sizenumber distribution had a fractal character. The sample location was rectangular area (265 km long (north-south) and 1 km wide (east-west)) of metamorphic rock area in north-west Japan. The slope failures occurred on the morning of the 23rd in July, 1983, caused by heavy rainfall (about 300 mm maximum). The summary is as follows: 1) The fractal dimension, D, in whole area investigated was 3.3. D was higher in the psammitic schist area (D = 3.5) than in the pelitic schist area (D = 3.2), and was higher in the area of needle-leaf tree woods (D = 3.7) than in that of broad-leaf tree woods (D = 3.1). D was not influenced by the amount of rainfall.

2) The fractal dimension of slope failures and counter lines has positive correlation.

3) The Y axis interception of the approximated line on  $\log(r) - \log(N(r))$  graph, divided by the area is a parameter that indicates the slope instability and is influenced by rainfall, base rock geology, and vegetation. This parameter was named  $\alpha_0$ .

4) Total slope failure volume is calculated as follows:

$$TotalVolume = \sum_{r=1}^{n} V(Lr) = k(1/\alpha_0)^{-(3/D)} \sum_{r=1}^{n} r^{-(3/D)} \dots Eq. 4.1$$

where L is the width of greatest slope failure and k is constant. The relationship between  $\alpha_0$  and the amount of rainfall is shown in Figure 4.1. The total volume of slope failure at predicted levels of rainfall can be calculated using the above two relationships.



amount of rainfall per day (mm/day)

Figure 4.1 Relationship between  $\alpha_0$  and amount of rainfall per day (reprinted from Sasaki, 1991)

5) The relationship between the number of slope failures and the total volume of rock failure, when the greatest failure's volume is 1 is shown in Figure 4.2. When D is smaller, the large failure's volume is greater than small failure's erosion. The colluvial of the large failure (landslide) remains on the slope surface. On the other hand, when D is greater, small failures dominate and the large failure is eroded by the small failures, so the slope is covered with a thin layer of colluvial. This process explains, why a fractal dimension of a slope failure is high (D = 3.3) and that of a landslide is low (D = 1.2-1.4); and the fractal dimension's positive correlation between mass movement and contour lines.



total number of slope failures

Figure 4.2 Relationship between total number of slope failures and total amount of debris of each fractal dimension. The amount of failed debris of maximum failure is assumed to be one (reprinted from Sasaki, 1991).

6) The fractal dimension of slope failure blocks varies with geology. The difference depended on weathering types. In rock weathered severely at the surface but not deep down, such as granite, small failures are dominant. In rock weathered gradually from the surface to the deep part, such as Tertiary mudstone, large failures are dominant. The fractal dimension is the parameter that indicates the ratio of the number of small to large blocks, so it is bigger in surface weathered geological areas than it is in gradually weathered geological areas.

27

# UENO AND OTHERS (1993); AND HIGAKI AND OTHERS (1993)

Ueno and others (1993) and Higaki and others (1993) studied four landslides in the metamorphic fracture zone along the Median Tectonic Line in Japan. They revealed that slide-blocks in huge landslides appear to evolve according to a fractal pattern and the fractal dimension is 1.2-1.4 with respect to width and 1.4-1.5 with respect to length.

They suggested that the process of a huge landslide forming smaller blocks in the fracture zone may always be the same. They considered that this would indicate that there are similarities between the target area in terms of the extent and gradient of the slope; geology before the initial landslide; and formation of secondary slide planes by destruction and weakening of the ground after the initial landslide.

## YOKOI AND OTHERS (1995)

Yokoi and others (1995) revealed that not only whole slideblocks but also second and third level blocks have fractal character. The fractal character can be explained by selfsimilar geometry and unique fractal dimensions made by combining second and third level blocks. They also indicated that fractal dimension of landslide blocks is independent from base rock geology.

A complete copy of Yokoi and others (1995) is shown in Appendix J.

## CHAPTER FIVE: METHOD OF STUDY

#### 5.1 INTRODUCTION

The purpose of this paper is to investigate the following points:

1) whether the distribution of landslide blocks has a fractal character and unique fractal dimension;

2) if 1) is positive, how the fractal dimension related to other attributes (properties), such as width, length, and base rock geology;

3) if 1) is positive, whether it is possible to design a model
to reveal the landslide block development process; and
4) if 1) is positive, if it is possible to analyze the block
development process of landslides.

the state of the second second second from state in the state of the

To examine these hypotheses, data were gathered on 40 huge landslides. The divider method was used to reveal whether landslide block distribution has fractal character and to obtain fractal dimensions. The relationship between fractal dimensions and 15 other attributes of landslides were examined. Because there are so many attributes and samples, correspondence analysis was used to select possible attributes which may be related to the fractal dimensions. After the possible attributes were obtained, the metric attribute of each and the fractal dimensions were plotted on an X-Y graph to see a more detailed relationship between them. Discriminant analysis was also used to analyze the relationship between categorical attributes and fractal dimensions. Two kinds of simple landslide block distribution models were made and calculated the theoretical fractal dimensions of the models to compare them to the actual fractal dimensions. Finally, block development process was discussed using these results. Data collection and method of measuring fractal dimension will be explained in this chapter. Method of numerical analysis and modeling will be mentioned in the later chapters.

#### 5.2 DATA COLLECTION

#### COLLECTING THE DATA

Data of 40 landslides were obtained from field investigation, aerial photograph interpretation, topographical map interpretation, and examination of the available literature. Table 5.1 shows the landslide data obtained with designated numbers. Field investigations were performed at No. 1, Midway Bridge; No.2, Boca Ridge; No.3, Palos Verdes; and No.4, Big Rock Mesa, in the summer of 1994. Geotechnical investigations were performed at No.12, Kiritani; No.13, Katsurabara; and No.14, Hitohane, from 1985 to 1987 as projects of Nittoc Construction Company. Geotechnical investigations were performed at No.35, Urushinose; and No.36, Nishinotani, in 1988 as a project of Kisojiban Consultants Co., Ltd. Information on the other landslides were obtained from literature, aerial photography, and topographical maps. Due to the variety of investigative methods, the accuracy of the data for the landslides varies.

#### LOCATION OF LANDSLIDES

Available landslides are limited because detailed block configuration is necessary to analyze the fractal character of landslides. Figure 5.1 and Table 5.1 show the locations and outlines of landslides investigated.

Landslides Nos. 1 - 8 are located in United States. No. 1, Midway Bridge, and No. 2, Boca Ridge, are located in northern California near the Nevada border. No. 3, Palos Verdes, and No. 4, Big Rock Mesa, are in Los Angeles County in southern California. No. 5, Thistle, is 75 km south of salt Lake City, Utah. No. 6, Upper Gross, and No. 7, Lower Gross, are in north-western Wyoming. No. 8, Meadow Mountain, is in central Colorado. No. 9, Mayunmarca, is located in Peru in South America. No. 10, La Frasse, and No. 11, Arvey, are in Switzerland, Europe.

at Ma ap of me. 10, Ma. 12/ a/ ad, 12 to ha. 11, Ho. 80 Ma. ap of me. 10, Ma. 12/ a/ ad, 12 to ha. 11, Ho. 80

32



Figure 5.1 Location maps of landslides a) No. 1 to No. 8; b) No. 9; c) No. 10, No. 11; d) No. 12 to No. 34, No.39, No.40; d') No.35 to No. 38



# Table 5.1 Landslide Data List

| No. | Landslide         | Area      | Location    | Geology        | Туре          | Investigation |
|-----|-------------------|-----------|-------------|----------------|---------------|---------------|
|     |                   | (Squ. Km) |             | 1)             | 2)            | 3)            |
| 1   | Midway Bridge     | 4.84      | California  | T. Volcanic    | rotational    | F, A, M,L     |
| 2   | Boca Ridge        | 13.72     | California  | T. Volcanic    | complex       | F, A, M, L    |
| 3   | Palos Verdes      | 10.74     | California  | T. Sedimentary | complex       | F, A, M, L    |
| 4   | Bick Rock Mesa    | 1.17      | California  | T. Sedimentary | complex       | F, A, M, L    |
| 5   | Thristle          | 11.23     | Utah        | M. Sedimentary | complex       | A, M, L       |
| 6   | Lower Gros Ventre | 8.77      | Wyoming     | M. Sedimentary | complex       | M, L          |
| 7   | Upper Gros Ventre | 19.76     | Wyoming     | M. Sedimentary | complex       | A, M          |
| 8   | Meadow Mt.        | 1.50      | Cololado    | M. Sedimentary | translational | M, L          |
| 9   | Mayunmarca        | 25.17     | Peru        | M. Sedimentary | translational | L             |
| 10  | La Frasse         | 1.74      | Switzerland | Metamorphic    | translational | L             |
| 11  | Arvey             | 1.25      | Switzerland | Metamorphic    | complex       | L             |
| 12  | Kiritani          | 3.40      | Japan       | T. Volcanic    | complex       | F, A, M, L    |
| 13  | Katsurabara       | 1.46      | Japan       | T. Volcanic    | complex       | F, A, M, L    |
| 14  | Hitohane          | 3.52      | Japan       | T. Sedimentary | complex       | F, A, M, L    |
| 15  | Takisaka          | 1.33      | Japan       | T. Sedimentary | complex       | M, L          |
| 16  | Sakae             | 3.30      | Japan       | T. Sedimentary | complex       | L             |
| 17  | Mushigame         | 4.47      | Japan       | T. Sedimentary | complex       | M, L          |
| 18  | Higashinomyo      | 2.54      | Japan       | T. Sedimentary | complex       | L             |
| 19  | Karuizawa         | 5.74      | Japan       | T. Sedimentary | complex       | M, L          |
| 20  | Happoudai         | 4.03      | Japan       | T. Sedimentary | complex       | M, L          |
| 21  | Raiden            | 5.02      | Japan       | T. Sedimentary | complex       | M, L          |
| 22  | Nishinakanoho     | 2.85      | Japan       | T. Sedimentary | complex       | M, L          |
| 23  | Mizunashi         | 3.29      | Japan       | T. Sedimentary | complex       | M, L          |
| 24  | Kitaurata         | 3.41      | Japan       | T. Sedimentary | complex       | M, L          |
| 25  | Uenoyama          | 1.07      | Japan       | T. Sedimentary | complex       | M, L          |
| 26  | Nakatateyama      | 3.16      | Japan       | T. Sedimentary | complex       | M, L          |
| 27  | Yumoto            | 1.32      | Japan       | T. Sedimentary | complex       | M, L          |
| 28  | Yuyama            | 2.81      | Japan       | T. Sedimentary | complex       | M, L          |
| 29  | Kamatsuka         | 2.72      | Japan       | T. Sedimentary | complex       | M, L          |
| 30  | Maruyama          | 18.08     | Japan       | T. Sedimentary | complex       | M, L          |
| 31  | Maseguchi         | 3.93      | Japan       | T. Sedimentary | complex       | M, L          |
| 32  | Maruta            | 6.90      | Japan       | T. Sedimentary | complex       | M, L          |
| 33  | Kodomari          | 4.19      | Japan       | T. Sedimentary | complex       | M, L          |
| 34  | Ohbora            | 6.07      | Japan       | T. Sedimentary | complex       | M, L          |
| 35  | Urushinose        | 0.25      | Japan       | Metamorphic    | complex       | F, M, L       |
| 36  | Nishinotani       | 1.02      | Japan       | M. Sedimentary | complex       | F, M, L       |
| 37  | Youne             | 1.00      | Japan       | Metamorphic    | complex       | M, L          |
| 38  | Nuta              | 2.90      | Japan       | Metamorphic    | complex       | M, L          |
| 39  | Nyuuya            | 1.18      | Japan       | Metamorphic    | complex       | M, L          |
| 40  | Hikinota          | 1.00      | Japan       | Metamorphic    | complex       | L             |

1) T: Tertiary M: Mesozoic

2) complex: rotational at head + traslational

3) F; field investigation; A: aerial photo interpretation; M: map interpretation; L: literature

Landslides Nos. 12 - 40 are located in Japan. Among them, Nos. 12 - 34 are in the Hokuriku region in central-northern Honshu (Main) Island. Nos. 35 - 38 are on Shikoku Island. Nos. 39 and 40 are in the Chubu Region in central Honshu.

The concentration of data sources is due to the availability of field and aerial photography, and literature. Outlines and block distribution maps are shown in Appendix A.

#### 5.3 MEASURING FRACTAL DIMENSION

The divider method was used to calculate the fractal dimensions of landslides. As mentioned in Section 3.3, the fractal dimension, D, is obtained as the negative slope of the plot of  $\log(N(r))$  versus  $\log(r)$ , where r is the ruler (divider) length and N(r) is the number of slide-blocks whose width (or length) is greater than the ruler (Carr and Warriner, 1989).

To test the accuracy of the divider method for obtaining fractal dimensions of landslide block distribution, the fractal dimension of ideal self-similar landslides were calculated (Figure 5.2). An ideal self-similar landslide is equivalent to the Sierpinski Gasket, which is traditional fractal geometry by assuming the black triangles are blocks (Figure 5.3). The reduction factor of the Sierpinski Gasket, s, is 1/2, and the number of pieces into which the structure is divided, b is 3. The number of nth stage total triangles (blocks), num, is calculated as:

$$num = \sum_{m=0}^{n} b^{m} = \frac{b^{n+1}-1}{b-1}$$

In this case b = 3, so  $num = (3^{n+1} - 1)/2$ . The smallest base of triangle (width),  $B_s$ , is calculated as:

 $B_s = B_0 * (1/2)^n$ 

where  $B_0$  is the base of the original triangle (assuming  $B_0 = 1$ ,  $B_s = 1/2^n$ ). Figure 5.4 is the  $\log(N(r))$  versus  $\log(r)$  plot of the Sierpinski Gasket. Divider dimension,  $D_d$ , is the negative of the slope of the plot. By changing values of s and b, we can get  $D_d$  of various (simple one to complex one) ideal self-similar landslides.

The similarity dimension,  $D_s$ , of the Sierpinski Gasket is  $D_s$ =  $\log(b)/\log(1/s) = \log 3/\log 2 = 1.58$ . Table 5.2.a shows  $D_d$  of each stage. As the number of blocks increases,  $D_d$  approaches  $D_s$ . However, when the number of blocks is 121 or 364,  $D_d$  is 9% to 6% higher than  $D_s$ .

Sierpinski masket (Mandalkrot, 1910). By ecousing two plane triorgies are bische, the Sterpinski quotet is equivalent to stand welf-similar leadelide with br 3, 5 - 1/2.



Figure 5.2 Conceptional picture of ideal self-similar landslide. a) b = 3, s = 1/2; b) b = 6, s = 1/3; c) b = 10, s = 1/4





Figure 5.3 Construction and self-similar properties of Sierpinski gasket (Mandelbrot, 1990). By assuming the black triangles are blocks, the Sierpinski gasket is equivalent to ideal self-similar landslide with b = 3, s = 1/2.

38



Figure 5.4  $\log(N(r))$  versus  $\log(r)$  plot of Sierpinski gasket. b = 3, s = 1/2.

Table 5.2 Fractal dimension of ideal self-similar landslides

a) b = 3, s = 1/2 (Sierpinski Gasket) Ds = log(3)/log(2) = 1.585

| the second se |             |            |        |      |
|-----------------------------------------------------------------------------------------------------------------|-------------|------------|--------|------|
| ruler                                                                                                           | # of blocks | log(ruler) | log(#) | Di   |
| 1000                                                                                                            | 1           | 3 000      | 0.000  |      |
| 500                                                                                                             | 4           | 2.699      | 0.602  | 2    |
| 250                                                                                                             | 13          | 2.398      | 1.114  | 1.85 |
| 125                                                                                                             | 40          | 2.097      | 1.602  | 1.77 |
| 62.5                                                                                                            | 121         | 1.796      | 2.083  | 1.72 |
| 31.25                                                                                                           | 364         | 1.495      | 2.561  | 1.68 |
| 15.625                                                                                                          | 1093        | 1.194      | 3.039  | 1.66 |
| 7.8125                                                                                                          | 3280        | 0.893      | 3.516  | 1.65 |
| 3.90625                                                                                                         | 9841        | 0.592      | 3.993  | 1.63 |
| 1.953125                                                                                                        | 29524       | 0.291      | 4.470  | 1.63 |

b) b = 6, s = 1/3Ds = log(6)/log(3) = 1.631

| -      | the second s |            |        |      |  |
|--------|----------------------------------------------------------------------------------------------------------------|------------|--------|------|--|
| ruler  | # of blocks                                                                                                    | log(ruler) | log(#) | Di   |  |
| 1000   | 1                                                                                                              | 3.000      | 0.000  |      |  |
| 333 33 | 7                                                                                                              | 2.523      | 0.845  | 1.77 |  |
| 111.11 | 43                                                                                                             | 2.046      | 1 633  | 1.71 |  |
| 37.04  | 259                                                                                                            | 1.569      | 2.413  | 1.68 |  |
| 12.35  | 1555                                                                                                           | 1.092      | 3.192  | 1.67 |  |
| 4.12   | 9331                                                                                                           | 0.614      | 3.970  | 1.66 |  |

b) b = 10, s = 1/4Ds = log(10)/log(4) = 1.661

| ruler  | # of blocks | log(ruler) | log(#) | Di   |
|--------|-------------|------------|--------|------|
| 1000   | 1           | 3.000      | 0.000  |      |
| 250.00 | 11          | 2.398      | 1.041  | 1.73 |
| 62.50  | 111         | 1.796      | 2.045  | 1.7  |
| 15.63  | 1111        | 1.194      | 3.046  | 1.68 |
| 3.91   | 11111       | 0.592      | 4.046  | 1.68 |
| 0.98   | 111111      | -0.010     | 5.046  | 1.67 |

39

When b = 6 and s = 1/3 (Figure 5.2.b) and the number of blocks is 259,  $D_d$  is 3% higher than  $D_s$ (Table 5.2.b). When b = 10 and s = 1/4 (Figure 5.2.c); and the number of blocks is 111,  $D_d$  is about 2% higher than  $D_s$ (Table 5.2.c).  $D_d$  is always higher than  $D_s$ ; however, when b is more than three, the gap is negligible. A huge landslide has more than a few second level blocks (equivalent to b), so we can use the divider method for calculating fractal dimensions.

Width is the maximum separation of the right and left flanks. When the tip of a landslide block is clear, length is measured as the distance between the crown and the tip. When the tip is not clear (as is usual), length is measured as distance between the crown and middle point of both edges of flanks (Figure 5.5).



Figure 5.5 Measurement of block width and block length

## CHAPTER SIX: LANDSLIDE DATA AND FRACTAL DIMENSION

#### 6.1 LANDSLIDE DATA

The attributes (properties) of landslides gathered are width, length, area, depth, height, ratio of length to width (length/width), apparent angle (arctan(height/length)), slide surface angle (slide angle), topography, block shape, activity, base rock geology, geological period of base rock, strike of base rock, and apparent dip of base rock.

Figure 6.1 shows width, length, area, depth, height, apparent angle, slide angle, apparent dip, and strike. Width is the maximum separation of right and left flanks. Length is measured as the distance between the crown and the tip; however, when the tip is not clear, length is measured as the distance between the crown and the middle point of both of the flanks' edges. Depth is the maximum vertical thickness of the landslide body. Height is the difference in altitudes between the tip and the crown. Apparent angle is calculated as arctan(height/length), which expresses the average slope angle. Slide angle is the angle of slide surface. Apparent dip is approximate dip of bedding plane in direction of sliding. Apparent dip is positive in case of dip slope and negative when bedding dips into slope. Strike is the angle between strike of bedding plane and slide direction. Figure 6.2 shows the classification of topography. Topography type 1 has concave traverse and longitudinal profiles. Topography type 2 has concave traverse and convex longitudinal profiles. Topography type 3 has convex traverse and longitudinal profiles. Topography type 4 has concave traverse and convex longitudinal profiles (Ministry of Agriculture of Japan, Hokuriku Branch, 1993). Figure 6.3 shows four classifications of block shape. They are triangle, horse shoe, rectangle, and bottle neck.



Figure 6.1 measurements of attributes of landslide

42







Figure 6.3 Classification of block shape

Activity has four ranks (Ministry of Agriculture of Japan, Hokuriku Branch, 1993). From stable to active, they are:

43

Ancient landslide: There is no activity recorded historically. The blocks are severely eroded and unclear. No reactivation has occurred even when artificial work, such as slope cutting, has decreased the landslide's level of stability.

Stable landslide: Clear blocks exist but there is no records of activity.

Dormant landslide: Clear blocks exist and there are record of activity, which are either historical or geographical (cracks, inclining of ground).

Active landslide: Presently active landslide, which continues to move or moves intermittently.

Base rock geology is the rock underlain by the landslide debris. Geological period is obtained from the literature. Absolute age is the center point between the relative periods or epochs.

Table 6.1 shows data of the landslides. Width, length, area, height, topography, and block shape depend on recognition of the landslide block. Depth and slide angle depend on the accuracy of estimation of the slide section. Activity, base rock geology, and geological period depend on the quality of field observation and information in the literature. Variance of quantity and quality of information is great and interpretation is subjective, so uncertainness in the data is unavoidable. Table 6.1 Landslide Data List

| aj<br>No | Less 1 P.4        | 1 400 5 5 |        |           |       |        |              |
|----------|-------------------|-----------|--------|-----------|-------|--------|--------------|
| NO.      | Landslide         | Width     | Length | Area      | Depth | Height | Length/Width |
|          |                   | (m)       | (m)    | (Squ. Km) | (m)   | (m)    |              |
| -        | Simbol            | Wd        | Ln     | Ar        | Dp    | Ht     | Lw           |
| 1        | Midway Bridge     | 1,930     | 1,690  | 4.84      | 115   | 300    | 0.88         |
| 2        | Boca Ridge        | 3,500     | 3,000  | 13.72     | 200   | 330    | 0.86         |
| 3        | Palos Verdes      | 5,240     | 2,500  | 10.74     | 100   | 350    | 0.48         |
| 4        | Bick Rock Mesa    | 2,140     | 960    | 1.17      | 120   | 200    | 0.45         |
| 5        | Thristle          | 3,600     | 4,030  | 11.23     | 80    | 570    | 1.12         |
| 6        | Lower Gros Ventre | 3,410     | 3,600  | 8.77      | 130   | 600    | 1.06         |
| 7        | Upper Gros Ventre | 4,030     | 5,500  | 19.76     |       | 640    | 1.36         |
| 8        | Meadow Mt.        | 1,350     | 2,560  | 1.50      | 55    | 400    | 1.90         |
| 9        | Mayunmarca        | 5,400     | 6,500  | 25.17     | 150   | 1,500  | 1.20         |
| 10       | La Frasse         | 1,060     | 2,300  | 1.74      | 100   | 300    | 2.17         |
| 11       | Arvey             | 1,460     | 1,270  | 1.25      |       | 250    | 0.87         |
| 12       | Kiritani          | 2,330     | 1,730  | 3.40      | 120   | 200    | 0.74         |
| 13       | Katsurabara       | 1,120     | 1,760  | 1.46      | 80    | 220    | 1.57         |
| 14       | Hitohane          | 2,360     | 2,640  | 3.52      | 100   | 180    | 1 12         |
| 15       | Takisaka          | 1,100     | 1,470  | 1.33      | 130   | 230    | 1.34         |
| 16       | Sakae             | 2,500     | 1,500  | 3.30      | 110   | 120    | 0.60         |
| 17       | Mushigame         | 2,630     | 2,240  | 4.47      | 150   | 150    | 0.85         |
| 18       | Higashinomyo      | 2,490     | 1,230  | 2.54      | 130   | 210    | 0.49         |
| 19       | Karuizawa         | 2,300     | 3,500  | 5.74      | 85    | 260    | 1.52         |
| 20       | Happoudai         | 2,380     | 1,750  | 4.03      | 85    | 200    | 0.74         |
| 21       | Raiden            | 2,630     | 4,380  | 5.02      | 70    | 155    | 1.67         |
| 22       | Nishinakanoho     | 1,280     | 2,700  | 2.85      | 75    | 220    | 2 11         |
| 23       | Mizunashi         | 2,800     | 2,550  | 3.29      | 100   | 180    | 0.91         |
| 24       | Kitaurata         | 2,040     | 1,950  | 3.41      | 110   | 220    | 0.96         |
| 25       | Uenoyama          | 1,810     | 1,060  | 1.07      | 80    | 85     | 0.59         |
| 26       | Nakatateyama      | 2,700     | 1,420  | 3.16      | 110   | 285    | 0.53         |
| 27       | Yumoto            | 1,060     | 1,470  | 1.32      | 90    | 260    | 1.39         |
| 28       | Yuyama            | 2,700     | 1,190  | 2.81      | 80    | 210    | 0.44         |
| 29       | Kamatsuka         | 1,850     | 1,750  | 2.72      | 85    | 240    | 0.95         |
| 30       | Maruyama          | 5,650     | 5,500  | 18.08     | 160   | 350    | 0.97         |
| 31       | Maseguchi         | 2,480     | 2,130  | 3.93      | 80    | 320    | 0.86         |
| 32       | Maruta            | 3,830     | 2,480  | 6.90      | 65    | 240    | 0.65         |
| 33       | Kodomari          | 2,830     | 2,040  | 4.19      | 125   | 130    | 0.00         |
| 34       | Ohbora            | 2,510     | 3,090  | 6.07      | 200   | 295    | 1 22         |
| 35       | Urushinose        | 600       | 300    | 0.25      | 25    | 150    | 0.50         |
| 36       | Nishinotani       | 1,200     | 1,300  | 1.02      | 20    | 350    | 1.02         |
| 37       | Youne             | 1,360     | 950    | 1.00      | 35    | 250    | 0.70         |
| 20       | Nuta              | 2,054     | 1,924  | 2,90      |       | 500    | 0.70         |
| 38       |                   |           |        |           |       | 000    |              |
| 38<br>39 | Nyuuya            | 1,210     | 1,370  | 1,18      | 40    | 550    | 1 13         |

Table 6. 1 Landslide Data List

b)

| The last | 1                 | 1             |             |            |               |          |
|----------|-------------------|---------------|-------------|------------|---------------|----------|
| NO.      | Landslide         | Aparent Angle | Slide Angle | Topography | Block Shape   | Activity |
| -        | 01.1.1            | arctan(H/L)   | (degree)    |            |               |          |
|          | Simbol            | Aa            | Sa          | То         | Bs            | Ac       |
|          | Midway Bridge     | 10.1          | 15.0        | Type 3     | rectangle (3) | stable   |
| 2        | Boca Ridge        | 6.3           | 3.0         | Type 4     | horse (2)     | ancient  |
| 3        | Palos Verdes      | 8.0           | 7.0         | Type 1     | rectangle (3) | active   |
| 4        | Bick Rock Mesa    | 11.8          | 10.0        | Type 3     | horse (2)     | dormant  |
| 5        | Thristle          | 8.1           | 15.0        | Type 3     | horse (2)     | dormant  |
| 6        | Lower Gros Ventre | 9.5           | 20.0        | Type 3     | horse (2)     | dormant  |
| 7        | Upper Gros Ventre | 6.6           |             | Type 4     | rectangle (3) | ancient  |
| 8        | Meadow Mt.        | 8.9           | 13.0        | Type 1     | horse (2)     | dormant  |
| 9        | Mayunmarca        | 13.0          | 23.0        | Type 1     | bottle (4)    | dormant  |
| 10       | La Frasse         | 7.4           | 15.0        | Туре З     | rectangle (3) | active   |
| 11       | Arvey             | 11.1          |             | Type 2     | horse (2)     | active   |
| 12       | Kiritani          | 6.6           | 4.0         | Type 3     | horse (2)     | stable   |
| 13       | Katsurabara       | 7.1           | 8.5         | Туре З     | rectangle (3) | stable   |
| 14       | Hitohane          | 3.9           | 2.5         | Type 3     | horse (2)     | dormant  |
| 15       | Takisaka          | 8.9           | 5.0         | Type 4     | rectangle (3) | active   |
| 16       | Sakae             | 4.6           | 1.0         | Type 1     | horse (2)     | ancient  |
| 17       | Mushigame         | 3.8           | 4.2         | Type 1     | horse (2)     | dormant  |
| 18       | Higashinomyo      | 9.7           | 7.2         | Type 3     | rectangle (3) | active   |
| 19       | Karuizawa         | 4.2           | 2.0         | Туре З     | triangle (1)  | ancient  |
| 20       | Happoudai         | 6.5           | 3.0         | Type 3     | rectangle (3) | stable   |
| 21       | Raiden            | 2.0           | 2.0         | Type 4     | rectangle (3) | stable   |
| 22       | Nishinakanoho     | 4.7           | 2.5         | Type 4     | rectangle (3) | stable   |
| 23       | Mizunashi         | 4.0           | 5.0         | Type 3     | horse (2)     | active   |
| 24       | Kitaurata         | 6.4           | 8.5         | Type 1     | horse (2)     | ancient  |
| 25       | Uenoyama          | 4.6           | 3.0         | Type 3     | horse (2)     | ancient  |
| 26       | Nakatateyama      | 11.3          | 8.0         | Туре З     | rectangle (3) | dormant  |
| 27       | Yumoto            | 10.0          | 9.5         | Type 2     | bottle (4)    | dormant  |
| 28       | Yuyama            | 10.0          | 5.0         | Type 2     | rectangle (3) | stable   |
| 29       | Kamatsuka         | 7.8           | 3.0         | Туре З     | rectangle (3) | dormant  |
| 30       | Maruyama          | 3.6           | 2.5         | Туре З     | triangle (1)  | stable   |
| 31       | Maseguchi         | 8.5           | 8.5         | Type 3     | rectangle (3) | active   |
| 32       | Maruta            | 5.5           | 3.5         | Type 3     | horse (2)     | stable   |
| 33       | Kodomari          | 3.6           | 3.5         | Type 2     | horse (2)     | stable   |
| 34       | Ohbora            | 5.5           | 3.5         | Type 1     | horse (2)     | dormant  |
| 35       | Urushinose        | 26.6          | 25.0        | Type 3     | horse (2)     | stable   |
| 36       | Nishinotani       | 15.1          | 20.0        | Type 1     | horse (2)     | active   |
| 37       | Youne             | 14.7          | 17.0        | Type 1     | bottle (4)    | active   |
| 38       | Nuta              | 14.6          | -           | Type 3     | triangle (1)  | active   |
| 39       | Nyuuya            | 21.9          | 25.0        | Type 2     | horse (2)     | active   |
| 40       | Hikinota          | 17.1          |             | Type 3     | horse (2)     | dormant  |

## Table 6.1 Landslide Data List

| _c) |                   |                            |                       |          |          |
|-----|-------------------|----------------------------|-----------------------|----------|----------|
| No. | Landslide         | Geology                    | Geological Period     | Strike   | Dip      |
|     |                   | (dummy code)               | (absolute age: m.y.)  | (degree) | (degree) |
|     | Simbol            | Ge 1)                      | Gp                    | Sk       | Di       |
| 1   | Midway Bridge     | latite (7)                 | M. Miocene (15)       | 45       | 90       |
| 2   | Boca Ridge        | latite, diatomite (7)      | M. Miocene (15)       | 60       | 10       |
| 3   | Palos Verdes      | ss, ms, basalt (4)         | M. Miocene (15)       | 80       | 15       |
| 4   | Bick Rock Mesa    | ss, ms (4)                 | E. Miocene (20)       | 90       | -40      |
| 5   | Thristle          | ss, shale, conglo (9)      | Creta - Tertiary (65) | 90       | 60       |
| 6   | Lower Gros Ventre | shale, limestone, ss (9)   | Mesozoic (150)        | 90       | 20       |
| 7   | Upper Gros Ventre | shale,limestone,ss (9)     | Mesozoic (150)        | 80       | 20       |
| 8   | Meadow Mt.        | limestone,ss, ms (9)       | Pennsylvanian (300)   | 90       | 15       |
| 9   | Mayunmarca        | ss, slitstone (9)          | Permian (250)         | 90       | 15       |
| 10  | La Frasse         | schist (8)                 | Jurassic (150)        | 90       | 15       |
| 11  | Arvey             | schist (8)                 | Mesozoic (150)        |          |          |
| 12  | Kiritani          | tuff bressia, andesite (6) | E. Miocene (20)       | 0        | 0        |
| 13  | Katsurabara       | tuff bressia, andesite (6) | E. Miocene (20)       | 70       | 10       |
| 14  | Hitohane          | mudstone (3)               | M. Miocene (15)       | 80       | 13       |
| 15  | Takisaka          | tuff, ms (2)               | M. Miocene (15)       | 25       | 5        |
| 16  | Sakae             | mudstone (3)               | L. Pliocene (3)       | 45       | 20       |
| 17  | Mushigame         | mudstone (3)               | M. Miocene (15)       | 60       | 35       |
| 18  | Higashinomyo      | mudstone (3)               | M. Miocene (15)       | 75       | -30      |
| 19  | Karuizawa         | mudstone (3)               | M. Miocene (15)       | 50       | 25       |
| 20  | Happoudai         | mudstone (3)               | M. Miocene (15)       | 80       | 30       |
| 21  | Raiden            | mudstone (3)               | E. Pliocene (5)       | 0        | 0        |
| 22  | Nishinakanoho     | mudstone (3)               | E. Pliocene (5)       | 0        | 0        |
| 23  | Mizunashi         | ms, tuff (2)               | M. Miocene (15)       | 75       | 30       |
| 24  | Kitaurata         | mudstone (3)               | E. Pliocene (5)       | 80       | -30      |
| 25  | Uenoyama          | ms,ss (4)                  | M. Miocene (15)       | 80       | 20       |
| 26  | Nakatateyama      | tuff (1)                   | M. Miocene (15)       | 50       | 20       |
| 27  | Yumoto            | ms, tuff (2)               | M. Miocene (15)       | 90       | 30       |
| 28  | Yuyama            | ms, tuff (2)               | M. Miocene (15)       | 45       | 30       |
| 29  | Kamatsuka         | sandstone (5)              | M. Miocene (15)       | 80       | -25      |
| 30  | Maruyama          | sandstone (5)              | Pleistcene (1)        | 80       | 35       |
| 31  | Maseguchi         | mudstone (3)               | L. Miocene (8)        | 90       | 30       |
| 32  | Maruta            | mudstone (3)               | L. Pliocene (3)       | 70       | 15       |
| 33  | Kodomari          | ms,ss (4)                  | L. Miocene (8)        | 90       | 15       |
| 34  | Ohbora            | ms,ss (4)                  | L. Pliocene (3)       | 30       | -15      |
| 35  | Urushinose        | schist (8)                 | Mesozoic (150)        | 80       | -60      |
| 36  | Nishinotani       | ss, chart, limestone (9)   | Mesozoic (150)        | 0        | 0        |
| 37  | Youne             | greenstone (8)             | Mesozoic (150)        | 90       | 15       |
| 38  | Nuta              | greenstone (8)             | Mesozoic (150)        | 90       | 45       |
| 39  | Nyuuya            | schist (8)                 | Mesozoic (150)        | 90       | 30       |
| 40  | Hikinota          | schist (8)                 | Mesozoic (150)        | -        |          |

1) ss: sandstone; ms: mudstone

## 6.2 FRACTAL CHARACTER OF LANDSLIDE BLOCK DISTRIBUTION

The fractal characters of whole blocks (all of first, and second, and third level blocks), second level blocks, and third level blocks from each landslide were examined. Appendix B shows  $\log(N(r))$  versus  $\log(r)$  plots. Most plots of not only whole blocks but also of second and third level blocks can be approximated to a straight line. This suggests that landslide blocks distribution of whole, second level, and third level blocks have a fractal character.

# FRACTAL CHARACTER AND ITS SCALE LIMIT

Yokoi and others (1995) indicated that blocks less than 80 m wide (or long) don't show fractal character (slope of the plot become 0); possible explanations are that the scale of the aerial photography limits interpretation, or that blocks less than 80 m wide (or long) really don't have fractal character. Figure 6.4 shows the relationship between the scale of the aerial photography or topography maps which were used for fractal calculations and the minimum limit of fractal character. Although variance is high, they show a positive proportional relationship. So the limit of fractal character is due to the scale. All fractal geometry in nature should have a limitation, but it could not be found from my data.

summer the straight ties.



Figure 6.4 Relationship between scale of map or aerial photography and fractal character limit.

## SHAPE OF LOG(N(r)) - LOG(r) PLOTS

Shapes of log(N(r)) versus log(r) plots were classified into eight types (Figure 6.5). They are as follows:

Type 1: straight

Type 2: zigzag

- Type 3: straight with maximum on the left of the assumptive straight line
- Type 4: straight with maximum on the right of the assumptive straight line
- Type 5: bent downward at large r with maximum on the right of the assumptive straight line

Type 6: bent downward at large r with maximum on the left of assumptive straight line Type 7: bent downward at large r with maximum on the

assumptive straight line

Type 8: bent at the middle

These eight types can be divided into two major types: straight (types 1-4) and bent (types 5-8).



Figure 6.5 Classification of shape of log(N(r)) versus log(r) plot

Table 6.2 shows shapes of the plots. Three quarters of the plots of whole blocks, more than half of the plots of second level blocks, and one quarter of the plots of third level blocks are straight type (type 1-4). The width plots and the length plots of 16 whole blocks, 16 second level blocks, and 27 third level blocks have the same shape. The total number of each type is similar between width and length except type 3 and type 4 of the whole blocks. Width plots favor type 4 and length plots favor type 3. This means that some maximum width is greater than expected and some maximum length is smaller than expected.

Most of the plots of whole blocks fit a straight line very well. There are no type 8; however, there are 11 of type 5 or type 6. This means that some big blocks except for the maximum ones (mainly second-level blocks) are not big enough to fit a straight line. Type 1 and type 2 are most common among second level blocks. However, more than a dozen plots each of width and length are type 7 or type 8. For third level blocks, approximately half of the plots are type 8 and approximately a dozen of the plots are type 1. The rest of the plots are type 7.

# Table 6.2 List of shape of log(N(r)) versus log(r) plot

to also pland new planalfied lags the two types, straight had

| No |               | Whole | Blocks | 2nd Lev | el Blocks | 3rd Level Blocks |        |  |
|----|---------------|-------|--------|---------|-----------|------------------|--------|--|
|    |               | Width | length | Width   | Length    | Width            | Length |  |
|    | Midway Bridge | 5     | 5      | 1       | 2         | 1                | 1      |  |
| 2  | Boca Ridge    | 1     | 1      | 2       | 1         | 8                | 8      |  |
| 3  | Palos Verdes  | 5     | 7      | 2       | 8         | 8                | 8      |  |
| 4  | Big Rock Mesa | 5     | 3      | 8       | 8         | 1                | 1      |  |
| 5  | Thristle      | 2     | 2      | 1       | 1         | 8                | B      |  |
| 6  | Lower Gross   | 2     | 2      | 8       | 1         | 8                | 8      |  |
| 7  | Upper Gros    | 6     | 1      | 8       | 1         | 8                | 1      |  |
| 8  | Meadow        | 2     | 6      | 1       | 8         | 8                | 8      |  |
| 9  | Mayunmarca    | 1     | 1      | 1       | 1         | 8                | 8      |  |
| 10 | La Frasse     | 2     | 2      | 1       | 1 1       | 8                | 8      |  |
| 11 | Arvey         | 2     | 2      | 2       | 2         | 1                | 1      |  |
| 12 | Kiritani      | 1 1   | 3      | 1       | 7         | 8                | 8      |  |
| 13 | Katsurabara   | 2     | 2      | 1       | 1         | 7                | 8      |  |
| 14 | Hitohane      | 5     | 5      | 8       | 7         | R                | 8      |  |
| 15 | Takisaka      | 1     | 1      | 7       | 1         | 7                | 7      |  |
| 16 | Sakae         | 2     | 6      | 1       | 1         | 8                | 8      |  |
| 17 | Mushigame     | 2     | 6      | 1       | 8         | 7                | 7      |  |
| 18 | Higashinomyo  | 4     | 3      | 1       | 8         | 8                | 7      |  |
| 19 | Karuizawa     | 4     | 5      | 1       | 8         | 7                | 1      |  |
| 20 | Happoudai     | 1     | 1      | 1       | 8         | 8                | 7      |  |
| 21 | Raiden        | 6     | 5      | 8       | 2         | 1                | 1      |  |
| 22 | Nishinakanoho | 1     | 5      | 8       |           | 0                |        |  |
| 23 | Mizunashi     | 5     | 5      | 2       | 2         | 1                | 0      |  |
| 24 | Kitaurata     | 2     |        |         | 2         |                  |        |  |
| 25 | Uenovama      |       |        | 1       | - 0       | 7                |        |  |
| 26 | Nakatatevama  | - 4   |        | 9       |           |                  |        |  |
| 27 | Yumoto        | 2     |        | 1       |           |                  |        |  |
| 28 | Yuvama        | 4     | 2      |         |           |                  | 0      |  |
| 29 | Kamatsuka     | 6     | 2      | 7       |           |                  |        |  |
| 30 | Marinama      | 2     |        | 2       | 0         | 7                | 1      |  |
| 31 | Maseouchi     | 5     | -      | 7       |           |                  | 7      |  |
| 32 | Maruta        |       | 1      | 7       | 0         | 0                | 7      |  |
| 33 | Kodomari      | 2     |        | 2       |           |                  | /      |  |
| 34 | Obbora        | 1     | 2      | 1       |           |                  | 7      |  |
| 35 | Urushinese    | 2     | 4      | 1       |           | 0                |        |  |
| 36 | Nishinoteni   | 5     | 6      | 0       |           | - 0              | 8      |  |
| 37 | Youne         | 2     | 2      | 0       | - /       | /                | - /    |  |
| 38 | Nuta          | 6     | 2      |         |           | 0                | 1      |  |
| 39 | NVIVA         | 2     |        | 1       |           | 0                | 0      |  |
| 40 | Hikinota      | 2     |        | +       |           | 0                | 0      |  |
|    | 1 Total       | 7     | 11     | 10      | 16        | 11               | 12     |  |
|    | 2 Total       | 15    | 12     | 6       | 10        |                  |        |  |
|    | 3 Total       |       | 3      | 0       | 0         | 0                |        |  |
| -  | 4 Total       |       | 3      | 0       |           | 0                | - 0    |  |
| _  | 5 Total       | 7     |        | 0       |           | 0                | 0      |  |
|    | 6 Total       |       |        | 0       |           | 0                | 0      |  |
|    | 7 Total       | 4     | 4      |         |           |                  | 0      |  |
|    | 9 Total       |       | 1      | 5       | 4         |                  | 8      |  |
|    | o i otal      | 0     | 0      | 9       | 13        | 21               | 18     |  |

If the plots are classified into the two types, straight and bent, there are eight possible combinations of whole blocks, second level blocks, and third level blocks (Table 6.3). 27% of the plots are the same type (all straight or all bent). 39% of the plots are of a straight-straight-bent pattern.

