University of Nevada

Reno

A Study of Bedload and Total Sediment from the East-Central Sierra Nevada

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Hydrology

by

John A. Nadolski

May, 1979

The thesis of John Nadolski is approved:

MINES

Thesis

1324

Thesis Advisor

Department Chairman Dean, Graduate Schoo

University of Nevada

Reno

May 1979

ACKNOWLEDGMENT

Data collection and analysis of this thesis were supported under contract by the Office of Water Research and Technology Project A-078-Nev. and the U.S.D.A. Forest Service, Intermountain Forest and Range Experiment Station Project 12-11-204-2. Additional support was given by the Max C. Fleishmann College of Agriculture, University of Nevada-Reno, through McIntire-Stennis Project MS678 and the Water Resources Center, Desert Research Institute, University of Nevada System.

Special thanks are extended to the many persons who have given of themselves for this project, especially C.M. Skau, John Brown, Carol Marty, Randy Scott, Don Siebert, Howard Golden, Teresa Roth, Maureen Doyle, and Marcia Nadolski.

ABSTRACT

Suspended sediment and bedload were measured for fifteen small watersheds on the east side of the Sierra Nevada, during the 1978 snowmelt period. Bedload was measured using a modified flume, and the addition of bedload and suspended sediment was considered to be the total sediment. Empirical equations were developed to predict suspended sediment, bedload, and total sediment, in units of both yield and production rate. Mean channel slope, channel area, maximum discharge/minimum discharge ratio, and width/depth ratio were found to be statistically significant in the predictive equations.

Another predictive equation was developed to explain the suspended sediment/total sediment ratio. Geology and energy of the flowing water were the main variables used. The Meyer, Peter & Muller (1948) and the Einstein (1950) bedload formulas were found to overestimate the observed values by up to three orders of magnitude. iii

TABLE OF CONTENTS

Р	age
TITLE PAGE	
SIGNATURE PAGE	i
ACKNOWLEDGEMENTS	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	v
LIST OF FIGURES	vi
INTRODUCTION	1
Objectives	3
STUDY AREA	6
METHODOLOGY	8
Site Selection	8
Data Collection	9 ·
Sediment Load	9
Laboratory Analysis	13
Data Analysis	16
Independent Variables	17
RESULTS AND CONCLUSION	20
Suspended Sediment/Total Sediment Ratio	28
Applicability of Bedload Formulas	32
SUMMARY AND CONCLUSION	37
LITERATURE CITED	39
APPENDICES	43
Appendix A Sample of Stream Survey	44
Appendix B Methodology for Determining In- dependent Variables	49

TABLE OF CONTENTS (cont.)

.

		Page
Appendix C	Variables Showing Statistical Significance	58
Appendix D	Working Equations for Meyer, Peter & Muller and Einstein Bedload Formula	61
Appendix E	Suspended Sediment and Bedload Data	66

iva

LIST OF TABLES

Table	1		Independent variables: mean, minimum, and maximum	18
Table	2		Statistical information for total sediment equations	22
Table	3		Statistical information for sus- pended sediment equations	23
Table	4		Statistical information for bed- load sediment equations	24
Table	5	7-	Statistical information for sus- pended sediment/total sediment ratio equation	30

v

Page

LIST OF FIGURES

Should be that, 1954; hand Colby, bendly

						- i cu	50
Figure	1	 Map of	study	area			6
Figure	2	 Thomas	Creek	Flume			11
Figure	3	 Sample	daily	sediment hyd	drograph		14
Figure	4	 Sample	snowme	elt sediment	hydrograph	:	14
Figure	5	 Predict	ed bed	lload versus	observed	1.1.0%	36

Dage

INTRODUCTION

Sediment transport and sediment yield have been studied for over 100 years. Sediment is made up of two fractions: fine material in suspension and larger material traveling along the streambed. This defines suspended sediment and bedload, respectively. Total sediment is expressed as the sum of these two fractions.

Predicting sediment yield has been approached from two directions. The classical approach is to use sediment transport principles to predict sediment yield. Over time, the formulas have evolved around different principles. The central theme changed from shear stress relationships (du Boys, 1879) to discharge relationships (Schoklitsch, 1914, 1934, 1943; Gilbert, 1914; and Meyer-Peter, 1934) to lift force relationships (Kalinske, 1947; Meyer, Peter & Muller, 1948; Einstein, 1942, 1950; and Colby, 1954).

The other method of study has been to try to define the source of sediment and erosion processes. Empirical regression equations are used where the variables attempt to define meterologic, geologic, geomorphic, vegetative, and land use characteristics. The study of these variables is recent (Anderson, 1954, 1957, 1970; Wischmeir, et. al., 1958; Schumm & Haley, 1961; Jansen & Painter, 1974; Brown & Skau, 1975; and Robinson, 1976). These equations are usually limited to regions similar to where they were developed. However, the watershed characteristics that they represent can be used as criteria for selecting future predictive equations. 2

Many of these equations are designed to predict the total sediment yield. Often times, bedload is not actually measured but is estimated by use of predictive equations. Predicted bedload usually accounts for 3 to 78 percent of the total sediment (Hindell, 1975; Robinson, 1976; Ward, 1976; Gerson, 1977; and Fisher, 1978).

