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ABSTRACT 

Climate change, tectonic activity, and base level alterations are considered controls 

on alluvial fan evolution, but varying conclusions exist on their relative importance The 

purpose of this study is to define the roles of these parameters on the development of the 

Klondike Canyon alluvial fan, Buena Vista valley, north-central Nevada 

Major conclusions of this study are based in large part on the delineation of alluvial 

and lacustrine deposits defined on the fan complex . Four alluvial fan units ranging in age 

from mid Pleistocene to Holocene were delineated and mapped Major episodes of fan 

building appear to be related to changes in climate, perhaps a shift from wetter to drier 

conditions Interestingly, stratigraphic relations between fan and lacustrine units indicate 

that significant fan deposition was not associated with the rise of Pluvial Lake Lahontan 

suggesting that Buena Vista valley filled by overflow from the Carson Sink via Chocolate 

Butte sill. 
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Introduction 

Many models have been put forth to explain the controls on alluvial fan 

evolution. These models focus on three driving forces which are tectonic activity, base 

level change, and climate change. Although these forces have been studied extensively in 

diverse tectonic and climatic regimes, their relative importance is still disputed (for 

example Ritter et al 1993 , 1994; Wells et al . 1987; and DeCelles et al 199 I) 

Tectonics has often been concluded to be the primary factor in both 

unconsolidated and paleo-rock sequences. For example, Heward ( 1978) and Nilsen 

( 1982) include tectonics in the general facies models for ancient alluvial fans The 

models interpret depositional sequences to be associated with tectonic activity that 

rejuvenates source areas resulting in cycles of fan growth. Tectonism has also been 

suggested as the primary control of sedimentation in orogenic zones (DeCelles et al 

1991 and Hartley 1993 ). The evidence presented in these studies are angular 

unconformities truncating the upper boundaries of alluvial fan units, and the existence of 

large fan units indicative of tectonically-produced source-area relief required fo their 

long term development. Cyclical, coarsening upward fan sequences have also been 

related to recurrent fault activity (Steel et al, 1977; Heward, 1978 ; and Nichols, 1987) 

that can rejuvenate the source area and enhance the production of sediments which are 

deposited on the fan 

Quaternary studies have also emphasized the role of faulting in primarily initiating 

cycles of alluvial fan aggradation The evidence utilized in these studies includes the 

identification of fault scarps, folding , topographic effects or dynamic metamorphism For 
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example, faulting has been used by Denny ( 1967) and Hooke ( 1967) as the initiator of 

fan head trenches, and Denny ( 1967) described how a mid-fan scarp would initiate a 

head cut in the feeder channel forming a fan head trench. Hooke ( 196 7) shows how a 

tectonic uplift can lead to coarse-grained debris flows . 

Faulting has been cited as the initiator of segmented radial fan profiles by Bull 

( 1964) and Beatty ( 1961) For instance, Bull demonstrated how tectonic uplift caused 

the stream to downcut forming a terrace, whereas farther onto the fan , the channel 

adjustment was manifested by deposition atop older units . The product of this process 

was fan segmentation Faulting was also interpreted to be the cause of the development 

of fan complexes (Denny, 1967) because ofthe change in the loci of deposition by 

fanhead trenching and stream capture processes. 

Base level changes have been cited as a control on alluvial fan development 

Schumm ( 1993) notes, for example, how local changes may induce stream aggradation 

and degradation, and Steel et al. ( 1977) suggest that coarsening-upward sequences may 

represent aggrading base level conditions as movement of the loci of deposition 1'oward 

the mountain front allows coarser-grained material to be deposited near the apex . A 

lowering of base level may create a fan head trench . 

Schumm ( 1977) has suggested that these aggradational and degradational 

adjustments may accumulate through reactions referred to as complex response . An 

example of this phenomena begins with a rise in local base level. Initially the coarser-

grained sediments are deposited near the apex . However, the coarse-grained sediments 
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may build up a "barrier" that increases fan gradient. An intrinsic threshold is crossed and 

the stream channel downcuts forming a fan head trench . 

Climate change controls the sediment/water ratio by not only affecting the 

amount of water put into the system (Gellis 1991) but also by the type and density of 

vegetation present (Langbein and Schumm 1958) As a result , the effect of an increase 

in precipitation may lead to either an increase in sediment load, and therefore fan 

aggradation, or a decrease in load and fan entrenchment. The first scenario applies if the 

source area is arid prior to an increase in effective moisture The second applies if the 

source area is already humid and vegetated, because the increased precipitation would 

just increase the amount of vegetation . 

Many recent studies of Quaternary alluvial fan evolution have used geomorphic 

features , paleoenvironmental data or regional stratigraphic correlation to show that 

climate can be a primary control on fan development . These studies include Pierce and 

Scott (1982), Wells et al. (1987), Nemec and Postma (1993), Ritter et al. ( 1993) and 

Ritter et al (1994) For example, Ritter et al ( 1993 , I 994) used geomorphic features 

and paleoenvironmental data by tracing alluvial fan units directly to glacial moraines, and 

Wells et al (1987) compared the age of their alluvial fan units to dated pack rat middens 

which provided regional timing and nature of climatic changes A climate change is 

widespread, affecting many drainage basins with the same type of change, therefore the 

geomorphic response would be" .. widespread and characterized by synchronous periods 

of aggradation and entrenchment for all fans in a region" (Ritter et al. I 994) . 

-. 
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Objectives 

The primary purpose of this study is to decipher the relative roles of climate 

change, tectonics, and base level alterations on the development of the Klondike Canyon 

alluvial fan Secondary objectives are to gain a better understanding of Pluvial Lake 

Lahontan Lake level fluctuations and the relationships between lacustrine and fluvial 

processes. 

Geologic and Geographic Setting 

The Klondike Canyon alluvial fan is located within Buena Vista Valley in north-

central Nevada, approximately 60 km southwest of Winnemucca (fig . I) The valley 

covers an area of approximately 133 km2 and is bounded on the west by the Humboldt 

Range and on the east by the East and Stillwater Ranges (fig I) As is typical of the 

Basin and Range physiographic province, it was created by extensional tectonism which 

began in the Miocene. Although no fault scarps were detected on the fan, neot ectonic 

maps of Buena Vista Valley show fault scarps in the area of Klondike Canyon with the 

age of early to mid Pleistocene to late Pleistocene (Dohrenwend and Moring 1991) The 

general location of the fault scarps are range-front . Also, tectonic rebounding associated 

with the drying of the pluvial lake systems is occurring (Mifflin and Wheat 1979). 

Buena Vista Valley has also been subjected to significant Quaternary climatic 

change. These changes have been recorded by a host of parameters including lacustrine 

and eolian deposits (Morrison 1991, Benson and Thompson 1987, and Benson 1990), 

tree rings (Rose and Wigand in press, Rose 1995 , and Graybill 1987), and fossil pollen 

.. 
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and pack rat middens (Wigand et al. Desert Research Institute, and Rose and Wigand in 

press) These climatic shifts were likely to have impacted runoff and sediment yields as 

well as altered pluvial lake levels and, therefore, base level. 
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Local base level has also changed as Buena Vista is a hydrologically-closed basin 

and pluvial lake levels have changed considerably. (For a complete description of Pluvial 

Lake Lahontan cycles refer to Morrison 1991 , Benson and Thompson 1987, Benson et 

al . 1990, and Benson 1993) Morrison (1991) declared about the Great Basin, "Few 

other areas in this country have equivalent exposed completeness of stratigraphic 

detail , sensitivity to climatic change, and opportunity for chronometric control." 

As shown above, the Klondike Canyon fan and watershed has been subjected to 

tectonic activity, climate change and base level alterations. It therefore provides an 

excellent setting to study the influence of these three variables on alluvial fan formation 

The drainage basin which feeds the Klondike Canyon alluvial fan is approximately 

55 km2. The watershed is underlain primarily by the Leach formation (plate I) which 

consists of altered basic volcanics and pyroclastics with significant quantities of a ark 

chert and siliceous argillite Beds of dark vitreous quartzite are found at the top of the 

formation . Interbedded slate, limestone, and conglomerates are found at the forks of 

Leach Canyon (Stewart and Carlson 19','8) 

Methods 

Interpretations derived during this investigation rely heavily on the alluvial and 

lacustrine stratigraphy of the Klondike Canyon Alluvial Fan Complex Quaternary 
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stratigraphic units were delineated on the basis of topographic and stratigraphic position, 

clast lithology, grain-size distribution, surface micro-relief, degree of deser1 pavement 

development, thickness of deser1 varnish on surface of clasts, and soil profile 

development. Topographic positions of the alluvial and lacustrine units were quantified 

using radial and cross-fan surveys obtained with a Nikon Total Station, DTM-5 . 