Table 6.3 Combination of shapes of log(N(r)) versus log(r) of whole, 2nd, and third level blocks

| No. |               | Shape |              | Total    |               |               |           |  |  |
|-----|---------------|-------|--------------|----------|---------------|---------------|-----------|--|--|
|     |               | Width | Width length |          | width         | length Total  |           |  |  |
| 1   | Midway Bridge | BSS   | BSS          | SSS      | 4 (10.2%)     | 6 (15.4)      | 10 (12.8) |  |  |
| 2   | Boca Ridge    | SSB   | SSB          | SSB      | 18 (46.2)     | 12 (30.8)     | 30 (38.5) |  |  |
| 3   | Palos Verdes  | BSB   | BBB          | SBS      | 2 (5.1)       | 3 (7 7)       | 5 (6 4)   |  |  |
| 4   | Big Rock Mesa | BBS   | SBS          | SBB      | 4 (10.3)      | 7 (17.9)      | 11 (14 1) |  |  |
| 5   | Thristle      | SSB   | SSB          | BSS      | 2 (5 1)       | 3 (7 7)       | 5 (6.4)   |  |  |
| 6   | Lower Gross   | SBB   | SSB          | BSB      | 1 (2.6)       | 1 (2.6)       | 2 (26)    |  |  |
| 7   | Upper Gros    | BBB   | SSS          | BBS      | 3 (2.7)       | 1 (2.6)       | 4 (5.1)   |  |  |
| 8   | Meadow        | SSB   | BBB          | BBB      | 5 (12.8)      | 6 (15.4)      | 11 (14 1) |  |  |
| 9   | Mayunmarca    | SSB   | SSB          |          |               | - (10.1)      | 1. (14.1) |  |  |
| 10  | La Frasse     | SSB   | SSB          |          |               |               |           |  |  |
| 11  | Arvey         | SSS   | SSS          | 1        |               |               |           |  |  |
| 12  | Kiritani      | SSB   | SBB          |          |               |               |           |  |  |
| 13  | Katsurabara   | SSB   | SSB          | First Ch | aracter: Shar | e of whole    | blocks    |  |  |
| 14  | Hitohane      | 888   | 888          | 2nd Ch   | aracter: Shap | e of 2nd lev  | el blocks |  |  |
| 15  | Takisaka      | SB8   | SSB          | 3rd Cha  | racter: Shape | e of 3rd leve | blocks    |  |  |
| 16  | Sakae         | SSB   | BSB          | 1        |               |               |           |  |  |
| 17  | Mushigame     | SSB   | BBB          |          |               |               |           |  |  |
| 18  | Higashinomyo  | SSB   | SBB          |          |               |               |           |  |  |
| 19  | Karuizawa     | SSB   | BBS          |          |               |               |           |  |  |
| 20  | Happoudai     | SSB   | SBB          | 1        | 1             |               |           |  |  |
| 21  | Raiden        | BBS   | BSS          |          |               |               |           |  |  |
| 22  | Nishinakanoho | SBB   | BBB          |          |               |               |           |  |  |
| 23  | Mizunashi     | BSS   | BSS          | 1        | 1             |               |           |  |  |
| 24  | Kitaurata     | SBS   | SBS          |          | 1             |               |           |  |  |
| 25  | Uenoyama      | SSB   | SSS          |          | 1             |               |           |  |  |
| 26  | Nakatateyama  | SBS   | SSS          |          | 1             |               |           |  |  |
| 27  | Yumoto        | SSS   | SSB          |          | 1             |               |           |  |  |
| 28  | Yuyama        | SSS   | SSS          |          |               |               |           |  |  |
| 29  | Kamatsuka     | BBS   | SBS          |          | 1             |               |           |  |  |
| 30  | Maruyama      | SSB   | SBB          |          |               |               |           |  |  |
| 31  | Maseguchi     | 888   | SB8          |          |               |               |           |  |  |
| 32  | Maruta        | SBB   | SSB          |          |               |               |           |  |  |
| 33  | Kodomari      | SSB   | SSB          |          |               |               |           |  |  |
| 34  | Ohbora        | SSS   | SSB          |          |               |               |           |  |  |
| 35  | Urushinose    | SSB   | SBB          |          |               |               |           |  |  |
| 36  | Nishinotani   | 3BB   | BBB          |          |               |               |           |  |  |
| 37  | Youne         | SSB   | SSS          |          |               |               |           |  |  |
| 38  | Nuta          | BBB   | SBB          |          |               |               |           |  |  |
| 39  | Nyuya         | SSB   | SSB          |          |               |               |           |  |  |
| 10  | Hikinota      |       |              |          |               |               |           |  |  |

53

# 6.3 FRACTAL DIMENSION OF LANDSLIDE BLOCK DISTRIBUTIONS

The fractal dimension, D, is obtained as the negative slope of the log(N(r)) versus log(r) plot, where r is the ruler length and N(r) is the number of slide-blocks whose width (or length) is greater than the ruler (Carr and Warriner, 1987, see Section 3.3 and Section 5.3).

Table 6.4 shows fractal dimensions of landslide distribution. Fractal dimension of width,  $D_W$ , are from 1.11 (No. 35, Urushinose) to 1.64 (No.14, Hitohane) and the mean is 1.37. Fractal dimensions of length,  $D_L$ , are from 1.17 (No.6, Lower Gross) to 1.64 (No. 23, Mizunashi) and the mean is 1.41. Rates of  $D_W$  to  $D_L$  are from 0.79 (No.16, Sakae) to 1.17 (No.10, La frasse) and the mean is 0.97. That means  $D_W$  is slightly smaller than  $D_L$ . Fractal dimension of landslide block distribution is about 10% higher than that of British coast.

With respect to the means, fractal dimension of second level blocks,  $D_{2nd}$ , is 23% (width) and 26% (length) higher than fractal dimension of whole blocks,  $D_{whole}$ . Fractal dimension of third level blocks,  $D_{3rd}$ , is 218% (width) and 206% (length) higher than  $D_{whole}$ .

| 110. |                    |       | Width |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Length | 1     |       | Width/Length |       |  |
|------|--------------------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|-------|-------|--------------|-------|--|
|      |                    | Whole | 2nd   | 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Whole               | 2nd    | 3rd   | Whole | 2nd          | 3rd   |  |
|      | Midway Bridge      | 1.53  | 2.77  | 3.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.42                | 1.79   | 2.90  | 1.08  | 1.55         | 1.13  |  |
| 2    | Boca Ridge         | 1.33  | 1.49  | 3.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.29                | 1.35   | 3.01  | 1.03  | 1.10         | 1.20  |  |
| 3    | Palos Verdes       | 1.48  | 1.84  | 2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.57                | 2.59   | 2.08  | 0.94  | 0.71         | 1.06  |  |
| 4    | Big Rock Mesa      | 1.48  | 1.86  | 3.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.53                | 1.63   | 3.37  | 0.97  | 1.14         | 1.01  |  |
| 5    | Thristle           | 1.32  | 1.31  | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.29                | 1.15   | 2.08  | 1.02  | 1.14         | 1.02  |  |
| 6    | Lower Gross        | 1.28  | 1.30  | 2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.17                | 1.62   | 2.89  | 1.09  | 0.80         | 0.75  |  |
| 7    | Upper Gros         | 1.30  | 1.44  | 3.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.20                | 1.36   | 2.05  | 1.08  | 1.06         | 1.71  |  |
| 8    | Meadow             | 1.43  | 2.15  | 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.24                | 1.48   | 2.41  | 1.15  | 1.45         | 1.41  |  |
| 9    | Mayunmarca         | 1.52  | 1.64  | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.40                | 2.10   | 2.02  | 1.09  | 0.78         | 1.14  |  |
| 10   | La Frasse          | 1.59  | 2.13  | 3.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.36                | 2.11   | 3.49  | 1.17  | 1.01         | 1.02  |  |
| 11   | Arvey              | 1.24  | 1.58  | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.42                | 1.54   | 2.33  | 0.87  | 1.03         | 0.96  |  |
| 12   | Kiritani           | 1.24  | 1.36  | 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.34                | 1.46   | 3.34  | 0.93  | 0.93         | 0.70  |  |
| 13   | Katsurabara        | 1.38  | 1.37  | 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.44                | 1.82   | 2.26  | 0.96  | 0.75         | 0.84  |  |
| 14   | Hitohane           | 1.64  | 1.84  | 3.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.66                | 1.83   | 3.96  | 0.99  | 1.01         | 0.96  |  |
| 15   | Takisaka           | 1.36  | 1.57  | 2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30                | 1.44   | 3.02  | 1.05  | 1.09         | 0.95  |  |
| 16   | Sakae              | 1.12  | 1.22  | 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.42                | 2.36   | 2.00  | 0.79  | 0.52         | 1.21  |  |
| 17   | Mushigame          | 1.31  | 1.72  | 3.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.56                | 1.67   | 2.59  | 0.84  | 1.03         | 1.22  |  |
| 18   | Higashinomyo       | 1.22  | 1.51  | 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.29                | 1.58   | 2.56  | 0.95  | 0.96         | 1.13  |  |
| 19   | Karuizawa          | 1.61  | 2.30  | 3.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.43                | 1.82   | 3.08  | 1.13  | 1.26         | 1.07  |  |
| 20   | Happoudai          | 1.35  | 1.78  | 2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.46                | 1.73   | 3.25  | 0.92  | 1.03         | 0.81  |  |
| 21   | Raiden             | 1.53  | 2.03  | 3.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.48                | 1.85   | 3.19  | 1.03  | 1.10         | 0.99  |  |
| 22   | Nishinakanoho      | 1.51  | 2.09  | 3.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.35                | 2.00   | 3.32  | 1.12  | 1.05         | 1.06  |  |
| 23   | Mizunashi          | 1.60  | 1.84  | 3.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.64                | 2.60   | 3.18  | 0.98  | 0.71         | 1.03  |  |
| 24   | Kitaurata          | 1.19  | 1.13  | 3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.43                | 1.41   | 4.17  | 0.83  | 0.80         | 0.95  |  |
| 25   | Uenoyama           | 1.25  | 1.34  | 2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.32                | 1.38   | 3.50  | 0.95  | 0.97         | 0.70  |  |
| 26   | Nakatateyama       | 1.44  | 1.96  | 2.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.58                | 2.68   | 2.99  | 0.91  | 0.73         | 0.97  |  |
| 27   | Yumoto             | 1.40  | 1.41  | 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30                | 1.86   | 3.00  | 1.08  | 0.76         | 1.14  |  |
| 28   | Yuyama             | 1.40  | 2.15  | 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.47                | 1.89   | 4.14  | 0,95  | 1.14         | 0.85  |  |
| 29   | Kamatsuka          | 1.46  | 1.96  | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.55                | 1.94   | 2.28  | 0.94  | 1.01         | 1.09  |  |
| 30   | Maruyama           | 1.34  | 1.45  | 2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.33                | 1.65   | 2.77  | 1.01  | 0.88         | 1.05  |  |
| 31   | Maseguchi          | 1.49  | 1.39  | 3.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.54                | 1.53   | 3.15  | 0.97  | 0.91         | 1.13  |  |
| 32   | Maruta             | 1.37  | 1.46  | 3.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.36                | 1.83   | 3.50  | 1.01  | 0.80         | 1.02  |  |
| 33   | Kodomari           | 1.21  | 1.29  | 3.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.38                | 1.43   | 2.88  | 0.88  | 0.90         | 1.19  |  |
| 34   | Ohbora             | 1.18  | 1.39  | 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.33                | 1.63   | 2.39  | 0.89  | 0.85         | 0.98  |  |
| 35   | Urushinose         | 1.11  | 1.33  | 3.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.31                | 1.76   | 3.11  | 0.85  | 0,76         | 1.04  |  |
| 36   | Nishinotani        | 1.54  | 2.09  | 2.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.52                | 2.00   | 2.65  | 1.01  | 1.05         | 1.06  |  |
| 37   | Youne              | 1.35  | 1.77  | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.62                | 2.11   | 2.29  | 0.83  | 0.84         | 1.18  |  |
| 38   | Nuta               | 1.46  | 1.58  | 3.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.50                | 1.47   | 3 24  | 0.97  | 1.07         | 1.07  |  |
| 39   | Nyuya              | 1.22  | 1.73  | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30                | 1.79   | 2.77  | 0.94  | 0.97         | 0.96  |  |
| 40   | Hikinota           | 1,19  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |        |       | 0.01  | 0.07         | 0.00  |  |
|      | Average            | 1.37  | 1.68  | 2.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.41                | 1,78   | 2,90  | 0.97  | 0.95         | 1.03  |  |
|      | Standard deviation | 0.141 | 0.353 | 0.542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.122               | 0.351  | 0.565 | 0.094 | 0.199        | 0 180 |  |
|      |                    |       |       | and the second s | and a second second |        |       |       |              |       |  |

Table 6.4 Fractal dimension of landslide block distribution

 $D_{3rd}$  is about 10% lower than the fractal dimension of slope failure (D = 3.3, Sasaki and others, 1991). This may be because their common failure mechanics (rotational) and size, while first and second level blocks are bigger and their failure mechanics is complex of rotational at the head and translational.

Fractal dimension of the length of whole blocks,  $D_{L-whole}$ , is 3% higher than fractal dimension of the width of whole blocks,  $D_{W-whole}$ , and fractal dimension of the length of second level blocks,  $D_{L-2nd}$ , is 5% higher than fractal dimension of the width of second level blocks,  $D_{W-2nd}$ . However, fractal dimension of the length of third level blocks,  $D_{L-3rd}$ , is 3% lower than fractal dimension of the width of third level blocks,  $D_{W-3rd}$ . Neither of these relationships can be proved by a large sample statistical test (Dietrich and Kearns, 1989).

Figure 6.6 shows the relationship between  $D_W$  versus  $D_L$ ;  $D_{W-2nd}$  versus  $D_{L-2nd}$ ;  $D_{W-3rd}$  versus  $D_{L-3rd}$ . They have a positive relationship (coefficient of correlation, r, is from 0.39 ( $D_{W-2nd}$  versus  $D_{L-2nd}$ ) to 0.63 ( $D_{W-3rd}$  versus  $D_{L-3rd}$ )). Figure 6.7 shows the relationship between  $D_{whole}$ ,  $D_{2nd}$  and  $D_{3rd}$ . Although the number of third-level blocks is much greater than the number of second-level blocks,  $D_{whole}$  and  $D_{2nd}$  correlate better than  $D_{whole}$  and  $D_{3rd}$ .

56



Figure 6.6 Relationship between fractal dimension of width and length. a)  $D_{W-whole}$  versus  $D_{L-whole}$  b)  $D_{W-2nd}$  versus  $D_{L-2nd}$  c)  $D_{W-3rd}$  versus  $D_{L-3rd}$


Figure 6.7 Relationship between fractal dimension of whole blocks; and second and third level blocks. a)  $D_{W-whole}$  versus  $D_{W-2nd}$  and  $D_{W-3rd}$  b) $D_{L-whole}$  versus  $D_{L-2nd}$  and  $D_{L-3rd}$ 

## 6.4 FRACTAL DIMENSION OF LINEAMENTS

Lineaments are known to be fractal geometries. The term lineament is used as "straight or gently curved lengthy features of the earth's surface, which are interpreted as structural features such as faults, aligned volcanoes, and zones of intense jointing" (American Geological Institute, 1976). The fractal dimensions of lineament,  $D_{Lin}$ , were measured in the area next to the landslides in order to examine the relationship between fractal dimensions of landslides and lineaments. The lineaments were measured in only 19 areas because some areas are covered by landslides and maps of some areas next to the landslides are not available. Lineament configurations were obtained from aerial photography and topography map interpretations.

The box counting method was used to calculate the fractal dimensions, and the lineament configurations were put onto a regular grid with mesh size r, and counted the number of grid boxes which contain some of the lineaments. This gives a number N(r), which depends on the choice of r. The grid size, r, was changed to progressively smaller sizes and corresponding number N(r). Then the measurements were plotted on the  $\log(N(r))$  versus  $\log(r)$  diagram; the negative of the slope of the best fitting straight line of the plots is the fractal dimension of the lineaments,  $D_{Lin}$  (Peitgen and others,

1992, see section 3.3). The grid size, r, was changed from 2,000m to 62.5m. Appendix D shows  $\log(N(r))$  versus  $\log(r)$  plots and Table 6.5 shows fractal dimensions of lineaments.

Table 6.5 Fractal dimension of lineament and landslide block distribution

| No. |                    |       | Width |       |       | Length |       |       |
|-----|--------------------|-------|-------|-------|-------|--------|-------|-------|
|     |                    | Whole | 2nd   | 3rd   | Whole | 2nd    | 3rd   |       |
| 1   | Midway Bridge      | 1.53  | 2.77  | 3.27  | 1.56  | 1.79   | 2.90  | 1.637 |
| 2   | Boca Ridge         | 1.33  | 1.49  | 3.62  | 1.29  | 1.35   | 3.01  | 1.564 |
| 3   | Palos Verdes       | 1.48  | 1.84  | 2.21  | 1.57  | 2.59   | 2.08  | 1.795 |
| 4   | Big Rock Mesa      | 1.48  | 1.86  | 3.39  | 1.53  | 1.63   | 3.37  | 1.747 |
| 5   | Thristle           | 1.32  | 1.31  | 2.13  | 1.29  | 1.15   | 2.08  | 1.690 |
| 7   | Upper Gros         | 1.30  | 1.44  | 3.51  | 1.20  | 1.36   | 2.05  | 1.703 |
| 12  | Kiritani           | 1.24  | 1.36  | 2.34  | 1.34  | 1.46   | 3.34  | 1.668 |
| 13  | Katsurabara        | 1.38  | 1.37  | 1.90  | 1.44  | 1.82   | 2.26  | 1.759 |
| 15  | Takisaka           | 1.36  | 1.57  | 2.86  | 1.30  | 1.44   | 3.02  | 1.717 |
| 17  | Mushigame          | 1.31  | 1.72  | 3.17  | 1.56  | 1.67   | 2.59  | 1.711 |
| 19  | Karuizawa          | 1.61  | 2.30  | 3.29  | 1.43  | 1.82   | 3.08  | 1.701 |
| 20  | Happoudai          | 1.35  | 1.78  | 2.63  | 1.46  | 1.73   | 3.25  | 1.685 |
| 21  | Raiden             | 1.53  | 2.03  | 3.16  | 1.48  | 1.85   | 3.19  | 1.736 |
| 22  | Nishinakanoho      | 1.51  | 2.09  | 3.53  | 1.35  | 2.00   | 3.32  | 1.715 |
| 24  | Kitaurata          | 1.19  | 1.13  | 3.95  | 1.43  | 1.41   | 4.17  | 1.710 |
| 31  | Maseguchi          | 1.49  | 1.39  | 3.56  | 1.54  | 1.53   | 3.15  | 1.665 |
| 32  | Maruta             | 1.37  | 1.46  | 3.58  | 1.36  | 1.83   | 3.50  | 1.643 |
| 37  | Youne              | 1.35  | 1.77  | 2.71  | 1.62  | 2.11   | 2.29  | 1.745 |
| 39  | Nyuya              | 1.22  | 1.73  | 2.65  | 1.30  | 1.79   | 2.77  | 1.647 |
|     | Average            | 1.39  | 1.71  | 3.02  | 1.42  | 1.70   | 2.92  | 1.697 |
|     | Standard deviation | 0.114 | 0.384 | 0.572 | 0.117 | 0.318  | 0.555 | 0.051 |

Figure 6.8 shows the relationship between the fractal dimension of lineament,  $D_{Lin}$ , and the fractal dimension of landslide block distribution,  $D_{Land}$ . Although the variance is great,  $D_{whole}$  and  $D_{2nd}$  correlate to  $D_{Lin}$ .  $D_L$  correlates to  $D_{Lin}$  better than  $D_W$ .  $D_{2nd}$  has relatively good correlation to  $D_{Lin}$  and the mean of both fractal dimensions is very close, however  $D_{Land}$  was measured by the divider method and  $D_{Lin}$  was measured by the divider method and  $D_{Lin}$  was measured by the other hand,  $D_{3rd}$  doesn't show any correlation to  $D_{Lin}$  (Figure 6.9).

This result suggests that lineaments (discontinuities) affect the propagation process of second level blocks but not of third level blocks. One reason may be that the size of lineaments is similar to that of second level blocks.  $D_{2nd}$ correlates to  $D_{whole}$  better than  $D_{3rd}$  despite the fact that the number of third level blocks is much greater than the number of second level blocks, so lineaments are considered an important factor influencing the fractal dimension of landslide block distribution.



Figure 6.8 Relationship between fractal dimension of lineament,  $D_{Lin}$  and fractal dimension of landslide block. a)  $D_{Lin}$  versus  $D_{W-Whole}$  b)  $D_{Lin}$  versus  $D_{L-Whole}$  c)  $D_{Lin}$  and  $D_{W-2nd}$  d)  $D_{Lin}$  versus  $D_{L-2nd}$  e)  $D_{Lin}$  versus  $D_{W-3rd}$  f)  $D_{Lin}$  and  $D_{L-3rd}$ 



Figure 6.9 a) X coefficient and b) coefficient of correlation of fractal dimension of lineament and fractal dimension of landslide blocks

6.5 FRACTAL DIMENSION OF ROCK FALLS, DEBRIS FLOWS, AND FRACTURES

Rock fragments and fracture data were obtained from Slide Mountain, Nevada; No. 1, Midway Bridge Landslide; and No. 2, Boca Ridge Landslide. The fractal dimensions of fractures,  $D_F$ , and rock fragments,  $D_R$ , in the three areas were calculated to compare with each other and the fractal dimensions of the landslide block distributions.

## METHOD OF FRACTAL DIMENSION CALCULATION

The frequency-size distribution of rock fragments can be empirically described by the power-law relationship:

 $N(r) = C * r^{-b} \dots Eq. 6.1$ 

where N(r) is the number of rock fragments with diameter greater than r. The constants C and b are chosen to fit observed distributions. The constant b is equivalent to the fractal dimension, D (Turcotte, 1992).

The fractal dimension of rock fragments,  $D_R$ , is obtained as the negative slope of the  $\log(N(r))$  versus  $\log(r)$  plot, where r is the ruler length and N(r) is the number of rock fragments whose maximum diameter is greater than the ruler (Carr and Warriner, 1989, see Section 3.3).

Data collection locations are shown in Appendix A. Rock

fragment data were obtained by choosing a straight measure line arbitrarily and measuring the maximum diameters of all visible rock fragments bigger than one feet along the line. Fracture data were taken by making a measuring the line about three feet above the lower limit of the outcrop and measuring the space from one fracture to another along the line.

#### RESULTS

Log(N(r)) versus log(r) plots are shown in Appendix D. Tables 6.6 and 6.7 show fractal dimensions of rock fragments and fractures respectively. Many of the plots can be approximated as a straight line, which means that the rock fragments and fractures are fractal. Some of them are rather convex. The means of fractal dimensions of rock fall fragments of granodiorite and volcanic rock (andesite in No. 1, Midway Bridge, and latite in No. 2, Boca Ridge) are 2.51 and 2.56 respectively. The mean of fractal dimension of fractures of both granodiorite and volcanic rock are 2.58.

Turcotte (1992) indicated that the fractal dimension of granite and basalt is about D = 2.5. The fractal dimensions yielded by my data agree with the above data. From limited data, a difference could not be found in fractal dimensions between granite and volcanic rocks. Figure 6.10 shows the relationship of fractal dimensions between rock fragments of rock falls and fractures of the origin of the fragments. It is natural that they correlate very well because no sorting process occurs during rock fall.

| Line       | Fractal D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Type of deposit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Age of Deposit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rock                                                                                                                                                                                                                                                                                                                                                           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R-1        | 2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rockfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | granodiorite                                                                                                                                                                                                                                                                                                                                                   |
| R-2        | 2.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rocidall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | granodiorite                                                                                                                                                                                                                                                                                                                                                   |
| R-3        | 2.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rockfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | granodiorite                                                                                                                                                                                                                                                                                                                                                   |
| R-4        | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rockfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | granodiorite                                                                                                                                                                                                                                                                                                                                                   |
| R-5        | 2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rocidall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | granodiorite                                                                                                                                                                                                                                                                                                                                                   |
| R-6        | 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rockfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | granodiorite                                                                                                                                                                                                                                                                                                                                                   |
| P-7        | 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rockfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | granodiorite                                                                                                                                                                                                                                                                                                                                                   |
|            | 2.506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |
|            | 0.194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |
| D-1        | 2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Debris Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Anciant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | granodiorite                                                                                                                                                                                                                                                                                                                                                   |
| D-2        | 2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Debris Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Anciant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | granodiorite                                                                                                                                                                                                                                                                                                                                                   |
| D-3        | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Debris Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | granodiorite                                                                                                                                                                                                                                                                                                                                                   |
| D-4        | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Debris Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | granodiorite                                                                                                                                                                                                                                                                                                                                                   |
|            | 2.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |
|            | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |
| C-1        | 3.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Congromerate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anciant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | granodiorite                                                                                                                                                                                                                                                                                                                                                   |
| A-1        | 2.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rockfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volcanic                                                                                                                                                                                                                                                                                                                                                       |
| R-2        | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rockfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volcanic                                                                                                                                                                                                                                                                                                                                                       |
| R-3        | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rockfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volcanic                                                                                                                                                                                                                                                                                                                                                       |
| R-4        | 3.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rockfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volcanic                                                                                                                                                                                                                                                                                                                                                       |
| R-5        | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rockfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volcanic                                                                                                                                                                                                                                                                                                                                                       |
| R-6        | 2.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rockfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volcanic                                                                                                                                                                                                                                                                                                                                                       |
| R-1        | 2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bockfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volcanic                                                                                                                                                                                                                                                                                                                                                       |
| Midway R-2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rockfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volcanic                                                                                                                                                                                                                                                                                                                                                       |
|            | 2.559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |
|            | 0.341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                              |
|            | Line<br>R-1<br>R-2<br>R-3<br>R-3<br>R-4<br>R-5<br>R-6<br>R-7<br>D-1<br>D-2<br>D-3<br>D-4<br>C-1<br>R-1<br>R-2<br>R-3<br>R-4<br>R-5<br>R-6<br>R-1<br>R-2<br>R-3<br>R-4<br>R-1<br>R-2<br>R-3<br>R-4<br>R-4<br>R-5<br>R-4<br>R-5<br>R-4<br>R-5<br>R-4<br>R-5<br>R-4<br>R-5<br>R-4<br>R-5<br>R-4<br>R-5<br>R-4<br>R-7<br>R-4<br>R-5<br>R-4<br>R-7<br>R-4<br>R-5<br>R-4<br>R-7<br>R-4<br>R-7<br>R-4<br>R-5<br>R-4<br>R-7<br>R-4<br>R-7<br>R-4<br>R-7<br>R-4<br>R-7<br>R-4<br>R-7<br>R-7<br>R-4<br>R-7<br>R-7<br>R-7<br>R-7<br>R-7<br>R-7<br>R-7<br>R-7 | Line      Fractal D        R-1      2.62        R-2      2.39        R-3      2.46        R-4      2.49        R-5      2.92        R-6      2.33        R-7      2.33        2.506      0.194        D-1      2.52        D-2      2.48        D-3      2.59        D-4      2.38        2.493      0.076        C-1      3.64        R-1      2.19        R-2      2.74        R-3      2.44        R-4      3.19        R-5      2.24        R-6      2.78        R-1      2.15        R-2      2.74        R-5      2.24        R-5      2.24        R-5      2.24        R-6      2.78        R-1      2.15        R-2      2.74        2.559      0.341 | Line      Fractal D      Type of deposit        R-1      2.62      Rockfall        R-2      2.39      Rockfall        R-3      2.46      Rockfall        R-4      2.49      Rockfall        R-5      2.92      Rockfall        R-6      2.33      Rockfall        R-7      2.35      Debris Flow        D-2      2.48      Debris Flow        D-3      2.59      Debris Flow        D-4      2.38      Debris Flow        D-4      2.38      Debris Flow        D-4      2.39      Debris Flow        D-4      2.38      Debris Flow        D-4      2.493      Debris Flow        D-4      2.49      Debris | Line  Fractal D  Type of deposit  Age of Deposit    R-1  2.62  Rockfall  Present    R-2  2.39  Rockfall  Present    R-3  2.46  Rockfall  Present    R-4  2.49  Rockfall  Present    R-5  2.92  Rockfall  Present    R-6  2.33  Rockfall  Present    R-6  2.33  Rockfall  Present    R-7  2.33  Rockfall  Present    R-7  2.33  Rockfall  Present    D-1  2.506 |

Table 6.6 Fractal dimensions of rock fragments

| Table 6.7 Fracta | l dimensions | of | fractures |
|------------------|--------------|----|-----------|
|------------------|--------------|----|-----------|

| Landslide      | Line     | Fractal D | Rock         |
|----------------|----------|-----------|--------------|
| Slide ML       | F-1      | 2.76      | granodiorite |
| Slide Mt.      | F-2      | 2.57      | granodiorite |
| Slide Mt.      | F-3      | 2.44      | granodiorite |
| Slide ML       | F-4      | 2.78      | granodiorite |
| Slide Mt.      | F-5      | 2.20      | granodiorite |
| Slide Mt.      | F-6      | 2.89      | granodiorite |
| Slide Mt.      | F-7      | 2.44      | granodiorite |
| Mean           |          | 2.583     |              |
| Std. Deviation | 1        | 0.224     |              |
| Boca Ridge     | F-1      | 2.14      | Volcanic     |
| Boca Ridge     | F-2      | 2.16      | Volcanic     |
| Boca Ridge     | F-3      | 2.79      | Volcanic     |
| Boca Ridge     | F-4      | 3.56      | Volcanic     |
| Boca Ridge     | F-5      | 2.62      | Volcanic     |
| Boca Ridge     | F-6      | 2.99      | Volcanic     |
| Boca Ridge     | F-7      | 1.84      | Volcanic     |
| Boca Ridge     | F-8      | 3.04      | Volcanic     |
| Midway         | F-1      | 2.08      | Volcanic     |
| Midway         | F-2      | 2.54      | Volcanic     |
| Mean           | <u> </u> | 2.576     |              |
| Std. Deviation | 1        | 0.505     |              |

the line of present and the difference and



Figure 6.10 Relationship of fractal dimension between rock fragment of rock fall and fractures at the origin of the rock fragments.

The fractal dimensions of debris flow deposits were measured at four locations in Slide Mountain area. D-1 and D-2 are surface deposits, which are believed to be 1983 (present) debris flow deposits. D-3 and D-4 are at outcrops beside the canyon, so they are thought to be ancient debris flow deposits. The fractal dimensions of the debris flow deposits are from 2.38 to 2.59; the average is 2.49. A difference was not found between the fractal dimensions of present and ancient debris flow deposits. The fractal dimension of the conglomerate (C-1) is 3.64, which is approximately 45% higher than the fractal dimension of rockfall, fractures, or debris flow deposits. Fractal dimension of rock fragment and fracture is about 13% smaller than fractal dimension of third level blocks,  $D_{3rd}$ .

Because the fractal dimension of rockfall and debris flow deposits are similar to that of fracture of their origin, we can predict the distribution of deposits by knowing the fractal dimension of the fracture of the origin slope. Even though there is no outcrop of the slope, the fractal dimension of the fracture of a boring core is similar to the fractal dimension of the fracture of the outcrop (Merceron and Velde, 1991). We can predict the distribution of rockfall and debris flow if we know the fractal dimension of the fracture of the outcrop or the boring core.

The property of the second term of t

CHAPTER SEVEN: ANALYSIS OF LANDSLIDES USING FRACTAL DIMENSIONS

The characteristics of landslide block distributions using fractal dimensions and block development processes using their characteristics will be discussed in this chapter.

## 7.1 WHAT IS THE FRACTAL DIMENSION OF LANDSLIDE BLOCK DISTRIBUTION?

Generally, the fractal dimension of a set is a number which tells how densely the set occupies the metric space in which it lies (Barnsley, 1988). In other words, the more complex the figure, the higher the fractal dimension. In the case the landslide block distribution, fractal dimension can be expressed in terms of variance, which is a traditional and familiar concept in statistics.

Figure 7.1 shows the relationship between the logarithms of standard deviation (= square root of variance) and fractal dimension. They correlates well in reverse (coefficient of correlation, r = -0.840 for width data, r = -0.777 for length data). This means that the smaller variance block distribution has the higher fractal dimension and vice versa. The explanation for this is that smaller variance means the size of the blocks' width (or length) is concentrated in a small range so the slope of the log(N(r)) versus log(r) plot is

steeper, which means the fractal dimension is higher (fractal dimension is the negative of the slope of the plot) (Figure 7.2).



Figure 7.1 relationship between fractal dimension and logarithm of variance of landslide blocks. a) with respect to width, b) with respect to length of blocks.



Figure 7.2 Conceptional pictures of fractal dimension and variance of landslide blocks. a) When variance of blocks is great, fractal dimension is small. b) When variance is small, fractal dimension is great.

The biggest difference between fractal dimension and variance is the range of data with which they are calculated. Variance is calculated based on all available data. On the other hand,

fractal dimension is calculated based only on data which show fractal character (straight portion of log(N(r)) versus log(r)plots). So data of width (or length) smaller than the fractal character limit don't affect fractal dimension. Data of width (or length) smaller than the fractal limit is influenced by the accuracy of data collection. Fractal dimension has an advantage in obtaining the essential characteristics of landslide block distributions by eliminating uncertain data.

# 7.2 RELATIONSHIP BETWEEN FRACTAL DIMENSION AND OTHER ATTRIBUTES

The relationships between fractal dimensions and other attributes (properties) of landslides were analyzed. These attributes are width, length, area, depth, height, ratio of length to width (length/width), apparent angle (arctan(height/length)), slide surface angle, topography, block shape, activity, base rock geology, geological period of base rock, strike of base rock, and apparent dip of base rock (see Section 6.1).

#### CORRESPONDENCE ANALYSIS

#### METHOD

Correspondence analysis is a technique for displaying the rows and columns of a data matrix as points in low-dimensional

vector spaces. The geometry of the column entries (attributes) is related to the geometry of the rows (the individuals); hence, there is a "correspondence" to each other (Oleson and Carr, 1990). Application of correspondence analysis to the contingency table provides a graphical display to attributes and individuals where the distance between points is a measure of the similarity in their profiles; i.e., it describes their correlation (Oleson and Carr, 1989).

Correspondence analysis calculates a separate set of eigenvectors for both the attributes and the individuals. A combination plot of both the attributes and individuals involves the grouping of each of their respective eigenvectors to the corresponding other to form a merged axis i.g., eigenvector 1 of attributes and eigenvector 1 of individuals are combined into one axis. In addition to the graphical display, correspondence analysis also provides a printout of the calculated eigenvalues, percent of variation (non-trivial eigenvalues), and eigenvector coordinates. The percent of variation is important for determining the amount of variance represented by an eigenvector (Oleson, 1989).

Because correspondence analysis was developed in the social science field, it can handle quantitative data found in nominal variables e.g., activity and block shape (Hair and others, 1992). The final advantage of correspondence analysis

is that it can handle missing data values with their expected values, the product of the row and column sums on which the missing datum occurs. The computer software CORESPOND (Carr, 1990) was used to perform the analysis. For mathematical and quantitative description of correspondence analysis refer to Davis (1986) or Carr (1994).

### RESULT

Data for the correspondence analysis comprise 39 individuals (No.40, Nuta, is excluded) with 17 attributes. The attributes are width, length, area, depth, height, length/width, apparent angle, slide surface angle, topography, block shape, activity, geology, geological period, strike, apparent dip,  $D_W$ , and  $D_L$  (Table 6.1).

The results are shown in Appendix F. Figure 7.3 shows the correspondence analysis plot of Factor 1 (X axis) versus Factor 2 (Y axis). Based on eigenvalue analysis, Factor 1 represents about 45% of the data and factor 2 represents about 22% of the data, so Figure 7. 3 represents about 67% of the data. Only this plot will be discussed. Because even though 67% is not a very high amount, my primary purpose in doing the correspondence analysis is to get some idea of the correlation between fractal dimensions and other attributes.



Figure 7.3 Correspondence analysis plot

From the plot, the attributes are classified into three groups and two independents. The first group consists of attributes of size: width, length, height, and depth. The second group consists of attributes of angles: slide surface angle and apparent angle. The third group consists of attributes of geometry and activity: length/width, topography, block shape, strike, apparent dip,  $D_W$ ,  $D_L$ , and activity. The two individual attributes are geology and geological period. The plot suggests that fractal dimensions may correlate to topographical geometry (length/width, topography, and block shape), three dimensional geometry (strike and apparent dip), and activity.

## METRIC VARIABLES AND FRACTAL DIMENSIONS

The relationships between metric variables (width, length, area, depth, height, length/width, apparent angle, slide angle, strike, apparent dip, and geological period) and fractal dimensions were analyzed from X-Y plot graphs (X axis - the variables, Y axis - fractal dimension).

Figures 7.4 shows the plots. The variance of the plots is great and the relationships are vague. The least square linear regression between each of the metric variables and the fractal dimensions were calculated. Because the variables consist different units, such as meter, kilometer, degree, and

none, all units were converted to percentages, i.e., the maximum value is 100% and the minimum value is 0%, for the least square linear regression calculation.

Least square linear regression is expressed generally as Y = mX + b, where m is X coefficient and b is the Y axis intercept. Figure 7.5 shows the X coefficient, m, and the absolute value of the correlation coefficients, r. By statistical t test, when the following inequation is satisfied, we can tell there is a correlation between the independent variables and dependent variables with a 90% confidence level (Devore, 1987; Satsuma, 1992):

$$\sqrt{\frac{(N-2)r^2}{1-r^2}} \ge 1.684$$

In this case, N is 39. When the inequation is solved:

#### |*r*|≥0.267

Length/width versus  $D_W$ ; length/width versus  $D_L$ ; and dip versus  $D_W$  satisfy this condition. This result agrees with the correspondence analysis (Figure 7.3).



Figure 7.4 Metric attributes and fractal dimension plots







And al complicient of landalide blocks to all dimension of landalide blocks constinuet or loast opport to and P.1 si forfidient of constitutes of boath of loast spurt

and period in the period and the period and the second of the



Figure 7.5 a) X coefficient and b) coefficient of correlation of metric attributes and fractal dimension of landslide blocks a) X coefficient of least square regression of metric attributes and  $D_W$ ; a') X coefficient of least square regression of metric attributes and  $D_L$ ; b) Coefficient of correlation of least square regression of metric attributes and  $D_W$ ; b') Coefficient of correlation of least square regression of metric attributes and  $D_L$ 

Length versus  $D_W$  and  $D_L$ , area versus  $D_L$ , height versus  $D_L$ , slide angle versus  $D_L$ , and geological period versus  $D_L$  show some correlation (|r| > 0.2). In graphs of length versus  $D_W$ and  $D_L$  (Figure 7.4.f and f'), plots which increase the absolute value of X coefficient and the coefficient of

correlation coincide to high or low values of length/width. Both length/width versus  $D_W$  and length versus  $D_W$  correlate in positive and both length/width versus  $D_L$  and length versus  $D_L$ correlate in inverse. In other words, their correlations are the result of the influence of length/width or their correlations are explained by the correlation between length/width and fractal dimensions. In graphs of area versus  $D_L$ , height versus  $D_L$ , slide angle versus  $D_L$ , and geological period versus  $D_L$ , some extreme values increase the absolute value of the X coefficient and coefficient of correlation.

The slopes of least square linear regression of length/width versus  $D_W$  and length/width versus  $D_L$  are the reverse of each other. This is a unique phenomenon because basically  $D_W$  and  $D_L$ are positively related (Figure 6.6, Section 6.3) and graph configurations of the other attributes versus  $D_W$  and  $D_L$  are similar. This phenomenon may be explained as follows. In a landslide whose width is wide and whose length is short (length/width is small), the variance of the width of the blocks becomes great ( $D_W$  is small) and the variance of the length of the blocks becomes small ( $D_L$  is great). In a landslide whose width is short and whose length is long (length/width is great), the variance of the width of the blocks becomes small ( $D_W$  is great) and the variance of the length of the blocks becomes small ( $D_L$  is great). In a

variance and fractal dimension are reversely related to each other (Figure 7.6).

Figure 7.6 Conceptional picture for explanation of relationship between length/width and fractal dimension. a) length/width is small: variance of width (length) of blocks is great (small) =  $D_W$  ( $D_L$ ) is relatively small (great) b) length/width is big: variance of width (length) of blocks is small (great) =  $D_W$  ( $D_L$ ) is relatively great (small)

#### DISCRIMINANT\_ANALYSIS

The relationship between fractal dimension and each categorical attribute was analyzed using discriminant analysis. It is assumed that if an attribute influence the fractal dimensions, the data sets divided based on the attribute should be statistically separatable. Discriminant analysis indicates whether there is a statistically meaningful difference between two data sets which have more than one attributes. The categorical attributes are geology, topography, block shape, apparent dip, and activity.

#### Method

Discriminant analysis is the appropriate statistical technique when the dependent variable is categorical and the independent variables are metric (Hair and others, 1992). It is a method for finding the maximum separability between group of multivariate data (Carr, 1994). Figure 7.7 is a conceptional expression of discriminant analysis.



Figure 7.7 Plot of two bivariate distributions, showing overlap between group A and B along both variables  $X_1$  and  $X_2$ . Groups can be distinguished by projecting members of the two groups onto the discriminant function line (Davis, 1986)

In a discriminant analysis of Group A and Group B, you first set a null hypothesis  $R_A = R_B$  (R is the discriminant score). The analysis tells you whether the null hypothesis can be denied or not, and if it can be denied, the analysis tells you the confidence level (90%, 95%, 97.5%, or 99%). For example, discriminant analysis can tell you if the fractal dimensions  $(D_W$  and  $D_L$ ) of mudstone area can be divided from the fractal dimensions of a schist area statistically. The computer software DISCRIM (Carr, 1994) was used to perform discriminant analysis. For a mathematical and quantitative description of discriminant analysis, refer to Davis (1986) and/or Carr (1994). Discriminant analysis calculations are shown in Appendix I.

### GEOLOGY

Figure 7.8 and Table 7.1 show the mean fractal dimension of width,  $D_{W-mean}$ ; the mean fractal dimension of length;  $D_{L-mean}$ , the average of both,  $D_{Avg-mean}$ ; and the mean of length/width of each base rock geology area. Discriminant analysis indicates that the fractal dimensions of a Mesozoic sedimentary rock area can be discriminated from the fractal dimensions of Tertiary mudstone (95%) and Tertiary sandstone-mudstone (99%), areas (number in parentheses is the confidence level). Discriminant analysis did not deny the null hypothesis for any other combinations.

Table 7.1 Mean and standard deviation of fractal dimension of each geology

|          |                 | D(width) | D(length) | D(average) |
|----------|-----------------|----------|-----------|------------|
|          | # of landslides | 11       | 11        |            |
| mudstone | mean            | 1.395    | 1.453     | 1.424      |
|          | std. deviation  | 0.166    | 0.100     | 0.133      |
|          | # of landslides | 7        | 7         |            |
| ss, ms   | mean            | 1.343    | 1.430     | 1.387      |
|          | std. deviation  | 0.122    | 0.106     | 0.114      |
|          | # of landslides | 5        | 5         |            |
| tuff     | mean            | 1.440    | 1.458     | 1.449      |
|          | std. deviation  | 0.084    | 0.140     | 0.112      |
|          | # of landslides | 4        | 4         |            |
| volcanic | mean            | 1.370    | 1.373     | 1.372      |
|          | std. deviation  | 0.105    | 0.061     | 0.083      |
|          | # of landslides | 5        | 5         |            |
| Mesozoic | mean            | 1.398    | 1.303     | 1.351      |
|          | std. deviation  | 0.091    | 0.081     | 0.086      |
|          | # of landslides | 8        | 7         |            |
| schist   | mean            | 1.309    | 1.418     | 1.364      |
|          | std. deviation  | 0.165    | 0.110     | 0.138      |



Figure 7.8 Mean of fractal dimensions and length/width of each geology. mudstone: Tertiary mudstone; ss, ms: Tertiary sandstone, mudstone, and conglomerate; tuff: Tertiary tuff and tuffaceous mudstone; volcanic: Tertiary andesite or latite; Mesozoic: Mesozoic sedimentary rock (sandstone, shale, limestone); Metamorphic: schist or greenstone The mean of length/width of landslides in Mesozoic rock areas is much higher than the means of landslides in other geological areas. Figure 7.4.f,f' show that  $D_W$  is higher than  $D_L$  in landslides with high length/width. Figure 7.9 shows good positive correlation between the mean of length/width and  $D_W - D_L$  of each geological areas. A landslide in a Mesozoic rock area tends to have a big length/width ratio, so it indicates great  $D_W$  and small  $D_L$ . In other words, the relationship of geology and fractal dimensions is one variation of the relationship of length/width and fractal dimension. Yokoi and others (1995) indicated that fractal dimension is independent from base rock geology. My data support this indication.



Figure 7.9 Relationship between mean of length/width and gap of  $D_{W-mean}$  and  $D_{L-mean}$ .

Sasaki and others (1991) defined  $\alpha$  as the Y axis intercept of  $\log(N(r))$  versus  $\log(r)$  plot or theoretical number of blocks whose width (length) is greater than one meter. Theoretical number of the blocks in the unit area,  $\alpha_0$ , is obtained by  $\alpha$  divided by the area of the landslide. The unit of  $\alpha_0$  is number/hectare in this thesis.

Figure 7.10 and Table 7.2 show mean  $\alpha_0$  of each base rock geology area. Yokoi and others (1995) suggested that  $\alpha_0$  of mudstone area is distinguished from  $\alpha_0$  of a schist area. Figure 7.12 shows the great difference of  $\alpha_0$  among different geologies; however, discriminant analysis indicated that only  $\alpha_0$  of Tertiary sandstone-mudstone area is distinguished from  $\alpha_0$  of a Mesozoic sedimentary rock area (90% confident level). Distinguishability is related not only to the mean value but also to variance and number of samples. Variance of  $\alpha_0$  is great (Table 7.2), so  $\alpha_0$  is less distinguishable than fractal dimension. Discriminate analysis suggests that  $\alpha_0$  is basically independent from geology, too.

Yokoi and others (1995) indicated that in a huge landslide, second- and third-level blocks develop in transported firstlevel blocks, which are separated from the base rock by a slide surface. So cracks made by movement of the first-level block or other discontinuities would be an important factor in the occurrence of second and third level blocks.

# Table 7.2 Mean and standard deviation of $\alpha_0$ of each geology

|          |                 | alpha-0(Width) | alpha-0(Length) | alpha-0(average) |
|----------|-----------------|----------------|-----------------|------------------|
|          | # of landslides | 11             | 11              |                  |
| mudstone | mean            | 154.9          | 202.7           | 178.8            |
|          | std. deviation  | 133.9          | 169.5           | 151.7            |
|          | # of landslides | 7              | 7               | 101.7            |
| ss, ms   | mean            | 115.3          | 205.7           | 160.5            |
|          | std. deviation  | 112.5          | 157.5           | 135.0            |
|          | # of landslides | 5              | 5               | 100.0            |
| tuff     | mean            | 175.2          | 256.8           | 216.0            |
|          | std. deviation  | 116.2          | 195.5           | 155.9            |
|          | # of landslides | 4              | 4               | 100.0            |
| volcanic | mean            | 66.3           | 103.0           | 84.7             |
|          | std. deviation  | 26.1           | 76.0            | 51.1             |
|          | # of landslides | 5              | 5               | 01.1             |
| Mesozoic | mean            | 129.3          | 111.5           | 120.4            |
|          | std. deviation  | 134.0          | 137.6           | 135.8            |
|          | # of landslides | 8              | 7               | 100.0            |
| schist   | mean            | 134.7          | 265.0           | 199.9            |
|          | std. deviation  | 95.5           | 262.1           | 178.8            |



Figure 7.10 Mean of  $\alpha_0$  of each geology mudstone: Tertiary mudstone; ss, ms: Tertiary sandstone, mudstone, and conglomerate; tuff: Tertiary tuff and tuffaceous mudstone; volcanic: Tertiary andesite or latite; Mesozoic: Mesozoic sedimentary rock (sandstone, shale, limestone); Metamorphic: schist or greenstone

## APPARENT DIP OF BASE ROCK

Figure 7.11 and Table 7.3 show the mean fractal dimension of width,  $D_{W-mean}$ ; the mean fractal dimension of length,  $D_{L-mean}$ ; the average of both,  $D_{Avg-mean}$ ; and the mean of length/width of dip slope landslides, horizontal dip landslides, and dipping into slope landslides. Discriminant analysis indicates that the fractal dimensions of dipping into slope are discriminated from the fractal dimensions of both dip slope (90%) and horizontal (90%). Dip and length/width don't show any correlation, so the correlation between apparent dip and fractal dimensions is not influenced by the correlation of length/width and fractal dimension (Figure 7.12)

Table 7.3 Mean and fractal deviation of fractal dimension of each dip type

|                 |                | D(width) | D(length) | D(avearge) |
|-----------------|----------------|----------|-----------|------------|
|                 | # of landslide | 28       | 28        |            |
| dip slope       | mean           | 1.396    | 1.413     | 1.405      |
|                 | std. deviation | 0.127    | 0.132     | 0.130      |
|                 | # of landslide | 4        | 4         |            |
| horizontal      | mean           | 1.455    | 1.423     | 1.439      |
|                 | std. deviation | 0.125    | 0.079     | 0.102      |
|                 | # of landslide | 6        | 6         |            |
| dip into slope  | mean           | 1.273    | 1.407     | 1.340      |
| and and a state | std. deviation | 0.143    | 0.104     | 0.124      |

Legences V.L.



Figure 7.11 Mean of fractal dimensions of each dipping type of base rock. dip slope: base rock dip to same direction as slide; horizontal: apparent dip of base rock is horizontal in slide direction; dipping into slope: base rock dips to opposite direction of slide





 $D_{W-mean}$  of dipping into slope landslides is about 10% lower than the mean of whole  $D_{W-mean}$ . This means that the variance of blocks in dipping into slope landslides is bigger than others. This may suggest that in dip slope landslides, blocks tend to fail along bedding planes; and on the other hand, in dipping into slope landslides, there aren't regular weak bedding planes, so the variance of the blocks becomes greater.

If this assumption is true,  $D_L$  should be affected more severely than  $D_W$ , however, it doesn't agree with the facts. The facts are that the difference of  $D_W$  is more influenced by dip and that dip correlates to  $D_W$  but not  $D_L$  (Figure 7.5). On the other hand, the fact that dip doesn't correlate to the fractal dimensions in either dip slope landslides nor dipping into slope landslides but indicates meaningful differences between them does not contradict the assumption because the numerical value of dip would not influence the variance of the blocks.

## TOPOGRAPHY

Figure 7.12 and Table 7.4 show the mean fractal dimension of width,  $D_{W-mean}$ ; the mean fractal dimension of length,  $D_{L-mean}$ ; the average of both,  $D_{Avg-mean}$ ; and the mean of length/width of each topography type. Discriminant analysis indicates that the fractal dimensions of type 4 are discriminated from those of
type 1 and type 3 (90% confident level).

| Topography |                 | D (width) | D (length) | D (average) |
|------------|-----------------|-----------|------------|-------------|
|            | # of landslides | 10        | 10         |             |
| Type 1     | mean            | 1.334     | 1.439      | 1.387       |
|            | std. deviation  | 0.145     | 0.12       | 0.133       |
|            | # of landslides | 4         | 4          |             |
| Type 2     | mean            | 1.313     | 1.393      | 1.353       |
|            | std. deviation  | 0.088     | 0.062      | 0.075       |
|            | # of landslides | 21        | 20         |             |
| Type 3     | mean            | 1.398     | 1.426      | 1.412       |
|            | std. deviation  | 0.147     | 0.127      | 0.137       |
| Туре 4     | # of landslides | 5         | 5          |             |
|            | mean            | 1.406     | 1.324      | 1.365       |
|            | std. deviation  | 0.095     | 0.092      | 0.094       |

Table 7.4 Mean and standard deviation of fractal dimension of each topography.





 $D_{Avg-mean}$  of type 4 is similar to  $D_{Avg-mean}$  of the other types.  $D_{W-mean}$  of type 4 landslides is higher than its  $D_{L-mean}$ , on the other hand,  $D_{W-mean}$  of other landslides is smaller than their  $D_{L-mean}$ . This means that the variance of block length is greater than the variance of block width in type 4 landslides.

The mean of length/width of type 4 is much higher than the means of other types. Figure 7.4.f,f' show that in a landslide with high length/width  $D_W$  is higher than  $D_L$ . Figure 7.9 shows positive correlation between mean of length/width and  $(D_W - D_L)$  of each topography type and both values of type 4 is distinguished from those of other types. Then, a type 4 landslide tends to have a great length/width ratio or vice versa so a type 4 landslide indicates great  $D_W$  and small  $D_L$ . In other words, the relationship of topography types and fractal dimensions is one variation of the relationship of length/width and fractal dimension.

## BLOCK SHAPE

Figure 7.13 and Table 7.5 show the mean fractal dimension of width,  $D_{W-mean}$ ; the mean fractal dimension of length,  $D_{L-mean}$ ; the average of both,  $D_{Avg-mean}$ ; and the mean of length/width of each block shape. Discriminant analysis indicates that the fractal dimensions of horse-shoe shaped landslides are discriminated from the fractal dimensions of rectangular

landslides (90% confidence level).

| Block Shape |                 | D (width) | D (length) | D (average) |
|-------------|-----------------|-----------|------------|-------------|
|             | # of landslides | 3         | 3          |             |
| Triangle    | mean            | 1.470     | 1.420      | 1.445       |
|             | std. deviation  | 0.110     | 0.070      | 0.090       |
|             | # of landslides | 20        | 19         |             |
| Horse       | mean            | 1.319     | 1.412      | 1.366       |
|             | std. deviation  | 0.148     | 0.137      | 0.143       |
|             | # of landslides | 14        | 14         |             |
| Rectanglure | mean            | 1.431     | 1.429      | 1.430       |
|             | std. deviation  | 0.098     | 0.112      | 0.105       |
| Bottle      | # of landslides | 3         | 3          |             |
|             | mean            | 1.380     | 1.333      | 1.357       |
|             | std. deviation  | 0.123     | 0.047      | 0.085       |

Table 7.5 Mean and standard deviation of fractal dimensions of each block shapes



Figure 7.14 Mean of fractal dimensions and length/width of each block shape type.

 $D_{Avg-mean}$  of horse-shoe shaped landslides is about 5% smaller than  $D_{Avg-mean}$  of rectangular shaped landslides.  $D_{L-mean}$  of horse-shoe shaped landslides is about 6% higher than its  $D_{W-}$ mean; on the other hand, the  $D_{L-mean}$  of rectangular shaped landslides is similar to its  $D_{W-mean}$ . This means that the variance of blocks in a horse-shoe shaped landslide is greater than that in a rectangular shaped landslide. Also, the variance of block width is greater than the variance of block length in horse-shoe shaped landslides.

The mean of length/width of horse-shoe shaped landslides is about 17% smaller than the means of rectangular shaped landslides. Figure 7.4 shows that in landslides with small length/width,  $D_W$ , is lower than  $D_L$ . The gap between  $D_{W-mean}$  and  $D_{L-mean}$  ( $D_{L-mean} - D_{W-mean}$ ) correlate to the mean of length/width (Figure 7.9). Thus, a horse-shoe shaped landslide tends to has a small length/width or vice versa, so a horse shoe shaped landslide indicates small  $D_W$  and great  $D_L$ . In other words, the correlation between block shape and fractal dimension is one variation of the correlation between length/width and fractal dimension.

# LANDSLIDE ACTIVITY

Figure 7.14 and Table 7.6 show the mean fractal dimension of width,  $D_{W-mean}$ ; the mean fractal dimension of length,  $D_{L-mean}$ ; the average of both,  $D_{Avg-mean}$ ; and the mean of length/width of

each activity level. Although none of them can be discriminated from each other by discriminant analysis, the positive correlation between activity level and fractal dimensions is clear, i.e., the more active the landslide is, the higher the fractal dimension.

Length/width and  $(D_W - D_L)$  don't correlate to each other (Figure 7.9) so the relationship of activity and fractal dimension is not influenced by length/width.

Table 7.6 Mean and standard deviation of fractal dimension of each activity level

| D (width) D (length) D (average |                 |           |            |           |  |  |  |  |
|---------------------------------|-----------------|-----------|------------|-----------|--|--|--|--|
| Activity                        |                 | D (widin) | D (lengin) | Diaronago |  |  |  |  |
|                                 | # of landslides | 6         | 6          |           |  |  |  |  |
| ancient                         | mean            | 1.300     | 1.348      | 1.324     |  |  |  |  |
| artolorit                       | std. sediation  | 0.155     | 0.086      | 0.121     |  |  |  |  |
|                                 | # of landslides | 10        | 10         |           |  |  |  |  |
| stable                          | mean            | 1.361     | 1.395      | 1.378     |  |  |  |  |
|                                 | std. sediation  | 0.129     | 0.059      | 0.094     |  |  |  |  |
|                                 | # of landslides | 13        | 12         |           |  |  |  |  |
| dormant                         | mean            | 1.388     | 1.419      | 1.404     |  |  |  |  |
| UUIIIain                        | std sediation   | 0.130     | 0.156      | 0.143     |  |  |  |  |
| active                          | # of landslides | 11        | 11         |           |  |  |  |  |
|                                 | mean            | 1.414     | 1.460      | 1.437     |  |  |  |  |
|                                 | std sediation   | 0.137     | 0.126      | 0.132     |  |  |  |  |



Figure 7.15 Mean of fractal dimensions and length/width of each activity level

The present block distribution is the result of interaction between block propagation and erosion. When block propagation stops, the number of blocks begins to decrease due to erosion. Erosion is fractal, too. Many small blocks are eroded while far fewer big blocks are eroded. In other words, the absolute value of the slope of log(N(r)) versus log(r) plot, which is equivalent to the fractal dimension, decreases (Figure 7.15). Fractal dimension may be used as an index of activity or time since activity ended.



Figure 7.16 Conceptional illustration of log(N(r)) versus log(r) plot to explain how activity and fractal dimension correlate each other. When block propagation stops, number of blocks begin to decrease due to erosion. Therefore absolute value the slope of the plot (= fractal dimension) decrease.

Korvin (1992) discussed the fact that some coastlines are bifractal: their log(N(r)) versus log(r) plot is approximated as two straight lines, i.e., high D at large r portion and low D at small r portion (Figure 7.17). The low D is the result of the smoothing effect of erosion (Nakano, 1983; quoted in Korvin, 1992) (Figure 7.18). Few landslide block distributions are bifractal, however, they have no relation to activity (or erosion). In the case of landslides, block propagation doesn't stop in all areas at the same time and some parts of the landslide often reactivates. Therefore, block erosion doesn't necessarily occur from small blocks to large ones; instead, erosion progresses first where block propagation stops the earliest, i.e., some bigger blocks are eroded before smaller blocks. In this process, log(N(r)) versus log(r) plot decreases the absolute value of the slope in proportion to the degree of erosion rather than becoming bifractal.



Figure 7.17 a) The Gull Lake, Ontario, Canada. b) The fractal analysis of its shoreline (Kent and Wong, 1982; reprinted from Korvin, 1992)



Figure 7.18 Hypothetical model for the change of slope of log(N(r)) versus log(r) plot with geological time. The crossover point between the two fractal domains has continuously moved from D = 1.37 toward D = 1.21 during geological time (Nakano, 1983; reprinted from Korvin, 1992).

# 7.3 FRACTAL MODELS FOR LANDSLIDE BLOCK DISTRIBUTION

According to Yokoi and others (1995), two landslide block models, Model A (an ideal self-similar model) and Model B (a combination of unique fractal dimensions of second and third level blocks yielding another fractal dimension), help in understanding the fractal character of landslide block distribution. The applicability of both models to the actual landslides was examined.



Figure 7.19 Conceptional illustration of a) Model A and b) Model B

## MODEL A

In Model A, a certain number of second level blocks occur in the first level block and the same number of third level blocks occur in each second level block and so on (Figure 7.19.a). The fractal dimension of Model A is calculated as follows:

The number of first to n<sup>th</sup> level blocks, num, can be calculated as:

$$num = \sum_{m=0}^{m=n} b^{m} = \frac{b^{n+1}}{b-1} + \frac{1}{1-b} = \frac{b^{n+1}-1}{b-1} \cdot \dots \cdot Eq.7.1$$

where b is the number of subsequent blocks in a preceding block. The  $n^{th}$  order width (or length),  $W_n$  is calculated as:

where  $W_{max}$  is the width (or length) of the first level block and s is the ratio of the width (or length) of the subsequent level blocks to the width (or length) of the preceding level blocks. The fractal dimension of Model A,  $D_{MA}$ , can be calculated as:

$$D_{MA} = \frac{\log(num)}{\log(W_{max}) - \log(W_n)} \dots Eq.7.3$$

From Equations 7.1 and 7.2:

$$\log(num) = \log(\frac{b^{n+1}-1}{b-1}) = \log(b^{n+1}-1) - \log(b-1) \dots Eq.7.4$$

 $\log(W_n) = \log(W_{\max}) + n \log(s) = \log(W_{\max}) - n \log(1/s) \dots Eq.7.5$ 

Put Equations 7.4 and 7.5 into equation 7.3:

$$D_{MA} = \frac{\log(b^{n+1}-1) - \log(b-1)}{n\log(1/s)} \dots Eq.7.6$$

 $D_{MA}$  is asymptotic to  $D_S$ , where  $D_S$  is the similarity dimension, which is calculated as

$$D_s = \frac{\log(b)}{\log(1/s)} \dots Eq.7.7$$

 $D_{S}$  is calculated using b and s  $(s_{w}, s_{l})$ , where b is the number

of subsequent level blocks inside the preceding level block; and  $s_w$   $(s_l)$  is the mean of width (or length) of the subsequent level blocks divided by the width (or length) of the preceding level block.

Tables 7.7 and 7.8 show b,  $1/s_w$ ,  $1/s_l$ , and self similar fractal dimension,  $D_s$ . The averages of b,  $1/s_w$ ,  $1/s_l$  of second level blocks in a first level block are 18.0, 6.23, 4.94 respectively and those of third level blocks in a second level block are 5.63, 9.07, 8.81 respectively. In other words, fewer and bigger blocks (relative to the preceding block) occur in first-level blocks than in second level blocks.  $D_{SW(1-2)}$  ( $D_{SL(1-2)}$ ) is an abbreviation of the self-similar fractal dimension calculated using data from first and second level blocks and  $D_{SW(2-3)}$  ( $D_{SL(2-3)}$ ) is an abbreviation of the self-similar fractal dimension calculated using data from second and third level blocks.

Figure 7.20 shows the relationship between self-similar fractal dimensions  $(D_{SW(1-2)}, D_{SL(1-2)}, D_{SW(1-3)}, D_{SL(1-3)})$  and actual fractal dimensions  $(D_W, D_L) \cdot D_{SW(1-3)}$  and  $D_{SL(1-3)}$  are averages of  $D_{SW(1-2)}$  and  $D_{SW(2-3)}$ ; and  $D_{SL(1-2)}$  and  $D_{SL(2-3)}$  respectively. Although variances are high, self-similar fractal dimensions are in proportion to actual fractal dimensions.  $D_{SW(1-3)}$  and  $D_{SL(1-3)}$  correlate to actual fractal dimension better than  $D_{SW(1-2)}$  and  $D_{SL(1-2)}$ .

# Table 7.7 Model A calculation

|    |                | 1st - 2nd |        |       |       |          | 2nd - 3rd |       |       |        |       |
|----|----------------|-----------|--------|-------|-------|----------|-----------|-------|-------|--------|-------|
|    |                | # of      | 1/s Ds |       |       | # of 1/s |           |       | Ds    |        |       |
|    |                | blocks    | wid    | len   | wid   | len      | blocks    | wid   | len   | wid    | len   |
| 1  | Midway Bridge  | 18        | 8.66   | 6.86  | 1.34  | 1.50     | 4.67      | 5.80  | 9.37  | 0.88   | 0.69  |
| 2  | Boca Ridge     | 35        | 6.61   | 6.29  | 1.88  | 1.93     | 4.37      | 16.79 | 24.61 | 0.52   | 0.46  |
| 3  | Palos Verdes   | 22        | 8.88   | 3.23  | 1.42  | 2.64     | 4.91      | 6.44  | 7.73  | 0.85   | 0.78  |
| 4  | Bick Rock Mesa | 43        | 12.13  | 5.32  | 1.51  | 2.25     | 6.60      | 10.31 | 11.69 | 0.81   | 0.77  |
| 5  | Thristle       | 12        | 4.77   | 4.45  | 1.59  | 1.66     | 5.92      | 10.58 | 9.08  | 0.75   | 0.81  |
| 6  | Lower Gross    | 11        | 3.77   | 3.89  | 1.81  | 1.76     | 6.45      | 8.54  | 13.23 | 0.87   | 0.72  |
| 7  | Upper Gross    | 18        | 6.02   | 5.86  | 1.61  | 1.63     | 3.39      | 8.35  | 12.46 | 0.57   | 0.48  |
| 8  | Meadow Mt.     | 12        | 4.54   | 5.16  | 1.64  | 1.52     | 5.50      | 7.50  | 6.91  | 0.85   | 0.88  |
| 9  | Mayunmarca     | 13        | 4.91   | 3.86  | 1.61  | 1.90     | 6.08      | 8.64  | 6.82  | 0.84   | 0.94  |
| 10 | La Frasse      | 14        | 3.50   | 5.97  | 2.11  | 1.48     | 3.71      | 5.67  | 3.91  | 0.76   | 0.96  |
| 11 | Arvey          | 18        | 6.91   | 4.25  | 1.50  | 2.00     | 3.00      | 9.97  | 8.62  | 0.48   | 0.51  |
| 12 | Kiritani       | 23        | 6.06   | 3.03  | 1.74  | 2.82     | 2.74      | 13.66 | 7.79  | 0.39   | 0.49  |
| 13 | Katsurabara    | 6         | 3.11   | 3.13  | 1.58  | 1.57     | 20.67     | 10.53 | 12.18 | 1.29   | 1.21  |
| 14 | Hitohane       | 57        | 11.46  | 9.96  | 1.66  | 1.76     | 5.39      | 12.82 | 8.51  | 0.66   | 0.79  |
| 15 | Takisaka       | 27        | 6.02   | 7.52  | 1.84  | 1.63     | 5.26      | 13.17 | 16.52 | 0.64   | 0.59  |
| 16 | Sakae          | 9         | 4.19   | 3.79  | 1.53  | 1.65     | 4.33      | 11.26 | 3.06  | 0.61   | 1.31  |
| 17 | Mushigame      | 33        | 9.28   | 7.53  | 1.57  | 1.73     | 3.61      | 12.94 | 5.06  | 0.50   | 0.79  |
| 18 | Higashinomyo   | 11        | 8.04   | 2.99  | 1.15  | 2.19     | 6.18      | 11.11 | 9.83  | 0.76   | 0.80  |
| 19 | Karuizawa      | 17        | 4.89   | 5.51  | 1.79  | 1.66     | 6.59      | 5.70  | 8.01  | 1.08   | 0.91  |
| 20 | Happoudai      | 15        | 4.65   | 3.08  | 1.76  | 2.41     | 3.67      | 10.10 | 6.99  | 0.56   | 0.67  |
| 21 | Raiden         | 25        | 4.56   | 8.31  | 2.12  | 1.52     | 6.00      | 11.37 | 18.93 | 0.74   | 0.61  |
| 22 | Nishinakanoho  | 11        | 2.86   | 5.39  | 2.28  | 1.42     | 4.55      | 5.78  | 4.97  | 0.86   | 0.94  |
| 23 | Mizunashi      | 32        | 9.44   | 7.89  | 1.54  | 1.68     | 7.19      | 12.12 | 9.37  | 0.79   | 0.88  |
| 24 | Kitaurata      | 14        | 4.62   | 4.86  | 1.72  | 1.67     | 5.29      | 11.19 | 5.30  | 0.69   | 1.00  |
| 25 | Uenoyama       | 7         | 5.29   | 2.87  | 1.17  | 1.85     | 6.29      | 7.72  | 7.78  | 0.90   | 0.90  |
| 26 | Nakatateyama   | 15        | 8.59   | 3.43  | 1.26  | 2.20     | 5.00      | 5.32  | 6.53  | 0.96   | 0.86  |
| 27 | Yumoto         | 8         | 3.92   | 3.60  | 1.52  | 1.62     | 4.25      | 3.70  | 5.23  | 1.10   | 0.87  |
| 28 | Yuyama         | 13        | 8.61   | 3.79  | 1.19  | 1.92     | 5.00      | 4.80  | 6.87  | 1.03   | 0.84  |
| 29 | Kamatsuka      | 17        | 5.73   | 3.92  | 1.62  | 2.08     | 7.06      | 8.60  | 5.69  | 0.91   | 0.94  |
| 30 | Maruyama       | 17        | 8.14   | 5.80  | 1.35  | 1.61     | 8.47      | 12.39 | 14.13 | 0.85   | 0.01  |
| 31 | Maseguchi      | 20        | 7.31   | 5.52  | 1.51  | 1.75     | 4.60      | 0.77  | 12.22 | 0.67   | 0.63  |
| 32 | Maruta         | 20        | 7.41   | 3.58  | 1.50  | 2.35     | 5.15      | 14.50 | 7.44  | 0.00   | 0.00  |
| 33 | Kodomari       | 18        | 7.02   | 5.48  | 1.48  | 1.70     | 3.33      | 14.50 | 6.90  | 0.45   | 1.09  |
| 34 | Ohbora         | 9         | 3.99   | 5.35  | 1.59  | 1.31     | 8.00      | 0.00  | 6.01  | 0.8/   | 0.86  |
| 35 | Urushinose     | 8         | 6.60   | 3.09  | 1.10  | 1.85     | 5.25      | 7.49  | 7.95  | 0.04   | 0.00  |
| 36 | Nishinotani    | 27        | 6.04   | 5.95  | 1.83  | 1.85     | 5.07      | 7.40  | 1.05  | 0.01   | 1 10  |
| 37 | Youne          | 8         | 3.79   | 2.62  | 1.56  | 2.16     | 4.88      | 5.60  | 8.25  | 1.00   | 1.08  |
| 38 | Nuta           | = 11      | 5.48   | 4.73  | 1.41  | 1.54     | 9.73      | 0.17  | 0.20  | 0.53   | 0.50  |
| 39 | Nyuuya         | 9         | 5.24   | 4.78  | 1.33  | 1.40     | 2.11      | 4.05  | 4.43  | 0.00   | 0.00  |
| 40 | Hikinota       |           |        |       |       | 1.00     | ECE       | 0.07  | 8.91  | 0.79   | 0.82  |
|    | Average        | 18.0      | 6.23   | 4.94  | 1.58  | 1.83     | 0.00      | 3.07  | 4 274 | 0.205  | 0.202 |
|    | std Dev        | 10.49     | 2.214  | 1.696 | 0.257 | 0.338    | 2.889     | 0.149 | 4.214 | 10.200 | 1.202 |

# Table 7.8 Fractal dimension of Model - A

| No. | Landslide      | Real D |        | Dma(1st-2nd) |        | Dma(2nd-3rd) |        | Dma(1st-2nd,2nd-3rd) |        |  |
|-----|----------------|--------|--------|--------------|--------|--------------|--------|----------------------|--------|--|
| -   |                | Whole  | Length | ₩idth        | length | width        | length | width                | length |  |
| 1   | Midway Bridge  | 1.53   | 1.42   | 1.34         | 1.50   | 0.88         | 0.69   | 1.11                 | 1.09   |  |
| 2   | Boca Ridge     | 1.33   | 1.29   | 1.88         | 1.93   | 0.52         | 0.46   | 1.20                 | 1.20   |  |
| 3   | Palos Verdes   | 1.48   | 1.57   | 1.42         | 2.64   | 0.85         | 0.78   | 1.14                 | 1.71   |  |
| 4   | Bick Rock Mesa | 1.48   | 1.53   | 1.51         | 2.25   | 0.81         | 0.77   | 1.16                 | 1.51   |  |
| 5   | Thristle       | 1.32   | 1.29   | 1.59         | 1.66   | 0.75         | 0.81   | 1.17                 | 1.24   |  |
| 6   | Lower Gross    | 1.28   | 1.17   | 1.81         | 1.76   | 0.87         | 0.72   | 1.34                 | 1.24   |  |
| 7   | Upper Gross    | 1.30   | 1.20   | 1.61         | 1.63   | 0.57         | 0.48   | 1.09                 | 1.06   |  |
| 8   | Meadow Mt.     | 1.43   | 1.24   | 1.64         | 1.52   | 0.85         | 0.88   | 1.24                 | 1.20   |  |
| 9   | Mayunmarca     | 1.52   | 1.40   | 1.61         | 1.90   | 0.84         | 0.94   | 1.22                 | 1.42   |  |
| 10  | La Frasse      | 1.59   | 1.36   | 2.11         | 1.48   | 0.76         | 0.96   | 1.43                 | 1.22   |  |
| 11  | Arvey          | 1.24   | 1.42   | 1.50         | 2.00   | 0.48         | 0.51   | 0.99                 | 1.25   |  |
| 12  | Kiritani       | 1.24   | 1.34   | 1.74         | 2.82   | 0.39         | 0.49   | 1.06                 | 1.66   |  |
| 13  | Katsurabara    | 1.38   | 1.44   | 1.58         | 1.57   | 1.29         | 1.21   | 1.43                 | 1.39   |  |
| 14  | Hitohane       | 1.64   | 1.66   | 1.66         | 1.76   | 0.66         | 0.79   | 1.16                 | 1.27   |  |
| 15  | Takisaka       | 1.36   | 1.30   | 1.84         | 1.63   | 0.64         | 0.59   | 1.24                 | 1.11   |  |
| 16  | Sakae          | 1.12   | 1.42   | 1.53         | 1.65   | 0.61         | 1.31   | 1.07                 | 1.48   |  |
| 17  | Mushigame      | 1.31   | 1.56   | 1.57         | 1.73   | 0.50         | 0.79   | 1.04                 | 1.26   |  |
| 18  | Higashinomyo   | 1.22   | 1.29   | 1.15         | 2.19   | 0.76         | 0.80   | 0.95                 | 1.49   |  |
| 19  | Karuizawa      | 1.61   | 1.43   | 1.79         | 1.66   | 1.08         | 0.91   | 1.43                 | 1.28   |  |
| 20  | Happoudai      | 1.35   | 1.46   | 1.76         | 2.41   | 0.56         | 0.67   | 1.16                 | 1.54   |  |
| 21  | Raiden         | 1.53   | 1.48   | 2.12         | 1.52   | 0.74         | 0.61   | 1.43                 | 1.06   |  |
| 22  | Nishinakanoho  | 1.51   | 1.35   | 2.28         | 1.42   | 0.86         | 0.94   | 1.57                 | 1.18   |  |
| 23  | Mizunashi      | 1.60   | 1.64   | 1.54         | 1.68   | 0.79         | 0.88   | 1.17                 | 1.28   |  |
| 24  | Kitaurata      | 1.19   | 1.43   | 1.72         | 1.67   | 0.69         | 1.00   | 1.21                 | 1.33   |  |
| 25  | Uenoyama       | 1.25   | 1.32   | 1.17         | 1.85   | 0.90         | 0.90   | 1.03                 | 1.37   |  |
| 26  | Nakatateyama   | 1.44   | 1.58   | 1.26         | 2.20   | 0.96         | 0.86   | 1.11                 | 1.53   |  |
| 27  | Yumoto         | 1.40   | 1.30   | 1.52         | 1.62   | 1.10         | 0.87   | 1.31                 | 1.25   |  |
| 28  | Yuyama         | 1.40   | 1.47   | 1.19         | 1.92   | 1.03         | 0.84   | 1.11                 | 1.38   |  |
| 29  | Kamatsuka      | 1.46   | 1.55   | 1.62         | 2.08   | 0.91         | 1.12   | 1.27                 | 1.60   |  |
| 30  | Maruyama       | 1.34   | 1.33   | 1.35         | 1.61   | 0.85         | 0.81   | 1.10                 | 1.21   |  |
| 31  | Maseguchi      | 1.49   | 1.54   | 1.51         | 1.75   | 0.87         | 0.77   | 1.19                 | 1.26   |  |
| 32  | Maruta         | 1.37   | 1.36   | 1.50         | 2.35   | 0.68         | 0.63   | 1.09                 | 1.49   |  |
| 33  | Kodomari       | 1.21   | 1.38   | 1.48         | 1.70   | 0.45         | 0.60   | 0.97                 | 1.15   |  |
| 34  | Ohbora         | 1.18   | 1.33   | 1.59         | 1.31   | 0.97         | 1.08   | 1.28                 | 1.20   |  |
| 35  | Urushinose     | 1.11   | 1.31   | 1.10         | 1.85   | 0.84         | 0.86   | 0.97                 | 1.35   |  |
| 36  | Nishinotani    | 1.54   | 1.52   | 1.83         | 1.85   | 0.81         | 0.79   | 1.32                 | 1.32   |  |
| 37  | Youne          | 1.35   | 1.62   | 1.56         | 2.16   | 0.90         | 1.10   | 1.23                 | 1.63   |  |
| 38  | Nuta           | 1.46   | 1.50   | 1.41         | 1.54   | 1.25         | 1.08   | 1.33                 | 1.31   |  |
| 39  | Nyuuya         | 1.22   | 1.30   | 1.33         | 1.40   | 0.53         | 0.50   | 0.93                 | 0.95   |  |
| 40  | Hikinota       | 1.19   |        |              |        |              |        |                      |        |  |
|     | mean           | 1.38   | 1.41   | 1.58         | 1.83   | 0.79         | 0.82   | 1.19                 | 1.32   |  |
|     | std. deviation | 0.139  | 0.122  | 0.257        | 0.338  | 0.205        | 0.202  | 0.150                | 0.174  |  |

I redefined fractal dimensions of Model A as  $D_{MAW} = D_{SW(1-3)}$  and  $D_{MAL} = D_{SL(1-3)}$ . Coefficient correlations ,r, of  $D_W$  versus  $D_{MAW}$  and  $D_L$  versus  $D_{MAL}$  are r = 0.568 and r = 0.421 respectively.



Figure 7.20 Relationship of fractal dimension of actual landslide and Model A a)  $D_W$  versus  $D_{MAW(1-2)}$ ; b)  $D_L$  versus  $D_{MAL(1-2)}$ ; c)  $D_W$  versus  $D_{MAW(1-3)}$ ; d)  $D_L$  versus  $D_{MAL(1-3)}$ 

### MODEL B

In Model B, each of the second level blocks and the third level blocks has a unique fractal dimension and the combination of these blocks with the first level block yields another fractal dimension (Figure 7.19.b). The method of calculation of Model B fractal dimension,  $D_B$ , is as follows (Yokoi and others, 1995):

When there are *n* blocks, the theoretical fractal dimension can be calculated as:

$$D_n = \frac{\log(n)}{\log(W_1) - \log(W_n)} \dots Eq.7.8$$

where  $W_1$  is the greatest width (or length) and  $W_n$  is nth block's width (or length). Equation 7.8 can be rewritten to become:

 $W_n = 10^{[\log(W_1) - (\log(n)/D_n)]} \dots Eq.7.9$ 

The theoretical width (length) of first, second, and third level blocks were calculated. These blocks with the same number of real blocks were combined, and plotted the log(N(r))versus log(r) curve. Then the fractal dimensions were calculated as the negative of the slope of the least-squares linear regression.

Appendix D shows the log(N(r)) - log(r) plots of Model B.

Table 7.9 shows actual and Model B fractal dimensions. Figure 7.21 shows the relationship between  $D_{MB}$  and the actual dimension ( $D_W$  and  $D_L$ ). They correlate fairly well (coefficient correlation r are r = 0.672 (between  $D_{MB}$  and  $D_W$ ) and r = 0.597(between  $D_{MB}$  and  $D_L$ ).