Elevational data was collected using a Ashtech Global Positioning System Model XII 

with an accuracy capability of 2 cm horizontally and 4 cm ver1ically. The positions of 

these transects are shown on figure 2 

Surficial characteristics of the alluvial fan and lacustrine units were obtained 

using 25-m transects, following the methods described in McFadden et al ( 1989) The 

transect data were collected on each alluvial fan unit and two lacustrine units in areas 

without noticeable erosion (fig. 2) . Lithology, grain size, deser1 varnish and rubification 

data were collected using the largest clast at every 1-m interval. The degree of deser1 

pavement development and surface micro-relief was done at a reconnaissance scale 

Soil profile development was described in the classification system put for1h by 

Birkeland ( I 984) Each pit was located in flat-lying areas displaying stable 

characteristics; that is, they were devoid of vegetation and rills (fig 2) . The pits were 

approximately I m in depth and hand-excavated . Soil samples were extracted from 

profile horizons . Laboratory analysis was conducted in the soils/sedimentology lab at the 

Desert Research Institute. Particle size analysis was performed using wet-sieving/pipette 

techniques following the procedures of Day ( I 965). Soil pH was acquired using an 

·~ 
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Figure 2: Surficial geologic map of the Klondike Canyon Alluvial Fan. Note the 
location of topographic profiles, soil pits, and surface transects. 
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electric pH meter in 0 0 I M calcium chloride (Peech, I 965) . Quantification of soil 

profile development was conducted using the Harden Index (Harden 1982). 

9 

The Harden Index is a method which quantifies soil development in order to 

compare soils from different areas . Each soil horizon in a given geomorphic unit is 

analyzed for color, structure, dry consistency, wet consistency, texture, clay films , 

CaCO3 development, and pH Each variable is compared to the parent material and is 

assigned a number specified by the Harden Index . For example, translocated clays are 

assumed to accumulate through time . Therefore, the horizon would be assigned a large 

number if it had significantly more clay than the parent material. These numbers are then 

normalized, divided by the number of properties, and multiplied by the depth of the 

horizon in order to obtain the Harden Index . Exact number increments and 

normalizations for each variable can be found in Harden ( 1982) 

The measurements reported in tables throughout the documents were obtained 

with a hand-held planimeter from orthophotoquads. The reported number is an average 

of three measurements Although the planimeter has the capability for six significant 

figures , the measurements are reported to two significant figures and without errors 

Calibrated ages on the datable materials were obtained through BET A Analytic 

Inc. Samples were pretreated with acid etching and dated with AMS C 14 The 

locations of the dated material were correlated to transects using the Global Positioning 

System and Total Station surveys. 
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Results 

Four alluvial fan units were delineated and mapped on the Klondike Canyon 

alluvial fan (fig. 3) . The alluvial units from oldest to youngest are Quaternary fan unit I 

(Qfl ), Quaternary fan unit 2 (Qf2), Quaternary fan unit 3 (QO ), and Quaternary fan unit 

4 (Qf4) The general morphology that characterizes each unit is shown in table I . Other 

geomorphic units in the area developed during the last high stand of Pluvial Lake 

Lahontan . These are bars which are the linear features labeled alphabetically from A to 

M 

Description of alluvial fan units 

Quaternary fan unit I 

Qfl covers an area of approximately 0.22 km2 (table I) The unit is only locally 

preserved at the fan apex along the mountain front and covers the smallest area of any 

fan unit described . The surface of Qfl contains a micro-relief less than one dast 

diameter and is devoid of bar and swale topography. Qfl is characterized by a desert 

pavement exhibiting interlocking clasts . Desert varnish on clast surfaces is continuous 

around volcanic lithologies while rubification occurs on the bottoms and in pits of quartz 

clasts (fig. 4) The transect data is summarized in Table 2 

.. 
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SURFICIAL CHARACTERISTICS 
A. 

B. 

Figure 4: A . Quaternary fan unit I . Note the desert pavement and desert varnish B. 
Quaternary fan unit 2. Note the desert pavement and desert varnish 
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Table l: Summary of Alluvial Fan Unit Morphology 

Fan Unit Area (km2) Width (km) Length (km) Change in Average 
Height (km) Gradient 

Total 26 2.7 7.4 1.5 0.20 

Qf1 0.22 0.17 1 .1 0.18 0.16 

Qf2 18 5.0 5.6 1.2 0.21 

Qf3 1.7 0.70 29 0.30 0.10 

Qf4 5.7 2.3 4.4 0.58 0.13 

Soil profiles in Qfl sediments are characterized by Btk horizons that are 

approximately 20 cm thick. These horizons are associated with significant increases in soil 

clay (fig. 5) The Harden index (Harden 1982) calculated a profile index of 18 (fig . 6) 

The complete soil descriptions including laboratory results are presented in App ndix I 

The sedimentology of Qfl was similar at each site examined . It is composed of 

clast-supported, well-sorted, sub-angular clasts suggestive of sheetflood deposition . 

Clasts range from pebbles to cobbles. 

•. 
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Table 2: Surficial Characteristics of Fan Units 

Unit Maximum size of Maximum varnish Rubification 
clasts 

Qf1 cobbles 100% yes 

Qf2 cobbles 100% yes 

Qf3 proximal boulders 100% yes 

Qf3 distal boulders 50% yes 

Qf4 boulders 20% yes 

Quaternary fan unit 2 

The most extensive unit is Qf2 Its surficial characteristics and aerial extent are 

well-preserved in proximal, medial, and distal areas . Qf2, which is inset into Qfl ( fig . 3 ), 

has similar surficial characteristics as Qfl (table 2 and fig 4 ). In the proximal and medial 

areas, the surficial micro-relief is less than one clast diameter, the desert pavement is fully 

interlocking, and the desert varnish thickly coats volcanic clasts. The distal area has been 

reworked during more recent lake level high stands, and therefore does not possess a 

completely interlocking desert pavement. The desert varnish and surface micro-relief 

exhibit similar characteristics as the proximal areas . The preserved extent of Qf2 is 18 

km2. 

A distinguishing feature which has eroded away Qf2 is the fanhead trench. Figure 

7 shows a topographic profile of the fanhead trench . (Appendix II also contains 

... 
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surveys of fanhead trench ) An estimated 2,700,000 m3 of sediment have been removed 

from Qf2 

The soils and stratigraphy of Qf2 are very similar to Qfl In proximal fan areas, 

soils exhibit a Btk horizon approximately 30 cm thick (fig 5) . Distal fan soils possess 

thicker horizons up to 50 cm . The complete description of the soil profiles are in 

Appendix I. The Harden index was calculated to be 27 and 21 for the proximal and 

distal areas, respectively (fig. 6) The sedimentology of Qf2 is similar to Qfl Qf2 is 

clast-supported, well sorted , and sub-angular. Clasts range from pebble to cobble size 

Sheetflood deposition appears to have been the dominant depositional process 

Quaternary fan 3 

In proximal areas Qf3 is inset into Qfl and Qf2 deposits In medial and distal fan areas, 

Qf3 buries the older units The total area of Qf3 is I 7 km2 Qf3 characteristics vary 

significantly downfan Qf3 occurs as remnants in the upper fanhead trench and as 

preserved, fan-shaped deposits in the distal area . Table 2 notes some of the differences 

between the proximal and distal areas, but field observations revealed other differences 

as well For example, surface micro-relief is small to none in the proximal areas 

whereas remnant bar and swale topography is prominent in distal areas (fig 8) . 

Boulder-size clasts are located in these bars which reach a maximum height of 50 cm. 

Desert pavement is characterized by completely interlocking clasts in the proximal areas 

and by separated aggregates of interlocking clasts in low-lying, protected areas in distal 

areas . 
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SURFICIAL CHARACTERISTICS 
A. 

B. 