Table 7.9 Fractal dimension of Model B and actual D

| No |                | D of Mode | al B   | Actual D |        |  |
|----|----------------|-----------|--------|----------|--------|--|
|    |                | Width     | Length | Width    | Length |  |
| 1  | Midway Bridge  | 1.58      | 1.30   | 1.53     | 1.42   |  |
| 2  | Boca Ridge     | 1.30      | 1.21   | 1.33     | 1.29   |  |
| 3  | Palos Verdes   | 1.20      | -1.14  | 1.48     | 1.57   |  |
| 4  | Big Rock Mesa  | 1.91      | 1.91   | 1.48     | 1.53   |  |
| 5  | Thristle       | 122       | 1.25   | 1.32     | 1.29   |  |
| 6  | Lower Gross    | 1.15      | 1.09   | 1.28     | 1.17   |  |
| 7  | Upper Gros     | 1.44      | 1.24   | 1.30     | 1.20   |  |
| 8  | Meadow         | 1.39      | 1.30   | 1.43     | 1.24   |  |
| 9  | Mayunmarca     | 1.18      | 1.17   | 1.52     | 1.40   |  |
| 10 | La Frassa      | 1.57      | 1.56   | 1.59     | 1.36   |  |
| 11 | Arvey          | 1.13      | 1.38   | 1.24     | 1.42   |  |
| 12 | Kintani        | 1.18      | 1.59   | 1.24     | 1.34   |  |
| 13 | Katsurabara    | 1.27      | 1.29   | 1,38     | 1.44   |  |
| 14 | Hitohane       | 1.84      | 1.59   | 1.64     | 1.66   |  |
| 15 | Takisaka       | 1.40      | 1.20   | 1.36     | 1.30   |  |
| 16 | Sakae          | 1.02      | 1.06   | 1.12     | 1.42   |  |
| 17 | Mushigame      | 1.25      | 1.68   | 1.31     | 1.56   |  |
| 18 | Higashinomyo   | 1.15      | 1.24   | 1.22     | 1.29   |  |
| 19 | Karuizawa      | 1.68      | 1.60   | 1.61     | 1.43   |  |
| 20 | Happoudai      | 1.04      | 1.54   | 1.35     | 1.46   |  |
| 21 | Baiden         | 1.90      | 1.68   | 1.53     | 1.48   |  |
| 22 | Nishinakanoho  | 1.47      | 1.50   | 1.51     | 1.35   |  |
| 23 | Mizunashi      | 1.81      | 1.76   | 1.60     | 1.64   |  |
| 24 | Kitaurata      | 1.49      | 1.75   | 1.19     | 1.43   |  |
| 25 | Uencyama       | 1.09      | 1.44   | 1.25     | 1.32   |  |
| 26 | Nakatateyama   | 1.58      | 1.54   | 1.44     | 1.58   |  |
| 27 | Yumoto         | 1.47      | 1.33   | 1.40     | 1.30   |  |
| 28 | Yuyama         | 1.44      | 1.65   | 1.40     | 1.47   |  |
| 29 | Kamatsuka      | 1.39      | 1.53   | 1.46     | 1.55   |  |
| 30 | Maruyama       | 1.50      | 1.39   | 1.34     | 1.33   |  |
| 31 | Maseguchi      | 1.82      | 1.63   | 1.49     | 1.54   |  |
| 32 | Maruta         | 1.38      | 1.28   | 1.37     | 1.36   |  |
| 33 | Kodomari       | 1.12      | 1.35   | 1.21     | 1.38   |  |
| 34 | Ohbora         | 1.29      | 1.35   | 1.18     | 1.33   |  |
| 35 | Urushinose     | 1.49      | 1.50   | 1.11     | 1.31   |  |
| 36 | Nishinotani    | 1.52      | 1.48   | 1.54     | 1.52   |  |
| 37 | Youne          | 1.35      | 1.54   | 1.35     | 1.62   |  |
| 38 | Nuta           | 1.72      | 1.73   | 1.46     | 1.50   |  |
| 39 | Nyuya          | 1.17      | 1.15   | 1.22     | 1.30   |  |
| 40 | Hikinota       |           |        | 1.19     |        |  |
|    | mean           | 1.41      | 1.43   | 1.37     | 1.41   |  |
|    | -tel douistion | 0.24      | 0.21   | 0.14     | 0.12   |  |



Figure 7.21 Relationship of fractal dimension of actual landslide and Model B a)  $D_W$  versus  $D_{MB}$ ; b)  $D_L$  versus  $D_{MB}$ 

## 7.4 ANALYSIS OF BLOCK DEVELOPMENT PROCESS

Landslide blocks were classified into first level, second level, and third level by the criteria of multiple level characteristics (Tahahama and Ito, 1989). The concept of the multiple level characteristic combines both size and age, so the level of the blocks is not classified objectively or mechanically but rather subjectively and experimentally. However, not only whole blocks but also second level and third level blocks indicate fractal character, which is the universal character. This suggests that the multiple level character is an essential characteristic of landslides and an effective criterion of block classification (Yokoi and others, 1995). The landslide block development process was analyzed using the multiple level characteristics and the previous analysis results.

The previous discussions revealed that the fractal dimension of landslide block distribution correlates to length/width, topography, block shape, dip, lineament, activity, and possibly geology (Mesozoic sedimentary rock). Among them, correlations between fractal dimension and block shape; topography; and geology, are explained as variations of correlation between fractal dimension and length/width. Dip and lineament are characterized as discontinuities. So the fractal dimension of landslide block distribution is essentially influenced by landslide geometry (length/width), discontinuities, and activity.

The fact that the fractal dimensions of both Model A and Model B correlate closely with the actual fractal dimensions suggests that the actual landslide block distribution has characteristics of both Model A and Model B. In other words, the landslide blocks develop self-similarly, while at the same time, second and third level blocks develop independently and combined blocks come to have a self-similar character (Yokoi and others, 1995).

The present block distribution is the result of interaction between block propagation and erosion. As discussed previously, activity controls the time of erosion, and geometry and discontinuities control block propagation process. The self-similar (fractal) characteristics of landslide blocks can be explained by the influence of block geometry on block propagation. Under the influence of block geometry, self-similar subsequent blocks develop inside the preceding block. This process is idealized in Model A.

From the analysis of fractal dimension of lineament, it is revealed that lineaments influence second level block distribution but not third level. The fractal dimension of third level blocks is similar to the fractal dimension of

outcrop size fracture and rock fragments. In the process of Model A analysis, it is shown that first and second level blocks have higher b and lower 1/s than second and third level blocks. It is considered that different levels of discontinuities influence second level and third level block propagation separately. However, there aren't enough evidence about the influence of discontinuities on third level blocks. The difference of fractal dimension of second and third blocks might be due to differences of their mechanisms. Third level blocks fail as rotational failures while second level blocks fail as complex type (Varnes, 1978) i.e., rotational at head and translational at other part. Translational slide is heavily controlled by discontinuities. This process is idealized as Model B, which shows that second and third level blocks develop independently and combined blocks come to have a fractal character.

Landslide block distribution keeps its fractal character during the process of erosion, because erosion is a fractal process too, i.e., many small blocks are eroded while far fewer big blocks are eroded. As erosion progresses the absolute value of the slope of log(N(r)) versus log(r) plot, which is equivalent to fractal dimension, decreases (Figure 7.20). The fractal dimension can be an index of activity or time passed since block propagation stopped. The block development process of landslides is summarized as follows (Figure 7.22):

Stage 1: Initial (first level) slide occurred as a huge block.

Stage 2: Second-level blocks occur inside the initial blocks. They are controlled by the geometry of the initial block and by lineaments (discontinuities). Second-level block distribution has a unique fractal dimension, which relates to the fractal dimension of the lineaments.

Stage 3: Third-level blocks occur mainly inside the secondlevel blocks. They are controlled by the geometry of the second-level blocks and by cohesion and friction of soil and/or outcrop size fractures. Third-level block distribution has a unique fractal dimension which is similar to the fractal dimension of fractures and rock fragment. Whole block distribution has another unique fractal dimension.

Stage 4: Erosion starts where activity finished. Block distribution keep its fractal character during erosion; however, the fractal dimension decreases in proportion to the degree of erosion.





### CHAPTER EIGHT: CONCLUSION AND FURTHER STUDY

The fractal characteristics of landslide block distribution were analyzed and the block development process was discussed using its fractal character. The summary of my research is as follows:

Landslide block distribution in huge landslides has a fractal character. Their fractal dimension with respect to width averages 1.37 and with respect to length, 1.41.

Huge landslides can be classified into first, second, and third level blocks based mainly on the size and age of the blocks. Second and third level landslide blocks also have unique fractal dimensions.

Fractal dimension is reversely proportional to the logarithm of the variance of blocks' size. So the blocks with greater variance have smaller fractal dimension and the blocks with smaller variance have greater fractal dimension.

Fractal dimension correlates to the geometry of landslide, discontinuities of base rock, and activity of the landslide. Fractal dimension is independent from size of the landslide, angle of the slide surface, and geology of the base rock.

The fractal character of landslide block distribution can be explained by: 1) self-similar geometry (Model A); 2) unique fractal dimensions made by combining second and third level blocks (Model B); and 3) the fractal erosion process.

The self-similar (fractal) character of landslide blocks can be explained by the influence of block geometry on block propagation (a preceding block to subsequent blocks).

The unique fractal dimension of second and third level blocks is explained by the fractal dimension difference between lineament and fracture, or different mechanisms (second level blocks: rotational + transnational; third level blocks: rotational).

The activity of landslides correlated to the fractal dimension. Activity levels were defined with time passed since block propagation ended. As erosion progresses, the fractal dimension of the landslide block distribution decreases. Data were collected on 40 landslides, however, field surveys were performed on only nine landslides of the 40. The quantity and quality of the data varies greatly. Analysis using data of uniformally high reliability would improve understanding of the fractal character of landslides.

The development process was analyzed of landslides which occurred as huge landslides in ancient times and includes smaller blocks inside the huge landslides. However, some other landslide development processes are known e.g., the retrogressive type, so analysis of the development process of other types will be important.

The block propagation process was analyzed using the two kinds of models. However, the erosion process, which also influences fractal dimensions, was analyzed only in terms of time. Degree of erosion depends on its energy, the resistance (strength) of the soil, and length of time. A proper model for erosion, taking into consideration its energy and the resistance of the soil, would help in better understanding the fractal character of landslide block distribution.

Many tragic landslide-related incidents have occurred all over the world. Many of them are caused by artificial work, e.g., construction or mining. They could be avoided if the potential for landslides had been recognized and mitigated properly.

Recognizing landslides, especially huge dormant or stable ones, is an important and basic task for the geotechnical engineer; it is also a difficult task. Even an experienced engineer sometimes misses recognizing landslides. Knowledge of the landslide block distribution pattern, which is fractal geometry, would help in recognizing potential landslides.

## REFERENCES

American Geological Institute, 1976, Dictionary of Geological Terms, Anchor Press, Garden City, New York, p.472.

AVILES C. A.; SCHOLZ, C. H.; AND BOATWRIGHT, J., 1987, Fractal analysis applied to characteristic segments of the San Andreas Fault: *Journal of Geophysical Research*, Vol. 92, No. B1, pp. 331-344.

BARNSLEY, M. F., 1988, Fractals Everywhere, Academic Press, Boston, p. 394.

BEROCAL, J.; ESPINASA, A. F.; AND GALDOS, J, 1978, Seismological and geological aspects of the Mantaro landslide in Peru: Nature, Vol. 275, pp. 533-536.

CARR, J. R., 1990, CORSPOND: a portable FORTRAN-77 program for correspondence analysis: *Computers and Geosciences*, Vol. 16, No. 3, pp. 289-307.

CARR, J. R., 1994, Numerical Analysis for the Geological Sciences, Prentice hall, Englewood Cliffs, NJ, p. 592.

CARR, J. R. AND BENZER, W. B., 1991, On the practice of estimating fractal dimension: *Mathematical Geology*, Vol. 23, No. 7, pp. 945-958.

CARR, J. R. AND WARRINER, J. B., 1989, Relationship between the fractal dimension and joint roughness coefficient: Bulletin of the Association of Engineering Geologists, Vol. 26, No. 2, pp. 253-263.

DARIN, D., 1993, The Meadow Mountain Landslide Complex, Eagle County, Colorado, unpubl. MS thesis, Machay School of Mines, University of Nevada, Reno, p. 142. John Wiley and sons, New York, p. 646.

DAVIS. D. C., 1986, Statistics and Analysis in Geology, John Wiley and sons, New York, p. 646.

DAVIS. W. M., 1923, The cycle of erosion and the summit level of Alps, Jour. Geol., Vol. 31, pp. 1-41.

DAVORE. J. L., 1987, Probability and Statistics for Engineering and the Sciences, Cole Publishing Company, Monterey, California, p. 672. DIETRICH F. H. AND KEARNS, T. J., 1989, Basic Statistics, Dellen Publishing Co., San Francisco, Collier Macmillan Publishers, London, p. 745.

FEDER, J., 1988, Fractals, Plenum Press, New York, p. 283.

GABUS, J. H.; BONNARD, CH.; NOVERRAZ, F.; AND PARRIAUX, A., 1988, Arveyes, un glissement, une tentative de correction:In

Arveyes, un glissement, une tentative de correction:in Bonnard, C. (editor), Proceedings of the Fifth International Symposium on Landslides, Lausanne, Switzerland, A.A. Balkema, Rotterdam. pp. 911-914.

GATES, W. C. B., 1994, Regional Slope Stability of the Truckee River Canyon (Drainage Basin) from Tahoe City, California to Reno Nevada, unpubl. PhD thesis, Machay School of Mines, University of Nevada, Reno, p. 380.

GATES, W. C. B. AND WATTERS, R. J., 1992, Geology of Reno and Truckee Meadows, Nevada, United States of America: Bulletin of the Association of Engineering Geologists, Vol. XXIX, No. 3, pp. 229-298.

HAIR, J. F.; ANDERSON, R. E.; TATHAM, R. L.; AND BLACK, W. C., 1984, Multivariate Data Analysis with Readings, Macmillan, New York. p. 592.

HANSEN, M., 1984, Strategies for classification of landslides: In Brunsden, D. (editer), *Slope Instability*, John Wiley and Sons Ltd., New York. pp. 1-25.

HIGAKI, D.; UENO, T.; AND YOSHIMATSU, H., 1994, Progress level and fractal evolution of landslide slopes: Proceedings of the Seventh International Symposium on Landslides, Lausanne, Switzerland, A.A. Balkema, Rotterdam. pp. 83-88.

HUCHINSON, J. N., 1988, General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology: In Bonnard, C. (editor), Proceedings of the Fifth International Symposium on Landslides, Lausanne, Switzerland, A.A. Balkema, Rotterdam. pp. 3-35.

IKEDA, 1984, A huge landslide reactivated due to snow melting (in Japanese): Landslide, Japan Landslide Society Kansai Branch, No.2, pp. 1-10.

KALISER, B. N. AND FLEMING, R. W., 1986, The 1983 landslide dam st Thistle, Utah. In Schuster, R. L. (editor):Landslide Dams: processes, Risk, and Mitigation, American Society of Civil Engineers, New York. pp. 59-83. KOJAN, E. AND HUTCHINSON, J. N., 1978, Mayunmarca rockslide and debris flow, Peru. In Voight, B. (editor): *Rockslides and Avalanches*, Elsevier Scientific Pub., Amsterdam. pp. 315-361.

KONUKI, Y, 1973, Introduction to Applied Geology, Morikita Publisher Co., p. 308.

KORVIN, G., 1992, Fractal Models in the Earth Sciences, Elsevier, Amsterdam. p. 396.

LAUWERIER, H. A., 1991, Fractals: Endlessly Repeated Geometrical Figures, Princeton University Press, Princeton, New Jersey. p. 209.

LEE, K. AND DUNCAN, J. M., 1975, Landslide on April 25, 1974 on the Mantaro River, Peru, National Academy of Sciences, Washington D. C., p. 71.

MANDELBROT, B.B., 1967, How long is the coast of Britain? Statistical self-similarity and fractional dimension: *Science*, Vol. 156, pp. 636-638.

MANDELBROT, B.B., 1977, Fractals; Form, Chance and Dimension, W. H. Freeman, San Francisco, p. 365.

MANDELBROT, B.B., 1982, The Fractal Geometry of Nature, W. H. Freeman, New York, p. 468.

MANDELBROT, B.B., 1990, Fractal geometry: What is it, and what does it do?: In Fleischmann M., Tildesley, D. J., and Ball, R. C. (editors), *Fractals in Natural Sciences*, Princeton University Press, Princeton, NJ, pp. 3-16.

McGUIRE, M., 1991, An Eye for Fractals, Addison-Wesley Publishing Company, Redwood City, CA, p. 165.

MERCERON, T.; AND VELDE, B., 1991, Application of Cantor's Method for fractal analysis of fractures in the Toyoha Mine, Hokkaido, Japan: Journal of Geophysical Research, Vol. 96, No. 10, pp. 16,641-16,650.

MINISTRY OF AGRICULTURE, HOKUROKU BRANCH, 1993, , Report of Special Landslide Mitigation in Hokuriku Region, unpubl. circular, p.

MITCHELL, B. M., 1986, An Engineering Analysis of the May 1983 Rock Slope Failure on Slide Mountain, Nevada, unpbl. Master thesis, Machay School of Mines, University of Nevada, Reno, p. 176. NOVERRAZ, F. AND BONNARD, Ch, 1988, Technical note on the visit of La Frasse Landslide: In Bonnard, C. (editor), Proceedings of the Fifth International Symposium on Landslides, Lausanne, Switzerland, A.A. Balkema, Rotterdam. pp. 1549-1554.

OKUSA, S.; TAKAHAMA, N.; AND FUJITA, Y., 1991, Landslide history in a Tertiary sedimentary basin in Quaternary in Japan: *Quaternary Engineering Geology*, Geological Society Engineering Geology Special Publication No.7, pp. 671-677.

OLESON, S. G., 1989, A Multivariate Statistical Analysis of Selected Western Nevada Reservoirs: Implications for Ecology of Stillwater Lakes, Nevada, unpbl. Master thesis, Machay School of Mines, University of Nevada, Reno, p. 157.

OLESON, S.G. AND CARR, J. R., 1989, A multivariate analysis of Stillwater Lakes, Nevada: Proceedings of National Water Conference, IR and Wr Divs, ASCE, Newark, Delaware, July, 1989, pp. 196-203.

OLESON, S.G. AND CARR, J. R., 1990, Correspondence analysis of water quality data: implications for fauna deaths at Stillwater Lakes, *Mathematical Geology*, Vol. 22, No. 6, pp. 665-698.

OLSHANSKY, R. B., 1990, Landslide hazard in the United states: Case study, p. 63.

PEITGEN, H-O.; MALETSKY, E.; PERCIANTE, T. H.; AND YUNKER, L. E., 1992, Fractals for the classroom, Vol.1, Springer-Verlag, New York, p. 450.

SASAKI, Y.; ABE, M.; AND HIRANO, I., 1991, Fractal of slope failure size-number distribution (in Japanese with English abstruct): Journal of the Japan Society of Engineering Geology, Vol. 32, No. 3, pp. 1- 11.

SATSUMA, J, 1992, Probability statistics, Iwanami shoten, p. 222.

SCHRODER, J. F., 1971, Landslide of Utah, Utah Geological and Mineralogical Survey, Blletin 90, pp. 1-51.

SCHUSTER, R. L., 1985, Landslide dams in the western United States, Proceedings of the Forth International Symposium on Landslides, Tokyo, Japan, A.A. Balkema, Rotterdam. p. 164.

SHARPE, C. F. S., 1938, Landslides and Related Phenomena, Columbia University Press, New York, p. 137 TAKAHAMA, N., 1983, Older large-scale primaly landslide (in Japanese): Ann. Rep. Saigaiken, Niigata Univ., NO.5, pp.43-52.

TAKAHAMA, N., 1988, On the large-scale ancient primary landslide (In Japanese): Ann. Rep. Saigaiken, Niigata Univ., NO.10, pp.43-52.

TAKAHAMA, N., 1991, Some problems on ancient primary landslide mass and "rockslide" (in Japanese): Ann. Rep. Saigaiken, Niigata Univ., NO.13, pp.9-22.

TAKAHAMA, N., 1992, On the huge landslide (in Japanese): Proceeding of the 2nd Symposium on Geo-Environments, pp.187-192.

TAKAHAMA, N. AND ITO, Y., 1989: Relation between huge ancient primary landslides and present landslides -- Level and history of landslide activities -- (in Japaneses with English abstruct): Annual Report of Saigai-ken, Niigata University, Japan, No.11, pp.25-36.

TAKAHAMA, N. AND YAMAZAKI, K., 1987: Studies on the ancient primary landslide (1) --Case studies of Sakae Primary Landslide--(in Japaneses): Annual Report of Saigai-ken, Niigata University, Japan, No.9, pp.85-90.

TAKAHAMA, N.; HAYAKAWA, K.; KATAGIRI, S.; AND FUKUMOTO, Y., 1991, Higashi-nomyo Landslide --Part 1, Landslide history and ground water--(in Japanese): Journal of Japan Landslide Society, Vol. 28, pp. 40-47.

TAKAHAMA, N. AND HAYAKAWA, in print, Presently active landslides in ancient primary slid mass at Higashinomyo, Niigata, Central Japan (in Japanese): Journal of Japan Landslide Society.

TAKAHAMA, N.; UDA, T.; NOZAKI, T.; YOKOI, Y.; AND SUZUKI, K., 1992, Hazard and environmental geology of northern part of Fossa Magna and southern part of Northeast Japan: Proceeding of 29th IGC Field Trip C16, pp. 1-33.

TAKAYASU, H., 1991, Fractals in the Physical Sciences, Wiley, New York, pp. 170.

TURCOTTE, D. L., 1986, Fractal and fragmentation: Journal of Geophysical research, Vol. 91, No. B2, pp. 1,921-1,926.

TURCOTTE, D. L., 1992, Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge, New York, p. 221. UENO, T.; YOSHIMATSU, H.; AND NISHI, M., 1993, Fractal property and hierarchy of landslides in fractured zones (In Japanese): Proceedings of Japan Landslide Society Symposium on Some Problems about Geomorphology of landslides, pp. 114-121.

VARNES, D. J., 1978, Slope movement types and processes. In: Landslides: Analysis and Control, Transportation Res. Board Nat. Ac. Sci. Washington Spec. Rep. 176, pp. 11-33.

VARNES, D. J., 1984, Landslide hazard zonation: a review of principles and practice, International Association of Engineering Geology, Unesco, Paris, p. 63.

VOIGHT, B., 1978, Lower Gros Ventre Slide, Wyoming, U.S.A., Voight, B. (editor): *Rockslides and Avalanches*, Elsevier Scientific Pub., Amsterdam. pp. 113-166.

VONDER, L. AND LINDVALL, C. E., 1982, The Portuguese Bend Landslide, In Cooper, J. D. (editer):Landslide and Landslide Abatement, Palos Verdes Peninsula, Southern California, Assoc. of Engineering Geologists, Southern California Section, Anaheim, pp. 49-56.

VOSS, R. F., 1988, Fractals in nature: From characterization to simulation. In Peitgen H.-O. and Saupe, D. (editors):The Science of Fractal Images, Springer-Verlag, New York. pp. 21-70.

WATARI, M., 1977, A couple of problems about slope failure: Soil and Foundation, No 26, No. 6. pp. 3-8.

WATTERS, R. J., 1983, A Landslide Induced Waterflood-Debris Flow: Bulletin of the International Association of Engineering Geology, No 28, pp. 12-17.

WATTERS, R. J.; CARR, J. R. AND CHUCK, D.M., 1990, New techniques in rock mass classification: application to welded tuffs at the Nevada Yucca Mountain, International Journal of Mining and Geological Engineering, Vol. 8. pp. 241-260.

WILLIAM COTTON AND ASSOCIATES, 1994, Geological Map of the Big Rock Mesa Landslide.

YOKOI, Y.; CARR, J. R.; AND WATTERS, R. J., 1995, Fractal character of landslides: Bulletin of the Association of Engineering Geologists, in press.

ZARUBA, Q. AND MENCL, V., 1982, Landslides and their Control, Elsevier, Amsterdam, p. 324.

second and a sublimity of the

# APPENDIX A:

# OUTLINE OF LANDSLIDES, BLOCK DISTRIBUTION MAPS,

## LINEAMENT MAPS, AND SAMPLING MAPS

#### OUTLINE OF LANDSLIDES

## NO.1 MIDWAY BRIDGE LANDSLIDE

#### INVESTIGATION

Field investigation (from June to September, 1994), Areal photography interpretation, Map interpretation, literature (Gates, 1994)

#### LOCATION

39° 12' N; 120° 12' W

GEOMORPHIC EXPRESSION

First level block is rectanglar shaped. Main scarp is very distinguished (80 m).

There are several sags on the head of main slide.

Toe of slide has been oversteepend by recent erosion from the Truckee River.

Clear second and third level blocks exist.

### MECHANICAL TYPE OF SLIDE

First Level Block is Rotational (Gates, 1994). Many second and third level rotational slides has occurred. Rock fall has occurred at the main scarp.

#### GEOLOGY

Surfacial Deposits: colluvium and landslide debris. Various angular to subrounded cobbles and boulders in matrix of sand and clay (Gates, 1994).

Base Rock: Tertiary andesite with steep dipping joints sets with striking NW-SE, NE-SW, and E-W (Gates, 1994).

PRIMARY CAUSE OF FAILURE Flooding and rapid drawdown Lake Tahoe (Gates, 1994)

### HISTORY OF LANDSLIDE

Relative minimum age of landslide: 60 ka ± 18 ka BP (Gates, 1994)

Two separate failure events might have occurred.

#### STABILITY

Factor of safety of main slide: about 1.2 (Gates, 1994) Some small rotational slides are unstable (there are fresh scarps and tilting trees)

## NO. 2 BOCA RIDGE LANDSLIDE

#### INVESTIGATION

Field investigation (from June to September, 1994), Areal photography interpretation, Map interpretation, literature (Gates, 1994)

#### LOCATION

39° 3' N; 120° 4' W

### GEOMORPHIC EXPRESSION

Boca Ridge Landslide is complex of four Huge slides: Central-North (C-N), Central-South (C-S), West-North (W-N), and West-South (W-S).

Sags exist at the head of C-N, C-S, and W-N blocks. C-S and W-S blocks have steep toes which has been eroded Truckee River. Second and third level blocks are eroded and difficult to be recognized.

#### MECHANICAL TYPE OF SLIDE

C-N Block: Regressive rotational slide (Gates, 1994)

C-S and W-N Block: Rotational at head and traslational at middle and toe zone.

W-S Block: rotational

Many second and third level slides has occurred. Rock fall has occurred at the main and minor scarps of the blocks.

### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Angular to subangular cobbles and boulders exist in matrix of sand and clay (Gates, 1994).

Base Rock: At the toe the slide debris has overrun older Tahoe outwash deposits. At south slide debris overlaps diatomaceous and tuffaceous sandstone and shale of Tertiary Truckee Formation. Rocks at main scarp of C-N and W-N blocks is Tertiary Boca Ridge Latite.

Strike and dip of Truckee Formation is N56°E 22°E (Dip slope). A normal fault exists at head scarp of C-S and W-N block (Gates, 1994).

#### PRIMARY CAUSE OF FAILURE

Under cutting by flood (Gates, 1994), Fault at head scarp. Seismicity?

#### HISTORY OF LANDSLIDE

Relative minimum age of landslide: 60 ka ± 18 ka BP (Gates, 1994).

Two or three separate failure events might have occurred (Gates, 1994). Gates (1994) suggested that the landslide have developed retrogressively. It is considered that C-S, W-N, W-S
blocks occurred as initial slide first and then second and third level slides occurred. Because these blocks has clear main scarps and flanks; and the main scarps of C-S and W-N blocks coincide the fault. It is considered that C-N block developed retrogressively because clear normal fault like gaps occurred in the block.

### STABILITY

The landslide is very stable. No sliding occurred when toe was cut with I-80 construction and sand pits.

### NO. 3 PALOS VERDES LANDSLIDE

### INVESTIGATION

Field investigation (July, 1994), Areal photography interpretation, Map interpretation, literature (Vonder Linden and Lindvall, 1982)

### LOCATION

33° 45' N; 118° 21' W

### GEOMORPHIC EXPRESSION

First level block is rectanglar shaped. The toe of slide has been steepened by erosion from Pacific Ocean.

Depression occurred at head. Clear second and third level blocks exist.

MECHANICAL TYPE OF SLIDE First and second level slides: Rotational at head and traslational at middle and toe zone.

Third Level slides: rotational

#### GEOLOGY

First Level Block: Folding sedimentary rocks and basalt.

Second Level Blocks: Sedimentary rocks and basalt with complex faulting and folding.

Third level blocks: Colluvial and landslide debris.

Base Rock: Miocene sandstone, mudstone, tuff, and basalt. Dip slope (Vonder Linden and Lindvall, 1982)

### PRIMARY CAUSE OF FAILURE

Erosion by ocean, Weak tufaceous layer, Seismicity.

### HISTORY OF LANDSLIDE

The main (first level) slide is considered to occur in Pleistocene (Vonder Linden and Lindvall, 1982). Second and

### STABILITY

A part of Portuguese Bend landslide is presently active. A part of Abalone Cove landslide had been active in 1960s and was stopped by mitigation.

### MITIGATION

Horizontal drainage boring, Piles, Removal of landslide debris

### NO. 4 BIG ROCK MESA LANDSLIDE

#### INVESTIGATION

Field investigation (July, 1994), Areal photography interpretation, Map interpretation, literature (Olshansky, 1990)

### LOCATION

34° 2' N; 118° 38' W

### GEOMORPHIC EXPRESSION

First level block is horse-shoe shaped. The toe of slide has been steepened by erosion from Pacific Ocean. Clear second and third level blocks exist except resident area.

### MECHANICAL TYPE OF SLIDE

First and second level slides: Rotational at head and traslational at middle and toe zone.

Third Level slides: Rotational

### GEOLOGY

Surfacial Deposits: Colluvial and landslide debris.

Base Rock: Eocene to Miocene sandstone and mudstone which are strongly folded and faulted by low angle trust faults, and dipping into slope with 25° to 65° (Olshansky, 1990).

PRIMARY CAUSE OF FAILURE Erosion by ocean, Seismicity, Sewage water

### HISTORY OF LANDSLIDE

The main (first level) slide is considered to occur prehistoric age. The landslide reactivated in 1983.

#### STABILITY

Landslide in 1983 was due to groundwater primary from residential septic systems (Olshanski, 1990). The slide has ceased due to dewatering. The slide didn't reactivate by Northrigde Earthquake on January, 1994.

### NO.5 THISTLE LANDSLIDE

#### INVESTIGATION

Areal photography interpretation, Map interpretation, Literature (Schroder, 1991; Olshansky, 1990; Schuster, 1985; Ikeda, 1984; Kaliser and Fleming, 1986)

### LOCATION

40° 0' N; 111° 31' W

#### GEOMORPHIC EXPRESSION

First level block is horse-shoe shaped. The flanks forms streams.

Second and third level blocks occur mainly at the sides and the toe of the slide. Some depression and sags occur at head of the slide.

### MECHANICAL TYPE OF SLIDE

First and second level slides: Rotational at head and traslational at middle and toe zone.

Third Level slides: Rotational

### GEOLOGY

Surfacial Deposits: A moderately plastic gravelly clay (Kaliser and Fleming, 1986).

Base Rock: Conglomerate, sandstone, and red shale of the North Horn Formation of Cretaceous-Tertiary age, which is overlain by Tertiary limestone, shale, and sandstone of the Flaggstaff Formation and conglomarate and red beds of the Colton Formation, also of Tertiary age (Schroder, 1971).

### PRIMARY CAUSE OF FAILURE

Poorly consolidated sedimentary rock, Rapid drawdown of Lake Benneville, Erosion by the River.

#### HISTORY OF LANDSLIDE

The initial slide may have occurred approximately 14,000 years ago (Anderson and others, 1984; quoted in Olshansky, 1990).

A part of the landslide  $(2.2 \times 10^6 \text{ m}^3)$  reactivated on April 1983 due to heavy rain. The landslide formed a natural dam blocking the Spanish Fork River (Kaliser and Fleming, 1985).

#### STABILITY

The landslide is presently stable.

#### MITIGATION

A drainage tunnel in the dam, Reinforcement for the dam.

### NO.6 LOWER GROS VENTRE LANDSLIDE

### INVESTIGATION

Map interpretation, Literature (Voight, 1978).

LOCATION

43° 38' N; 110° 33' W

### GEOMORPHIC EXPRESSION

The landslide can be divided into eastern part and western part by a stream. The eastern part is horse-shoe shaped, and has steep slope at the head and gentle slope at the toe. The toe forms a natural dam for Lower Gros Lake. The western part is triangle shaped and has NE-SW direction scarps and sags at the head. The gros Ventre River meanders very much at the toe of the slide. Clear second and third level blocks exist.

### MECHANICAL TYPE OF SLIDE

First and second level slides: Rotational at head and traslational at middle and toe zone.

Third Level slides: Rotational

#### GEOLOGY

Surfacial Deposits: Weathered sandstone and Limestone, Clayrich debris

Base Rock: Dolomite, shale, and sandstone of the Amsden Formation (Mississippian-Pennsylvanian); and Tensleep Sandstone (Pennsylvanian), Dip Slope (20°).

PRIMARY CAUSE OF FAILURE Weathering, Heavy precipitation , and Seismicity

HISTORY OF LANDSLIDE

The initial slide occurred in prehistoric age. The eastern part (40 x  $10^6 \text{ m}^3$ ) reactivated in June 23, 1925 due to heavy rain and earthquake. The slide dam formed Lower Gros Lake.

STABILITY The landslide is presently stable.

### NO.7 UPPER GROS VENTRE LANDSLIDE

#### INVESTIGATION

Aerial photography interpretation, Map interpretation.

### LOCATION

43° 35' N; 110° 23' W

### GEOMORPHIC EXPRESSION

First level block is rectangular shaped. The main scarp has been eroded and the flanks forms streams. Second level slides occurred mainly at the sides and the toe of the first level slide. It is difficult to recognize second and third level blocks.

### GEOLOGY

Base Rock: Mesozoic sedimentary rocks. Dip slope.

PRIMARY CAUSE OF FAILURE Weathering, Heavy precipitation, Seismicity

### NO.8 MEADOW MOUNTAIN LANDSLIDE

#### INVESTIGATION

Map interpretation, Literature (Duran, 1993).

#### LOCATION

39° 37' N; 106° 27' W

### GEOMORPHIC EXPRESSION

First slide is horse-shoe shaped. The main scarp is not clear. The right flank forms a stream. The left flank forms a steep slope. The slide area is used to be used for agriculture but it is presently used for a recreation area. Clear second and third level blocks exist.

CHANICAL TYPE OF SLIDE First level slide: Traslational. MECHANICAL TYPE OF SLIDE

Second level slides: Rotational at head and translational at middle and toe zone.

Third Level slides: Rotational

### GEOLOGY

Surfacial Deposits: Colluvium, landslide debris; and weathered sandstone and shale.

Base Rock: Sandstone, shale, limestone, and dolomite of Minturn Formation (Pennsylvanian). Dip slope (15°).

PRIMARY CAUSE OF FAILURE Alternation of base rock, faults, and erosion by Eagle River.

HISTORY OF LANDSLIDE The initial slide is considered younger than 120-150 thousand years before present (stratigraphically) and older than 8,400 years before present ( $C^{14}$ ).

#### STABILITY

A part of landslide (12 million  $ft^3$ ) at the toe reactivated on April 1985. Adjust region (12,000  $ft^3$ ) reactivated in spring 1992. The landslide is presently stable.

#### MITIGATION

Removal of slide material, surface drainage, rock buttress.

### NO.9 MAYUNMARCA LANDSLIDE

#### INVESTIGATION

Literature (Kojan and Huchinson, 1978; Lee and Duncan, 1975; Berrocal and others, 1978).

#### LOCATION

12° 40' S; 174° 40' W

#### GEOMORPHIC EXPRESSION

First level slide is bottle-neck shaped. The main scarp has been eroded. The flanks forms steep slopes.

### MECHANICAL TYPE OF SLIDE

First level slide: Traslational.

Second level slides: Rotational at head and translational at middle and toe zone.

Third Level slides: Rotational

### GEOLOGY

Surfacial Deposits: Widely graded material, e.g., clay size particle to blocks on the order of  $10^2 \text{ m}^3$  (Kojan and Huchinson, 1978).

Base Rock: Permian sandstone and shale lying on Paleozoic schist and phylites. Sandstone and shale are overlain by glacial deposits or by unconsolidated weathered permeable Quaternary alluvium (Berrocal and others, 1978).

PRIMARY CAUSE OF FAILURE Ground water, Dip slope.

### HISTORY OF LANDSLIDE

The initial slide occurred prehistoric age. Reactivation of a part of slide have been recorded in 1930, on August 1945 (5  $\times$  10<sup>6</sup>), in 1960, in 1972, and in 1974. Reactivation in 1974 was gigantic catastrophic one, which resulted 51 deaths and large amount of economic damage.

### NO.10 LA FRASSE LANDSLIDE

#### INVESTIGATION

Literature (Noverraz and Bonnard, 1988).

LOCATION

46° 20' N; 7° 0' E

### GEOMORPHIC EXPRESSION

First level slide is long rectangular shaped. The landslide flows in an approximately 500 m wide channel and then spreads in the zone of the toe.

### MECHANICAL TYPE OF SLIDE

First level slide: Traslational.

Second level slides: Rotational at head and translational at middle zone.

Third Level slides: Rotational

### GEOLOGY

Surfacial Deposits: Soil and decomposed rock. Base Rock: Clayey schistic rocks. Dip slope.

#### HISTORY OF LANDSLIDE

The initial slide might have occurred slightly after glacier retreat. Reactivation occurred during 1913-1919, 1966, 1981-1982. control at middle and the more

### NO.11 ARVEYES LANDSLIDE souther total average and involved and a deputies

## INVESTIGATION

Literature (Gabus and others, 1988).

## LOCATION 46° 9' N; 7° 2' E

### GEOMORPHIC EXPRESSION

First level slide is horse-shoe shaped. The main scarp is clear. The head zone is flat and used for residential land. The slope of toe zone is steep.

# MECHANICAL TYPE OF SLIDE

First and second level slides: rotational at head and translational at middle zone. Third Level slides: Rotational

### GEOLOGY

Base Rock: Schist

### STABILITY

A part of landslide reactivates.

### No. 12 KIRITANI LANDSLIDE

### INVESTIGATION

Field Investigation, Drilling, Aerial photography interpretation, Topographic map interpretation.

Investigations wsre performed during 1985 to 1988 as projects of Toyama Prefectual Government. Nittoc Construction Co., of which I was an employee, was contractor of that investigation.

LOCATION 36° 33' N; 137° 11' E

### GEOMORPHIC EXPRESSION

Shape of first level block is horse shoe.

There is a steep main scarp (60 m) which consists of andesite lava and tuff breccia. Slope of the landslide is gentle and used to be used for rice fields. Clear second and third blocks exist.

### TYPE OF SLIDE

First and Second Level Slide: Rotational at head and translational at middle and toe zone. Third Level Slide: Rotational

#### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Angular to subround cobbles and boulders (maximum diameter 20 m) in matrix of tuffaceous clay.

Base Rock: Miocene tuff breccia, tuff, mudstone, sandstone.

Strike and dip is approximately EW 20°N. Apparent angle to the slope is horizontal.

PRIMARY CAUSE OF FAILURE

Weak tuff including montmorillonite. Erosion by a river. Seismicity.

### HISTORY OF LANDSLIDE

First level slide might have occurred in Pleistocene and then second and third level slides followed. Historical and geographical evidences indicate that northern part of landslide moved more than 1,000 years ago and dammed the river.

#### STABILITY

First and second level slides are stable due to high permeability and low water table, however, some small rotational slides occurred in last decade.

### MITIGATION

Surface drainage, Horizontal drainage boring, Vertical drainage wells.

### NO. 13 KATSURABARA LANDSLIDE

#### INVESTIGATION

Field Investigation, Geotechnical boring, Aerial photography interpretation, Topographic map interpretation.

Investigation was performed during 1985 to 1988 as projects of Toyama Prefectual Government. Nittoc Construction Co., of which I was an employee, was contractor of that investigation.

### LOCATION

36° 30' N; 137° 7' E

### GEOMORPHIC EXPRESSION

Shape of first level block is rectangular. There is a very steep main scarp (200 m) which consists of andesite lava and tuff breccia. Slope of the landslide is 6.6° in average and used for rice fields and forest. Clear second and third level blocks exist.

### TYPE OF SLIDE

First and Second Level Slide: Rotational at head and translational at middle and toe zone. Third Level Slide: Rotational

#### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Angular to subround cobbles and boulders in matrix of tuffaceous clay.

Base Rock: Miocene tuff breccia, tuff, mudstone, sandstone.

Strike and dip is approximately EW 20°N. Apparent angle to slope is horizontal.

#### PRIMARY CAUSE OF FAILURE

Weak tuff including montmorillonite. Erosion by a river. inter southeling is inter Seismicity.

#### HISTORY OF LANDSLIDE

One or same huge rock avalanches occurred probably in Pleistocene. The accumulation of the debris is the landslide

body. Carbon 14 test suggest second level slide activity at 24,760 ± 240 y BP, of which sample was obtained from 18.9 m deep, and third level slide activity at 2,610 ± 100 y BP, of which sample was obtained from 6.1 m deep.

#### STABILITY

First and second level slides are stable. Small rotational slides and a debris flow occurred in this century. No activity is recorded after mitigation.

#### MITIGATION

Surface drainage, Horizontal drainage boring, Vertical drainage wells.

### NO. 14 HITOHANE LANDSLIDE

## INVESTIGATION

Field Investigation, Geotechnical boring, Aerial photography interpretation, Topographic map interpretation.

Investigation was performed during 1985 to 1988 as projects of Toyama Prefectual Government. Nittoc Construction Co., of which I was an employee, was contractor of that investigation.