Figure 8: A. Quaternary fan unit 3. Note the bar and swale topography B. Quaternary 
fan unit 4. Note the fin e-grained texture. 
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The soil profile depicted in figure 9 is located in QtJ distal deposits . The soil is 

weakly developed without significant clay accumulation. The profile displays a 

calcareous horizon approximately 50+ cm thick The Harden index was calculated to be 

8 (fig 6) 

Quatemaryfan ./ 

The youngest alluvial unit, Qf4, covers an area of 5 7 km2 It is inset into QfJ 

and older deposits in proximal and medial fan areas and buries these alluvial fan units in 

distal areas. Within the fanhead trench, Qf4 contains few fine-grained sediments, and the 

pebbles are unconsolidated In the distal area more fines (si lt s) overly and are dispersed 

within the deposits (fig 8) . Bar and swale topography is prominent throughout Desert 

pavement does not exist and desert varnish reaches a maximum of 20% cover on 

volcanic clasts. The main clast discoloration occurs as rubification which is located only 

on the bottoms of clasts. 

The soil profile in figure 9 is located in distal Qf4 deposits The thickness of Qf4 

in this area (fig. 2) is approximately 40 cm. The profile index produced by the Harden 

index is 3 (fig 6) 
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Lacustrine Deposits 

Several lacustrine deposits or ridges overlie or are truncated by alluvial fan units 

of the Klondike Canyon alluvial fan (fig 3) They have been labeled in alphabetical order 

from proximal to distal fan areas. The parent material of the lacustrine ridges differs 

from the alluvial units because of the nature of the nature of deposition . The highest 

lacustrine deposit was formed in relatively shallow water, because of the well-preserved .•. 

desert pavement and desert varnish located on Qf2 just above the deposit They were 

deposited in a high-energy environment that resulted in very well rounded. very smooth 

and very well sorted cobbles with very few fines The bedding is thin to medium, and 

while most dip towards the mountain front , the dip and strike does vary within one 

deposit The deposits exhibit positive relief, are linear ridges, have constant elevations, 

parallel one another, and are constructional. These characteristics are consistent from 

bars A to M. Because of the above mentioned characteristics, these deposits have been 

referred to as bars. 

The approximate volume of sediments contained in the bars is 4, I 18,Q.,,O m3 as 

determined by aerial photography and topographic surveys. Observation of the map (fig . 

3) reveals that some of the bars are linear while others exhibit recurve spits or "hooks" 

on the end . All of the bars in the Klondike Canyon area are depositional features 

The best preserved bars are nearer the mountain front The surfaces of the bars 

have little to no micro-relief, and the bars are capped by a completely interlocking system 

of desert pavement Vegetation is absent from the top of the bars . The gently sloping 

sides of the bars are characterized by poorly developed desert pavement, but highly 
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developed desert varnish . The volcanic clasts are completely covered by desert varnish 

and the quartz clasts exhibit rubification. 

Representative soil profiles were described on bar A and bar H Bar H is 

approximately 25 m lower than bar A The soil development of the bars show no 

significant clay accumulation (fig. 10). The soils exhibit some calcareous accumulation . 

The Harden index constructed a profile index of 23 and 24 for bar A and bar H 

respectively (fig. 6) . 

The bars overly Qf2 and are truncated by Qf3 and Qf4 The bars are sitting on 

top Qf2 pavement and soils buried under the highest shoreline in Qf2 at American 

Canyon (fig . 1) Qf3 and Qf4 cut through the bars in one main channel Then the Qf3 

and Qf4 alluvial deposits are deposited over and around the bars located below the 

intersection point. 

Stratigraphic Ages 

Three C 14 dates were obtained from the bar deposits on Klondike CanyCJrl fan 

The dated materials were identified as Vorticifex (Parapholyx) solida by Saxon Sharpe 

(pers comm 1994) at the Desert Research Institute . These molluscs are found in fresh 

water lakes of Nevada and California (Burch 1989) 

The oldest date, 14,540 +/- 60 BP , was collected from a sandy unit sandwiched 

between rounded, well-sorted pebbles which have been interpreted to be a constructional 

bar Figure 3 shows the location and figures 1 I and 12 show the stratigraphy of the 

dated shells . 

.. 



PERCENT CLAY: SHORELINES A & H 
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Figure 10: Clay accumulation in soil profiles developed in shorelines A and H. See 
figure 2 for soil pit locations. 
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SHELL STRA TlGRAPHY 

13110 +/- 70 BP % gravel description 
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The uppermost layer Is the Av soil honzon. 

The second Iyer has weel-rounded. well-sorted ciasts with 
translocated fines . . . 
The third layer has well-rounded, well-sorted ciasts . The undulating 
beds cross<ut and have varying slopes . The gravel increases 
with depth . 

The fourth laye r contains the shells . It has s1m1lar bedding leaturas 
The shells ware located In a completely carbonata-<:emen ted area 
Tula was also located in lhts layer . 

Down to 120 cm was more wall-rounded. wall-sorted clasts The 
bedding features ware !ha same . 

The strabgraphy of this profile Is the same as !he 13110 date The 
two profiles are in the same unit. The uppermost layer 1s the 

Av soil horizon . 
The second layer has translocated tines . 

The third layer has wall-rounded. wall-sorted clasts . The bedding 
features are undulaong, cross<uttmg, and vary ing slopes 

The amount of gravel increase s with depth . 

The fourth layer contams !he shells. It has the same strangraphy 
as the layer above except lor !ha cemented sedunants 
containing the shells and Iha !Ufa. 

The bottom layer has !he same straography. 

The uppermost layer Is !he Av soil honzon . 

The second layer has translocated fines with wall-rounded. well-
sorted ciasts . 

The third layer 1s dominated by well -rounded, well -sorted clasts . 
The bedding features are undulating, cross<uttmg, and have 
varying slopes. 

The shells are lound In a layer ol uncemanted sand . 

The bottom layer has Iha same straOgraphy. 

Figure 11: Stratigraphy of shorelines where shells were located 



SHELL STRATIGRAPHY 
A. 

B. 

Figure 12: A. Bar H, dated at 12390+/-70 BP B. Remnant bar, dated at 14540+/-60 
BP. Locations of bars are shown on figure 2. 
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The other 2 dates, 13 , 11 0 +/- 70 BP and 12,390 +/- 70 BP , were obtained 

from shells found in bar H. Their locations are approximately 75 m apart (fig 3) within 

the same stratigraphic layer (figs. 11 and 12) The bar is appro ximately 25 m below the 

highest bar 

Discussion 

Timing of Alluvial Fan Development 

Infonnation assembled from many different sources lead to a general model fo r 

the timing of geomorphic events and responses for the fonnation of the Klondike Canyo n 

alluvial fan The timing of geomorphic events is critical because it is the primary 

indication of the relative importance of climate change, tectonic activity, and base level 

controls on Klondike Canyon alluvial fan evolution These sources include surficial and 

soil characteristics exhibited within Qfl , Qf2 , Qf3, and Qf4 They also include dates 

obtained from Klondike Canyon and cross-valley-correlated units . These cross-valley 

units were dated by Ritter and Miller (in progress) who are conducting a study of alluvial 

fans throughout the valley. 

Relative Chronology 

The relative chronology of all units can be detennined by examining the map of 

Klondike Canyon Alluvial Fan (fig 3 ). (The description of the chronology refers to the 

map throughout) Qfl is the oldest preserved unit and is poorly preserved due to 

substantial reworking during subsequent fan building It is located above the intersection 

point and is higher in elevation than other fan surfaces Therefore, the stratigraphic 

... 
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relationships with other alluvial fan units demonstrates Qfl is older than any other unit. 

The soils in Qfl are the highest in clay content (figs. 5 and 9) which also resolves Qfl to 

be relatively the oldest unit. 

Qf2 is then inset into Qfl , and is therefore younger than Qfl . Qf2 surficial and 

soil characteristics suggest that both Qfl and Qf2 are of similar ages The soil does 

contain Btk horizons, however the percent clay is less than Qfl which indicates Qf2 is 

relatively younger. 

Soil and surficial difference between Qf2 and the lacustrine units are not founded 

mainly because of the different parent materials. However, the stratigraphy clearly 

shows Qf2 is relatively older than the bars, because the bars lie atop Qf2 It is also clear 

that Qf3 and Qf4 are relatively younger than the bars, because these alluvial units cut 

through the bars . 

The relative differences in alluvial units can be studied by the soil and surficial 

characteristics, because the units have similar parent material which originated in 

Klondike Canyon. Soil and surficial differences between Qf2 and QfJ suggest Qf2 

remained relatively undisturbed for a long period of time before the rise of Lake 

Lahontan during its last pluvial cycle which deposited bars over Qf2 Qf2 contains 20% 

clay in the Btk I horizon . QfJ contains 2% clay which is not enough for a Bt 

designation. This difference in clay content reveals Qf2 is relatively older than Qf3 The 

complete desert pavement coverage in Qf2 compared to the scattered assemblages of 

desert pavement in distal QfJ is also evidence showing the relative age difference 

Another indication of the stability of Qf2 before the rise of Pluvial Lake Lahontan is a 

.. 
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buried soil. Across the valley at American Canyon (fig I) , an excavated pit shows that 

the highest bar, A. buries the soil in deposits which correlate with Qf2 (Ritter and Miller 

in progress) . This indicates Qf2 was stable long enough for a soil with a Bt horizon to 

forrn before Pluvial Lake Lahontan reached its high stand . 

Insights into the rise of Pluvial Lake Lahontan can be extracted from the dates 

associated with the lacustrine bars These dates are marked on figure three, and 

observation reveals that they are not in a chronological order relative to the perceived 

model of formation . This suggests that I) the bar was deposited during lake level rise 

and a portion of the bar has been preserved through lake level high stand and fall or 2) 

there was a fall in lake level from at least the elevation of the older shells to at least the 

elevation of the younger shells and then the rise in lake level to the high stand before lake 

desiccation . Evidence for a remnant deposit mainly lies in the different morphology 

relative to other bars in Klondike Canyon because it I) does not parallel the mountain 

front, 2) is not linear, and 3) is not extensive in length . Also , analysis of the stratigraphy 

reveals that the sediments have not been eroded from older lacustrine units and 

redeposited (figs. 11 and 12). Redeposition is eliminated because I) the shells were 

found in a fine-grained layer sandwiched between two gravel units, and 2) the shells are 

extremely fragile and would be destroyed during extended movement. 

Some of the bars have different morphologies in that they exhibit recurve spits . 

This indicates a progradation into deeper water and possibly a longer lake-level stability 

(Kochel, pers com.). The process which forrned the recurve spits was currents flowing 

out of the southwest. Evidence lithology of the clasts in the bars The main lithologic 

·•. 
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indicator is granite Granite is not found in Klondike Canyon and is located only at 

Granite Mountain which is south of the study area (Plate I) No granite is found north 

of the study area at an elevation low enough for lake levels to have reached . Therefore, 

long-shore currents coming from the south were carrying sediments from Granite 

Mountain to be deposited in the bars at Klondike Canyon . 

QfJ then cut the fanhead trench in Qf2 and eroded through the bars . On the map ·•. 

of Klondike Canyon Alluvial Fan (fig . 3), bars J and Kare dashed . "This indicates tha 

portions of the bars are buried by and protrude through QfJ The sediments were 

deposited over and around the bars, but not enough material was available to totally bury 

them. 

The processes involved in the development of QfJ are unique in that the time-

transgressive nature has been recorded due to unusual circumstances . As lake levels 

dropped, bars were left perpendicular to the mountain front and to flow/sediments 

coming from the range When the flow from the drainage basin carrying QfJ sediment 

reached the first bar, it could not overtop the protruding bar surface and ponde<i, on the 

upslope side of the constructional feature Stratigraphic sections examined upslope of the 

bars indicates that breaching required multiple events For example, figure 13 shows the 

stratigraphy/sedimentology on the upslope side of the highest bar (A) There are three 

distinct units which are indicative of different depositional environments. The oldest unit 

has very well-sorted, fine-grained sediments which are laminar and representative of a 

calm environment. The middle stratigraphic unit contains coarser grained sediments with 

paleo-channels indicating a higher energy regime An unconfomity marks the top of the 



, I 

STRATIGRAPHY ON THE UPSLOPE SIDE OF BAR A 

® 
0 

1. The top layer is similar to the alluvial deposits of Of1 and Qf2 . The layer is 
matrix supported with subangular. poorly sorted cobbles. The layer is capped by 
interlocking desert pavement. The deposit is indicative of sheetflood deposition. 

2. The middle layer consists of medium-grained fines with a few cobbles . The 
most distinguishing features are the small paleo-channels. They are about 30 cm 
wide. The breach of the shoreline occurred during the time between 1 and 2. 

3. The bottom layer is fine- to medium-grained sediments. It is thinly- to medium-
bedded. These features represent a calm, settling deposition . This is indicative 
the environment of the mini-playas. 

Figure 13: Diagram of stratigraphy found on the upslope side of SLA at Klondike 
Canyon . The stratigraphy has recorded the ponding of water, movement through the 
channels and deposition of allu vial material s. 

... 



middle layer when the bar was breached and the ponded water broke through . The 

youngest layer is then very similar to Qf2 deposits in stratigraphy and surficial 

characteristic, but it is the proximal QfJ unit A detailed explanation is given in figure 

13 . 

32 

Another piece of evidence for the ponding is the mini-playas on the upslope side 

of random bars These mini-playas are being formed by current-day processes where ·•. 

water is trapped and evaporated from the surface, thereby leaving the salts to 

accumulate . If this ponding is occurring now, it may be indicative of the past 

environment 

At some time the feature was either not high enough or strong enough to hold 

back the ponded flow/sediments and the bar was breached. The process involved in the 

breaching is unclear, but it was probably an overtopping followed by downcutting At 

this time the lake level was at least below the bar which was being breached , because of 

the features which are preserved on the down slope side of the bar. These features are 

"break-out" fans They are similar to an alluvial fan in that they radiate from as· gle 

point, the breach in the bar deposition and are cone-shaped The break-out fans were 

presumably formed when water broke through the bar During the breaching process, 

the water/sediments then briefly moved the sediments eroded from the bar during 

breaching, and redeposited them in the shape of a fan The break-out fan is, therefore, 

composed of sediments from the canyon and reworked materials eroded from the bar. 

Figure 14 shows a schematic diagram of QfJ formation and illustrates its time-

transgressive nature. 
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SCHEMATIC OF BREAK-OUT FANS 

A 

Channel Profile 
E 

Of2 
Shoreline 
Water 
Sediments 
Break-out fan 

surface before shoreline breach 
surface after shoreline breacti' 

Figure 14: This schematic represents the model of multiple breaches. A. Time I, a high lake level is forming a shoreline. B. Time 2, lake level has dropped and is forming another shoreline. Water coming from the drainage basin ponds upslope of highest shoreline. C. Time 3, ponded water has breached the upper ridge forming a break-out fan . Water and sediments are again ponding upslope of lower ridge. D. Time 4, the lower shoreline is breached forming its break-out fan . E. At an early time, the channel is short and has a steep gradient . With the breaching of a shoreline, the channel downcuts and acquires a gentler slope. 
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The processes involved in this breaching are unclear, but two important ideas are 

clear. First, more than one event was involved in the ponding before bar breaching 

event, as suggested by the stratigraphy/sedimentology of the ponded sediments . Second, 

lake levels had to be lower than the bar which was being breached. Therefore, a 

maximum age can be put on the development of QfJ It has to be younger than the last 

high stand of Pluvial Lake Lahontan 

The timing of the breaching of the bars can be constrained even more, because of 

a problem related to sediment supply during the formation of bars lower than bar A. If 

every bar was fully developed before any breach occurred, no sediments from Klondike 

Canyon could have been incorporated during bar aggradation . The estimated 4, 118,000 

m3 of sediments tied up the bars in the Klondike Canyon complex would have had to 

come only from long shore currents . It has already been stated that long shore currents 

did supply granite from Granite Mountain during Pluvial Lake Lahontan, but the bars 

also contain volcanics from the range . Klondike Canyon is not comprised of an 

indicative rock type, therefore the exact origin of the sediments cannot be traced A 

general reconnaissance near Granite Mountain located scoured areas, but not areas 

suggestive of a source of 4,118,000 m3 of sediments . It is concluded some sediments 

were supplied from Klondike Canyon or the erosion of Qf2 The breaching of the bars, 

the development of QfJ, must therefore have occurred after the deposition of bar A, but 

before Pluvial Lake Lahontan had deposited the last bar. 
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The relative surficial and soil characteristics of QfJ indicate that the unit is 

younger than Qf2 Insights into its absolute age can be obtained from other locations in 

the valley For example, a C 14 date was obtained for some charcoal by Ritter and Miller 