## LOCATION

36° 55' N; 136° 55' E systems and permanel with forest, Clear

## GEOMORPHIC EXPRESSION

First level block is horse shoe shape. Slope of the landslide is 3.9° in average and used for rice fields. Clear second and third level blocks exist.

### TYPE OF SLIDE

First and Second Level Slide: Rotational at head and translational at middle and toe zone. Third Level Slide: Rotational system sis formad. Olu alone.

#### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Tuffaceous clay.

Base Rock: Miocene mudstone and tuff. Dip slope (apparent angle is 13°)

### PRIMARY CAUSE OF FAILURE

Weak tuff including montmorillonite. Erosion by a river. Seismicity. Snow (maximum accumulation is 3-5 m)

HISTORY OF LANDSLIDE First level slide might have occurred in Pleistocene and then, second and third level block followed. A small

rotational slide (about 1 ha) occurred on june, 1985 due to heavy rain.

### STABILITY

First and second level slides are stable. Small rotational slides occurred in this century. No activity is recorded after mitigation.

#### MITIGATION

Surface drainage, Horizontal drainage boring, Vertical drainage wells, Piles.

### NO. 15 TAKISAKA LANDSLIDE

#### INVESTIGATION

Field trip (29th IGC C16, 1992), Aerial photography and topographic map interpretation

### LOCATION 37° 40' N; 139° 30' E

### GEOMORPHIC EXPRESSION

The landslide can be divided into northern part and southern part. The southern part has many scarps and a steepened toe. The northern part moves toward the southern part. Slope of the landslide is 8.9° in average and covered with forest. Clear second and third level blocks exist.

TYPE OF SLIDE Rotational

### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris.

Base Rock: Miocene tuff, mudstone, and sandstone wraps unconformally the pre-Tertiary granodiorite. A complicated structural framework of fault system was formed. Dip slope.

### PRIMARY CAUSE OF FAILURE

Weak tuff including montmorillonite. Erosion by a river. Seismicity. Snow (maximum accumulation is 3-5 m)

### HISTORY OF LANDSLIDE

There are activity records in late 19th and early 20th century.

#### STABILITY

Both northern and southern slide have been moving very slowly since 1957. Average displacement is about 1 m/year.

### MITIGATION

Surface drainage, Horizontal drainage boring, Vertical drainage wells.

### NO. 16 SAKAE LANDSLIDE and Lovel Slider Terralismal at taken and

### INVESTIGATION

Literature (Takahama, 1988; Takahama and Ito, 1989; Takahama and Yamazaki, 1987; Ministry of Agriculture of Japan, Hokuriku Branch, 1993).

### LOCATION

37.7° 40' N; 139° 0' E

### GEOMORPHIC EXPRESSION

Main scarp is eroded and flanks form streams. Second and third level blocks are not very clear. Slope of the landslide is used for forest and rice fields.

TYPE OF SLIDE

First and Second Level Slide: Rotational at head and translational at middle and toe zone. Third Level Slide: Rotational

GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Late pliocene mudstone. Dip slope.

### PRIMARY CAUSE OF FAILURE

Weak tuff including montmorillonite. Seismicity. Snow (maximum accumulation is 4-6 m) what Sindate of Lawland of Second many in

HISTORY

There is no record of activity.

### NO. 17 MUSHIGAME LANDSLIDE

## INVESTIGATION

Literature (Okusa and others, 1991; Takahama, 1991; Takahama and others, 1992; Ministry of Agriculture of Japan, Hokuriku Branch, 1993). First and Become Level siter, matches has and and

LOCATION

37° 20' N; 138° 53' E

### GEOMORPHIC EXPRESSION

First level block is horse-shoe shaped. Main scarp and flanks forms valleys. Clear second and third level blocks exist. Slope of the landslide is used for forest and rice fields.

### TYPE OF SLIDE

First and Second Level Slide: Rotational at head and translational at middle and toe zone. Third Level Slide: Rotational

### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Middle Miocene mudstone. Dip slope.

### PRIMARY CAUSE OF FAILURE

Weak tuff including montmorillonite. Seismicity. Snow (maximum accumulation is 4-6 m)

### HISTORY

Initial slide might have occurred in Late Pleistocene. A part of slide (200m wide, 1,500m long, and 20m deep) reactivated in 1980 due to thawing water leaking.

### STABILITY

The landslide is presently stable.

### NO. 18 HIGASHINOMYO LANDSLIDE

#### INVESTIGATION

Literature (Takahama and others, 1991; Takahama and Hayakawa, in print; Ministry of Agriculture of Japan, Hokuriku Branch, 1993).

#### LOCATION

37° 30' N; 139° 5' E

## GEOMORPHIC EXPRESSION

First level block is rectangular shaped. Main scarp forms steep slope. Clear second and third level blocks exist. Slope of the landslide is used for forest and rice fields.

TYPE OF SLIDE

First and Second Level Slide: Rotational at head and translational at middle and toe zone. Third Level Slide: Rotational

### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Middle Miocene mudstone interbedded with tuff. Dipping into slope.

### PRIMARY CAUSE OF FAILURE

Weak tuff including montmorillonite. Seismicity. Snow (maximum accumulation is 4-6 m)

### HISTORY

Initial slide have occurred more than 50,000 B.P. (stratigraphically). Parts of the slide have reactivated intermediately.

### STABILITY

The landslide is presently active.

#### MITIGATION

Vertical and horizontal drainage boring, drainage tunnel, piles.

### NO. 19 KARUIZAWA LANDSLIDE

#### INVESTIGATION

Literature (Ministry of Agriculture of Japan, Hokuriku Branch, 1993), Topographic map interpretation

#### LOCATION

37° 26' N; 138° 57' E

### GEOMORPHIC EXPRESSION

There is a clear steep main scarp (30 m). Flanks are not clear. Slope of the landslide is 4.2° in average and used for rice fields and orchards. Second and third level blocks are not very clear.

### TYPE OF SLIDE

First and Second Level Slide: Rotational at head and translational at middle and toe zone. Third Level Slide: Rotational

#### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Miocene mudstone. Dip slope.

### PRIMARY CAUSE OF FAILURE

Weak tuff including montmorillonite. Seismicity. Snow (maximum accumulation is 4-6 m) wail forest, Clear second and third STABILITY

There is no record of activity.

### NO. 20 HAPPOUDAI LANDSLIDE

## INVESTIGATION

Literature (Ministry of Agriculture of Japan, Hokuriku Branch, 1993), Topographic map interpretation

## LOCATION

37° 30' N; 138° 57' E

### GEOMORPHIC EXPRESSION

There is a clear steep main scarp (50 m). Flanks are not clear. Slope of the landslide is 6.5° in average and used for rice fields and orchards. Clear second and third blocks exist.

TYPE OF SLIDE

First and Second Level Slide: Rotational at head and translational at middle and toe zone. Third Level Slide: Rotational

GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Miocene mudstone. Dip slope.

PRIMARY CAUSE OF FAILURE Weak tuff including montmorillonite. Seismicity. Snow

(maximum accumulation is 4-6 m) STABILITY

There is no record of activity.

NO. 21 RAIDEN LANDSLIDE of widdle part and the

#### INVESTIGATION

Literature (Ministry of Agriculture of Japan, Hokuriku Branch, 1993), Topographic map interpretation

#### LOCATION

37° 30' N; 139° 0' E

### GEOMORPHIC EXPRESSION

There is a clear steep main scarp (30-70 m). Flanks form streams. Slope of the landslide is 2.0° in average and used for rice fields, orchards, and forest. Clear second and third

### level blocks exist.

TYPE OF SLIDE

First and Second Level Slide: Rotational at head and translational at middle part and toe Third Level Slide: Rotational

#### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Upper Pliocene mudstone. Apparent dip is horizontal.

PRIMARY CAUSE OF FAILURE

Weak tuff including montmorillonite. Seismicity. Snow (maximum accumulation is 4-6 m)

### STABILITY

There is no record of activity.

### NO. 22 NISHINAKANOHO LANDSLIDE

#### INVESTIGATION

Literature (Ministry of Agriculture of Japan, Hokuriku Branch, 1993), Topographic map interpretation

LOCATION

37° 23' N; 138° 50' E

#### GEOMORPHIC EXPRESSION

There is a clear steep main scarp (120 m). Flanks forms streams. Slope of the landslide is 4.7° in average and used for rice fields and residential land. Clear second and third level blocks exist.

#### TYPE OF SLIDE

First and Second Level Slide: Rotational at head and translational at middle part and toe Third Level Slide: Rotational

#### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris.

Base Rock: Upper Pliocene mudstone. Apparent dip is horizontal.

### PRIMARY CAUSE OF FAILURE

Weak tuff including montmorillonite. Seismicity. Snow (maximum accumulation is 4-6 m)

STABILITY

There is no record of activity.

## NO. 23 MIZUNASHI LANDSLIDE

INVESTIGATION

Literature (Ministry of Agriculture of Japan, Hokuriku Branch, 1993) factor is wery however, and land, one is directory, dieter

LOCATION 37° 6' N; 138° 36' E

#### GEOMORPHIC EXPRESSION

There is a clear steep main scarp (50 m). Flanks forms streams. Slope of the landslide is 4.0° in average and used for rice fields, orchards, and houses. Clear second and third level blocks exist.

TYPE OF SLIDE First and Second Level Slide: Rotational at head and translational at middle and toe zone. Third Level Slide: Rotational

### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. tuffaceous clay.

Base Rock: Upper Pliocene tuff and mudstone. Dip slope (30°).

### PRIMARY CAUSE OF FAILURE

Weak tuff including montmorillonite. Seismicity. Snow (maximum accumulation is 4-6 m)

### HISTORY OF LANDSLIDE

First level slide might have occurred in Pleistocene and then, second and third level block followed. Carbon 14 and pollen analysis suggest activity at 5,770 ± 190 y BP and 7,000 y BP respectively. The landslide reactivated during 1960s and 1980s.

## STABILITY

Activity of the landslide decreased. Factor of safety is 0.95-1.15.

#### MITIGATION

Surface drainage, Horizontal drainage boring, Vertical drainage wells. tat. The slope of allow he used for spoked and

### NO. 24 KITAURATA LANDSLIDE

#### TNVESTIGATION

Literature (Ministry of Agriculture of Japan, Hokuriku Branch, 1993), Topographic map interpretation

### LOCATION

37° 4' N; 138° 33' E

### GEOMORPHIC EXPRESSION

Right flank is very leaner and left one is circular. Slope of the landslide is 6.4° in average and used for orchards and forest. Second and third level blocks are not very clear.

### TYPE OF SLIDE

First and Second Level Slide: Rotational at head and translational at middle and toe zone. Third Level Slide: Rotational

### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Tuffaceous clay.

Base Rock: upper Pliocene mudstone. Bedding Dips into slope (30°).

PRIMARY CAUSE OF FAILURE Weak tuff including montmorillonite. Seismicity. Snow (maximum accumulation is 4-6 m)

HISTORY OF LANDSLIDE There is no record of activity.

STABILITY

The landslide is presently stable.

### NO. 25 UENOYAMA LANDSLIDE

### INVESTIGATION

Literature (Ministry of Agriculture, Hokuriku Branch, 1993), Topographic map interpretation

# LOCATION

37° 5' N; 138° 34' E

### GEOMORPHIC EXPRESSION

First level slide is horse-shoe shaped. The main scarp has been eroded. The slope of slide is used for orchard and residential land. Second and third level blocks are not very

clear.

TYPE OF SLIDE

First Level Slide: Rotational at head and translational at middle and toe zone.

Second and third Level Slides: Rotational.

GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Middle Miocene sandstone and mudstone. Dip slope  $(20^{\circ})$ .

PRIMARY CAUSE OF FAILURE

Weak tuff including montmorillonite. Seismicity. Snow (maximum accumulation is 4-6 m)

HISTORY OF LANDSLIDE There are records of miner activities.

STABILITY

The landslide is presently stable.

### NO. 26 NAKATATEYAMA LANDSLIDE

INVESTIGATION

Literature (Ministry of Agriculture, Hokuriku Branch, 1993), Topographic map interpretation

LOCATION

37° 3' N; 138° 34' E

GEOMORPHIC EXPRESSION

First level slide is wide rectangular shaped. The main scarp is 50-100 m high steep slope. The slope of slide is used for orchard and forest. Clear second and third level blocks exist.

TYPE OF SLIDE

First and Second Level slides: Rotational at head and traslational at middle and toe zone.

Third Level slides: Rotational.

#### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Middle Miocene tuff. Dip slope (20°).

PRIMARY CAUSE OF FAILURE

Weak tuff including montmorillonite. Seismicity. Snow (maximum accumulation is 4-6 m)

HISTORY OF LANDSLIDE

A part of slide (100 x 250 m) reactivated in 1976. STABILITY

The landslide is presently stable.

### NO. 27 YUMOTO LANDSLIDE

## INVESTIGATION

Literature (Ministry of Agriculture, Hokuriku Branch, 1993), Topographic map interpretation.

#### LOCATION

37° 3' N; 138° 36' E

#### GEOMORPHIC EXPRESSION

First level slide is bottle-neck shaped. The main scarp is about 20 m high steep slope. Sags and depression occurs at the head. The slope of slide is used for residential land, orchard, and forest. Clear second and third level blocks exist.

TYPE OF SLIDE First and Second Level slides: Rotational at head and traslational at middle and toe zone. Third Level slides: Rotational.

#### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Middle Miocene mudstone and tuff. Dip slope (30°).

PRIMARY CAUSE OF FAILURE Weak tuff including montmorillonite. Seismicity. Snow (maximum accumulation is 4-6 m)

HISTORY OF LANDSLIDE A part of slide reactivated late 19th century and in 1952.

STABILITY The landslide is presently stable.

# NO, 28 YUYAMA LANDSLIDE

### INVESTIGATION

Literature (Ministry of Agriculture, Hokuriku Branch, 1993), Topographic map interpretation.

### LOCATION 37° 4' N; 138° 37' E

### GEOMORPHIC EXPRESSION

First level slide is wide rectangular shaped. The main scarp is clear. The slope of slide is used for residential land, orchard, and forest. Clear second and third level blocks exist.

TYPE OF SLIDE

First and Second Level slides: Rotational at head and traslational at middle and toe zone.

Third Level slides: Rotational.

#### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Middle Miocene mudstone and tuff. Dip slope  $(30^{\circ})$ .

PRIMARY CAUSE OF FAILURE Weak tuff including montmorillonite. Seismicity. Snow Warmen In manage For (maximum accumulation is 4-6 m)

STABILITY

The landslide is presently stable.

### NO.29 KAMATSUKA LANDSLIDE

### INVESTIGATION

Literature (Ministry of Agriculture, Hokuriku Branch, 1993)

GEOMORPHIC EXPRESSION

First level slide is square shaped. The main scarp is clear steep slope. The slope of slide is used for residential land and orchard. Clear second and third level blocks exist.

TYPE OF SLIDE

First and Second Level slides: Rotational at head and traslational at middle and toe zone.

Third Level slides: Rotational.

GEOLOGY

Surfacial Deposits: Colluvium and landslide debris.

Base Rock: Middle Miocene mudstone and sandstone. Dipping into slope (25°).

PRIMARY CAUSE OF FAILURE Weak tuff including montmorillonite. Seismicity. Snow (maximum accumulation is 4-6 m)

### HISTORY

Parts of landslide have reactivated many times.

#### STABILITY

The landslide is presently stable.

### NO.30 MARUYAMA LANDSLIDE

### INVESTIGATION

Literature (Ministry of Agriculture, Hokuriku Branch, 1993), Topographic map interpretation.

#### LOCATION

37° N; 138.6° E

### GEOMORPHIC EXPRESSION

First level slide is triangle shaped. The main scarp is clear. The river meanders in front of the slide. Clear second and third level blocks exist. The slope of slide is used for rice field and orchard.

TYPE OF SLIDE

First and Second Level slides: Rotational at head and traslational at middle and toe zone. Third Level slides: Rotational.

#### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Pleistocene sandstone and conglomerate. Dip slope (35°).

PRIMARY CAUSE OF FAILURE

Weathered rocks, Seismicity, Snow (maximum accumulation is 4-6 m)

HISTORY The initial slide may have occurred late Pliocene.

#### STABILITY

The landslide is presently stable.

## NO.31 MASEGUCHI LANDSLIDE crist, The slope of slide is used for rice rishd,

INVESTIGATION Literature (Takahama and others, 1992; Ministry of Agriculture, Hokuriku Branch, 1993), Topographic map interpretation.

LOCATION 37° 2' N; 138° 4'

GEOMORPHIC EXPRESSION

First level slide is wide rectangular shaped. The main scarp forms distinctive steep slope. Clear second and third level blocks exist. The slope of slide is used for rice field and residential land.

TYPE OF SLIDE

First and Second Level slides: Rotational at head and traslational at middle and toe zone.

Third Level slides: Rotational.

#### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Late Miocene mudstone. Dip slope (30°).

PRIMARY CAUSE OF FAILURE

Weak tuff layer, Seismicity, Snow (maximum accumulation is 4-6 m)

HISTORY

The initial slide may have occurred 25 to 45 thousands years ago. Parts of landslide reactivated repeatedly, e.g., in 1490, 1862, 1868, 1923, 1927, 1931, 1932, 1934, and 1942.

#### STABILITY

The southern part of the slide is presently active (3.3 m in 80 years).

### NO.32 MARUTA LANDSLIDE

### INVESTIGATION

Literature (Ministry of Agriculture, Hokuriku Branch, 1993), Topographic map interpretation.

### LOCATION

37° 8' N; 138° 6' E

### GEOMORPHIC EXPRESSION

First level slide is horse-shoe shaped. The main scarp has been eroded. The flanks form streams. Clear second and third level blocks exist. The slope of slide is used for rice field, forest, and residential land.

TYPE OF SLIDE

First and Second Level slides: Rotational at head and traslational at middle and toe zone.

Third Level slides: Rotational.

GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Late Pliocene mudstone. Dip slope (15°).

PRIMARY CAUSE OF FAILURE

Weathered mudstone layer, Seismicity, Snow (maximum accumulation is 4-5 m) a most for ying dimit. Income, and posidential

### STABILITY

Presently stable.

### NO.33 KODOMARI LANDSLIDE

### INVESTIGATION

Literature (Ministry of Agriculture, Hokuriku Branch, 1993), Topographic map interpretation.

LOCATION

37° 6' N; 138° 0' E

GEOMORPHIC EXPRESSION

First level slide is horse-shoe shaped. The main scarp has been eroded. Clear second and third level blocks exist. The slope of slide is used for orchard, forest, and residential land.

TYPE OF SLIDE

First and Second Level slides: Rotational at head and traslational at middle and toe zone. Third Level slides: Rotational.

GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Late Miocene mudstone and sandstone. Dip slope (15°).

### PRIMARY CAUSE OF FAILURE

Weathered mudstone layer, Seismicity, Snow (maximum accumulation is 2-3 m)

# STABILITY Presently stable.

### NO.34 OHBORA LANDSLIDE

INVESTIGATION

Literature (Takahama and Ito, 1988; Ministry of Agriculture, Hokuriku Branch, 1993), Topographic map interpretation.

LOCATION

37° 7' N; 138° 4' E

GEOMORPHIC EXPRESSION

First level slide is horse-shoe shaped. The main scarp is not very clear. Clear second and third level blocks exist. The slope of slide is used for rice field, forest, and residential land.

TYPE OF SLIDE

First and Second Level slides: Rotational at head and traslational at middle and toe zone. Third Level slides: Rotational.

GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Late Pliocene mudstone and sandstone. Dipping into slope (15°).

PRIMARY CAUSE OF FAILURE Weathered mudstone, Seismicity, Snow (maximum accumulation is 2-3 m)

HISTORY

A part of slide reactivated in early 20th century.

STABILITY

Presently stable (dormant).

NO.35 URUSHINOSE LANDSLIDE

INVESTIGATION

Field investigation (From 1989 - 1990), Geotechnical boring, Topographic map interpretation.

### LOCATION

33.9° N; 134.1° E

### GEOMORPHIC EXPRESSION

First level slide is horse-shoe shaped. The main scarp forms distinctive steep slope. Clear second and third level blocks exist. The slope of slide is used for farm field and residential land.

TYPE OF SLIDE

First and Second Level slides: Rotational at head and traslational at middle and toe zone.

Third Level slides: Rotational.

GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Clayish debris including schist blocks (maximum two meters). Base Rock: Weathered black schist. Dipping into slope (60°).

PRIMARY CAUSE OF FAILURE Weathered clayish schist, Seismicity, Rain and Snow (maximum accumulation is 2-3 m)

STABILITY Presently stable (dormant).

Mitigation Vertical and horizontal drainage.

### NO.36 NISHINOTANI LANDSLIDE

INVESTIGATION

Field investigation, Geotechnical boring, Aerial photography and topographic map interpretation.

LOCATION

33° 33' N; 133° 4' E

GEOMORPHIC EXPRESSION

First level slide is horse-shoe shaped. The main scarp is not very clear. Clear second and third level blocks exist. The slope of slide is used for rice field, orchard, and residential land.

TYPE OF SLIDE

First and Second Level slides: Rotational at head and traslational at middle and toe zone. Third Level slides: Rotational.

GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Clayish debris including schist blocks (maximum 2 meters). Base Rock: Weathered sandstone, chart, shale, limestone.

PRIMARY CAUSE OF FAILURE

Weathered rocks, Seismicity, Heavy rain and Snow (maximum accumulation is 2-3 m).

HISTORY

Parts of the slide reactivated in 1963, 1965, 1975, and 1976.

STABILITY

The slide is presently active, however, the movement is very slow.

Mitigation

Vertical and horizontal drainage, Piles

constituent at middle and you work NO.37 YOUNE LANDSLIDE

INVESTIGATION Aerial photography and topographic map interpretation, Literature (Ueno and others, 1993; Higaki and others, 1994).

LOCATION 33° 46' N; 133° 47' E

GEOMORPHIC EXPRESSION

First level slide is horse-shoe shaped. The main scarp is clear steep slope. Clear second and third level blocks exist. The slope of slide is used for rice field.

TYPE OF SLIDE

First and Second Level slides: Rotational at head and traslational at middle and toe zone. Third Level slides: Rotational.

GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Fractured greenstone.

PRIMARY CAUSE OF FAILURE Weathered rock, Seismicity, Heavy rain and Snow (maximum accumulation is 2-3 m).

STABILITY

The slide is presently active, however, the movement is very slow (50 mm/year). Aldane and arises to

Mitigation

Vertical and horizontal drainage.

### NO.38 NUTA LANDSLIDE

INVESTIGATION

Aerial photography and topographical map interpretation, Literature (Higaki and others, 1994).

LOCATION

33° 47' N; 133° 47' E

### GEOMORPHIC EXPRESSION

First level slide is horse-shoe shaped. The main scarp is clear steep slope. The slope of slide is used for rice field. Clear second and third level blocks exist.

TYPE OF SLIDE

First and Second Level slides: Rotational at head and traslational at middle and toe zone. Third Level slides: Rotational.

GEOLOGY

Surfacial Deposits: Colluvium and landslide debris. Base Rock: Fractured greenstone.

PRIMARY CAUSE OF FAILURE Weathered rock, Seismicity, Heavy rain and Snow (maximum accumulation is 2-3 m).

NO.39 NYUYA LANDSLIDE

#### INVESTIGATION

Aerial photography and topographycal map interpretation, Literature (Ueno and others, 1993; Higaki and others, 1994).

LOCATION 35° 34' N; 138° 3' E

GEOMORPHIC EXPRESSION First level slide is bottle-neck shaped. The main scarp is clear steep slope. The slope of slide is used for rice field and residential land. Clear second and third level blocks exist.

TYPE OF SLIDE

First and Second Level slides: Rotational at head and traslational at middle and toe zone. Third Level slides: Rotational.

### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris.

Base Rock: Fractured black schist and green schist; and serpentinite.

### PRIMARY CAUSE OF FAILURE

Weathered weak layer (serpentinite), Seismicity, Heavy rain and Snow (maximum accumulation is 2-3 m).

### STABILITY

The slide is presently active, however, the movement is very slow (10 mm/year).

MITIGATION Vertical and horizontal drainage.

### NO.40 HIKINOTA LANDSLIDE

### INVESTIGATION

Literature (Higaki and others, 1994).

#### LOCATION

35° 32' N; 138° 2' E

### GEOMORPHIC EXPRESSION

First level slide is horse-shoe shaped. The main scarp is clear steep slope. The slope of slide is used for rice field and residential land. Clear second and third level blocks exist.

#### GEOLOGY

Surfacial Deposits: Colluvium and landslide debris.

Base Rock: Fractured black and green schist; and serpentinite.

### PRIMARY CAUSE OF FAILURE

Weathered weak layer (serpentinite), Seismicity, Heavy rain and Snow (maximum accumulation is 2-3 m).

### SLIDE MOUNTAIN

Slide Mountain is part of the Carson Range, which is an offshoot of the Sierra Nevada. Slide Mountain is composed of Cretaceous granodiorite. On May 30, 1983, a mass of about 720,000 m<sup>3</sup> of rock failed from the south-east side of Slide Mountain. One of the triggers was high pore pressure due to rapid snow melting. Four zones were identified: an almost intact slide mass; a rock avalanche zone; sand flow; and a region of displaced rock and soil, trees, and organic. Saturated landslide debris ran down the Ophir Creek canyon as a debris flow. The volume of the debris is at least 100,000-150,000 m<sup>3</sup> (Watters, 1983; Mitchell, 1986).

# LANDSLIDE BLOCK MAPS

NO. 1 MIDWAY BRIDGE LANDSLIDE



## NO. 2 BOCA RIDGE LANDSLIDE



160





NO. 6 LOWER GROS VENTRE LANDSLIDE



162





時間



NO. 9 MAYUNMARCA LANDSLIDE




#### NO. 11 ARVEY LANDSLIDE





NO. 13 KATSURABARA LANDSLIDE



NO. 14 HITOHANE LANDSLIDE



NO. 15 TAKISAKA LANDSLIDE





## NO. 17 MUSHIGAME LANDSLIDE



ALL AN



KARUIZAWA LANDSLIDE

破問川

3 #4 605 06



Ld:地子へり勝機土 下 設丘場機性 む:中引至新進 主石虎場関数 Sv:守門火山噴出物 Ms: 截差 (貫木着) G: 微性層灰岩 い。流数を高級 (損)地丁ペリ 2 転気地感、地点, 協能会 実給は活動中 3 空リーブ活動域 4 刻助 5 他. 広地 5 100m ポーリン?

500M

石田川













NO. 25 UENOYAMA LANDSLIDE





















NO. 34 OHBORA LANDSLIDE





180

NO. 36 NISHINOTANI LANDSLIDE











## LINEAMENT MAPS

NO. 1 MIDWAY BRIDGE LANDSLIDE





NO. 3 PALOS VERDES LANDSLIDE





## NO. 5 THRISTLE LANDSLIDE





## NO. 12 KIRITANI LANDSLIDE





NO. 15 TAKISAKA LANDSLIDE





NO. 21 RAIDEN LANDSLIDE



NO. 19 KARUIZAWA LANDSLIDE NO. 20 HAPPOUDAI LANDSLIDE





NO. 24 KITAURATA LANDSLIDE

4





# NO. 32 MARUTA LANDSLIDE





NO. 39 NYUUYA LANDSLIDE



ROCK FRAGMENTS AND FRACTURES DATA COLLECTION LOCATIONS NO.1 MIDWAY BRIDGE LANDSLIDE





Υ.



#### SLIDE MOUNTAIN



sharp limit at 1 and 1 and

APPENDIX B:

LOG(N(r)) VERSUS LOG(r) PLOTS OF LANDSLIDE BLOCKS



Midway Ridge Landslide 2nd level blocks ruler - width



No.1 Midway Ridge Landsilde 3nd level blocks ruler - length





No.1 Midway Ridge Landslide 2nd level blocks ruler - length



No.1 Midway Ridge Landslide 3nd level blocks ruler - length







100 1000 log (ruler - m)

10000

1+





No.2 Boca Ridge Landslide 2nd Level Blocks Ruler - Length







No.3 Palos Verdes Landslide 2rd level blocks Ruler - width



No.3 Palos Verdes Landslide 3rd level blocks Ruler - width





No.3 Palos Verdes Landslide 2rd level blocks Ruler - Length



No.3 Palos Verdes Landslide 3rd level blocks Ruler - Length





No.4 Big Rock Mesa Landslide 2nd Level Blocks Ruler - Width



No.4 Big Rock Mesa Landslide 3rd Level Blocks Ruler - Width





No.4 Big Rock Mesa Landslide 2nd Level Blocks Ruler - Length



#### No.4 Big Rock Mesa Landslide 3rd Level Blocks Ruler - Length















No.5 Thistle Landslide 2nd Level Blocks Ruler - Length



No.5 Thistle Landslide 3rd Level Blocks Ruler - Length















No.6 Lower Gros Ventre Landslide 2nd Level Blocks Ruler - Length



No.6 Lower Gros Ventre Landslide 3rd Level Blocks Ruler - Length




No.7 Upper Gros Ventrte Landsilde 2nd Level Blocks Ruler - Width









No.7 Upper Gros Ventre Landslide 2nd Level Blocks Ruler - Length



No.7 Upper Gros Ventre Landslide 3rd Level Blocks Ruler - Length





No.8 Meadow Mountain Landslide 2nd Level Blocks Ruler - Width



No.8 Meadow Mountain Landslide 3rd Level Blocks Ruler - Width





No.8 Meadow Mountain Landslide 2nd Level Blocks Ruler - Length



No.8 Meadow Mountain Landslide 3rd Level Blocks Ruler - Length



No.8 Meadow Mountain Landslide



No.9 Mayunmarca Landslide 2nd Level Blocks Ruler - Width



No.9 Mayunmarca Landslide 3rd Level Blocks Ruler - Width



No.9 Mayunmarca Landsilde Whole Blocks Ruler - Length

No.9 Mayunmarca Landslide 2nd Level Blocks Ruler - Length



## No.9 Mayunmarca Landslide 3rd Level Blocks Ruler - Length





No.10 La Frasse Landslide 2nd Level Blocks Ruler - Width



No.10 La Frasse Landslide 3nd Level Blocks Ruler - Width





No.10 La Frasse Landslide 2nd Level Blocks Ruler - Length



La Frasse Landslide 3nd level blocks ruler - length









206

10.000

10,000







No.12 Kiritani Landslide 3rd Level Blocks Ruler - Width









Kiritani Landslide 3rd Level Blocks Ruler - Length















No.13 Katsurabara Landslide 2nd Level Blocks Ruler - Length



## No.13 Katsurabara Landslide 3rd Level Blocks Ruler - Length







































Takisaka Landslide 3rd Level Blocks Ruler - Length















No.16 Sakae Landslide 2nd Level Blocks Ruler-Length



No.16 Sakae Landslide 3rd Level Blocks Ruler-Length

















No.17 Mushigame Landslide 2nd Level Blocks Ruler-Length



















No.18 Higashinomyo Landsiide 2nd Level Blocks Ruler - Length













No.19 Karulzawa Landsilde 3rd Level Blocks Ruler - Width





No.19 Karulzawa Landslide 2nd Level Blocks Ruler - Length



Karuizawa Landslide 3rd Level Blocks Ruler - Length





No.20 Happoudal Landslide 2nd Level Blocks Ruler - Width



No.20 Happoudal Landslide 3rd Level Blocks Ruler - Width





No.20 Happoudai Landslide 2nd Level Blocks Ruler - Length



Happoudai Landslide 3rd Level Blocks Ruler - Length

















No.21 Raiden Landslide 2nd Level Blocks Ruler - Length



## Ralden Landslide 3rd Level Blocks Ruler - Length





No.22 Nishinakanoho Landsilde 2nd Level Blocks Ruler - Width



No.22 Nishinakanoho Landsilde 3rd mLevel Blocks Ruler - Width





100 1000 log (ruler - m)

No.22 Nishinakanoho Landslide 2nd Level Blocks Ruler - Length

1+



Nishinakanoho Landslide 3rd Level Blocks Ruler - Length









No.23 Mizunashi Landsilde 3rd Level Blocks Ruler - Width





No.23 Mizunashi Landsilde 2nd Level Blocks Ruler - Length



No.23 Mizunashi Landslide 3rd Level Blocks Ruler - Length









No.24 Kitaurata Landslide 3rd Level Blocks Ruler - Width





No.24 Kitaurata Landslide 2nd Level Blocks Ruler - Length



Kitaurata Landsilde 3rd Level Blocks Ruler - Length









No.25 Uenoyama Landslide 3rd Level Blocks Ruler - Width





No.25 Uenoyama Landsilde 2nd Level Blocks Ruler - Length



Uenoyama Landslide 3rd Level Blocks Ruler - Length





No.26 Nakatateyama Landsilde 2nd Level Blocks Ruler - Width



No.26 Nakatateyama Landslide 3rd Level Blocks Ruler - Width





No.26 Nakatateyama Landslide 2nd Level Blocks Ruler - Length



Nakatateyama Landslide 3rd Level Blocks Ruler - Length















No.27 Yumoto Landslide 2nd Level Blocks Ruler - Length













No.28 Yuyama Landslide 3rd Level Blocks Ruler - Width





No.28 Yuyama Landslide 2nd Level Blocks Ruler - Length



No.28 Yuyama Landslide 3rd Level Blocks Ruler - Length









No.29 Kamatsuka Landslide 3rd Level Blocks Ruler - Width





No.29 Kamatsuka Landslide 2nd Level Blocks Ruler - Length



Kamatsuka Landslide 3rd Level Blocks Ruler - Length





No.30 Maruyama Landsilde 2nd Level Blocks Ruler - Width



No.30 Maruyama Landslide 3rd Level Blocks Ruler - Width



No.30 Maruyama Landslide Whole Blocks Ruler - Length



No.30 Maruyama Landslide 2nd Level Blocks Ruler - Length



No.30 Maruyama Landsilde 3rd Level Blocks Ruler - Length





No.31 Maseguchi Landsilde 2nd Level Blocks Ruler - Width



No.31 Maseguchi Landslide 3rd Level Blocks Ruler - Width





No.31 Maseguchl Landslide 2nd Level Blocks Ruler - Length



Maseguchi Landslide 3rd Level Blocks Ruler - Length







No.32 Maruta Landslide 











No.33 Kodomari Landslide 3rd mLevel Blocks Ruler - Width



No.33 Kodomari Landsilde Whole Blocks Ruler - Length 1000 ...................... 212.1.1.1.1 = .987 log(a) = 4.579log (number of blocks) 100 1.38 10 1111 1+10 10000 1000 100 log (ruler - m)

No.33 Kodomari Landsilde 2nd Level Blocks Ruler - Length



No.33 Kodomari Landslide 3rd Level Blocks Ruler - Length





No.34 Ohbora Landslide 2nd Level Blocks Ruler-Width



No.34 Ohbora Landslide 3rd Level Blocks Ruler-Width





No.34 Ohbora Landslide 2nd Level Blocks Ruler-Length



No.34 Ohbora Landslide 3rd Level Blocks Ruler-Length





No.35 Urushinose Landslide 2nd Level Blocks Ruler - Width



No.35 Urushinose Landslide 3rd Level Blocks Ruler - Width





No.35 Urushinose Landslide 2nd Levei Blocks Ruler - Length



Urushinose Landslide 3rd Level Blocks Ruler - Length















No.36 Nishinotani Landslide 2nd Level Biocks Ruler - Length



Nakatateyama Landslide 3rd Level Blocks Ruler - Length















No.37 Youne Landslide 2nd Level Blocks Ruler - Length



No.37 Youne Landslide 3rd Level Blocks Ruler - Length





3rd Level Blocks Ruler - Width





No.38 Nuta Landslide













,

No.39 Nyuya Landslide 2nd Level Biocks Ruler-Length



No.39 Nyuya Landsilde 3rd Level Blocks Ruler-Length



According to a local division of the local d

APPENDIX C:

LOG(N(r)) VERSUS LOG(r) PLOTS OF ROCK FALLS, DEBRIS FLOWS, AND FRACTURES



1,000

100

log (ruler - cm)

1+10

236

100

log (ruler - cm)













Slide Mountain Rock Fragments Debris Flow Deposits D-4






1,000

100

log (ruler - cm)

10

1+



100

log (ruler - cm)

1,000

1+















Slide Mountain Fracture Spaces F-4













1-

10

100

log (ruler - cm)

1,000

244

1,000

1,000

100

10

log (ruler - cm)

Star Country I want

APPENDIX D:

LOG(N(r)) VERSUS LOG(r) PLOTS OF LINEAMENTS













No. 4 Big Rock Mesa Linearment D Box Counting Method



No. 7 Upper Gross Linearment D Box Counting Method





No. 19 Karuizawa Landsilde Linerment Box counting



No. 20 Happoudai Landslide Linerment Box counting



10000



No. 24 Kitaurata Landslide Linerment Box counting



No. 32 Maruta Landslide Linerment Box counting





No. 31 Maseguchi Landslide Linerment Box counting







And I had been of which I particular in the

APPENDIX E:

LOG(N(r)) VERSUS LOG(r) PLOTS OF MODEL B



































No. 8 Meadow Mt. Landslide (Length) Model B Fractal Dimension



No. 9 Mayunmarca Landslide (Length) Model B Fractal Dimension















No. 11 Arvey Landslide (Length) Model B Fractal Dimension



No. 12 Kiritani Landslide (Length) Model B Fractal Dimension















No. 14 Hitohane Landslide (Width) Model B Fractal Dimension



No. 15 Takisaka Landslide (Length) Model B Fractal Dimension

















No. 20 Happoudal Landslide (Length) Model B Fractal Dimension











log (ruler - m)

log (ruler - m)







No. 30 Maruyama Landslide (Width) Model B Fractal Dimension





No. 29 Kamatsuka Landslide (Length) Model B Fractal Dimension



No. 30 Maruyama Landslide (Length) Model B Fractal Dimension





No. 32 Maruta Landslide (Width) Model B Fractal Dimension









No. 32 Maruta Landslide (Length) Model B Fractal Dimension



No. 33 Kodomarl Landslide (Length) Model B Fractal Dimension



















No. 36 Nishinotani Landslide (Length) Model B Fractal Dimension









No. 39 Nyuya Landsilde (Width) Model B Fractal Dimension





No. 38 Nuta Landslide (Length) Model B Fractal Dimension



No. 39 Nyuya Landsilde (Length) Model B Fractal Dimension



Samples the of the second

APPENDIX F:

## STATISTICAL DATA OF LANDSLIDES

#### Statistical List of Landslide Blocks

|    |                | Whole Blocks |       |         |          |       |         |          |  |
|----|----------------|--------------|-------|---------|----------|-------|---------|----------|--|
|    |                | # of         |       | width   |          |       | length  | 1        |  |
|    |                | blocks       | max   | average | std. dev | max   | average | std. dev |  |
| 1  | Midway Bridge  | 103          | 1,930 | 122.9   | 191.7    | 1,690 | 117.5   | 181.0    |  |
| 2  | Boca Ridge     | 188          | 3,500 | 186.0   | 235.7    | 3,000 | 164.5   | 245.8    |  |
| 3  | Palos Verdes   | 131          | 5,240 | 285.4   | 476.1    | 2,500 | 331.9   | 333.7    |  |
| 4  | Bick Rock Mesa | 329          | 2,140 | 71.7    | 142.3    | 960   | 66.6    | 91.8     |  |
| 5  | Thristle       | 84           | 3,600 | 330.9   | 465.8    | 4,030 | 378.6   | 531.8    |  |
| 6  | Lower Gross    | 83           | 3,410 | 319.5   | 449.9    | 3,600 | 305.6   | 488.8    |  |
| 7  | Upper Gross    | 80           | 4,030 | 339.0   | 493.2    | 5,500 | 460.7   | 730.5    |  |
| 8  | Meadow Mt.     | 79           | 1,350 | 129.3   | 168.1    | 2,560 | 207.2   | 317.8    |  |
| 9  | Mayunmarca     | 93           | 5,400 | 506.7   | 638.9    | 6,500 | 679.0   | 822.4    |  |
| 10 | La Frasse      | 67           | 1,060 | 159.0   | 152.0    | 2,300 | 223.0   | 285.1    |  |
| 11 | Arvey          | 73           | 1,460 | 121.7   | 186.1    | 1,270 | 169.9   | 193.5    |  |
| 12 | Kiritani       | 87           | 2,330 | 202.7   | 302.9    | 1,730 | 277.4   | 309.3    |  |
| 13 | Katsurabara    | 131          | 1,120 | 85.8    | 122.2    | 1,760 | 121.1   | 186.8    |  |
| 14 | Hitohane       | 365          | 2,360 | 88.2    | 142.4    | 2,640 | 113.4   | 163.7    |  |
| 15 | Takisaka       | 171          | 1,100 | 77.3    | 118.4    | 1,470 | 82.6    | 148.2    |  |
| 16 | Sakae          | 55           | 2,500 | 260.5   | 397.2    | 1,500 | 218.8   | 218.8    |  |
| 17 | Mushigame      | 156          | 2,630 | 169.1   | 285.0    | 2,240 | 182.1   | 225.4    |  |
| 18 | Higashinomyo   | 81           | 2,490 | 139.6   | 285.4    | 1,230 | 142.6   | 182.4    |  |
| 19 | Karuizawa      | 130          | 2,300 | 192.6   | 231.3    | 3,500 | 239.0   | 349.5    |  |
| 20 | Happoudai      | 71           | 2,380 | 254.8   | 328.4    | 1,750 | 275.0   | 273.4    |  |
| 21 | Raiden         | 176          | 2,630 | 212.6   | 260.8    | 4,380 | 218.2   | 362.5    |  |
| 22 | Nishinakanoho  | 62           | 1,280 | 206.3   | 195.9    | 2,700 | 253.4   | 348.8    |  |
| 23 | Mizunashi      | 263          | 2,800 | 118.5   | 193.4    | 2,550 | 131.0   | 183.7    |  |
| 24 | Kitaurata      | 90           | 2,040 | 181.3   | 288.5    | 1,950 | 200.7   | 253.4    |  |
| 25 | Uenoyama       | 52           | 1,810 | 162.4   | 256.5    | 1,060 | 149.0   | 175.2    |  |
| 26 | Nakatateyama   | 91           | 2,700 | 172.0   | 283.9    | 1,420 | 193.4   | 194.8    |  |
| 27 | Yumoto         | 44           | 1,060 | 181.9   | 189.7    | 1,470 | 227.3   | 253.8    |  |
| 28 | Yuyama         | 80           | 2,700 | 191.9   | 310.0    | 1,190 | 178.0   | 207.6    |  |
| 29 | Kamatsuka      | 138          | 1,850 | 124.1   | 179.5    | 1,750 | 168.4   | 192.8    |  |
| 30 | Maruyama       | 163          | 5,650 | 285.6   | 546.1    | 5,500 | 324.9   | 533.2    |  |
| 31 | Maseguchi      | 113          | 2,480 | 177.1   | 248.9    | 2,130 | 191.1   | 228.4    |  |
| 32 | Maruta         | 124          | 3,830 | 224.9   | 384.6    | 2,480 | 253.4   | 333.7    |  |
| 33 | Kodomari       | 80           | 2,830 | 251.1   | 425.3    | 2,040 | 234.7   | 294.2    |  |
| 34 | Ohbora         | 83           | 2,510 | 240.5   | 317.9    | 3,090 | 285.9   | 361.7    |  |
| 35 | Urushinose     | 51           | 600   | 48.8    | 84.8     | 300   | 39.0    | 49.3     |  |
| 36 | Nishinotani    | 165          | 1,200 | 87.5    | 110.3    | 1,300 | 93.4    | 122.4    |  |
| 37 | Youne          | 47           | 1,360 | 190.1   | 208.7    | 950   | 205.4   | 159.5    |  |
| 38 | Nuta           | 119          | 2,054 | 135.6   | 202.2    | 1,924 | 146.5   | 199.9    |  |
| 39 | Nyuuya         | 30           | 1,210 | 210.3   | 239.3    | 1,370 | 254.2   | 268.5    |  |
| 40 | Hikinota       |              |       |         |          |       |         |          |  |