(in progress) at Willow Creek Alluvial Fan (fig. I) The stratigraphy of the unit 

correlates to the Klondike Canyon QfJ . The dated charcoal which was located in a cut 

and fill sequence was 1,250 +/- 50 BP. Mazama ash is also preserved in lenses within 

proximal QfJ deposits in two fans These data along with relative age correlation 

demonstrate that QfJ was being deposited by at least 6,800 B P When taking into 

account the process of QfJ development with the break-out fans, QfJ aggradation could 

have occurred prior to 13 , 100 +/- 70 BP This date was obtained from the highest 

dated bar in the Klondike Canyon complex. The aggradation would be pre- I 3, I 00 +/-

70 BP , because this date was obtained from the bar H at 40 m below the highest 

lacustrine deposit 

Qf4 followed the same fanhead trench and eroded much of QfJ . Qf4 directly 

cross cuts Qf2, QfJ and the bars . No bars were located which protrude through~ f4 

Qf4 exhibits surficial and soil characteristics indicating it is the youngest unit in the 

Klondike Canyon Alluvial Fan complex (table 2 and fig 6) Figure 9 shows that the clay 

content of Qf4 is greater than QfJ which is the opposite as predicted by the Jenny 

equation One possible explanation is that Qf4 parent material contains more fines than 

QfJ . Klondike Canyon may have had the sediment storage stripped during the formation 

ofQfJ and when Qf4 was aggraded only fines were available in the source area. The 

... 
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surface has no sign of desert pavement and only rubification on the clasts . The soil does 

not have any significant clay accumulation and has the lowest profile index 

Unit Age 

Without dated material in the alluvial fan units, the ages can be estimated by 

comparing the soil development with other studies which have ages associated with the 

soil profile development Table 3 is a comparison of soils data collected from Klondike 

Canyon with two previous studies A comparative study of soils data for northern 

Nevada was not located , therefore two studies north and south of the field area were 

analyzed a study by Wells et al. ( 1987), conducted in the Mojave Desert , southeastern 

California, and a study by Ritter et al. ( 1993), conducted in Madison River Valley, 

Montana. 

A soil correlation is attempted on the basis of Jenny's ( 1941 , 1980) study of the 

factors involved in soil formation Jenny's equation addresses the primary soil-forming 

factors, including present climate, vegetation, topographic relief, and parent ma~ rial. 

Where these factors are similar between study areas, their soil should be correlative. The 

present climate at the Klondike Canyon and Montana site is semiarid The present 

climate at the California site is arid . Klondike Canyon alluvial fan is covered by 

xerophytic vegetation as is the California site, but the vegetation at the Montana site 

consists of short grasses and bunch grasses The soils studied all formed in alluvial fan 

deposits The Klondike Canyon and California alluvial fans are located on the piedmont 

oflarge mountain ranges in valleys which were once filled by pluvial lakes . The alluvial 
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fan in Montana is located on the piedmont but originated from glacially-derived outwash . 

Although the primary soil-fanning factors are not similar in all circumstances, the goal is 

approximate age estimation of the Klondike Canyon alluvial fan units not an absolute age 

for the alluvial unit. Therefore, comparison of soils from the three studies are an initial 

attempt in soil correlation. 

Ritter et al ( 1993) noted soil development in a unit (Qf2) estimated to be late 

Pleistocene that are similar to the observed soils in Qf2 on the Klondike Canyon fan 

(Table 3 ). Both soils contain Btk horizonation . The soils have similar color, I 0YR 3/3 

and 7.SYR 4/4, respectively . They also exhibit CaCO3 stages II and II+, respectively . 

Soils from these two studies are also very similar in the late Pleistocene in carbonate 

accumulation and horizonation The late Pleistocene soils described in the Wells et al 

( 1987) correlate with the Klondike Canyon soils in horizonation and color. Table 3 

shows the other similarities between the three studies. Thus, correlation of Qf2 soils and 

places Qf2 aggradation during the late Pleistocene. 

The soil profile in Qfl portrays the relative age difference from Qf2 Qf,i has a 

higher percentage of clay . The Qfl at Klondike Canyon relates in soil characteristics to 

the Qfl in Montana. However, the surficial characteristics are very similar to Qf2 

These soil and surficial characteristics lead to the conclusion that Qfl on Klondike 

Canyon alluvial fan is mid to late Pleistocene. 

The age of the alluvial units can also be derived partially from the dates of the 

lacustrine bars. The highest dated bar, bar H, in Klondike Canyon is 13 , I 00+/- 70 B P. 



Table 3: Soll Correlations 

ill1. l 1.hJttrt.._lfh.l.WJ '.J1. .lll ,1W.L I ,.,11u..111 i.Jr- .oni.L 1, 1.Ll.1.!u I au.1:aJ.d.llllUUUlUl.JUitmtl la:&'tldllntDm.ll.tumtbl.1 1 , 
I ll!ll!lfflfflff jilll1iiffililiffl~1 iiill!lffllllll! cac<>3• 1 lffllllllllfflll!llfflHllllllfflllllffltlffll~';imifJ!llillllffl I lllfflli:~J~illlllffl jlffllllllllfflfflffl!llllllllffll llllllffllffllllllUIIIIUlllll!I! I Wells & Others 

(1987) 

Qf1 I nm I nm I 2Btks, 2Bk, 2Bk 55+ 7.SYR 6/4-6 gls I Late Pleistocene 
Qf2 I nm I nm I 2Bwk, 2Bk, 

29+ 7.5 YR 6/6 gsl j Early Holocene 2Bky, 2Bk 
Qf3 I nm I nm I Bwk, Bky 55+ 7.SYR 7/6 gsl j Early to middle 

Holocene Qf4 
Bw 05 7.5YR 5/4 gsl I Middle to late 

nm nm 

Holocene Qf5 nm nm none none 10YR 613 gs I Latest Holocene Ritter & Others 
(1993) 

Qf1 I Ill- I 39-48 I Btk I 6 I 10YR 5/3 I st I Early Pleistocene 
-Qf2 II 46-90+ Bt, Btk I 30 I 10YR 3/3 I cl I Late Pleistocene 

Qf3a I+ 78-95 none none 10YR 6/2 Is Early Holocene 
Qf3b I+ 24-43 none none 10YR 4/2 st Early Holocene 

Klondike Cenyon 

Qf1 II 33-82 Btk1 ,Btk2 76 10YR 4/4 sil Mid to Late 
Pleistocene Qf2 II + 78-95 Btk,Bk1 ,Bk2 80 7.5YR 4/4 I Late Pleistocene 

Qf3 I I I 10-79 I Bk 69 10YR 6/3 sit Early to Mid 
Holocene Qf4 I I+ I 11-37 I Bk I 26 I 10YR 7/3 I I Late Holocene :,0 sl 
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The highest shoreline, bar A. at American Canyon has a buried soil with a Bt horizon 

Therefore, the date of Qf2 is 13, I 00 plus the time to fonn the Bt horizon. QfJ also has 

to be younger than 13 , 100+/-70 BP. because it cuts through bar H. It has also been 

demonstrated how QfJ was fanning during the fall of Pluvial Lake Lahontan in Buena 

Vista Valley . This constrains the age of QfJ to early Holocene 

Qf4 exhibits minimal soil development, notably the lack of a Bt horizon . In the 

Montana and California studies, the units without Bt horizons are Holocene in age . Qf4 

is relatively younger than QfJ . Therefore, Qf4 is Late Holocene 

Controls on Alluvial Fan Development 

Base level Change 

The anticipated role of base level change has been partially discussed in the 

introduction . A drop in the local base level may cause a fanhead trench to fonn as the 

channel erodes to the new base level. In fact , large fanhead trenches are located in Qf2 

on most fans within Buena Vista Valley, for instance, the American Canyon andrw'i llow 

Creek alluvial fans (figs . 15 and 16) within Buena Vista Valley. One may hastily 

conclude that the dropping of Pluvial Lake Lahontan controlled the erosion of Qf2 

throughout the valley. However, Willow Creek fan is located at a higher elevation than 

the highest Lake Lahontan lacustrine deposit. In fact , it is approximately 75 m above the 

highest lacustrine deposit. Lake levels did not rise to the elevation of the Willow Creek 

fan, but it has the same morphology and stratigraphy as Klondike Canyon and American 
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AMERICAN CANYON ALLUVIAL FAN 
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Figure 15: Map of American Canyon surficial geology based on l 24 ,000 aerial 
photographs Mapped and field-checked by Dr. John Ritter. 
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Figure 16: Map of Willow Creek surficial geology based on I 24 ,000 aerial photographs. Mapped and field-checked by Dr. John Ritter. 



Canyon The similar morphologies and dissimilar base level controls terminates the 

conclusion that base level controlled the erosion of Qf2 
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The role of base level change did, however, influence the development of QfJ on 

Klondike Canyon as previously discussed in the timing of alluvial fan deposition That is, 

base level control was localized to areas immediately upstream during the breaching of 

the bars and the formation of the break-out fans Note that the base level was not Pluvial ·• 

Lake Lahontan Rather, the local base level was the pond on the upslope side of the 

bars. Evidence for this change of base level when a bar was breached are small terraces 

within the current channel. These terraces are not traceable for any significant distance 

up fan . Figure 14 schematically demonstrates this localized base level control in the 

channel degradation after breaching 

Another expected control of base level change is the deposition of large alluvial 

fan units . Qf2 is the largest preserved unit and can be located on all fans in the valley 

(figs 3, 15 and 16) In the section entitled "Timing of Events," it was noted that Qf2 

formed well before the filling of Buena Vista Valley with pluvial waters. One pl'ece of 

evidence is the well-formed, buried soils under the highest lacustrine deposit The lack 

of older lacustrine deposits at the fan surface suggests that Qf2 was not associated with a 

prior pluvial lake cycle In addition, there are no relat ions of Qf2 with any lacustrine 

units Therefore, Qf2 cannot be associated with base level rise associated with Pluvial 

Lake Lahontan . 



Climate 

AJluvial fan development caused by climate change is expected to be widespread 

and characterized by synchronous periods of aggradation and entrenchment for all fans in 

a region . Lustig ( I 965) reasoned how climate changes would alter runoff and vegetation 

density of the source area thereby affecting sediment supply. The geomorphic response 

to the climate change whether it be an increase or decrease in sediment supply in the 

basin is discussed by Langbein and Schumm ( 1958). A climate change in the direction of 

increased sediment supply could cause basin-wide and even interbasin-wide alluvial fan 

deposition. A climate change in the direction of increased water without an initial 

increase in sediment supply could cause regional trenching near the apexes of the alluvial 

fans . 

The main evidence for climate as a primary control for fan development is local 

and regional correlation. Within Buena Vista Valley, the fans are comprised of four 

units, Qfl, Qf2, Qf3 , and Qf4 (figs. 3, 15 and 16). Qfl is not preserved on all the fans , 

but where it is preserved it is only in proximal areas Qf2 is the largest fan unit at 

Klondike Canyon as well as on all the fans in the valley. The soils in Qfl as well as Qf2 

do correlate across the valley in that strong Bt horizons are present . 

The overall stratigraphy is strongly correlative. The exactness is that Qf2 is inset 

into Qfl , where preserved, and is overlain by Qf3 and Qf4 Where bars, either 

degradational or aggradational , are preserved, they overly Qf2 and are breached by Qf3 . 

The break-out fans can also be identified in the stratigraphic series. 

··-
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Fans in Buena Vista Valley are also regionally/interbasinally correlative with fans 

in the valley to the east , Grass Valley (Hawley and Wilson 1965). The study describes, in 

general , the same kind of morphology of fan units as Buena Vista Valley. For example, 

the study recognizes fanhead trenches The fanhead trench in Klondike Canyon alluvial 

fan can be identified in the Qf2 unit on almost every fan in Buena Vista Valley This 

trenching is also inter-basin. Hawley and Wilson note fanhead trenches which are 

narrow, steep-walled gullies incised a few feet below the alluvial apron on many fans to 

as much as 22 m. The correlation of these trenches is the location and quantity. Thi s 

regional phenomenon can be explained by a climate change that simultaneously perturbed 

the basins and caused contemporaneous degradation 

The correlation does not rely solely on the fanhead trenches. The alluvial fans in 

Buena Vista Valley have similar stratigraphic units as the fans in Grass Valley (fi g. 17). 

That is, Hawley and Wilson have mapped three fan units which correspond with the units 

in Buena Vista Valley. Table 4 outlines the similarities . The sizes, shapes and unique 

characteristics correlate very well indicating similar development. ; 

The regional correlation of alluvial fan units implies a regional climate change 

producing conditions in which fan development occurred The different rates of tectonic 

activity between the Humboldt, Stillwater, and East Ranges (Morrison 1991) would 

produce different times for alluvial fan development to occur. This would create 

different morphologies and/or stratigraphies throughout the basin . Because the fan 

morphologies are correlative throughout Buena Vista Valley and Grass Valley, climatic 

controls are the most logical explanation for the alluvial fan development. 

... 



Regional Correlation of Alluvial Fans 

• = Sonoma Range 

= Qf 1 Early- to Mid -Pleistocene 

Late-Pleistocene 

= Qf3 Early - to Mid -Pleistocene 

Qoa 

From: Hawley and Wilson 1965 

Figure 17: Map of alluvial fan units by hawley and Wilson ( 1965) which correlate with 
the fan units found in Buena Vis ta Valley . The regional fan correlation implica tes climatic controls 
on fan development. 
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Klondike Canyon 

Qf1 

Qf2 I 

Qf3 I 

Qf4 

Hawley and 
Wilson (1965) 

Qoa I 

Qpl I 

Qya I 

Table 4: Correlation of Alluvial Fan Development Between 
Grass Valley and Buena Vista Valley 

longitudinal 0.22 (km2) 76 cm of Btk Preserved near mountain front 

I cone 18 (km2) 30 cm of Btk Large fanhead trench and overlain by 
shorelines 

I partial cone I 1.7 (km2) I no significant clay I Erosion through shorelines & loci of 
accumulation deposition farther onto valley floor 

cone 5.7 (km2) no significant clay Youngest fan & loci of deposition farther 
accumulation onto valley floor 

relatively the 
Qf1 I eroded sections I smallest unknown Preserved only at mountianfront 

preserved unit 

Qf2 I con ':.. I largest preserved unknown Contains fanhead trench & overlain by 
unit shorelines 

Loci of deposition farther onto valley floor , Qf3 and Qf4 I Coalesced fans I I no soil development I eroded through shorelines & receiving active I 
~osition .. 

.... 
°' 
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Tectonics 

Tectonic activity initially created the topography which allows alluvial fans to 

evolve. The extensional tectonics in Buena Vista valley have created irregular fault 

scarps, some creating scarps on fan units, along the range Hanks and Wallace ( 1985) 

note that the bars from the high stand of Lake Lahontan truncate the fault scarps located 

south of Klondike Canyon at the north west flank of the Stillwater Range They estimate 

the age of the faulting to be 15,000 to 18,000 B P Thus, tectonic activity associated 

with this scarp occurred after Qf2 and before QfJ It is important to recognize that this 

faulting does not correspond to a fan building episode 

In fact, throughout the valley no tectonic signatures have been identified which 

correlate with fan development. In the introduction, examples of morphologic 

characteristics were given as to tectonic activity being associated with alluvial fan 

development In Buena Vista Valley no scarps or folds have been detected which 

temporally correlate with the development of an alluvial fan . The only notable tectonic 

controls come from the random scarps which are located on fan units, for exam~ 

Willow Creek. The activity has created topographic relief which have initiated the 

development of small alluvial cones meters in relief. 

Bull ( 1964) showed tectonic activity was the control for alluvial fan morphology. 

His study centered on the fa ns in western Fresno County, California The evidence for 

this conclusion was segmented longitudinal profiles across the fan surfaces He noted 

that most of the western-Fresno County fans have four segments which are straight or 

slightly curved . Based on their profile, he concluded that a change in stream gradient 
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caused a change in the slope of the succeeding fan segments. Bull suggested that uplift 

formed a steeper stream gradient that subsequently lead to deposition on the fan and the 

construction of a new fan segment. Repeated periods of uplift produced additional strath 

terraces and fan segments. This fan segmentation is therefore considered tectonically 

controlled . 

Klondike Canyon alluV1al fan is also segmented. The fans in Buena Vista Valley 

have four segments which are straight or slightly curved However, the only terraces 

which are recognizable in Klondike Canyon are aggradational , not erosional. Therefore, 

fan segmentation is not suggestive of tectonic activity at Klondike Canyon. The role of 

tectonics in the development of the alluvial fan is best stated by Ritter et al ( I 994 ). 