#### Statistical List of Landslide Blocks

|    |                | Second Level Blocks |       |         |        |           |       |         |        |           |
|----|----------------|---------------------|-------|---------|--------|-----------|-------|---------|--------|-----------|
|    |                | # of                |       | width   |        |           |       | length  |        |           |
|    | Simbol         | blocks              | max   | average | midian | std. dev. | max   | average | midian | std. dev. |
| 1  | Midway Bridge  | 18                  | 464   | 222.9   | 196    | 77.3      | 667   | 246.4   | 196    | 137.1     |
| 2  | Boca Ridge     | 35                  | 1,813 | 529.3   | 411    | 381.9     | 2,296 | 477.3   | 375    | 442.2     |
| 3  | Palos Verdes   | 22                  | 1,143 | 590.4   | 536    | 223.1     | 1,714 | 774.9   | 702    | 343.5     |
| 4  | Bick Rock Mesa | 43                  | 463   | 176.4   | 133    | 99.8      | 511   | 180.5   | 143    | 116.3     |
| 5  | Thristle       | 12                  | 2,256 | 755.0   | 576    | 520.8     | 2,160 | 906.0   | 708    | 598.5     |
| 6  | Lower Gross    | 11                  | 1,584 | 904.4   | 960    | 401.8     | 2,160 | 925.1   | 864    | 522.5     |
| 7  | Upper Gross    | 18                  | 1,512 | 669.3   | 636    | 340.9     | 2,952 | 938.7   | 708    | 688.3     |
| 8  | Meadow Mt.     | 12                  | 602   | 297.2   | 277    | 123.8     | 818   | 496.5   | 500    | 198.9     |
| 9  | Mayunmarca     | 13                  | 3,000 | 1,100.0 | 900    | 625.7     | 3,000 | 1,684.6 | 1,750  | 681.5     |
| 10 | La Frasse      | 14                  | 582   | 303.0   | 285    | 121.5     | 545   | 385.3   | 364    | 116.7     |
| 11 | Arvey          | 18                  | 667   | 211.3   | 179    | 139.6     | 917   | 298.9   | 238    | 203.9     |
| 12 | Kiritani       | 23                  | 1,400 | 384.8   | 238    | 287.5     | 1,150 | 570.1   | 450    | 359.3     |
| 13 | Katsurabara    | 6                   | 676   | 360.4   | 338    | 160.0     | 1,054 | 563.1   | 473    | 224.7     |
| 14 | Hitohane       | 57                  | 755   | 205.9   | 168    | 129.0     | 655   | 265.1   | 202    | 150.2     |
| 15 | Takisaka       | 27                  | 598   | 182.6   | 127    | 120.4     | 760   | 195.5   | 137    | 154.9     |
| 16 | Sakae          | 9                   | 1,450 | 597.2   | 525    | 344.6     | 450   | 395.8   | 375    | 109.0     |
| 17 | Mushigame      | 33                  | 1,220 | 283.4   | 244    | 205.3     | 610   | 297.5   | 244    | 178.3     |
| 18 | Higashinomyo   | 11                  | 870   | 309.6   | 232    | 193.4     | 826   | 411.1   | 406    | 186.2     |
| 19 | Karuizawa      | 17                  | 750   | 470.6   | 475    | 165.2     | 1,200 | 635.3   | 575    | 261.1     |
| 20 | Happoudai      | 15                  | 1,475 | 511.7   | 450    | 301.4     | 1,175 | 568.3   | 450    | 256.5     |
| 21 | Raiden         | 25                  | 1,188 | 577.0   | 475    | 237.8     | 1,675 | 527.0   | 500    | 278.4     |
| 22 | Nishinakanoho  | 11                  | 762   | 448.1   | 443    | 148.4     | 745   | 501.3   | 479    | 144./     |
| 23 | Mizunashi      | 32                  | 995   | 296.6   | 257    | 162.4     | 878   | 323.2   | 286    | 1/9.1     |
| 24 | Kitaurata      | 14                  | 1,064 | 441.4   | 279    | 347.7     | 656   | 401.5   | 426    | 148.9     |
| 25 | Uenoyama       | 7                   | 745   | 341.9   | 319    | 181.5     | 724   | 369.8   | 301    | 181.1     |
| 26 | Nakatateyama   | 15                  | 585   | 314.4   | 301    | 117.2     | 869   | 413.7   | 408    | 212.7     |
| 27 | Yumoto         | 8                   | 426   | 270.4   | 240    | 102.1     | 674   | 407.8   | 345    | 153.0     |
| 28 | Yuyama         | 13                  | 567   | 313.7   | 248    | 120.3     | 798   | 313.7   | 266    | 155.2     |
| 29 | Kamatsuka      | 17                  | 702   | 322.9   | 277    | 139.3     | 660   | 446.8   | 426    | 161.7     |
| 30 | Maruyama       | 17                  | 1,875 | 694.1   | 625    | 375.7     | 2,050 | 948.5   | 8/5    | 418.0     |
| 31 | Maseguchi      | 20                  | 674   | 339.1   | 248    | 185.2     | 922   | 385.6   | 310    | 198.9     |
| 32 | Maruta         | 20                  | 1,489 | 516.8   | 350    | 353.3     | 1,950 | 693.3   | 610    | 416.4     |
| 33 | Kodomari       | 18                  | 1,897 | 403.4   | 293    | 393.8     | 1,064 | 372.3   | 310    | 249.3     |
| 34 | Ohbora         | 9                   | 1,200 | 628.3   | 636    | 274.7     | 1,273 | 5/7.8   | 545    | 201.9     |
| 35 | Urushinose     | 8                   | 200   | 90.9    | 82     | 48.5      | 150   | 97.2    | 97     | 32.1      |
| 36 | Nishinotani    | 27                  | 430   | 198.7   | 180    | 87.5      | 470   | 218.5   | 216    | 100.0     |
| 37 | Youne          | 8                   | 727   | 358.8   | 293    | 159.7     | 649   | 362.0   | 312    | 107.5     |
| 38 | Nuta           | 11                  | 574   | 375.0   | 352    | 138.7     | 851   | 407.0   | 407    | 197.5     |
| 39 | Nyuuya         | 9                   | 460   | 231.0   | 190    | 101.2     | 635   | 286.6   | 246    | 132.3     |
| 40 | Hikinota       |                     | 1     |         |        |           |       |         |        | <u></u>   |

## Statistical List of Landslide Blocks

| T   |                | Third Level Blocks |     |         |        |           |       |         |        |           |
|-----|----------------|--------------------|-----|---------|--------|-----------|-------|---------|--------|-----------|
|     |                | # of width length  |     |         |        |           |       |         |        |           |
|     | Simbol         | blocks             | max | average | midian | std. dev. | max   | average | midian | std. dev. |
| 1   | Midway Bridge  | 84                 | 214 | 80.0    | 71     | 31.5      | 167   | 71.2    | 63     | 31.4      |
| 2   | Boca Ridge     | 153                | 242 | 108.0   | 103    | 41.8      | 254   | 93.3    | 85     | 44.8      |
| 3   | Palos Verdes   | 108                | 429 | 177.5   | 155    | 84.1      | 786   | 221.6   | 190    | 123.9     |
| 4   | Bick Rock Mesa | 284                | 197 | 44.9    | 38     | 26.7      | 197   | 43.7    | 36     | 25.6      |
| 5   | Thristle       | 71                 | 696 | 213.2   | 168    | 126.6     | 696   | 238.0   | 192    | 138.9     |
| 6   | Lower Gross    | 71                 | 432 | 185.4   | 168    | 79.4      | 360   | 163.3   | 144    | 66.9      |
| 7   | Upper Gross    | 61                 | 360 | 181.0   | 168    | 62.5      | 1,032 | 237.0   | 192    | 164.1     |
| 8   | Meadow Mt.     | 66                 | 178 | 80.3    | 80     | 32.0      | 308   | 118.4   | 96     | 62.6      |
| 9   | Mayunmarca     | 79                 | 800 | 347.2   | 300    | 172.2     | 1,300 | 439.9   | 350    | 259.5     |
| 10  | La Frasse      | 52                 | 206 | 102.7   | 97     | 34.9      | 242   | 139.3   | 127    | 61.0      |
| 11  | Arvey          | 54                 | 190 | 66.9    | 57     | 35.8      | 357   | 106.4   | 95     | 67.8      |
| 12  | Kiritani       | 63                 | 313 | 102.5   | 80     | 53.9      | 308   | 147.6   | 138    | 60.2      |
| 13  | Katsurabara    | 124                | 261 | 64.2    | 54     | 42.2      | 297   | 86.5    | /8     | 46.9      |
| 14  | Hitohane       | 307                | 173 | 58.9    | 55     | 26.6      | 223   | 77.0    | 68     | 36.7      |
| 15  | Takisaka       | 142                | 147 | 45.4    | 39     | 23.4      | 108   | 46.0    | 42     | 20.5      |
| 16  | Sakae          | 39                 | 263 | 128.8   | 113    | 47.0      | 275   | 146.9   | 125    | 62.0      |
| 17  | Mushigame      | 119                | 244 | 94.3    | 73     | 42.6      | 427   | 120.6   | 98     | 03.9      |
| 18  | Higashinomyo   | 69                 | 174 | 78.3    | 72     | 32.0      | 217   | 84.0    | 12     | 37.5      |
| 19  | Karuizawa      | 112                | 313 | 131.6   | 113    | 53.5      | 425   | 149.8   | 125    | 00.0      |
| 20  | Happoudai      | 55                 | 275 | 146.1   | 138    | 53.9      | 350   | 168.2   | 150    | 69.6      |
| 21  | Raiden         | 150                | 425 | 104.5   | 125    | 59.8      | 450   | 88.5    | 125    | 52.0      |
| 22  | Nishinakanoho  | 50                 | 248 | 131.8   | 124    | 37.9      | 319   | 150.0   | 142    | 46.1      |
| 23  | Mizunashi      | 230                | 321 | 82.1    | 71     | 44.4      | 388   | 93.7    | 82     | 40.1      |
| 24  | Kitaurata      | 74                 | 230 | 95.1    | 89     | 31.0      | 266   | 123.8   | 124    | 92.2      |
| 25  | Uenoyama       | 44                 | 186 | 96.5    | 80     | 38.0      | 195   | 93.1    | 104    | 60.2      |
| 26  | Nakatateyama   | 75                 | 301 | 109.9   | 106    | 47.8      | 390   | 133.0   | 124    | 46.6      |
| 27  | Yumoto         | - 34               | 195 | 115.0   | 106    | 32.5      | 284   | 128.8   | 100    | 40.0      |
| 28  | Yuyama         | 65                 | 266 | 118.1   | 89     | 42.3      | 248   | 116.2   | 106    | 67.7      |
| 29  | Kamatsuka      | 120                | 277 | 81.6    | 64     | 45.3      | 404   | 115.9   | 175    | 88.8      |
| 130 | Maruyama       | 144                | 475 | 151.3   | 156    | 77.9      | 525   | 145.1   | 106    | 49.5      |
| 31  | Maseguchi      | 92                 | 248 | 116.8   | 106    | 38.9      | 284   | 127.0   | 133    | 56.2      |
| 32  | Maruta         | 103                | 301 | 133.2   | 2 124  | 51.9      | 337   | 140.0   |        | 60.4      |
| 33  | Kodomari       | 60                 | 248 | 130.8   | 3 124  | 44.5      | 301   | 143.0   | 16/    | 99.0      |
| 34  | Ohbora         | 72                 | 473 | 139.6   | 5 127  | 74.6      | 618   | 180.0   |        | 135       |
| 35  | Urushinose     | 42                 | 80  | 27.7    | 26     | 16.3      | 00    | 21.1    | 5      | 315       |
| 136 | Nishinotani    | 137                | 160 | 57.5    | 5 50   | 27.6      | 180   | 59.5    | 120    | 78.7      |
| 37  | Youne          | 39                 | 286 | 125.4   | 104    | 55.1      | 442   | 104.2   | 100    | 3 45.4    |
| 38  | Nuta           | 107                | 204 | 93.1    | 1 83   | 3/.1      | 287.0 | 142 1   | 3 14   | 3 34 4    |
| 139 | Nyuuya         | 19                 | 175 | 113.6   | 5 111  | 30.       | 200   | 143.0   | 14     |           |
| 40  | Hikinota       |                    |     |         |        |           |       |         |        |           |

Carry Department of Laboration in Line Street

APPENDIX G:

# FRACTAL DIMENSION LISTS

Fractal Dimensions of Landslides in each Geology Area

| Whole    2nd    3rd    Whole    2nd    3rd    Whole    2nd    3rd      MUDSTONE    1.84    3.80    1.66    1.83    3.96    0.99    1.01    0.96      IS    Sakae    1.12    1.22    2.41    1.42    2.36    2.00    0.79    0.52    1.21      IS    Figashinomyo    1.22    1.51    2.88    1.29    1.56    2.56    0.95    0.96    1.12      IS    Higashinomyo    1.52    2.03    3.24    1.46    1.73    3.25    0.92    1.03    0.10    0.80    0.81      IS    Paopoudal    1.51    2.09    3.53    1.53    3.50    1.01    0.80    0.95    3.35    1.00    0.80    0.95    3.53    1.68    3.50    1.01    0.80    0.25    0.55    sid.    0.44    0.71    0.68    0.80    0.95    0.71    0.68    0.105    0.55    0.56    0.56    0.56 <t< th=""><th>Nol</th><th colspan="3">Width</th><th colspan="3">Length</th><th colspan="3">Width/Length</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nol | Width          |       |       | Length |       |       | Width/Length |       |       |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|-------|-------|--------|-------|-------|--------------|-------|-------|-------|
| MUDSTONE    1.64    1.84    3.80    1.83    3.96    0.99    1.01    0.96      14    Hitchane    1.64    1.84    3.80    1.83    3.96    0.99    1.01    0.96      18    Hagshinomyo    1.22    1.41    1.42    2.36    0.00    0.79    0.52    1.21      18    Hagshinomyo    1.22    1.51    2.88    1.82    3.58    0.92    1.03    1.13    1.26    1.07      20    Happoudai    1.35    1.78    2.63    1.46    1.73    3.25    0.92    1.03    0.81    0.95      21    Raidon    1.51    2.03    3.53    1.54    1.53    3.15    0.97    0.91    1.13      23    Masupatin    1.49    1.33    3.56    1.43    1.41    4.17    0.83    0.96    0.95    1.05      24    Masupatin    1.46    1.33    1.56    1.45    1.51    4.53    3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -   |                | Whole | 2nd   | 3rd    | Whole | 2nd   | 3rd          | Whole | 2nd   | 3rd   |
| 14  Hichoane  1.64  1.84  3.80  1.66  1.83  3.96  0.99  1.01  0.96    16  Sakae  1.12  1.22  2.41  1.42  2.36  2.00  0.79  0.52  1.21    17  Mushigashinomyo  1.22  1.51  2.86  1.58  2.56  0.95  0.99  1.03  1.22    19  Karuizawa  1.61  2.30  3.29  1.43  1.82  3.06  1.13  1.26  1.07    20  Happoudai  1.53  2.03  3.16  1.44  1.82  3.06  0.32  1.12  1.05  0.60  0.92  1.03  0.81    21  Nishinakanoh  1.51  2.03  3.56  1.53  1.53  1.53  1.53  0.50  0.96  0.95  0.10  0.80  0.95  1.05  0.96  0.95  0.96  0.95  0.96  0.95  0.97  0.70  0.81  0.96  0.95  0.97  0.70  0.81  0.80  0.85  0.86  0.97  0.70  0.82 <t< td=""><td></td><td>MUDSTONE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | MUDSTONE       |       |       |        |       |       |              |       |       |       |
| 16  Sakae  1.12  1.22  2.41  1.42  2.36  2.00  0.79  0.52  1.21    17  Mushigame  1.31  1.72  3.17  1.56  1.66  1.67  2.59  0.84  1.03  1.22    18  Higashinomyo  1.22  1.51  2.88  1.29  1.58  2.66  0.84  1.03  0.81  1.22    20  Happoudai  1.35  1.72  2.63  1.46  1.73  3.25  0.92  1.03  0.81    21  Raiden  1.53  2.03  3.16  1.46  1.73  3.25  0.92  1.03  0.81  0.80  0.85    22  Nishinakanoho  1.51  2.09  3.55  1.54  1.53  3.15  0.97  0.91  1.13    32  Marua  1.37  1.46  3.56  1.61  0.83  3.50  1.016  0.166  0.55  1.65    34  1.68  3.27  1.45  1.78  3.16  0.94  0.71  1.06  0.85  0.97  0.70<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14  | Hitohane       | 1.64  | 1.84  | 3.80   | 1.66  | 1.83  | 3.96         | 0.99  | 1.01  | 0.96  |
| 17    Mushigame    1.31    1.72    3.17    1.56    1.67    2.89    0.84    1.03    1.22      18    Higgashinornyo    1.23    2.80    1.29    1.58    2.56    0.95    0.96    1.13      20    Happoudai    1.53    1.78    2.63    1.46    1.73    3.25    0.92    1.03    0.01    0.91      21    Raiden    1.53    2.03    3.16    1.46    1.73    3.25    0.92    1.03    0.81    0.99    1.13      21    Raiden    1.51    2.09    3.55    1.54    1.53    3.15    0.97    0.91    1.13      22    Nishinakanoho    1.51    2.99    3.55    1.54    1.53    3.57    0.97    1.14      32    Marouta    1.37    1.46    3.55    0.51    0.51    0.55    1.05    1.06    0.55    0.67    0.57    1.06    0.88    0.51    1.05    1.06    0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16  | Sakae          | 1.12  | 1.22  | 2.41   | 1.42  | 2.36  | 2.00         | 0.79  | 0.52  | 1.21  |
| Higashinomyo    1.22    1.51    2.86    1.28    1.58    2.66    0.95    0.96    1.13      19    Karulzawa    1.61    2.30    3.22    1.43    1.82    3.08    1.13    1.26    1.07      20    Happoudia    1.53    2.03    3.16    1.48    1.85    3.19    1.03    0.81      22    Nishinakanoho    1.51    2.09    3.53    1.35    2.00    3.32    1.12    1.06    0.80    0.95      24    Kitaurata    1.19    1.33    3.56    1.54    1.53    3.15    0.97    0.91    1.13      32    Marua    1.37    1.46    3.58    1.36    1.35    1.63    3.50    1.01    0.80    1.68    0.16    0.35    1.68    3.57    0.91    0.168    0.55    1.75      34d    .648    1.84    1.82    1.32    1.32    1.32    1.32    1.34    2.84    0.35    0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17  | Mushigame      | 1.31  | 1.72  | 3.17   | 1.56  | 1.67  | 2.59         | 0.84  | 1.03  | 1.22  |
| 13    Karulzawa    1.61    2.30    3.22    1.43    1.82    3.08    1.13    1.26    1.07    3.25    0.92    1.03    0.01      20    Happoudai    1.35    1.76    2.63    1.44    1.73    3.25    0.92    1.03    0.81      22    Nishinakanoho    1.51    2.09    3.53    1.35    1.43    1.41    4.17    0.83    0.80    0.95      24    Kitaurata    1.19    1.33    3.56    1.54    1.53    3.15    0.97    0.91    1.13      32    Mavrage    1.39    1.68    3.27    1.45    1.36    0.96    0.95    1.05      std. deviation    0.166    0.355    0.459    0.100    0.243    0.541    0.116    0.168    0.116      35    Maso    1.42    1.43    1.43    2.45    1.32    1.38    3.50    0.97    0.71    1.06      36    Maroyama    1.25    1.34 </td <td>18</td> <td>Higashinomyo</td> <td>1.22</td> <td>1.51</td> <td>2.88</td> <td>1.29</td> <td>1.58</td> <td>2.56</td> <td>0.95</td> <td>0.96</td> <td>1.13</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18  | Higashinomyo   | 1.22  | 1.51  | 2.88   | 1.29  | 1.58  | 2.56         | 0.95  | 0.96  | 1.13  |
| 20    Happoudai    1.35    1.78    2.63    1.46    1.73    2.25    0.92    1.03    0.10    0.99      21    Raidon    1.53    2.03    3.16    1.46    1.85    3.19    1.03    1.10    0.99      21    Nishinakanoho    1.51    2.09    3.55    1.35    2.00    3.32    1.12    1.05    1.06      23    Maruta    1.37    1.46    3.56    1.36    1.53    3.15    0.97    0.91    1.13      23    Maruta    1.37    1.46    3.56    1.36    1.35    0.01    0.80    0.97    0.16    0.166    0.166    0.166    0.166    0.166    0.166    0.166    0.166    0.166    0.166    0.166    0.166    0.166    0.166    0.166    0.166    0.171    1.06    1.08    3.37    0.97    1.71    1.06    0.85    0.97    0.70    228    Kamatsuka    1.46    1.92    1.33    1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19  | Karuizawa      | 1.61  | 2.30  | 3.29   | 1.43  | 1.82  | 3.08         | 1.13  | 1.26  | 1.07  |
| 21  Raiden  1.53  2.03  3.16  1.48  1.85  3.19  1.03  1.10  0.99    22  Nishinakanoho  1.51  2.09  3.53  1.35  2.00  3.32  1.12  1.05  1.08    24  Kñaurata  1.19  1.33  3.56  1.54  1.53  3.15  0.97  0.91  1.13    32  Maruta  1.37  1.46  3.52  1.45  1.76  3.16  0.96  0.95  1.05    std. deviation  0.166  0.355  0.459  0.100  0.243  0.591  0.106  0.186  0.116    SS, MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20  | Happoudai      | 1.35  | 1.78  | 2.63   | 1.46  | 1.73  | 3.25         | 0.92  | 1.03  | 0.81  |
| 22    Nishinakanoho    1.51    2.09    3.52    1.35    2.00    3.32    1.12    1.05    1.06      24    Kitaurata    1.19    1.13    3.95    1.43    1.41    4.17    0.83    0.80    0.95      31    Masoguchi    1.49    1.39    1.68    3.27    1.45    1.75    3.16    0.97    0.91    1.13      32    Maruta    1.37    1.46    3.56    1.04    1.75    3.16    0.96    0.95    1.05      34    Celvation    0.166    0.355    0.55    0.100    0.166    0.116      35    Mst    1.63    3.37    0.97    0.106    0.116    0.166    0.116      4    Big Bock Mesa    1.48    1.86    3.27    1.43    1.05    1.34    1.33    1.63    3.70    0.71    1.06      3    Kados Mesa    1.44    1.86    2.42    1.33    1.63    2.37    1.01    1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21  | Raiden         | 1.53  | 2.03  | 3.16   | 1.48  | 1.85  | 3.19         | 1.03  | 1.10  | 0.99  |
| 24    Kitaurata    1.19    1.13    3.95    1.43    1.44    1.77    0.083    0.80    0.95      31    Masoguchi    1.49    1.39    3.56    1.54    1.53    3.15    0.97    0.91    1.13      32    Maruta    1.37    1.46    3.58    1.36    1.83    3.50    1.06    0.355    1.05      std. deviation    0.166    0.355    0.459    1.00    0.243    0.591    0.160    0.365    1.05      3    Palos Verdes    1.48    1.84    2.21    1.57    2.59    2.08    0.94    0.71    1.06      3    Maryama    1.34    1.45    2.92    1.33    1.66    2.77    1.01    0.88    1.05      33    Kodomari    1.21    1.29    3.42    1.38    1.43    2.86    0.80    0.90    1.01      34    Maryama    1.34    1.57    2.86    1.30    1.43    1.75    0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22  | Nishinakanoho  | 1.51  | 2.09  | 3.53   | 1.35  | 2.00  | 3.32         | 1.12  | 1.05  | 1.06  |
| 31  Masoguchi  1.49  1.39  3.56  1.54  1.53  3.15  0.97  0.91  1.13    32  Maruta  1.37  1.46  3.58  1.83  3.50  1.01  0.80  1.02    average  1.39  1.68  3.27  1.45  1.76  3.16  0.96  0.95  1.05    std. deviation  0.166  0.355  0.459  0.100  0.243  0.591  0.106  0.186  0.116    35  Palco Verdes  1.44  1.86  3.39  1.53  1.63  3.37  0.97  1.14  1.01    25  Kamatsuka  1.46  1.96  2.49  1.55  1.43  3.65  2.77  1.01  0.88  1.05    33  Kodomari  1.21  1.29  3.42  1.33  1.63  2.39  0.89  0.95  0.86    34  Kodomari  1.18  1.39  2.75  1.43  1.76  2.76  0.94  0.92  1.01    34  Obora  1.18  1.39  2.76  1.43 </td <td>24</td> <td>Kitaurata</td> <td>1.19</td> <td>1.13</td> <td>3.95</td> <td>1.43</td> <td>1.41</td> <td>4.17</td> <td>0.83</td> <td>0.80</td> <td>0.95</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24  | Kitaurata      | 1.19  | 1.13  | 3.95   | 1.43  | 1.41  | 4.17         | 0.83  | 0.80  | 0.95  |
| 32    Maruta    1.37    1.46    3.56    1.36    1.83    3.50    1.01    0.80    1.02      average    1.39    1.68    3.27    1.45    1.78    3.16    0.96    0.95    1.05      std. deviation    0.166    0.355    0.55    0.100    0.168    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.116    0.108    1.05    1.33    1.63    3.37    0.97    1.01    1.09      20    Maruyama    1.34    1.45    2.92    1.33    1.65    2.77    1.01    0.08    1.05      34    Ohbora    1.18    1.39    2.34    1.33    1.65    2.77    1.01    0.90    9.92    0.11      15    tstd.deviation    0.122    0.263    0.464    0.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31  | Maseguchi      | 1.49  | 1.39  | 3.56   | 1.54  | 1.53  | 3.15         | 0.97  | 0.91  | 1.13  |
| average    1.39    1.66    3.27    1.45    1.76    3.16    0.96    0.95    1.05      std. deviation    0.166    0.355    0.459    0.100    0.243    0.591    0.106    0.186    0.116      SS, MS              0.106    0.186    0.116    0.186    0.116    0.186    0.116    0.186    0.116    0.186    0.116    0.186    0.116    0.186    0.116    0.186    0.116    1.32    1.33    1.65    2.77    1.01    0.08    0.105    0.133    1.65    2.77    1.01    0.88    0.90    1.19    3.34    1.59    2.75    1.43    1.75    2.75    0.94    0.92    1.01      31    Obora    1.18    1.39    2.34    1.33    1.63    2.39    0.92    0.021    0.111      105    Takisaka    1.36    1.57    2.86    1.30    1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32  | Maruta         | 1.37  | 1.46  | 3.58   | 1.36  | 1.83  | 3.50         | 1.01  | 0.80  | 1.02  |
| std. deviation    0.166    0.355    0.459    0.100    0.243    0.591    0.106    0.186    0.116      SS, MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | average        | 1.39  | 1.68  | 3.27   | 1.45  | 1.78  | 3.16         | 0.96  | 0.95  | 1.05  |
| SS, MS    Image: state of the sta |     | std. deviation | 0.166 | 0.355 | 0.459  | 0.100 | 0.243 | 0.591        | 0.106 | 0.186 | 0.116 |
| 3    Palos Verdes    1.48    1.84    2.21    1.57    2.59    2.08    0.94    0.71    1.06      4    Big Rock Mesa    1.48    1.86    3.39    1.53    1.63    3.37    0.97    1.14    1.01      25    Uenoyama    1.25    1.34    2.45    1.32    1.38    3.50    0.95    0.97    0.70      29    Kamatsuka    1.46    1.96    2.49    1.55    1.94    2.28    0.94    1.01    1.09      30    Maruyama    1.34    1.45    2.92    1.33    1.65    2.77    1.01    0.88    0.85    0.98      31    Obora    1.18    1.39    2.75    1.43    1.75    2.75    0.94    0.92    1.01      34    Obora    1.14    1.50    1.83    1.63    1.63    3.02    0.92    0.92    1.01      35    Takisaka    1.36    1.37    1.64    2.60    3.18    0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | SS, MS         |       |       |        |       |       |              |       |       |       |
| 4  Big Rock Mesa  1.48  1.86  3.39  1.53  1.63  3.37  0.97  1.14  1.01    25  Uenoyama  1.25  1.34  2.45  1.32  1.38  3.50  0.97  0.70    30  Maruyama  1.34  1.45  2.92  1.33  1.65  2.77  1.01  0.88  1.05    33  Kodomari  1.21  1.29  3.42  1.38  1.43  2.88  0.88  0.99  0.19    34  Ohbora  1.18  1.39  2.75  1.43  1.75  2.75  0.94  0.92  1.01    34  Dibora  0.122  0.263  0.464  0.166  0.382  0.502  0.042  0.125  0.141    TUFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3   | Palos Verdes   | 1.48  | 1.84  | 2.21   | 1.57  | 2.59  | 2.08         | 0.94  | 0.71  | 1.06  |
| 25  Uenoyama  1.25  1.34  2.45  1.32  1.38  3.50  0.95  0.97  0.70  0.70    29  Karnatsuka  1.46  1.96  2.49  1.55  1.94  2.28  0.94  1.01  1.08    30  Maruyama  1.34  1.45  2.92  1.33  1.65  2.77  1.01  0.88  0.99  1.19    33  Kodomari  1.21  1.29  3.42  1.38  1.43  2.88  0.89  0.89  0.85  0.99    avorage  1.34  1.59  2.75  1.43  1.75  2.75  0.94  0.92  1.01    std deviation  0.122  0.263  0.464  0.106  0.382  0.502  0.042  0.125  0.141    TUFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4   | Big Rock Mesa  | 1.48  | 1.86  | 3.39   | 1.53  | 1.63  | 3.37         | 0.97  | 1.14  | 1.01  |
| 29    Kamatsuka    1.46    1.96    2.49    1.55    1.94    2.28    0.94    1.01    1.09      30    Maruyama    1.34    1.45    2.92    1.33    1.65    2.77    1.01    0.88    1.03      34    Ohbora    1.18    1.39    2.34    1.33    1.63    2.39    0.89    0.85    0.98      average    1.34    1.59    2.75    1.43    1.75    2.75    0.94    0.92    1.01      std. deviation    0.122    0.263    0.464    0.106    0.382    0.502    0.042    0.125    0.11      TUFF        0.98    0.71    1.03      28    Mizunashi    1.60    1.84    3.27    1.64    2.60    3.18    0.98    0.71    1.03      28    Muzama    1.40    2.11    1.30    1.86    3.00    1.08    0.76    1.14      28    Yuyama    1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25  | Uenoyama       | 1.25  | 1.34  | 2.45   | 1.32  | 1.38  | 3.50         | 0.95  | 0.97  | 0.70  |
| 30  Maruyama  1.34  1.45  2.92  1.33  1.65  2.77  1.01  0.88  1.18    33  Kodomari  1.21  1.29  3.42  1.38  1.43  2.88  0.86  0.90  1.19    34  Ohbora  1.18  1.39  2.34  1.33  1.65  2.75  0.94  0.92  1.01    std deviation  0.122  0.263  0.464  0.106  0.382  0.502  0.042  0.125  0.141    TUFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29  | Kamatsuka      | 1.46  | 1.96  | 2.49   | 1.55  | 1.94  | 2.28         | 0.94  | 1.01  | 1.09  |
| 33  Kodomari  1.21  1.29  3.42  1.38  1.43  2.88  0.88  0.90  1.19    34  Ohbora  1.18  1.39  2.34  1.33  1.63  2.39  0.89  0.85  0.98    avorage  1.34  1.55  2.75  1.43  1.75  2.75  0.94  0.92  1.01    std. deviation  0.122  0.263  0.464  0.106  0.382  0.502  0.042  0.125  0.141    TUFF           0.92  1.01  1.03  2.68  1.57  2.86  1.30  1.44  3.02  1.05  1.09  0.97  0.97  0.97  0.97  2.7  Yumoto  1.40  1.41  3.41  1.30  1.86  3.00  1.08  0.76  1.14  0.85  1.44  0.95  1.44  0.93  1.44  0.86  0.98  9.98  std. deviston  0.88  0.98  1.44  0.93  1.40  0.47  0.442  0.061  1.81 <td< td=""><td>30</td><td>Maruyama</td><td>1.34</td><td>1.45</td><td>2.92</td><td>1.33</td><td>1.65</td><td>2.77</td><td>1.01</td><td>0.88</td><td>1.05</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30  | Maruyama       | 1.34  | 1.45  | 2.92   | 1.33  | 1.65  | 2.77         | 1.01  | 0.88  | 1.05  |
| 34  Ohbora  1.18  1.39  2.34  1.33  1.63  2.39  0.89  0.85  0.89    avorage  1.34  1.59  2.75  1.43  1.75  2.75  0.94  0.92  1.01    std. deviation  0.122  0.263  0.464  0.106  0.382  0.502  0.042  0.125  0.141    TUFF  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - <td>33</td> <td>Kodomari</td> <td>1.21</td> <td>1.29</td> <td>3.42</td> <td>1.38</td> <td>1.43</td> <td>2.88</td> <td>0.88</td> <td>0.90</td> <td>1.19</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33  | Kodomari       | 1.21  | 1.29  | 3.42   | 1.38  | 1.43  | 2.88         | 0.88  | 0.90  | 1.19  |
| avorage    1.34    1.59    2.75    1.43    1.75    2.75    0.94    0.92    1.01      std. deviation    0.122    0.263    0.464    0.106    0.382    0.502    0.042    0.125    0.141      TUFF             0.042    0.125    0.141      15    Takisaka    1.36    1.57    2.86    1.30    1.44    3.02    1.05    1.09    0.95      23    Mizunashi    1.60    1.84    3.27    1.64    2.60    3.18    0.98    0.71    1.03      26    Nakatateyama    1.440    1.45    3.50    1.47    1.89    4.14    0.95    1.14    0.85      27    Yumoto    1.40    2.15    3.50    1.47    1.89    4.14    0.95    1.14      28    Pora Bridge    1.53    2.77    3.27    1.42    1.75    3.301    1.03    1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34  | Ohbora         | 1.18  | 1.39  | 2.34   | 1.33  | 1.63  | 2.39         | 0.89  | 0.85  | 0.98  |
| istd. deviation    0.122    0.263    0.464    0.106    0.382    0.502    0.422    0.142    0.144      TUFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | average        | 1.34  | 1.59  | 2.75   | 1.43  | 1.75  | 2.75         | 0.94  | 0.92  | 0.141 |
| TUFF    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | std. deviation | 0.122 | 0.263 | 0.464  | 0.106 | 0.382 | 0.502        | 0.042 | 0.125 | 0.141 |
| 15  Takisaka  1.36  1.57  2.86  1.30  1.44  3.02  1.05  1.09  0.93    23  Mizunashi  1.60  1.84  3.27  1.64  2.60  3.18  0.98  0.71  1.03    26  Nakatateyama  1.44  1.96  2.89  1.58  2.68  2.99  0.91  0.73  0.97    27  Yumoto  1.40  1.41  3.41  1.30  1.86  3.00  1.08  0.76  1.14    8  Yuyama  1.40  2.15  3.50  1.47  1.89  4.14  0.95  1.14  0.85    average  1.44  1.79  3.19  1.46  2.09  3.27  0.99  0.88  0.98    std. devistion  0.084  0.266  0.264  0.140  0.474  0.442  0.061  0.188  0.96    VOLCANIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | TUFF           |       |       |        | 1.00  | 4.44  | 0.00         | 1.05  | 1.00  | 0.05  |
| 23    Mizunashi    1.60    1.84    3.27    1.64    2.60    3.18    0.98    0.71    1.03      26    Nakatateyama    1.44    1.96    2.89    1.58    2.68    2.99    0.91    0.73    0.97      27    Yumoto    1.40    1.41    3.41    1.30    1.86    3.00    1.08    0.76    1.14      28    Yuyama    1.40    2.15    3.50    1.47    1.89    4.14    0.95    1.14    0.88    0.98      average    1.44    1.79    3.19    1.46    2.09    3.27    0.99    0.88    0.98      std. devistion    0.084    0.266    0.264    0.140    0.474    0.442    0.061    0.188    0.096      VOLCANIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15  | Takisaka       | 1.36  | 1.57  | 2.86   | 1.30  | 1.44  | 3.02         | 1.05  | 1.09  | 1.02  |
| 26    Nakatateyama    1.44    1.96    2.89    1.58    2.99    0.91    0.73    0.97      27    Yumoto    1.40    1.41    3.41    1.30    1.86    3.00    1.08    0.76    1.14      28    Yuyama    1.40    2.15    3.50    1.47    1.89    4.14    0.95    1.14    0.85      average    1.44    1.79    3.19    1.46    2.09    3.27    0.99    0.88    0.96      VOLCANIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23  | Mizunashi      | 1.60  | 1.84  | 3.27   | 1.64  | 2.60  | 3.18         | 0.98  | 0.71  | 0.07  |
| 27  Yumoto  1.40  1.41  3.41  1.30  1.86  3.00  1.08  0.76  1.14    28  Yuyama  1.40  2.15  3.50  1.47  1.89  4.14  0.95  1.14  0.85    average  1.44  1.79  3.19  1.46  2.09  3.27  0.99  0.88  0.98    std. devistion  0.084  0.266  0.264  0.140  0.474  0.442  0.061  0.188  0.096    VOLCANIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26  | Nakatateyama   | 1.44  | 1.96  | 2.89   | 1.58  | 2.68  | 2.99         | 0.91  | 0.73  | 1.14  |
| 28    Yuyama    1.40    2.15    3.50    1.47    1.89    4.14    0.95    1.14    0.85      average    1.44    1.79    3.19    1.46    2.09    3.27    0.99    0.88    0.98      std. devistion    0.084    0.266    0.140    0.474    0.442    0.061    0.188    0.096      VOLCANIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27  | Yumoto         | 1.40  | 1.41  | 3.41   | 1.30  | 1.86  | 3.00         | 1.08  | 0.76  | 1.14  |
| average    1.44    1.79    3.19    1.46    2.09    3.27    0.39    0.58    0.39      std. devistion    0.084    0.266    0.264    0.140    0.474    0.442    0.061    0.188    0.096      VOLCANIC    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28  | Yuyama         | 1.40  | 2.15  | 3.50   | 1.47  | 1.89  | 4.14         | 0.95  | 1.14  | 0.05  |
| std. devision    0.084    0.266    0.264    0.140    0.474    0.442    0.061    0.168    0.030      VOLCANIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | average        | 1.44  | 1.79  | 3.19   | 1.46  | 2.09  | 3.21         | 0.99  | 0.00  | 0.90  |
| VOLCANIC    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | std. devistion | 0.084 | 0.266 | 0.264  | 0.140 | 0.4/4 | 0.442        | 0.001 | 0.100 | 0.030 |
| 1  Midway Bridge  1.53  2.77  3.27  1.42  1.75  2.30  1.33  1.40  3.62  1.29  1.35  3.01  1.03  1.10  1.20    12  Kiritani  1.24  1.36  2.34  1.34  1.46  3.34  0.93  0.93  0.75  0.84    13  Katsurabara  1.38  1.37  1.90  1.44  1.82  2.26  0.96  0.75  0.84    average  1.37  1.75  2.78  1.37  1.61  2.88  1.00  1.08  0.97    std. deviation  0.105  0.593  0.692  0.061  0.204  0.392  0.060  0.295  0.205    MESOZOIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | VOLCANIC       | 1.55  | 0.77  | 2.07   | 1.40  | 1 70  | 200          | 1.09  | 1.55  | 1 13  |
| 2    Boca Hidge    1.33    1.49    3.62    1.29    1.35    3.01    1.05    1.10    1.20      12    Kiritani    1.24    1.36    2.34    1.34    1.46    3.34    0.93    0.93    0.70      13    Katsurabara    1.38    1.37    1.90    1.44    1.82    2.26    0.96    0.75    0.84      average    1.37    1.75    2.78    1.37    1.61    2.88    1.00    1.08    0.97      std. deviation    0.105    0.593    0.692    0.061    0.204    0.392    0.060    0.295    0.205      MESOZOIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | Midway Bridge  | 1.53  | 2.11  | 3.27   | 1.42  | 1.79  | 2.50         | 1.00  | 1.00  | 1.20  |
| 12  Kiritani  1.24  1.36  2.34  1.34  1.40  3.34  0.35  0.35  0.35  0.35    13  Katsurabara  1.38  1.37  1.90  1.44  1.82  2.26  0.96  0.75  0.84    average  1.37  1.75  2.78  1.37  1.61  2.88  1.00  1.08  0.97    std. deviation  0.105  0.593  0.692  0.061  0.204  0.392  0.060  0.295  0.205    MESOZOIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2   | Boca Ridge     | 1.33  | 1.49  | 3.62   | 1.29  | 1.30  | 3.01         | 1.03  | 0.93  | 0.70  |
| 13  Katsurabara  1.38  1.37  1.90  1.44  1.62  2.20  0.30  0.75  0.74    average  1.37  1.75  2.78  1.37  1.61  2.88  1.00  1.08  0.97    std. deviation  0.105  0.593  0.692  0.061  0.204  0.392  0.060  0.295  0.205    MESOZOIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12  | Kiritani       | 1.24  | 1.36  | 2.34   | 1.34  | 1.40  | 2.04         | 0.93  | 0.33  | 0.84  |
| average    1.37    1.75    2.76    1.37    1.61    2.66    1.66    1.66    0.71      std. deviation    0.105    0.593    0.692    0.061    0.204    0.392    0.060    0.295    0.205      MESOZOIC                0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.295    0.205    1.14    1.02    1.04    1.02    1.14    1.02    1.64    2.31    1.40    2.10    2.02    1.09    0.78    1.14      9    Mayunmarca    1.52    1.64    2.31    1.40    2.02    2.02    1.09    0.78    1.14      36    Nishinotani    1.54    2.09 <td< td=""><td>13</td><td>Katsurabara</td><td>1.38</td><td>1.3/</td><td>1.90</td><td>1.44</td><td>1.02</td><td>2.20</td><td>1.00</td><td>1.08</td><td>0.97</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13  | Katsurabara    | 1.38  | 1.3/  | 1.90   | 1.44  | 1.02  | 2.20         | 1.00  | 1.08  | 0.97  |
| std. deviation    0.105    0.593    0.692    0.601    0.604    0.632    0.666    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.656    0.666    1.71    1.66    1.71    1.62    2.89    1.09    0.80    0.755      7    Upper Gros    1.30    1.44    3.51    1.20    1.36    2.05    1.08    1.06    1.71      8    Meadow    1.43    2.15    3.41    1.42    1.48    2.41    1.15    1.45    1.41      9    Mayunmarca    1.52    1.64    2.31    1.40    2.02    2.05    1.005    1.14      36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | average        | 1.37  | 1.75  | 2.78   | 1.37  | 0.204 | 0.302        | 0.060 | 0.295 | 0.205 |
| MESOZOIC    1.32    1.31    2.13    1.29    1.15    2.08    1.02    1.14    1.02      6    Lower Gross    1.28    1.30    2.17    1.17    1.62    2.89    1.09    0.80    0.75      7    Upper Gros    1.30    1.44    3.51    1.20    1.36    2.05    1.08    1.06    1.71      8    Meadow    1.43    2.15    3.41    1.24    1.48    2.41    1.15    1.45    1.41      9    Mayunmarca    1.52    1.64    2.31    1.40    2.10    2.02    1.09    0.78    1.14      36    Nishinotani    1.54    2.09    2.82    1.52    2.00    2.65    1.01    1.05    1.06      average    1.40    1.66    2.73    1.30    1.62    2.35    1.08    1.05    1.18      std. deviation    0.105    0.348    0.567    0.122    0.337    0.331    0.047    0.225    0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | std. deviation | 0.105 | 0.593 | 0.692  | 0.001 | 0.204 | 0.052        | 0.000 | 0.200 | 0.200 |
| D  Inrisue  1.32  1.31  2.13  1.29  1.13  2.00  1.02  1.14  1.02    6  Lower Gross  1.28  1.30  2.17  1.17  1.62  2.89  1.09  0.80  0.75    7  Upper Gros  1.30  1.44  3.51  1.20  1.36  2.05  1.08  1.06  1.71    8  Meadow  1.43  2.15  3.41  1.24  1.48  2.41  1.15  1.45  1.41    9  Mayunmarca  1.52  1.64  2.31  1.40  2.10  2.02  1.09  0.78  1.14    36  Nishinotani  1.54  2.09  2.82  1.52  2.00  2.65  1.01  1.05  1.06    average  1.40  1.66  2.73  1.30  1.62  2.35  1.08  1.05  1.18    std. deviation  0.105  0.348  0.567  0.122  0.337  0.331  0.047  0.225  0.306    SCHIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -   | MESOZOIC       | 1.00  | 1.01  | 0.10   | 1.00  | 1 15  | 208          | 1.02  | 1.14  | 1.02  |
| b    Lower Gross    1.20    1.30    2.17    1.17    1.02    2.03    1.03    0.04    0.17      7    Upper Gros    1.30    1.44    3.51    1.20    1.36    2.05    1.08    1.06    1.71      8    Meadow    1.43    2.15    3.41    1.24    1.48    2.41    1.15    1.45    1.41      9    Mayunmarca    1.52    1.64    2.31    1.40    2.10    2.02    1.09    0.78    1.14      36    Nishinotani    1.54    2.09    2.82    1.52    2.00    2.65    1.01    1.05    1.06      average    1.40    1.66    2.73    1.30    1.62    2.35    1.08    1.05    1.18      std. deviation    0.105    0.348    0.567    0.122    0.337    0.331    0.047    0.225    0.306      SCHIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5   | Thristle       | 1.32  | 1.31  | 2.13   | 1.29  | 1.10  | 2.00         | 1.02  | 0.80  | 0.75  |
| 7    Opper Gros    1.30    1.44    3.51    1.20    1.30    2.00    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.80    1.81    1.81    1.41    9    Mayunmarca    1.52    1.64    2.31    1.40    2.10    2.02    1.09    0.78    1.14      36    Nishinotani    1.54    2.09    2.82    1.52    2.00    2.65    1.01    1.05    1.06      average    1.40    1.66    2.73    1.30    1.62    2.35    1.08    1.05    1.18      std. deviation    0.105    0.348    0.567    0.122    0.337    0.331    0.047    0.225    0.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6   | Lower Gross    | 1.28  | 1.30  | 2.11   | 1.17  | 1.02  | 2.05         | 1.08  | 1.06  | 1.71  |
| B    Meadow    1.43    2.15    3.41    1.24    1.40    2.11    1.12    1.12    1.12    1.12    1.12    1.12    1.12    1.12    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.14    1.15    1.14    1.15    1.14    1.05    1.16      average    1.40    1.66    2.73    1.30    1.62    2.35    1.08    1.05    1.18      std. deviation    0.105    0.348    0.567    0.122    0.337    0.331    0.047    0.225    0.306      SCHIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1   | Upper Gros     | 1.30  | 1.44  | 3.01   | 1.20  | 1 49  | 2.00         | 1.15  | 1.45  | 1.41  |
| String    1.52    1.54    2.01    1.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    2.10    1.05    1.06    1.06    1.06    2.13    1.30    1.62    2.35    1.08    1.05    1.18      std. deviation    0.105    0.348    0.567    0.122    0.337    0.331    0.047    0.225    0.306      SCHIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8   | Meadow         | 1.43  | 2.15  | 2 31   | 1.24  | 2.10  | 2.02         | 1.09  | 0.78  | 1.14  |
| Schwistning    1.34    2.03    2.02    1.32    2.03    2.03    1.30    2.03    2.05    1.08    1.05    1.18      average    1.40    1.66    2.73    1.30    1.62    2.35    1.08    1.05    1.18      std. deviation    0.105    0.348    0.567    0.122    0.337    0.331    0.047    0.225    0.306      SCHIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9   | Nichington     | 1.52  | 2.00  | 2.01   | 1.52  | 2.00  | 2.65         | 1.01  | 1.05  | 1.06  |
| average    1.00    1.00    2.10    1.00    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    0.031    0.047    0.225    0.306      SCHIST <td< td=""><td>130</td><td>NISHINOTANI</td><td>1.54</td><td>1.66</td><td>2.02</td><td>1.02</td><td>1.62</td><td>2.35</td><td>1.08</td><td>1.05</td><td>1.18</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130 | NISHINOTANI    | 1.54  | 1.66  | 2.02   | 1.02  | 1.62  | 2.35         | 1.08  | 1.05  | 1.18  |
| Std. Geviation    0.103    0.043    0.041    0.102    0.041    0.102    0.041    0.102    0.041    0.102    0.041    0.102    0.041    0.102    0.041    0.102    0.041    0.102    0.041    0.102    0.041    0.102    0.102    0.102    0.102    0.102    0.102    0.102    0.102    0.102    0.102    0.102    0.111    0.102    0.111    0.103    0.96    0.96    0.111    0.85    0.76    1.03    0.96      35    Urushinose    1.11    1.33    3.24    1.31    1.76    3.11    0.85    0.76    1.04      37    Youne    1.35    1.77    2.71    1.62    2.11    2.29    0.83    0.84    1.18      38    Nuta    1.46    1.58    3.46    1.50    1.47    3.24    0.97    1.07    1.07      39    Nyuya    1.22    1.73    2.65    1.30    1.79    2.77    0.94    0.97 <td></td> <td>average</td> <td>0.105</td> <td>0.348</td> <td>0.567</td> <td>0 122</td> <td>0.337</td> <td>0.331</td> <td>0.047</td> <td>0.225</td> <td>0.306</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | average        | 0.105 | 0.348 | 0.567  | 0 122 | 0.337 | 0.331        | 0.047 | 0.225 | 0.306 |
| Scrinst    Image: scrinst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | SIG. Deviation | 0.105 | 0.040 | 0.007  |       |       |              | 1     | 1     |       |
| 10  La riasse  1.35  2.16  0.07  1.06  2.17  2.13  0.87  1.03  0.96    11  Arvey  1.24  1.58  2.24  1.42  1.54  2.33  0.87  1.03  0.96    35  Urushinose  1.11  1.33  3.24  1.31  1.76  3.11  0.85  0.76  1.04    37  Youne  1.35  1.77  2.71  1.62  2.11  2.29  0.83  0.84  1.18    38  Nuta  1.46  1.58  3.46  1.50  1.47  3.24  0.97  1.07  1.07    39  Nyuya  1.22  1.73  2.65  1.30  1.79  2.77  0.94  0.97  0.96    40  Hikinota  1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                | 1.50  | 212   | 3.57   | 1.36  | 2.11  | 3.49         | 1.17  | 1.01  | 1.02  |
| 11    1.24    1.30    2.24    1.31    1.76    3.11    0.85    0.76    1.04      35    Urushinose    1.11    1.33    3.24    1.31    1.76    3.11    0.85    0.76    1.04      37    Youne    1.35    1.77    2.71    1.62    2.11    2.29    0.83    0.84    1.18      38    Nuta    1.46    1.58    3.46    1.50    1.47    3.24    0.97    1.07    1.07      39    Nyuya    1.22    1.73    2.65    1.30    1.79    2.77    0.94    0.97    0.96      40    Hikinota    1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10  | La rrasse      | 1.09  | 1.59  | 2.24   | 1 42  | 1.54  | 2.33         | 0.87  | 1.03  | 0.96  |
| 37    Youne    1.35    1.77    2.71    1.62    2.11    2.29    0.83    0.84    1.18      38    Nuta    1.46    1.58    3.46    1.50    1.47    3.24    0.97    1.07    1.07      39    Nyuya    1.22    1.73    2.65    1.30    1.79    2.77    0.94    0.97    0.96      40    Hikinota    1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11  | Hrushingen     | 1.24  | 1.00  | 3.24   | 1 31  | 1.76  | 3.11         | 0.85  | 0.76  | 1.04  |
| 37    10000    1.35    1.77    2.71    1.32    2.11    2.12    1.77    1.07      38    Nuta    1.46    1.58    3.46    1.50    1.47    3.24    0.97    1.07    1.07      39    Nyuya    1.22    1.73    2.65    1.30    1.79    2.77    0.94    0.97    0.96      40    Hikinota    1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35  | Veuse          | 1.11  | 1.00  | 2.71   | 1.62  | 211   | 2.29         | 0.83  | 0.84  | 1.18  |
| So Nuta    1.40    1.50    0.40    1.60    1.71    2.77    0.94    0.97    0.96      39    Nyuya    1.22    1.73    2.65    1.30    1.79    2.77    0.94    0.97    0.96      40    Hikinota    1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31  | Nute           | 1.00  | 1.59  | 3.46   | 1.50  | 1.47  | 3.24         | 0.97  | 1.07  | 1.07  |
| 35    Nyuya    1.22    1.75    2.05    1.00    1.00    1.01    1.01      40    Hikinota    1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38  | NUTA           | 1.40  | 1.00  | 2.40   | 1 30  | 1 79  | 2.77         | 0.94  | 0.97  | 0.96  |
| AU Inikinota    1.15      average    1.31    1.69    2.98    1.42    1.80    2.87    0.94    0.95    1.04      atd douistics    0.156    0.243    0.479    0.113    0.248    0.450    0.114    0.112    0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 139 | luikin ete     | 1.42  | 1.75  | 2.00   | 1.00  | 1     |              |       |       | 1     |
| average 1.5 1.6 2.30 1.12 0.248 0.450 0.114 0.112 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40  | HIKINOTA       | 1.19  | 1.60  | 208    | 1 42  | 1.80  | 2.87         | 0.94  | 0.95  | 1.04  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | average        | 1.31  | 0.242 | 0 470  | 0 113 | 0.248 | 0.450        | 0.114 | 0.112 | 0.076 |