" ... because tectonism produces and maintains the relief necessary for fans to form, its 

primary role is long-term, controlling the duration over which fan deposition may occur 

along the mountain front ; it does not control individual periods of aggradation and 

entrenchment. " 

PluV1al Lake Lahontan in Buena Vista Valley 

The filling of Lake Lahontan 

" 

The relative age of Pluvial Lake Lahontan high stand post-dates Qf2 and pre-

dates Qf3 . The filling of Pluvial Lake Lahontan becomes important , because no direct 

relation is seen between timing of the alluvial units and the filling of the lake In fact, 

details concerning timing and climatic variations which formed Pluvial Lake Lahontan 

are still in dispute. Many authors ( e.g. Morrison I 99 I, Benson 199 I, Hostetler and 
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Benson 1990, Benson and Thompson 1986, and Mifflin and Wheat 1979) have 

concluded that lake level rise is associated with a decrease in evaporation combined with 

an increase in precipitation One factor that remains highly disputed is where the 

increased precipitation occurred . Benson and Thompson ( 1987) argue that water input 

to the Lahontan basin primarily is a function of precipitation in the upper drainage 

systems, for example Sierra Nevada. The same idea is presented by Mifflin and Wheat 

( 1979) who indicate the importance of increased runoff to produce pluvial lakes 

Hostetler and Benson ( 1990) note the importance of the polar jet stream splitting around 

the North American continental ice sheet which led to increased cloud cover, and 

therefore decreased evaporation, over the Great Basin particularly in the summer. 

Another factor to consider when interpreting the mechanics of lake level rise are 

geomorphic relationships observed adjacent to and within Pluvial Lake Lahontan . Davis 

( 1982) states on the basis of geomorphic data that sediment was supplied on the deltas 

which were located at the heads of estuaries during lake rise . Davis and Elston ( 1972) 

make the conclusion that during a high lake stand the streams which fed the lake 

aggraded Morrison ( 1991) argues that during an interstatial the Carson, Truckee and 

Humboldt Rivers downcut. He based this on simultaneously constructed terraces 

particularly along the Carson and Truckee Rivers that cut narrow valleys 15-30 m deep 

into deltaic and lacustrine deposits . 

In effect, some studies make generalizations about every valley which was 

inundated by Pluvial Lake Lahontan. However, it has not been convincingly shown that 

increased precipitation and enhanced runoff in all drainages contributed to the lake. In 
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fact , Miffiin and Wheat ( 1979) state that different geomorphic reactions may occur 

throughout these valleys, because the Lake Lahontan basin overlaps climatic zones which 

differ greatly. Moreover, some evidence suggests that small streams did not react in a 

manner similar to larger systems, and this has led to the hypothesis that 96% of the total 

gauged surface inflow into the Lake Lahontan basin is contributed by the Truckee, 

Carson, Walker, and Humboldt (Mifflin and Wheat 1979) 

In Buena Vista Valley, the smallest of the major subbasins (fig 18), there is no 

geomorphic evidence on the Klondike Canyon fan for increased precipitation during the 

time of the filling of Pluvial Lake Lahontan That is, alluvial fan units formed during lake 

level rise are lacking on the Klondike Canyon alluvial fan as well as eight other fans 

mapped by Ritter and Miller (pers . com ); Qf2 clearly predates the latest pluvial lake 

cycle and QO is Holocene in age 

There are three conclusions that can be drawn from this observation . I ) There 

was not a large input of water from local drainage systems that surround Buena Vista 

Valley during the rise of Lake Lahontan in the valley This is supported by M1min and 

Wheat ( I 991) who argue that the moisture-rich Sierra Nevada would have had higher 

values of runoff than watersheds in the Great Basin and could have made up for drier 

parts of the Lahontan Basin. This does not rule out a climate change in the Buena Vista 

region, but rather, suggests that it may not have been great enough to produce a fan 

building event or it may not have been the type of event to cause fan building. 2) 

Assuming that the input of water did not come from local sources, the influx must be 

related to overflow of the sill , Chocolate Butte (fig I) , from the adjoining Carson 

... 
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Figure 18: Surface extent of Lake Lahontan 14,000 to 12,500 B.P. and location of 
subbasins and sills separating subbasins . Taken from Benson and Thompson ( 1987) 
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Desert . 3) It is more difficult to model lake level curves then commonly assumed . That 

is, a model which would take into account a runoff proportional to drainage basin size 

assuming an equivalent climate change throughout the Lake Lahontan basin would not 

create an accurate lake level curve Geomorphic evidence must be obtained in order to 

apply such a model to any valley because the valley may not have added significant 

runoff to Lake Lahontan . 

Initial Lake Level Curve for Buena Vista Valley 

This initial lake level curve based on dates from shells located in bars has been 

developed for the Buena Vista Valley Table 5 shows a list of the dates which have 

come from this study, Ritter and Miller's ongoing study and Hanks and Wallace ( 1985) 

The lake level curve (fig I 9A) was constructed from the elevation of the bar surface vs 

CI 4 dates obtained from the shells . 

Preliminary inspection of the lake level curve reveals inconsistencies . The dates 

from Klondike Canyon, especially around 13,000 BP , do not smoothly correlat t with 

the dates from the west side of the valley This may partially result from the type of bar 

in which the shells are preserved and collected . The bar at Klondike Canyon may have 

been deposited in deeper water than those on the west side The problem is that the 

difference in water would have needed to be about 40 m. This would appear to 

represent too much variance to be explained solely by depositional setting, and 

therefore, other factors may be involved such as problems with radiocarbon dating . 

Benson (1993) points out three problems with radiocarbon dating carbonates. These 

. .. 
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Figure 1,: A. Initial lake level curve for Buena Vista Valley Dates and elevations were 
obtained from Hanks and Wallace ( I 985) as well as a continuing study by Ritter and 
Miller. Elevations from Klondike Canyon and the west side of the valley were obtained 
from GPS. The lack of correlation demonstrates the error and difficulty of correlating 
shell dates. B. Lake Lahontan chronology from Morrison ( I 99 I) 
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Table 5: Dates and Elevations of Bars in Buena Vista Valley 

Study Location Date (B.P.) Elevation (m) 

Klondike Canyon 

Bar H 13, 100+/-70 1295 

Bar H 12,390+/-70 1295 

Bar L 1 14,540+/-60 1269 

Ritter and Miller (in West side of Buena Vista 
progress) 

American Canyon 13,560+/-60 1331 

American Canyon 12,900+/-60 1331 

American Canyon 11,880+/-50 1303 

American Canyon 12,220+/-60 1301 

Buffalo Springs 11,730+/-60 1303 

Hanks and Wallace East side of valley south of Klondike Canyon 
(1985) 

McKinney Pass 12,000 1296 

include 1) isotopic fractionation, 2) reservoir effects, and 3) addition of modern carbon 

The constructed lake level curve is very preliminary, and more work would need to be 

conducted to obtain an accurate lake level curve, as the one constructed here is based 

solely on dates obtained from bars within the valley . Correlation of Buena Vista lake 

... 
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level curve with lake level curves for the entire Lake Lahontan cycle is difficult to make 

The primary difficulty is correlating stratigraphic units from one valley with another 

valley that did not have the same lake level history. Another difficulty is the responses 

which occur when a sill in one valley is breached . When the breaching of a sill occurs, 

the water level in one valley will rise, stay the same in a second, and possibly drop in a 

third . 

Nevertheless, a comparison with Morrison ( 1991) shows some similarities (fig 

19), but not all the differences are explainable by standard deviations. The initial rise in 

Buena Vista has not been recorded . Morrison puts the rise to the high stand to be about 

15,500 B.P. The remnant bar in Buena Vista has been dated at 14,500 B P with an 

elevation of 1275 m. Morrison shows the lake to be 14,000 B P when it was at an 

elevation of 1275 m and rising Buena Vista was at its high stand from 13 ,500 to 13 ,000 

B.P. and Morrison shows the high stand to be 12,500 B P The youngest date for Buena 

Vista is 11,700 B.P. at an elevation of 1300 m. By11 ,700 B.P Morrison shows the lake 

level to be around 1200 m. 