## Fractal Dimension of Each Dipping Type

|    |                      |         | ension |        |
|----|----------------------|---------|--------|--------|
| No | Landslide            | Dip     | width  | length |
| 1  | Midway Bridge        | 90      | 1.53   | 1.42   |
| 5  | Thristle             | 60      | 1.32   | 1.29   |
| 38 | Nuta                 | 45      | 1.46   | 1.50   |
| 17 | Mushigame            | 35      | 1.31   | 1.56   |
| 30 | Maruyama             | 35      | 1.34   | 1.33   |
| 20 | Happoudai            | 30      | 1.35   | 1.46   |
| 23 | Mizunashi            | 30      | 1.60   | 1.64   |
| 27 | Yumoto               | 30      | 1.40   | 1.30   |
| 28 | Yuyama               | 30      | 1.40   | 1.47   |
| 31 | Maseguchi            | 30      | 1.49   | 1.54   |
| 39 | Nyuuya               | 30      | 1.22   | 1.30   |
| 19 | Karuizawa            | 25      | 1.61   | 1.43   |
| 6  | Lower Gross          | 20      | 1.28   | 1.17   |
| 7  | Upper Gross          | 20      | 1.30   | 1.20   |
| 16 | Sakae                | 20      | 1.12   | 1.42   |
| 25 | Uenoyama             | 20      | 1.25   | 1.32   |
| 26 | Nakatateyama         | 20      | 1.44   | 1.58   |
| 3  | Palos Verdes         | 15      | 1.48   | 1.57   |
| 8  | Meadow Mt.           | 15      | 1.43   | 1.24   |
| 9  | Mayunmarca           | 15      | 1.52   | 1.40   |
| 10 | La Frasse            | 15      | 1.59   | 1.36   |
| 32 | Maruta               | 15      | 1.37   | 1.36   |
| 33 | Kodomari             | 15      | 1.21   | 1.38   |
| 37 | Youne                | 15      | 1.35   | 1.62   |
| 14 | Hitohane             | 13      | 1.64   | 1.66   |
| 2  | Boca Ridge           | 10      | 1.33   | 1.29   |
| 13 | Katsurabara          | 10      | 1.38   | 1.44   |
| 15 | Takisaka             | 5       | 1.36   | 1.30   |
|    | average              | 25.464  | 1.396  | 1.413  |
| 1  | std. deviation       | 16.917  | 0.127  | 0.132  |
| 12 | Kiritani             | 0       | 1.24   | 1.34   |
| 21 | Raiden               | 0       | 1.53   | 1.48   |
| 22 | Nishinakanoho        | 0       | 1.51   | 1.35   |
| 36 | Nishinotani          | 0       | 1.54   | 1.52   |
|    | average              | 0.000   | 1.455  | 1.423  |
|    | std. deviation       | 0.000   | 0.125  | 0.079  |
| 34 | Ohbora               | -15     | 1.18   | 1.33   |
| 29 | Kamatsuka            | -25     | 1.46   | 1.55   |
| 18 | Higashinomyo         | -30     | 1.22   | 1.29   |
| 24 | Kitaurata            | -30     | 1.19   | 1.43   |
| 4  | <b>Bick Rock Mes</b> | -40     | 1.48   | 1.53   |
| 35 | Urushinose           | -60     | 1.11   | 1.31   |
|    | average              | -33.333 | 1.273  | 1.407  |
|    | std. deviation       | 14.044  | 0.143  | 0.104  |
| 11 | Arvey                |         | 1.24   | 1.42   |
| 40 | Hikinota             |         | 1.19   |        |

Fractal Dimension and Length/Width of Each Topography

| No. | Landslide      | Length/Width | Topography | Fractal Dim | ension |
|-----|----------------|--------------|------------|-------------|--------|
|     |                |              |            | Width       | Length |
| 3   | Palos Verdes   | 0.48         | 1          | 1.48        | 1.57   |
| 8   | Meadow Mt.     | 1.90         | 1          | 1.43        | 1.24   |
| 9   | Mayunmarca     | 1.20         | 1          | 1.52        | 1.40   |
| 16  | Sakae          | 0.60         | 1          | 1.12        | 1.42   |
| 17  | Mushigame      | 0.85         | 1          | 1.31        | 1.56   |
| 24  | Kitaurata      | 0.96         | 1          | 1.19        | 1.43   |
| 34  | Ohbora         | 1.23         | 1          | 1.18        | 1.33   |
| 36  | Nishinotani    | 1.08         | 1          | 1.54        | 1.52   |
| 37  | Youne          | 0.70         | 1          | 1.35        | 1.62   |
| 39  | Nyuuya         | 1.13         | 2          | 1.22        | 1.30   |
|     | mean           | 1.013        |            | 1.334       | 1.439  |
|     | std, deviation | 0.383        |            | 0.145       | 0.120  |
| 11  | Arvey          | 0.87         | 2          | 1.24        | 1.42   |
| 27  | Yumoto         | 1.39         | 2          | 1.40        | 1.30   |
| 28  | Yuyama         | 0.44         | 2          | 1.40        | 1.47   |
| 33  | Kodomari       | 0.72         | 2          | 1.21        | 1.38   |
|     | mean           | 0.855        |            | 1.313       | 1.393  |
|     | std, deviation | 0.344        |            | 0.088       | 0.062  |
| 1   | Midway Bridge  | 0.88         | 3          | 1.53        | 1.42   |
| 4   | Bick Rock Mesa | 0.45         | 3          | 1.48        | 1.53   |
| 5   | Thristle       | 1.12         | 3          | 1.32        | 1.29   |
| 6   | Lower Gross    | 1.06         | 3          | 1.28        | 1.17   |
| 10  | La Frasse      | 2.17         | 3          | 1.59        | 1.36   |
| 12  | Kiritani       | 0.74         | 3          | 1.24        | 1.34   |
| 13  | Katsurabara    | 1.57         | 3          | 1.38        | 1.44   |
| 14  | Hitohane       | 1.12         | 3          | 1.64        | 1.66   |
| 18  | Higashinomyo   | 0.49         | 3          | 1.22        | 1.29   |
| 19  | Karuizawa      | 1.52         | 3          | 1.61        | 1.43   |
| 20  | Happoudai      | 0.74         | 3          | 1.35        | 1.46   |
| 23  | Mizunashi      | 0.91         | 3          | 1.60        | 1.64   |
| 25  | Uenoyama       | 0.59         | 3          | 1.25        | 1.32   |
| 26  | Nakatateyama   | 0.53         | 3          | 1.44        | 1.58   |
| 29  | Kamatsuka      | 0.95         | 3          | 1.46        | 1.55   |
| 30  | Maruyama       | 0.97         | 3          | 1.34        | 1.33   |
| 31  | Maseguchi      | 0.86         | 3          | 1.49        | 1.54   |
| 32  | Maruta         | 0.65         | 3          | 1.37        | 1.36   |
| 35  | Urushinose     | 0.50         | 3          | 1.11        | 1.31   |
| 38  | Nuta           | 0.94         | 3          | 1.46        | 1.50   |
| 40  | Hikinota       | 1.08         | 3          | 1.19        |        |
|     | mean           | 0.944        |            | 1.398       | 1.426  |
|     | std, deviation | 0.406        |            | 0.147       | 0.127  |
| 2   | Boca Ridge     | 0.86         | 4          | 1.33        | 1.29   |
| 7   | Upper Gross    | 1.36         | 4          | 1.30        | 1.20   |
| 15  | Takisaka       | 1.34         | 4          | 1.36        | 1.30   |
| 21  | Raiden         | 1.67         | 4          | 1.53        | 1.48   |
| 22  | Nishinakanoho  | 2.11         | 4          | 1.51        | 1.35   |
|     | mean           | 1.467        |            | 1.406       | 1.324  |
|     | std. deviation | 0.413        |            | 0.095       | 0.092  |

Fractal Dimension and Length/Width of Each Block Shape

| No. | Landslide      | Length/Width | Slide Shape   | Fractal Di | nension |
|-----|----------------|--------------|---------------|------------|---------|
|     |                |              |               | Width      | Length  |
| 9   | Mayunmarca     | 1.20         | bottle (4)    | 1.52       | 1.40    |
| 27  | Yumoto         | 1.39         | bottle (4)    | 1.40       | 1.30    |
| 39  | Nyuuya         | 1.13         | bottle (4)    | 1.22       | 1.30    |
| 1   | mean           | 1.241        |               | 1.380      | 1.333   |
|     | std, deviation | 0.107        |               | 0.123      | 0.047   |
| 2   | Boca Ridge     | 0.86         | horse (2)     | 1.33       | 1.29    |
| 4   | Bick Rock Mesa | 0.45         | horse (2)     | 1.48       | 1.53    |
| 5   | Thristle       | 1.12         | horse (2)     | 1.32       | 1.29    |
| 6   | Lower Gros     | 1.06         | horse (2)     | 1.28       | 1.17    |
| 8   | Meadow Mt.     | 1.90         | horse (2)     | 1.43       | 1.24    |
| 11  | Arvey          | 0.87         | horse (2)     | 1.24       | 1.42    |
| 12  | Kiritani       | 0.74         | horse (2)     | 1.24       | 1.34    |
| 14  | Hitohane       | 1.12         | horse (2)     | 1.64       | 1.66    |
| 16  | Sakae          | 0.60         | horse (2)     | 1.12       | 1.42    |
| 17  | Mushigame      | 0.85         | horse (2)     | 1.31       | 1.56    |
| 23  | Mizunashi      | 0.91         | horse (2)     | 1.60       | 1.64    |
| 24  | Kitaurata      | 0.96         | horse (2)     | 1.19       | 1.43    |
| 25  | Uenoyama       | 0.59         | horse (2)     | 1.25       | 1.32    |
| 32  | Maruta         | 0.65         | horse (2)     | 1.37       | 1.36    |
| 33  | Kodomari       | 0.72         | horse (2)     | 1.21       | 1.38    |
| 34  | Ohbora         | 1.23         | horse (2)     | 1.18       | 1.33    |
| 35  | Urushinose     | 0.50         | horse (2)     | 1.11       | 1.31    |
| 36  | Nishinotani    | 1.08         | horse (2)     | 1.54       | 1.52    |
| 37  | Youne          | 0.70         | horse (2)     | 1.35       | 1.62    |
| 40  | Hikinota       | 1.08         | horse (2)     | 1.19       |         |
| 1   | mean           | 0.899        |               | 1.319      | 1.412   |
|     | std. deviation | 0.317        |               | 0.148      | 0.137   |
| 1   | Midway Bridge  | 0.88         | rectangle (3) | 1.53       | 1.42    |
| 3   | Palos Verdes   | 0.48         | rectangle (3) | 1.48       | 1.57    |
| 7   | Upper Gros     | 1.36         | rectangle (3) | 1.30       | 1.20    |
| 10  | La Frasse      | 2.17         | rectangle (3) | 1.59       | 1.36    |
| 13  | Katsurabara    | 1.57         | rectangle (3) | 1.38       | 1.44    |
| 15  | Takisaka       | 1.34         | rectangle (3) | 1.36       | 1.30    |
| 18  | Higashinomyo   | 0.49         | rectangle (3) | 1.22       | 1.29    |
| 20  | Happoudai      | 0.74         | rectangle (3) | 1.35       | 1.46    |
| 21  | Raiden         | 1.67         | rectangle (3) | 1.53       | 1.48    |
| 22  | Nishinakanoho  | 2.11         | rectangle (3) | 1.51       | 1.35    |
| 26  | Nakatateyama   | 0.53         | rectangle (3) | 1.44       | 1.58    |
| 28  | Yuyama         | 0.44         | rectangle (3) | 1.40       | 1.47    |
| 29  | Kamatsuka      | 0.95         | rectangle (3) | 1.46       | 1.55    |
| 31  | Maseguchi      | 0.86         | rectangle (3) | 1.49       | 1.54    |
|     | mean           | 1.112        |               | 1.431      | 1.429   |
|     | std, deviation | 0.574        |               | 0.098      | 0.112   |
| 19  | Karuizawa      | 1.52         | triangle (1)  | 1.61       | 1.43    |
| 30  | Maruyama       | 0.97         | triangle (1)  | 1.34       | 1.33    |
| 38  | Nuta           | 0.94         | triangle (1)  | 1.46       | 1.50    |
|     | mean           | 1.144        | -             | 1.470      | 1.420   |
| -   | std, deviation | 0.268        |               | 0.110      | 0.070   |

Fractal Dimension and Length/Width of each Activity Level

| No  | Landslide      | Activity | Length/Width | Fractal Dim | ension |
|-----|----------------|----------|--------------|-------------|--------|
|     |                |          |              | Width       | Length |
| 2   | Boca Ridge     | Ancient  | 0.86         | 1.33        | 1.29   |
| 7   | Upper Gross    | Ancient  | 1.36         | 1.30        | 1.20   |
| 16  | Sakae          | Ancient  | 0.60         | 1.12        | 1.42   |
| 19  | Karuizawa      | Ancient  | 1.52         | 1.61        | 1.43   |
| 24  | Kitaurata      | Ancient  | 0.96         | 1.19        | 1.43   |
| 25  | Uenoyama       | Ancient  | 0.59         | 1.25        | 1.32   |
|     | mean           |          | 0.981        | 1.300       | 1.348  |
|     | std. deviation |          | 0.355        | 0.155       | 0.086  |
| 1   | Midway Bridge  | Stable   | 0.88         | 1.53        | 1.42   |
| 12  | Kiritani       | Stable   | 0.74         | 1.24        | 1.34   |
| 13  | Katsurabara    | Stable   | 1.57         | 1.38        | 1.44   |
| 20  | Happoudai      | Stable   | 0.74         | 1.35        | 1.46   |
| 21  | Raiden         | Stable   | 1.67         | 1.53        | 1.48   |
| 22  | Nishinakanoho  | Stable   | 2.11         | 1.51        | 1.35   |
| 28  | Yuyama         | Stable   | 0.44         | 1.40        | 1.47   |
| 130 | Maruvama       | Stable   | 0.97         | 1.34        | 1.33   |
| 32  | Maruta         | Stable   | 0.65         | 1.37        | 1.36   |
| 33  | Kodomari       | Stable   | 0.72         | 1.21        | 1.38   |
| 35  | Urushinose     | Stable   | 0.50         | 1.11        | 1.31   |
| -   | mean           |          | 0.998        | 1.361       | 1.395  |
|     | std. deviation |          | 0.515        | 0.129       | 0.059  |
| 4   | Bick Rock Mesa | Dormant  | 0.45         | 1.48        | 1.53   |
| 5   | Thristle       | Dormant  | 1.12         | 1.32        | 1.29   |
| 6   | Lower Gross    | Dormant  | 1.06         | 1.28        | 1.17   |
| 8   | Meadow Mt.     | Dormant  | 1.90         | 1.43        | 1.24   |
| 9   | Mayunmarca     | Dormant  | 1.20         | 1.52        | 1.40   |
| 14  | Hitohane       | Dormant  | 1.12         | 1.64        | 1.66   |
| 17  | Mushigame      | Dormant  | 0.85         | 1.31        | 1.56   |
| 26  | Nakatateyama   | Dormant  | 0.53         | 1.44        | 1.58   |
| 27  | Yumoto         | Dormant  | 1.39         | 1.40        | 1.30   |
| 29  | Kamatsuka      | Dormant  | 0.95         | 1.46        | 1.55   |
| 34  | Ohbora         | Dormant  | 1.23         | 1.18        | 1.33   |
| 40  | Hikinota       | Dormant  | 1.08         | 1.19        |        |
|     | mean           |          | 1.072        | 1.388       | 1.419  |
|     | std. deviation |          | 0.363        | 0.130       | 0.156  |
| 3   | Palos Verdes   | Active   | 0.48         | 1.48        | 1.57   |
| 10  | La Frasse      | Active   | 2.17         | 1.59        | 1.36   |
| 11  | Arvey          | Active   | 0.87         | 1.24        | 1.42   |
| 15  | Takisaka       | Active   | 1.34         | 1.36        | 1.30   |
| 18  | Higashinomyo   | Active   | 0.49         | 1.22        | 1.29   |
| 23  | Mizunashi      | Active   | 0.91         | 1.60        | 1.64   |
| 31  | Maseguchi      | Active   | 0.86         | 1.49        | 1.54   |
| 36  | Nishinotani    | Active   | 1.08         | 1.54        | 1.52   |
| 37  | Youne          | Active   | 0.70         | 1.35        | 1.62   |
| 38  | Nuta           | Active   | 0.94         | 1.46        | 1.50   |
| 39  | Nyuuya         | Active   | 1.13         | 1.22        | 1.30   |
|     | mean           |          | 0.997        | 1.414       | 1.460  |
|     | std. deviation |          | 0.445        | 0.137       | 0.126  |
| No. |                    |       | Width |       |         | Length |       |
|-----|--------------------|-------|-------|-------|---------|--------|-------|
|     |                    | Whole | 2nd   | 3rd   | Whole   | 2nd    | 3rd   |
| 1   | Midway Bridge      | 0.966 | 0.994 | 0.990 | 0.986   | 0.972  | 0.992 |
| 2   | Boca Ridge         | 0.997 | 0.983 | 0.954 | 0.996   | -0.993 | 0.983 |
| 3   | Palos Verdes       | 0.975 | 0.967 | 0.971 | 0.988   | 0.974  | 0.972 |
| 4   | Big Rock Mesa      | 0.992 | 0.971 | 0.994 | 0.995   | 0.956  | 0.992 |
| 5   | Thristle           | 0.992 | 0.990 | 0.970 | 0.990   | 0.977  | 0.965 |
| 6   | Lower Gross        | 0.990 | 0.956 | 0.914 | 0.992   | 0.984  | 0.943 |
| 7   | Upper Gros         | 0.993 | 0.980 | 0.956 | 0.997   | 0.989  | 0.991 |
| 8   | Meadow             | 0.992 | 0.988 | 0.953 | 0.990   | 0.835  | 0.969 |
| 9   | Mayunmarca         | 0.983 | 0.986 | 0.883 | 0.990   | 0.898  | 0.965 |
| 10  | La Frasse          | 0.991 | 0.945 | 0.980 | 0.992   | 0.975  | 0.930 |
| 11  | Arvey              | 0.986 | 0.988 | 0.952 | 0.991   | 0.990  | 0.956 |
| 12  | Kiritani           | 0.995 | 0.995 | 0.945 | 0.998   | 0.973  | 0.945 |
| 13  | Katsurabara        | 0.994 | 0.963 | 0.976 | 0.988   | 0.959  | 0.963 |
| 14  | Hitohane           | 0.993 | 0.982 | 0.982 | 0.994   | 0.979  | 0.988 |
| 15  | Takisaka           | 0.998 | 0.985 | 0.988 | 0.992   | 0.989  | 0.932 |
| 16  | Sakae              | 0.993 | 0.983 | 0.928 | 0.976   | 0.967  | 0.975 |
| 17  | Mushigame          | 0.989 | 0.987 | 0.951 | 0.995   | 0.936  | 0.982 |
| 18  | Higashinomyo       | 0.981 | 0.988 | 0.941 | 0.995   | 0.949  | 0.953 |
| 19  | Karuizawa          | 0.989 | 0.963 | 0.958 | 0.979   | 0.938  | 0.993 |
| 20  | Happoudai          | 0.997 | 0.993 | 0.910 | 0.994   | 0.952  | 0.957 |
| 21  | Raiden             | 0.989 | 0.961 | 0.987 | 0.980   | 0.945  | 0.991 |
| 22  | Nishinakanoho      | 0.994 | 0.956 | 0.962 | 0.984   | 0.891  | 0.972 |
| 23  | Mizunashi          | 0.984 | 0.963 | 0.990 | 0.992   | 0.991  | 0.995 |
| 24  | Kitaurata          | 0.982 | 0.970 | 0.976 | 0.991   | 0.837  | 0.977 |
| 25  | Uenoyama           | 0.981 | 0.981 | 0.922 | 0.988   | 0.991  | 0.981 |
| 26  | Nakatateyama       | 0.973 | 0.948 | 0.990 | 0.995   | 0.983  | 0.987 |
| 27  | Yumoto             | 0.984 | 0.998 | 0.984 | и 0.997 | 0.964  | 0.962 |
| 28  | Yuyama             | 0.978 | 0.972 | 0.980 | 0.981   | 0.978  | 0.984 |
| 29  | Kamatsuka          | 0.990 | 0.975 | 0.973 | 0.983   | 0.918  | 0.994 |
| 30  | Maruyama           | 0.987 | 0.934 | 0.963 | 0.997   | 0.937  | 0.947 |
| 31  | Maseguchi          | 0.979 | 0.930 | 0.953 | 0.995   | 0.954  | 0.956 |
| 32  | Maruta             | 0.988 | 0.979 | 0.965 | 0.993   | 0.994  | 0.973 |
| 33  | Kodomari           | 0.967 | 0.971 | 0.945 | 0.987   | 0.979  | 0.910 |
| 34  | Ohbora             | 0.993 | 0.922 | 0.990 | 0.990   | 0.970  | 0.988 |
| 35  | Urushinose         | 0.972 | 0.969 | 0.986 | 0.993   | 0.933  | 0.951 |
| 36  | Nishinotani        | 0.990 | 0.961 | 0.950 | 0.992   | 0.963  | 0.973 |
| 37  | Youne              | 0.984 | 0.986 | 0.975 | 0.980   | 0.997  | 0.973 |
| 38  | Nuta               | 0.983 | 0.889 | 0.940 | 0.991   | 0.935  | 0.976 |
| 39  | Nyuya              | 0.981 | 0.984 | 0.919 | 0.974   | 0.970  | 0.897 |
| 40  | Hikinota           |       |       |       |         |        |       |
|     | Average            | 0.986 | 0.970 | 0.960 | 0.990   | 0.957  | 0.968 |
|     | Standard deviation | 0.008 | 0.022 | 0.026 | 0.006   | 0.038  | 0.023 |

Coefficient of Correlation of log(N(r)) versus log(r) Plot of Landslide Blocks

#### Fractal Limit and Map Scale

| No. |                    | limit | (m)    | 1 / scale |
|-----|--------------------|-------|--------|-----------|
| -   |                    | width | length |           |
| 1   | Midway Bridge      | 50    | 40     | 24,000    |
| 2   | Boca Ridge         | 60    | 50     | 24,000    |
| 3   | Palos Verdes       | 100   | 110    | 24,000    |
| 4   | Big Rock Mesa      | 30    | 30     | 2,300     |
| 5   | Thristle           | 110   | 120    | 24,000    |
| 6   | Lower Gross        | 120   | 95     | 24,000    |
| 7   | Upper Gros         | 120   |        | 2,400     |
| 8   | Meadow             | 60    | 70     | 4,800     |
| 9   | Mayunmarca         | 200   | 230    | 50,000    |
| 10  | La Frasse          | 80    | 90     | 12,500    |
| 11  | Arvey              | 40    | 80     | 12,500    |
| 12  | Kiritani           | 70    | 100    | 13,000    |
| 13  | Katsurabara        |       | 50     | 13,000    |
| 14  | Hitohane           | 40    | 45     | 1,300     |
| 15  | Takisaka           | 30    | 30     | 5,000     |
| 16  | Sakae              | 70    | 80     | 25,000    |
| 17  | Mushigame          | 70    | 70     | 25,000    |
| 18  | Higashinomyo       | 40    |        | 25,000    |
| 19  | Karuizawa          | 100   | 100    | 25,000    |
| 20  | Happoudai          | 100   | 110    | 25,000    |
| 21  | Raiden             | 100   | 100    | 25,000    |
| 22  | Nishinakanoho      | 90    | 100    | 25,000    |
| 23  | Mizunashi          | 50    | 70     | 5,000     |
| 24  | Kitaurata          |       | 80     | 25,000    |
| 25  | Uenoyama           |       | 70     | 25,000    |
| 26  | Nakatateyama       | 70    | 80     | 25,000    |
| 27  | Yumoto             |       | 90     | 25,000    |
| 28  | Yuyama             | 80    | 90     | 25,000    |
| 29  | Kamatsuka          | 50    | 80     | 25,000    |
| 30  | Maruyama           | 100   | 100    | 25,000    |
| 31  | Maseguchi          |       | 90     | 25,000    |
| 32  | Maruta             | 70    | 100    | 25,000    |
| 33  | Kodomari           | 80    | 90     | 25,000    |
| 34  | Ohbora             | 70    | 105    | 25,000    |
| 35  | Urushinose         | 15    | 60     | 500       |
| 36  | Nishinotani        | 40    | 40     | 5,000     |
| 37  | Youne              | 80    | 90     | 18,450    |
| 38  | Nuta               | 60    | 60     | 18,450    |
| 39  | Nyuya              | 80    | 100    | 18,450    |
|     | Average            | 74.3  | 83.6   | 19,299    |
|     | Standard deviation | 34.1  | 33.7   | 9,984     |

#### Table 6. Shape of log(N(r)) versus log(r) plot

| No. |               | Whole | Blocks | 2nd Leve | Blocks | 3rd Level | Blocks | Bending | Angle  | Rate ofBer | ding Site |
|-----|---------------|-------|--------|----------|--------|-----------|--------|---------|--------|------------|-----------|
|     | -             | Width | length | Width    | Length | Width     | Length | Width   | length | Width      | Length    |
| 1   | Midway Bridge | 5     | 5      | 1        | 2      | 1         | 1      | 0       | 0      | 1.00       | 1.00      |
| 2   | Boca Ridge    | 1     | 1      | 2        | 1      | 8         | 8      | 30      | 33     | 0.83       | 0.83      |
| 3   | Palos Verdes  | 5     | 7      | 2        | 8      | 8         | 8      | 21      | 31     | 0.59       | 0.59      |
| 4   | Big Rock Mesa | 5     | 3      | 8        | 8      | 1         | 1      | 0       | 0      | 1.00       | 1.00      |
| 5   | Thristle      | 2     | 2      | 1        | 1      | 8         | 8      | 27      | 25     | 0.71       | 0.71      |
| 6   | Lower Gross   | 2     | 2      | 8        | 1      | 8         | 8      | 21      | 18     | 0.74       | 0.68      |
| 7   | Upper Gros    | 6     | 1      | 8        | 1      | 8         | 1      | 21      | 0      | 0.60       | 1.00      |
| 8   | Meadow        | 2     | 6      | 1        | 8      | 8         | 8      | 37      | 21     | 0.79       | 0.54      |
| 9   | Mayunmarca    | 1     | 1      | 1        | 1      | 8         | 8      | 36      | 27     | 0.74       | 0.71      |
| 10  | La Frasse     | 2     | 2      | 1        | 1      | 8         | 8      | 22      | 24     | 0.41       | 0.72      |
| 11  | Агvey         | 2     | 2      | 2        | 2      | 1         | 1      | 20      | 0      | 0.58       | 1.00      |
| 12  | Kiritani      | 1     | 3      | 1        | 7      | 8         | 8      | 30      | 18     | 0.63       | 0.58      |
| 13  | Katsurabara   | 2     | 2      | 1        | 1      | 7         | 8      | 13      | 9      | 0.38       | 0.39      |
| 14  | Hitohane      | 5     | 5      | 8        | 7      | 8         | 8      | 13      | 17     | 0.39       | 0.45      |
| 15  | Takisaka      | 1     | 1      | 7        | 1      | 7         | 7      | 14      | 20     | 0.28       | 0.42      |
| 16  | Sakae         | 2     | 6      | 1        | 1      | 8         | 8      | 21      | 30     | 0.54       | 0.59      |
| 17  | Mushigame     | 2     | 6      | 1        | 8      | 7         | 7      | 16      | 16     | 0.42       | 0.40      |
| 18  | Higashinomyo  | 4     | 3      | 1        | 8      | 8         | 7      | 23      | 18     | 0.54       | 0.52      |
| 19  | Karuizawa     | 4     | 5      | 1        | 8      | 7         | 1      | 12      | 0      | 0.43       | 1.00      |
| 20  | Happoudai     | 1     | 1      | 1        | 8      | 8         | 7      | 20      | 16     | 0.52       | 0.39      |
| 21  | Raiden        | 6     | 5      | 8        | 2      | 1         | 1      | 0       | 0      | 1.00       | 1.00      |
| 22  | Nishinakanoho | 1     | 5      | 8        | 8      | 8         | 8      | 12      | 14     | 0.55       | 0.59      |
| 23  | Mizunashi     | 5     | 5      | 2        | 2      | 1         | 1      | 0       | 0      | 1.00       | 1.00      |
| 24  | Kitaurata     | 2     | 2      | 7        | 8      | 1         | 1      | 0       | 0      | 1.00       | 1.00      |
| 25  | Uenoyama      | 4     | 1      | 1        | 1      | 7         | 1      | 27      | 0      | 0.45       | 1.00      |
| 26  | Nakatateyama  | 4     | 1      | 8        | 1      | 1         | 1      | 0       | 0      | 1.00       | 1.00      |
| 27  | Yumoto        | 2     | 1      | 1        | 1      | 1         | 8      | 0       | 23     | 1.00       | 0.70      |
| 28  | Yuyama        | 4     | 2      | 1        | 1      | 1         | 1      | 0       | 0      | 1.00       | 1.00      |
| 29  | Kamatsuka     | 6     | 2      | 7        | 8      | 1         | 1      | 0       | 0      | 1.00       | 1.00      |
| 30  | Maruyama      | 2     | 1      | 2        | 8      | 7         | 8      | 15      | 14     | 0.39       | 0.32      |
| 31  | Maseguchi     | 5     | 4      | 7        | 8      | 8         | 7      | 20      | 16     | 0.63       | 0.39      |
| 32  | Maruta        | 4     | 1      | 7        | 1      | 8         | 7      | 13      | 16     | 0.48       | 0.30      |
| 33  | Kodomari      | 2     | 2      | 2        | 2      | 8         | 8      | 14      | 22     | 0.48       | 0.52      |
| 34  | Ohbora        | 1     | 2      | 1        | 1      | 1         | 7      | 0       | 25     | 1.00       | 0.37      |
| 35  | Urushinose    | 2     | 1      | 1        | 7      | 8         | 8      | 32      | 38     | 0.71       | 1.00      |
| 36  | Nishinotani   | 5     | 6      | 8        | 7      | 7         | 7      | 19      | 0      | 0.50       | 1.00      |
| 37  | Youne         | 2     | 2      | 1        | 1      | 8         | 1      | 21      | 0      | 0.63       | 0.50      |
| 38  | Nuta          | 6     | 2      | 8        | 8      | 8         | 8      | 22      | 17     | 0.54       | 0.03      |
| 39  | Nyuya         | 2     | 2      | 1        | 2      | 8         | 8      | 34      | 25     | 0.74       | 0.00      |
| 40  | Hikinota      |       |        |          |        |           |        |         |        |            |           |
|     | 1 Total       | 7     | 11     | 19       | 16     | 11        | 13     |         |        | +          |           |
|     | 2 Total       | 15    | 13     | 6        | 6      | 0         | 0      |         |        |            |           |
|     | 3 Total       | 0     | 3      | 0        | 0      | 0         | 0      |         |        |            |           |
|     | 4 Total       | 6     | 1      | 0        | 0      | 0         | 0      |         |        |            |           |
|     | 5 Total       | 7     | 6      | 0        | 0      | 0         | 0      |         |        |            |           |
|     | 6 Total       | 4     | 4      | 0        | 0      | 0         | - 0    |         |        |            |           |
|     | 7 Total       | 0     | 1      | 5        | 4      | 7         | 8      |         |        |            |           |
|     | 8 Total       | 0     | 0      | 9        | 13     | 21        | 18     |         |        |            |           |

#### Alpha and Alpha-0 (Alpha / Area) of Landslides

| No |                   | Alpha (#of | blocks) | Alpha-0 (#/Area) |        |  |
|----|-------------------|------------|---------|------------------|--------|--|
|    | Landslide         | Width      | Length  | Width            | Length |  |
|    |                   |            | -       | (#/ha)           | (#/ha) |  |
| 1  | Midway Bridge     | 40,272     | 21,979  | 83               | 45     |  |
| 2  | Boca Ridge        | 50,933     | 33,343  | 37               | 24     |  |
| 3  | Palos Verdes      | 142,233    | 335,738 | 132              | 313    |  |
| 4  | Big Rock Mesa     | 42,855     | 51,523  | 366              | 440    |  |
| 5  | Thristle          | 46,026     | 44,978  | 41               | 40     |  |
| 6  | Lower Gross       | 32,434     | 15,740  | 37               | 18     |  |
| 7  | Upper Gros        | 39,719     | 29,717  | 20               | 15     |  |
| 8  | Meadow            | 21,281     | 14,158  | 142              | 94     |  |
| 9  | Mayunmarca        | 314,051    | 228,560 | 125              | 91     |  |
| 10 | La Frasse         | 59,156     | 28,840  | 340              | 166    |  |
| 11 | Arvey             | 6,950      | 28,642  | 56               | 229    |  |
| 12 | Kiritani          | 15,276     | 42,756  | 45               | 126    |  |
| 13 | Katsurabara       | 14,622     | 31,623  | 100              | 217    |  |
| 14 | Hitohane          | 146,893    | 238,781 | 417              | 678    |  |
| 15 | Takisaka          | 14,588     | 11,482  | 110              | 86     |  |
| 16 | Sakae             | 5,649      | 27,606  | 17               | 84     |  |
| 17 | Mushigame         | 29,717     | 137,721 | 66               | 308    |  |
| 18 | Higashinomyo      | 7,278      | 12,218  | 29               | 48     |  |
| 19 | Karuizawa         | 167,109    | 82,224  | 291              | 143    |  |
| 20 | Happoudai         | 33,651     | 69,823  | 84               | 173    |  |
| 21 | Raiden            | 173,780    | 125,026 | 346              | 249    |  |
| 22 | Nishinakanoho     | 56,624     | 28,054  | 199              | 98     |  |
| 23 | Mizunashi         | 133,968    | 199,986 | 407              | 608    |  |
| 24 | Kitaurata         | 9,750      | 45,186  | 29               | 133    |  |
| 25 | Uenoyama          | 7,129      | 10,023  | 67               | 94     |  |
| 26 | Nakatateyama      | 36,728     | 104,472 | 116              | 331    |  |
| 27 | Yumoto            | 17,742     | 14,454  | 134              | 110    |  |
| 28 | Yuyama            | 30,620     | 41,976  | 109              | 149    |  |
| 29 | Kamatsuka         | 41,115     | 107,152 | 151              | 394    |  |
| 30 | Maruyama          | 67,764     | 83,753  | 37               | 46     |  |
| 31 | Maseguchi         | 62,517     | 95,499  | 159              | 243    |  |
| 32 | Maruta            | 46,559     | 50,466  | 67               | 73     |  |
| 33 | Kodomari          | 13,804     | 37,931  | 33               | 91     |  |
| 34 | Ohbora            | 12,531     | 37,670  | 21               | 62     |  |
| 35 | Urushinose        | 1,300      | 1,828   | 52               | 73     |  |
| 36 | Nishinotani       | 41,879     | 41,879  | 411              | 411    |  |
| 37 | Youne             | 15,596     | 83,946  | 156              | 839    |  |
| 38 | Nuta              | 38,905     | 54,200  | 134              | 187    |  |
| 39 | Nyuya             | 5,495      | 11,272  | 47               | 96     |  |
| 40 | Hikinota          | 15,800     |         | 158              |        |  |
|    | Average           | 51,507     | 68,262  | 134              | 196    |  |
| -  | Standar deviation | 61,319     | 71,666  | 119              | 186    |  |

1 ha = 10,000 square meters

#### Alpha-0 of Each Geology Area

| No. |                   | Alpha-0 (# | /ha)   |
|-----|-------------------|------------|--------|
|     |                   | Width      | Length |
| 14  | Hitohane          | 417        | 678    |
| 16  | Sakae             | 17         | 84     |
| 17  | Mushigame         | 66         | 308    |
| 18  | Higashinomyo      | 29         | 48     |
| 19  | Karuizawa         | 291        | 143    |
| 20  | Happoudai         | 84         | 173    |
| 21  | Raiden            | 346        | 249    |
| 22  | Nishinakanoho     | 199        | 98     |
| 24  | Kitaur <b>ata</b> | 29         | 133    |
| 31  | Maseguchi         | 159        | 243    |
| 32  | Maruta            | 67         | 73     |
|     | MUDSTONE          | 154.9      | 202.7  |
|     |                   | 133.9      | 169.5  |
| 3   | Palos Verdes      | 132        | 313    |
| 4   | Big Rock Mesa     | 366        | 440    |
| 25  | Uenoyama          | 67         | 94     |
| 29  | Kamatsuka         | 151        | 394    |
| 30  | Maruyama          | 37         | 46     |
| 33  | Kodomari          | 33         | 91     |
| 34  | Ohbora            | 21         | 62     |
| 0   | SS. MS            | 115.3      | 205.7  |
|     |                   | 112.5      | 157.5  |
| 15  | Takisaka          | 110        | 86     |
| 23  | Mizunashi         | 407        | 608    |
| 26  | Nakatateyama      | 116        | 331    |
| 27  | Yumoto            | 134        | 110    |
| 28  | Yuyama            | 109        | 149    |
|     | TUFF              | 175.2      | 256.8  |
|     |                   | 116.2      | 195.5  |
| 1   | Midway Bridge     | 83         | 45     |
| 2   | Boca Ridge        | 37         | 24     |
| 12  | Kiritani          | 45         | 126    |
| 13  | Katsurabara       | 100        | 217    |
|     | VOLCANIC          | 66.3       | 103.0  |
|     |                   | 26.1       | 76.0   |
| 5   | Thristle          | 41         | 40     |
| 6   | Lower Gross       | 37         | 18     |
| 7   | Upper Gros        | 20         | 15     |
| 8   | Meadow            | 142        | 94     |
| 9   | Mayunmarca        | 125        | 91     |
| 36  | Nishinotani       | 411        | 411    |
|     | MESOZOIC          | 129.3      | 111.5  |
|     |                   | 134.0      | 137.6  |
| 10  | La Frasse         | 340        | 166    |
| 11  | Arvey             | 56         | 229    |
| 35  | Urushinose        | 52         | 73     |
| 37  | Youne             | 156        | 839    |
| 38  | Nuta              | 134        | 187    |
| 39  | Nyuya             | 47         | 96     |
| 40  | Hikinota          | 158        |        |
|     | Schist            | 134.7      | 265.0  |
|     |                   | 95.5       | 262.1  |

DATE ST LANCE THE

APPENDIX H:

## CORRESPONDENCE ANALYSIS RESULT

File name missing or blank - please enter file name UNIT 5? LS-C3.DAT

| NUMBER | OF | INDIVIDUALS | =  | 39 |
|--------|----|-------------|----|----|
| NUMBER | OF | ATTRIBUTES  | == | 17 |
| NUMBER | OF | FACTORS     | -  | 3  |

CONTINGENCY TABLE, Y

IDEN

|     | Wd      | Ln      | Ar      | Dp      | Ht      | Lw      | Aa      |
|-----|---------|---------|---------|---------|---------|---------|---------|
| 1   | .19E+01 | .17E+01 | .48E+01 | .11E+01 | .30E+01 | .88E+00 | .10E+02 |
| 2   | .35E+01 | .30E+01 | .14E+02 | .20E+01 | .33E+01 | .86E+00 | .63E+01 |
| 3   | .52E+01 | .25E+01 | .11E+02 | .10E+01 | .35E+01 | .48E+00 | .80E+01 |
| 4   | .21E+01 | .96E+01 | .12E+01 | .12E+01 | .20E+01 | .45E+00 | .12E+02 |
| 5   | .36E+01 | .40E+01 | .11E+02 | .80E+00 | .57E+01 | .11E+01 | .81E+01 |
| 6   | .34E+01 | .36E+01 | .88E+01 | .13E+01 | .60E+01 | .11E+01 | .95E+01 |
| 7   | .40E+01 | .55E+01 | .20E+02 | 99E+02  | .64E+01 | .14E+01 | .66E+01 |
| 8   | .14E+01 | .26E+01 | .15E+01 | .55E+00 | .40E+01 | .19E+01 | .89E+01 |
| 9   | .54E+01 | .65E+01 | .25E+02 | .15E+01 | .15E+02 | .12E+01 | .13E+02 |
| 10  | .11E+01 | .23E+01 | .17E+01 | .10E+01 | .30E+01 | .22E+01 | .74E+01 |
| 11  | .15E+01 | .13E+01 | .13E+01 | 99E+02  | .25E+01 | .87E+00 | .11E+02 |
| 12  | .23E+01 | .17E+01 | .34E+01 | .12E+01 | .20E+01 | .74E+00 | .66E+01 |
| 13  | .11E+01 | .18E+01 | .15E+01 | .80E+00 | .22E+01 | .16E+01 | .71E+01 |
| 14  | .24E+01 | .26E+01 | .35E+01 | .10E+01 | .18E+01 | .11E+01 | .39E+01 |
| 15  | .11E+01 | .15E+01 | .13E+01 | .13E+01 | .23E+01 | .13E+01 | .89E+01 |
| 16  | .25E+01 | .15E+01 | .33E+01 | .11E+01 | .12E+01 | .60E+00 | .46E+01 |
| 17  | .26E+01 | .22E+01 | .45E+01 | .15E+01 | .15E+01 | .85E+00 | .38E+01 |
| 18  | .25E+01 | .12E+01 | .25E+01 | .13E+01 | .21E+01 | .49E+00 | .97E+01 |
| 19  | .23E+01 | .35E+01 | .57E+01 | .85E+00 | .26E+01 | .15E+01 | .42E+01 |
| 20  | .24E+01 | .18E+01 | .40E+01 | .85E+00 | .20E+01 | .74E+00 | .65E+01 |
| 21  | .26E+01 | .44E+01 | .50E+01 | .70E+00 | .15E+01 | .17E+01 | .20E+01 |
| 22  | .13E+01 | .27E+01 | .28E+01 | .75E+00 | .22E+01 | .21E+01 | .47E+01 |
| 23  | .28E+01 | .25E+01 | .33E+01 | .10E+01 | .18E+01 | .91E+00 | .40E+01 |
| 24  | .20E+01 | .20E+01 | .34E+01 | .11E+01 | .22E+01 | .96E+00 | .64E+01 |
| 25  | .18E+01 | .11E+01 | .11E+01 | .80E+00 | .85E+00 | .59E+00 | .46E+01 |
| 26  | .27E+01 | .14E+01 | .32E+01 | .11E+01 | .28E+01 | .53E+00 | .11E+02 |
| 27  | .11E+01 | .15E+01 | .13E+01 | .90E+00 | .26E+01 | .14E+01 | .10E+02 |
| 28  | .27E+01 | .12E+01 | .28E+01 | .80E+00 | .21E+01 | .44E+00 | .10E+02 |
| 29  | .19E+01 | .18E+01 | .27E+01 | .85E+00 | .24E+01 | .95E+00 | .78E+01 |
| 30  | .57E+01 | .55E+01 | .18E+02 | .16E+01 | .35E+01 | .97E+00 | .36E+01 |
| 31  | .25E+01 | .21E+01 | .39E+01 | .80E+00 | .32E+01 | .86E+00 | .85E+01 |
| 32  | .38E+01 | .25E+01 | .69E+01 | .65E+00 | .24E+01 | .65E+00 | .55E+01 |
| 33  | .28E+01 | .20E+01 | .42E+01 | .13E+01 | .13E+01 | .72E+00 | .36E+01 |
| .34 | .25E+01 | .31E+01 | .61E+01 | .20E+01 | .30E+01 | .12E+01 | .55E+01 |
| 35  | .60E+00 | .30E+00 | .25E+00 | .25E+00 | .15E+01 | .50E+00 | .27E+02 |
| 36  | .12E+01 | .13E+01 | .10E+01 | .20E+00 | .35E+01 | .11E+01 | .15E+02 |
| 37  | .14E+01 | .95E+00 | .10E+01 | .35E+00 | .25E+01 | .70E-01 | .15E+02 |
| 38  | .20E+01 | .19E+01 | .29E+01 | 99E+02  | .50E+01 | .94E+00 | .15E+02 |
| 39  | .12E+01 | .14E+01 | .12E+01 | .40E+00 | .55E+01 | .11E+01 | .22E+02 |

PLEASE INSERT PAPER AND PRESS ENTER

#### PAGE TWO OF THREE

|     | Sa       | То      | Bs        | Ac      | Gp      | Ge      | Sk       |
|-----|----------|---------|-----------|---------|---------|---------|----------|
| 1   | .15E+02  | .30E+01 | .30E+01   | .20E+01 | .15E+00 | .70E+01 | .45E+01  |
| 2   | .30E+01  | .40E+01 | .20E+01   | .10E+01 | .15E+00 | .70E+01 | .60E+01  |
| 3   | .70E+01  | ,10E+01 | .30E+01   | .40E+01 | .15E+00 | .40E+01 | .80E+01  |
| 4   | .10E+02  | .30E+01 | .20E+01   | .30E+01 | .20E+00 | .40E+01 | .90E+01  |
| 5   | .15E+02  | .30E+01 | .20E+01   | .30E+01 | .65E+00 | .90E+01 | .90E+01  |
| 6   | .20E+02  | .30E+01 | .20E+01   | .30E+01 | .25E+01 | .90E+01 | .90E+01  |
| 7   | 99E+02   | .40E+01 | .30E+01   | .10E+01 | .25E+01 | .90E+01 | .80E+01  |
| 8   | .13E+02  | .10E+01 | .20E+01   | .30E+01 | .30E+01 | .90E+01 | .90E+01  |
| 9   | .23E+02  | .10E+01 | .40E+01   | .30E÷01 | .25E+01 | .90E+01 | .90E+01  |
| 10  | ,15E+02  | .30E+01 | .30E+01   | .40E+01 | .15E+01 | .80E+01 | .90E+01  |
| 11  | 99E+02   | .20E+01 | .20E+01   | .40E+01 | .15E+01 | .80E+01 | 99E+02   |
| 12  | .40E+01  | .30E+01 | .20E+01   | .20E+01 | .20E+00 | .60E+01 | .00E+00  |
| 13  | .85E+01  | .30E+01 | .30E+01   | .20E+01 | .20E+00 | .60E+01 | .70E+01  |
| 14  | .25E+01  | .30E+01 | .20E+01   | .30E+01 | .15E+00 | .30E+01 | .80E+01  |
| 15  | .50E+01  | .40E+01 | .30E+01   | .40E+01 | .15E+00 | .20E+01 | .25E+01  |
| 16  | .10E+01  | .10E+01 | .20E+01   | .10E+01 | .30E-01 | .30E+01 | .45E+01  |
| 17  | .42E+01  | .10E+01 | .20E+01   | .30E+01 | .15E+00 | .30E+01 | .60E+01  |
| 18  | .72E+01  | .30E+01 | .30E+01   | .40E+01 | .15E+00 | .30E+01 | .75E+01  |
| 19  | .20E+01  | .30E+01 | .10E+01   | .10E+01 | .15E+00 | .30E+01 | .50E+01  |
| 20  | .30E+01  | .30E+01 | .30E+01   | .20E+01 | .15E+00 | .30E+01 | .80E+01  |
| 21  | .20E+01  | .40E+01 | .30E+01   | .20E+01 | .50E-01 | .30E+01 | .00E+00  |
| 22  | .25E+01  | .40E+01 | .30E+01   | .20E+01 | .50E-01 | .30E+01 | .00E+00  |
| 23  | .50E+01  | .30E+01 | .20E+01   | .40E+01 | .15E+00 | .20E+01 | .75E+01  |
| 24  | .85E+01  | .10E+01 | .20E+01   | .10E+01 | .50E-01 | .30E+01 | .80E+01  |
| 25  | .30E+01  | .30E+01 | .20E+01   | .10E+01 | .15E+00 | .40E+01 | .80E+01  |
| 2.6 | .80E+01  | .30E+01 | .30E+01   | .30E+01 | .15E+00 | .10E+01 | .50E+01  |
| 27  | .95E+01  | .20E+01 | .40E+01   | .30E+01 | .15E+00 | .20E+01 | .90E+01  |
| 2.8 | .50E+01  | .20E+01 | .30E+01   | .20E+01 | .15E+00 | .20E+01 | .45E+01  |
| 29  | .30E+01  | .30E+01 | .30E+01   | .30E+01 | .15E+00 | .50E+01 | .80E+01  |
| 30  | .25E+01  | .30E+01 | .10E+01   | .20E+01 | .10E-01 | .50E+01 | .80E+01  |
| 31  | .85E+01  | .30E+01 | .30E+01   | .40E+01 | .80E-01 | .30E+01 | .90E+01  |
| 32  | .35E+01  | .30E+01 | .20E+01   | .20E+01 | .30E-01 | .30E+01 | .70E+01  |
| 33  | .35E+01  | .20E+01 | .20E+01   | .20E+01 | .80E-01 | .40E+01 | .90E+01  |
| 34  | .35E+01  | .10E+01 | .20E+01   | .30E+01 | .30E-01 | .40E+01 | .302+01  |
| 35  | .25E+02  | .30E+01 | .20E+01   | .20E+01 | .15E+01 | .80E+01 | .80E+01  |
| 36  | .20E+02  | .10E+01 | .20E+01   | .40E+01 | .15E+01 | .90E+01 | .00E+00  |
| 37  | .17E+02  | .10E+01 | .20E+01   | .40E+01 | .15E+01 | .80E+01 | .905+01  |
| 38  | -,99E+02 | .30E+01 | .10E+01   | .40E+01 | .15E+01 | .80E+01 | .901+01  |
| 39  | .25E+02  | .10E+01 | .40E+01   | .40E+01 | .15E+01 | .80E+01 | . AOF+OI |
|     |          |         | DOD DUMED |         |         |         |          |

PLEASE INSERT PAPER AND PRESS ENTER

#### PAGE THREE OF THREE

|        | Di        | Dw         | נם         |
|--------|-----------|------------|------------|
| 1      | .00E+00   | .15E+01    | .14E+01    |
| 2      | 10E+01    | -13E+01    | 13E+01     |
| 3      | 10E+01    | 15E+01     | 16E+01     |
| 4      | 115+01    | 15E+01     | 155+01     |
| 5      | 155+01    | 135+01     | 138+01     |
| 5      | 112+01    | 135+01     | 125+01     |
| 7      | 112+01    | 125+01     | 125+01     |
| 6      | 102101    | .13ETU1    | 125+01     |
| 0      | 105+01    | 15E+01     | 145+01     |
| 9      | .102+01   | 16E+01     | 14E+U1     |
| 10     | .102+01   | .101+01    | .14E+UI    |
| 11     | 996+02    | .12E+UI    | .146+01    |
| 12     | .90E+00   | .12E+01    | .13E+01    |
| 13     | .10E+01   | .14E+01    | .14E+01    |
| 14     | .10E+01   | .16E+01    | .1/E+01    |
| 15     | .95E+00   | .14E+01    | .13E+01    |
| 16     | .11E+01   | .11E+01    | .14E+01    |
| 17     | .13E+01   | .13E+01    | .16E+01    |
| 18     | .60E+00   | .12E+01    | .13E+01    |
| 19     | .11E+01   | .16E+01    | .14E+01    |
| 20     | .12E+01   | .14E+01    | .15E+01    |
| 21     | .90E+00   | .15E+01    | .15E+01    |
| 22     | .90E+00   | .15E+01    | .14E+01    |
| 23     | .12E+01   | .16E+01    | .16E+01    |
| 24     | .60E+00   | .12E+01    | .14E+01    |
| 25     | .11E+01   | .13E+01    | .13E+01    |
| 26     | .11E+01   | .14E+01    | .16E+01    |
| 27     | .12E+01   | .14E+01    | .13E+01    |
| 28     | .12E+01   | .14E+01    | .15E+01    |
| 29     | .65E+00   | .15E+01    | .15E+01    |
| 30     | .13E+01   | .13E+01    | .13E+01    |
| 31     | .12E+01   | .15E+01    | .15E+01    |
| 32     | .10E+01   | .14E+01    | .14E+01    |
| 33     | .10E+01   | .12E+01    | .14E+01    |
| 34     | .75E+00   | .12E+01    | .13E+01    |
| 35     | 30E+00    | .11E+01    | .13E+01    |
| 36     | 90E+00    | .15E+01    | .15E+01    |
| 37     | 10E+01    | .14E+01    | .16E+01    |
| 38     | 14E+01    | .15E+01    | .15E+01    |
| 30     | 12F+01    | .12E+01    | .13E+01    |
| PLEASE | INSERT PA | PER AND PI | RESS ENTER |
| LUCHOL | THOULT II |            |            |
|        |           |            |            |

# EIGENVALUE SUMMARY EIGENVALUE PERCENT VARIATION

#### FACTORS FOR ATTRIBUTES

| IDEN | FACTORS: | 1 TO NU | MFAC  |
|------|----------|---------|-------|
| Wd   | .4196    | 0793    | 0547  |
| Ln   | .3895    | 0645    | .1317 |
| Ar   | . 6993   | .3756   | 0168  |
| Dp   | .3109    | 2141    | .0384 |
| Ht   | .1081    | .2482   | .0415 |
| LW   | .1295    | 2292    | .2979 |
| Aa   | 3400     | 0550    | .0419 |
| Sa   | 4023     | .2357   | .0030 |
| То   | .1949    | 3537    | .2375 |
| Bs   | .0277    | 2664    | .1161 |
| Ac   | 0889     | 2477    | .0461 |
| Gp   | 4605     | .6115   | 0420  |
| Ge   | 0945     | ,1100   | .0589 |
| Sk   | .0247    | 1862    | 3706  |
| Di   | .1529    | 2695    | 0097  |
| Dw   | .0986    | 2705    | .0890 |
| ות   | 0869     | 2928    | .0513 |

#### FACTORS FOR INDIVIDUALS

| IDEN | FACTORS: | 1 TO NUI | MFAC  |
|------|----------|----------|-------|
| 1    | 1804     | .1179    | .1124 |
| 2    | .5320    | .1291    | .0337 |
| 3    | .2880    | .0666    | 1291  |
| 4    | 0641     | 2100     | .0093 |
| 5    | .1148    | .2140    | 0372  |
| 6    | 0747     | .2755    | 0350  |
| 7    | .3449    | .3923    | .0144 |
| 8    | 2986     | .1199    | 0763  |
| 9    | .2354    | .4907    | 0045  |
| 10   | 2520     | 0168     | 0102  |
| 11   | 2920     | 0555     | .0031 |
| 12   | .0808    | 0721     | .3838 |
| 13   | - 1546   | 1713     | .0200 |

| 15<br>16 | 1104<br>.2813 | 3462<br>2489 | .2990     |
|----------|---------------|--------------|-----------|
| 17       | .2296         | 1610         | 1051      |
| 18       | 1023          | 2312         | 0656      |
| 19       | .4202         | 1234         | .0683     |
| 20       | .1647         | 2752         | 1210      |
| 21       | .5211         | 2199         | .5175     |
| 22       | .2155         | 2926         | .5620     |
| 23       | .1633         | 2984         | 0942      |
| 24       | 0339          | 0413         | 1928      |
| 25       | .0232         | 3965         | 2073      |
| 26       | 0977          | 1701         | .0527     |
| 27       | 2244          | 2328         | 1080      |
| 28       | 0506          | 2036         | .0299     |
| 29       | .0371         | 2964         | 0621      |
| 30       | .7712         | .1903        | 0835      |
| 31       | 0162          | 1689         | 0981      |
| 32       | .3482         | 1051         | 0910      |
| 33       | .2406         | 2253         | 2546      |
| 34       | .3018         | 0214         | .1342     |
| 35       | 6856          | .1111        | .0045     |
| 36       | 5603          | .2390        | .2647     |
| 37       | 4766          | .0676        | 1224      |
| 38       | 2224          | 0013         | 0421      |
| 39       | 5279          | .1284        | 0158      |
| PLEASE   | INSERT PA     | PER AND PR   | ESS ENTER |
|          |               |              |           |



OVERPRINT SUMMARY 4 PRINTS OVER 28

285





OVERPRINT SUMMARY 17 PRINTS OVER 31 287

A Dealer of the second s

LEOLOUT.

APPENDIX I:

DISCRIMINANT ANALYSIS RESULT

M: number of variables
Na: number of sample of a former group
Nb: number of sample of a latter group
Ra: discriminant score of a former group
Rb: discriminant score of a latter group
F: F value

#### F Value Calculatin for Fractal Dimension

#### GEOLOGY

mudstone - sandstone

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 11 | 7  | 3.0869 | 2.982 | 0.211 |

#### mudstone - tuff

| M | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 11 | 5  | -1.644 | -1.74 | 0.156 |

#### mudstone - volcanic

| М | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 11 | 4  | 11.611 | 10.88 | 0.994 |

#### Mesozoic - mudstone

| М | Na | Nb | Ra    | Rb    | F     |
|---|----|----|-------|-------|-------|
| 2 | 6  | 11 | -11.8 | -14.2 | 4.421 |

#### schist - mudstone

|   | Μ | Na | Nb | Ra     | Rb    | F     |
|---|---|----|----|--------|-------|-------|
| i | 2 | 6  | 11 | -4.676 | -4.85 | 0.313 |

#### sandstone - tuff

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 7  | 5  | -7.326 | -8.64 | 1.722 |

#### sandstone - volcanic

| M | Na | Nb | Ra     | Rb    | F    |
|---|----|----|--------|-------|------|
| 2 | 7  | 4  | 10.024 | 8.336 | 1.91 |

#### Mesozoic - sandstone

| M | Na | Nb | Ra    | Rb    | F     |
|---|----|----|-------|-------|-------|
| 2 | 6  | 7  | 0.759 | -8.11 | 13.02 |

#### DIP

#### Dip - Horizontal

| Μ | Na | Nb | Ra     | Rb | F     |
|---|----|----|--------|----|-------|
| 2 | 28 | 4  | -3.765 | -4 | 0.389 |

#### Horizontal - Dipping Into

| Μ | Na | Nb | Ra    | Rb    | F     |
|---|----|----|-------|-------|-------|
| 2 | 4  | 6  | -2.69 | -6.23 | 3.719 |

#### schist - sandstone

| М | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 6  | 7  | -1.271 | -1.28 | 0.017 |

tuff - volcanic

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 5  | 4  | 9.9915 | 9.384 | 0.579 |

#### Mesozoic - tuff

| М | Na | Nb | Ra    | Rb    | F     |
|---|----|----|-------|-------|-------|
| 2 | 6  | 5  | -0.17 | -2.18 | 2.431 |

#### schist - tuff

| М | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 6  | 5  | -6.537 | -7.14 | 0.729 |

#### Mesozoic - volcanic

| Μ | Na | Nb | Ra    | Rb    | F     |
|---|----|----|-------|-------|-------|
| 2 | 6  | 4  | -1.48 | -3.16 | 1.762 |

#### Schist - volcanic

| Μ | Na | Nb | Ra    | Rb    | F     |
|---|----|----|-------|-------|-------|
| 2 | 6  | 4  | 4.028 | 3.625 | 0.423 |

#### Mesozoic - schist

| ĺ | M | Na | Nb | Ra     | Rb    | F     |
|---|---|----|----|--------|-------|-------|
|   | 2 | 6  | 6  | -3.703 | -5.81 | 2.844 |

#### Dip - Dipping Into

|   |   |    |    | <u> </u> |       | -     |
|---|---|----|----|----------|-------|-------|
|   | Μ | Na | Nb | Ra       | Rb    | F     |
| l | 2 | 28 | 6  | 6.259    | 5.157 | 2.638 |

### Topography

| 1-2             | 1-2                        |    |        |      |       |  |  |  |
|-----------------|----------------------------|----|--------|------|-------|--|--|--|
| M Na Nb Ra Rb F |                            |    |        |      |       |  |  |  |
| 2               | 10                         | 4  | 5.4365 | 5.27 | 0.218 |  |  |  |
|                 |                            |    |        |      |       |  |  |  |
| 1-3             |                            |    |        |      |       |  |  |  |
| Μ               | Na                         | Nb | Ra     | Rb   | F     |  |  |  |
| 2               | 2 10 20 -1.027 -1.49 1.488 |    |        |      |       |  |  |  |
|                 |                            |    |        |      |       |  |  |  |
|                 |                            |    |        |      |       |  |  |  |

| 1 - 4 | 1 7 |    |        |       |       |  |  |  |  |
|-------|-----|----|--------|-------|-------|--|--|--|--|
| M     | Na  | Nb | Ra     | Rb    | F     |  |  |  |  |
| 2     | 10  | 5  | 6.5595 | 4.693 | 2.871 |  |  |  |  |

#### Block Shape

| Ho | Horse - Triangle |    |        |       |       |  |  |  |
|----|------------------|----|--------|-------|-------|--|--|--|
| M  | Na               | Nb | Ra     | Rb    | F     |  |  |  |
| 2  | 19               | 3  | -4.512 | -5.76 | 1.537 |  |  |  |

#### Triangle - Rectangular

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 3  | 14 | 2.9743 | 2.768 | 0.238 |

#### Bottle - Triangle

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 3  | 3  | -22.11 | -23.5 | 0.808 |

## Activity

#### Ancient - Stable

| M | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 6  | 11 | -12.17 | -12.6 | 0.806 |

#### Ancient - Dormant

| M | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 6  | 11 | -8.059 | -8.65 | 1.072 |

#### Ancient - Active

| M | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 6  | 11 | -12.13 | -13.2 | 1.852 |

|--|

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 4  | 20 | -4.648 | -5.16 | 0.814 |

| 2 | - | 4 | 1 |   |   |       |  |
|---|---|---|---|---|---|-------|--|
| - | - | - | - | - | _ | <br>- |  |

| Μ | Na | Nb | Ra    | Rb    | F     |
|---|----|----|-------|-------|-------|
| 2 | 4  | 5  | 3.921 | 0.851 | 2.924 |

| 3-4 |    | D 1 |        |       |       |
|-----|----|-----|--------|-------|-------|
| M   | Na | Nb  | Ra     | Rb    | F     |
| 2   | 20 | 5   | 7.0021 | 5.637 | 2.611 |

| Horse - Rectangular |    |    |        |       |       |  |  |
|---------------------|----|----|--------|-------|-------|--|--|
| Μ                   | Na | Nb | Ra     | Rb    | F     |  |  |
| 2                   | 19 | 14 | -5.566 | -6.31 | 2.885 |  |  |

#### Bottle - Horse

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 3  | 19 | -2.322 | -3.37 | 1.285 |

#### Bottle - Rectangular

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 3  | 14 | -11.18 | -11.9 | 0.885 |

#### Stable - Dormant

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 11 | 11 | -3.721 | -3.84 | 0.304 |

#### Stable - Active

| Μ | Na | Nb | Ra    | Rb    | F     |
|---|----|----|-------|-------|-------|
| 2 | 11 | 11 | -8.77 | -9.18 | 1.065 |

#### Dormant - Active

| M | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 11 | 11 | -1,938 | -2.03 | 0.235 |

#### F Value Calculation for Alpha-0

#### GEOLOGY

mudstone - sandstoness

| Í | M | Na | Nb | Ra     | Rb    | F     |
|---|---|----|----|--------|-------|-------|
| L | 2 | 11 | 7  | 0.1862 | -0.03 | 0.428 |

#### mudstone - tuff

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 11 | 5  | -0.256 | -0.35 | 0.143 |

#### mudstone - volcanic

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 11 | 4  | 0.9988 | -0.45 | 1.965 |

#### mudstone - Mesozoic

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 11 | 6  | 0.5512 | 0.122 | 0.778 |

#### mudstone - schist

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 11 | 6  | 0.0355 | -0.16 | 0.362 |

#### sandstone - tuff

| Μ | Na | Nb | Ra     | Rb   | F     |
|---|----|----|--------|------|-------|
| 2 | 7  | 5  | -0.264 | -0.6 | 0.437 |

#### sandstone volcanic

| Μ | Na | Nb | Ra     | Rb   | F     |
|---|----|----|--------|------|-------|
| 2 | 7  | 4  | 0.9753 | 0.46 | 0.583 |

#### sandstone - Mesozoic

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 7  | 6  | 1.9751 | -0.95 | 4.299 |

#### sandstone - schist

| М | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 7  | 6  | -0.242 | -0.31 | 0.097 |

#### tuff - volcanic

| Μ | Na | Nb | Ra    | Rb    | F     |
|---|----|----|-------|-------|-------|
| 2 | 5  | 4  | 1.911 | 0.715 | 1.139 |

#### tuff - Mesozoic

| Μ | Na | Nb | Ra     | Rb   | F     |
|---|----|----|--------|------|-------|
| 2 | 5  | 6  | 1.1463 | -0.4 | 1.876 |

#### tuff - schist

| Μ | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 5  | 6  | 0.4514 | 0.267 | 0.224 |

#### volcanic - Mesozoic

| M | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 4  | 6  | 0.5539 | -1.15 | 1.787 |

#### volcanic - schist

| M | Na | Nb | Ra     | Rb    | F     |
|---|----|----|--------|-------|-------|
| 2 | 4  | 6  | -0.702 | -1.54 | 0.881 |

#### Mesozoic - schist

| Μ | Na | Nb | Ra     | Rb   | F     |
|---|----|----|--------|------|-------|
| 2 | 5  | 6  | -0.045 | -0.6 | 0.672 |

Marchistica and in this charts are as fullent

Dr Scottal dimension

Dyt windlately timesday

Dal divisme dimmetres

54! how-eventing dilamation.

APPENDIX J:

Damage 2 Day -

Panel Revenue Present

ABBREVIATION LIST

Plate Section Property

fractat clausion yf these the

Densit Grantal Alamana at room to an

Dyrl Trachely Remains of succession

Denmark many frankal dimension of bourts of a contain proce

The strength of second and it found it.

A PARTICIPAL PROPERTY OF TAXABLE

ra ruler or allering periods will aller at our constitution exchange

H(x)) tomaker of incoduring scale size is sentence then the

Abbreviations used in this thesis are as follows:

D: fractal dimension

 $D_{s}$ : similarity dimension

 $D_{D}$ : divider dimension

 $D_{R}$ : box-counting dimension

 $D_{W}$ ,  $D_{W-whole}$ : fractal dimension of width of whole blocks  $D_{L}$ ,  $D_{L-whole}$ : fractal dimension of length of whole blocks  $D_{W-2nd}$ : fractal dimension of width of second-level blocks  $D_{L-2nd}$ : fractal dimension of length of second-level blocks  $D_{W-3rd}$ : fractal dimension of width of third-level blocks  $D_{L-3rd}$ : fractal dimension of length of third-level blocks  $D_{whole}$ :  $D_{W}$ ,  $D_{L}$ 

D<sub>2nd</sub>: D<sub>W-2nd</sub>, D<sub>L-2nd</sub>

D<sub>3rd</sub>: D<sub>W-3rd</sub>, D<sub>L-3rd</sub>

D<sub>Lin</sub>: fractal dimension of lineaments

D<sub>Rock</sub>: fractal dimension of rock fragments

D<sub>Fr</sub>: fractal dimension of fractures

 $D_{W-mean}$ : mean fractal dimension of width of a certain group  $D_{L-mean}$ : mean fractal dimension of length of a certain group

 $D_{Avg-mean}$ :  $(D_{W-mean} + D_{L-mean})/2$ 

 $D_{MA}$ : fractal dimension of Model A

 $D_{MB}$ : fractal dimension of Model B

r: ruler of divider method; grid size of box counting method; coefficient of correlation

N(r): number of something whose size is greater than the ruler, r

- b: number of subsequent blocks in a preceding block
- s: reduction factor (ratio of size of subsequent image to size
  of preceding image)
- $s_w$ : reduction factor of block width
- $s_L$ : reduction factor of block length