The lake level curve by Benson and Thompson ( 198 7) was adjusted by Benson 

( 1991) to fit current knowledge about the errors associated with dating lacustrine 

carbonates (fig. 20) . Benson states that all seven Lahontan subbasins coalesced 

approximately 14,200 14c yr. B.P. This fits the Buena Vista lake level curve, because it 

shows that the sill was topped before 14,500 B.P. This information was obtained from 

the date of the remnant bar and the source water in Buena Vista Valley. Benson 

concludes that the 1330-m high stand was achieved by 13 ,800 C 14 yr. B P and receded 

.. 
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Figure 20: A. Initial lake level curve for Buena Vista Valley Dates and elevations were 
obtained from Hanks and Wallace (1985) as well as a continuing study by Ritter and 
Miller. Elevations from Klondike Canyon and the west side of the valley were obtained 
from GPS . The lack of correlation demonstrates the error and difficulty of correlating 
shell dates . B. Central Lake Lahontan chronology from Benson and Thompson ( 1987) 
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to 1310 m by 13 ,700 yr B.P. This does not fit the Buena Vista lake level curve because 

the high stand has been dated at least as late as 12,800 B P Buena Vista reached 1310 

m by 12,350 BP 

Climate Model 

The temporal correlation of alluvial fan evolution and lake level rise show that ·• 

the climate change associated with the fan building events cannot be directly correlated 

to the lake level rise. It is correlative with the drying of the lake noted on the initial lake 

level curve . No absolute age data have been located in Klondike Canyon alluvial fan 

deposits, therefore not enough information is present to warrant correlation with other 

climatic data such as pack rat middens and tree-ring chronologies at the present time 

Hence, the climate model presented for Buena Vista Valley is based on the model 

presented by Wells et al ( 1987) in the eastern Mojave Desert, southeastern California. 

Wells et al ( 1987) have dates which are correlatable to pack rat middens and 

fossil pollen . The climate model presented by Wells et al suggests that alluvial n 

aggradation occurred when the climate changed from a relatively wetter to a drier 

environment. In essence, precipitation decreased creating a time-transgressive change in 

vegetation . The decrease in vegetation allowed the sediments on the hillslopes to be 

eroded and deposited on the alluvial fan unit . Wells et al also note that the climate 

change from relatively wetter to drier environment is marked by the drying of the pluvial 

lake in the valley. Exposed fine-grained sediment on the pluvial shorelines is presumed 

to have promoted slope instability. 
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This climate model is supported by QfJ at Klondike Canyon QfJ is early 

Holocene and is correlative to the drying of Pluvial Lake Lahontan This correlation is 

recorded as break-out fans The time-transgressive deposition of QfJ is transfixed in the 

ponded stratigraphy upslope of bar A QfJ deposition occurred after the high stand 

while the lake was drying in Buena Vista Valley This time is characterized as a climate 

change from a relatively wetter to a drier environment. At this time there is not enough . ._ 

data proving the age of Qfl or Qf2 to strongly support the climate model. However, this 

climate model is not refuted by any unit at Klondike Canyon 

Conclusions 

Although climate, tectonic, and base level changes have occurred in Buena Vista 

Valley during the formation of the Klondike Canyon alluvial fan complex, the 

development of the fan can be attributed to climate change The primary evidence is 

regional correlation of fan units . Hawley and Wilson ( 1965 ), Ritter and Miller (in 

progress), and this study have independently mapped alluvial fans within the regiOfl 

Each study has independently produced similar stratigraphies These fans occur in areas 

of different tectonic environments and have been affected differently by Pluvial Lake 

Lahontan The fans mapped by both of the other studies occur in ranges (the Sonoma 

and Humboldt) with a much more rapid uplift rate (Dohrenwend and Moring 1991) The 

other two studies also mapped fans in which Pluvial Lake Lahontan did not reach their 

distal margins Regional climate changes which have occurred throughout the 



Quaternary are the most logical explanation for the deposition of equivalent units with 

the similar ages on numerous fans . 
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QD developed through a series of bar breachings The water and sediments 

coming from the drainage basin encountered the protruding bars Initially the flow did 

not have enough mass or energy to overtop and breach the bars, and the flow ponded on 

the upslope side of the feature . With a given amount of flow, the bar was breached by 

the flow . When this breaching occurred, a small break-out fan was formed on the 

downslope side of the fan It is hypothesized that multiple bars were breached in one 

episode and that the breaching began before the lake had completely dried . At some 

point, this process started again and a new set of bars were introduced to the flows 

producing QfJ . 

A total lack of an alluvial fan unit wit hin the Buena Vista Valley which correlates 

to the filling of Pluvial Lake Lahontan suggests that local sources were not a primary 

source of water Many other studies (e .g Mifflin and Wheat 1979, Benson and 

Thompson 1987, Morrison 199 1) note the importance of higher precipitation, lo er 

evaporation, and increased runoff for the filling of Lake Lahontan. This study does not 

deny that these factors played a major role during Lake Lahontan rise. Yet , in Buena 

Vista Valley the sill , Chocolate Butte, must have been breached by water flowing from 

the Carson Sink which formed the lake, because of the lack of a temporally correlatable 

unit to the filling of the valley 

.. 
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FAN-HEAD TRENCH: TOPOGRAPHIC SURVEYS 

2.0 Survey 5 

0.0 

·2 0 

-4 0 

..;o 

-8 0 ;----.--,.--..-----,----, 
-50 00 0 \Xl 50 00 100.00 150 00 200.00 

2.0 

.S 00 
E *' -20 
.i:::. 

1 -4 0 

rn 
ai ..;o 
CI: 

Relative horizontal distance (m) 

Survey 7 

-a.a -t---,--,.--.,----.---, 
.00 0 00 50.00 100.00 15 .00 2 .00 

Relative horizontal distance (m) 

Survey 6 

N 

-8.0+---r--.,---,---r---,---, 
-50 00 0 00 50 00 100 00 150.00 200 00 250 00 

2 . 

E 
0. 

E -i ·2 
.i:::. 
(I) -4 
.::! 
rn -6 ai 
CI: 

Relative honzontal distance {m) 

Survey 8 

.00 0.00 50.00 100 0015 .00200.00250.00 

Relative horizontal distance {m) 

Figure 21: Field-surveyed profiles of Klondike Canyon fan-head trench . Survey 5 is 
closest to mountain. There are 200-feet intervals between surveys Locations of surveys 
are on figure 2. 
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Location shown on figure 2. 
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PLATE I : GEOLOGY OF BUENA VISTA VA _LEY 

Q Qua,erna, y deporns. either landslide o r older alluvial deporn 

TRJ fert 1a1')1 1·hyolit1c nows and shallow 1mrusrve roc ks 

rd T uffaccous ~ed1mentary rocks 

Welded •nd nonwelded si lic1 c lsh-now luffs 

I gr Gran1 u c I oc ks - mostly quartz monzonite :rnd gr:rnod1o nt c 

r ba Andcs1 t e Jnd basalt flows 

l(gr Cn! LJ ceous grJnit1c rocks · mostly quartz rnonLonac .inci g, .1n o d1 0 11t ·.: 

TJg, GrJnitlc l'ocks. central and eastern Nevada - m o stly quartz rno n£ 0 111t,• ,H1·l 1,11nod1ontc 

M 2gr Mesozoic gran1t1c rocks, western Nevada - mo stly quartl monLo n1t f' 1nd ~1 .111 o d,or1t e 

jgb Lowe,· and Middle Jurarnc gabbro1c comple x · 11, cludes ga':>bro ba;.,lt ,r · .ynrn 0~<'111< quJl11 

sandstone. 

Jr RS Ur per T r1ass1 c and Lower Jura.Hi e shale . rnudSLo n e. s iltst o ne . c; andst or.f• 1nd 

carbonate ro ck, sparse volca ni c rock 

TRc Lower , Middle. and Upper Triassic limestone, minor Jrnounu, o f dolorrnt · , h,1lc. 

and san dst o ne: locally thi ck conglomerate units 

rRk Lower TnasslC Ko1pato group and related rocks - altered Jndesttic flow I hv ,>! rt1 l 

tufr and nows and clastlC rocks 

T Rlgr Leu cogra111te Jnd rhyo ltte porphyry 

PMh Havallah sequence o f Silberling and Roberts - chen. argd hte . shale . r,rc·Cl\\\u ne. and rrnnor 
amounts of siltsto ne, sandston e. conglo merate. and limestone 

Msv Lower and Upper M1ss1ss1pp 1an si liceous and volcanic rocks 

Osv Siliceous and volcanic rocks. 

Ch Uppe r Cambnan Harmony Formation - Feldspath1c and sandston e anJ ni,1101 
amounts o f shale, limes to ne. and chert. 
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