Actual measurements of bedload in mountainous streams is difficult and has rarely been achieved (Milhous, 1973). Usually suspended sediment is measured and bedload is estimated.

It was not until 1943 that a depth-integrating suspended sediment sampler was perfected (Graf, 1971). Bedload samplers have evolved in many forms. The dropbucket or scoop-bucket takes instantaneous samples over a small area of the stream or river. Catch basins usually allow for a full capture of the bedload, however, it does not allow for short period sampling; i.e., hourly or even daily. A basket type collector has been found to be useful on smooth bottomed streams. However, its accuracy on gravel-bottomed streams has not been verified. On small streams, a flume may be used to carry the entire capacity of the stream over a slot to drop the bedload into a capture device.

This study concentrates on mountainous streams of the east-central Sierra Nevada. Initial studies (Morris, Skau, and Vitale, 1969; Brown, 1972; Howe, 1972; Brown, Howe, and Skau, 1973; Brown, Skau and Read, 1974; Brown, Lohrey, and Skau, 1977; and Lohrey, 1977) concentrated on relating watershed characteristics to dissolved nutrients and suspended sediments. Sampling of the total sediment load was studied by Fisher (1978). Objectives

There are two main objectives:

1.) to develop empirical regression equations that explain the variance found in sediment yield, the sediment production rate, and the suspended sediment/ total sediment ratio and

to explore the applicability of established
bedload formula in mountainous streams of the study area.

The empirical equations that were used attempt to explain the dependent variables, sediment yield or sediment production rate, by giving a numerical rating on known variables that represent chosen meterologic, geomorphic, and vegetative principles. The different principles may be explained by several variables; i.e., a high peak discharge, a variable representing stream energy, may be explained by drainage density or bifurcation

ratio (Branson, Gifford & Owen, 1972). Either drainage density or bifurcation ratio may be used to modify peak discharge. However, using both drainage density and bifurcation ratio would be redundant. One year drainage density may combine with peak discharge in such a way that the variance of the dependent variable is explained better than the combination of bifurcation ratio and peak discharge. The next year it may be reversed. Therefore, the criteria used in selecting the independent variables is as important as the variables themselves.

To achieve the objectives, suspended sediment and bedload were monitored and documented within the study area. Sediment yield is defined as the "total amount of eroded material which does complete the journey from source to a downstream control point." (Chow,1964). The dimensions for sediment yield are mass per unit time. Sediment production rate is defined as sediment yield per unit of drainage area (Chow, 1964). Sediment production rate has dimensions of mass per unit time per unit length squared. The production rate allows for comparisons between watersheds of differing size.

Several authors have used established bedload formula in mountainous streams. The second objective of this study is to explore the applicability of two of

the more commonly used bedload formula: Meyer-Peter & Muller (1948) and Einstein (1950). The United States Geological Survey has used the Meyer-Peter & Muller formula for predicting bedload yield for several years. Einstein's formula is the classical equation using the tractive force concept to predict bedload yield. STUDY AREA

The Sierra Nevadas are a young mountain system located on the eastern side of California. The system, running in a north-south trend, has a history of granitic uplift, followed by extensive volcanic activity. This study covers an area approximately 170 kilometers (100 miles) long and 40 kilometers (25 miles) wide, crossing the California-Nevada border, bounded on the north by Reno, Nevada and on the south near Bridgeport, California. (See Figure 1.). Three rivers, the Truckee, the Carson, and the Walker Rivers, drain the area. These basins headwater in the steeply sloping eastern front of the Sierra Nevada. The research watersheds range in elevation from 1700 meters (5600 feet) to 3780 meters (12,400 feet).

Vegetation of these watersheds includes pinyon pine (Pinus monophylla) and western juniper (Juniperus occidentalis) at lower elevations. Jeffrey pine (Pinus jeffrey), Ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), and white fir (Abies concolor) are

Figure 1.

6

.

found at moderate elevations. Red fir (Abies magnifica), mountain hemlock (Tsuga mertensia), western white pine (Pinus monticola), and bristlecone pine (Pinus aristata) are found at higher elevations. Sagebrush (Artemisia), bitterbrush (Purshia tridentata), and manzanita (Arctostaphylos patula) are the dominant species found in most of the non-forested areas. The timberline is around 3050 meters (10,000 feet). 7

The history of the area includes logging, grazing, and mining. Mining has been largely discontinued while grazing and logging have been severely reduced. The effects of one or more of these land uses can be seen in all of the research watersheds. Annual precipitation varies from 1.78 meters (60 inches) at the highest elevations about 0.51 meters (20 inches) in the foothills. About 75 to 95 percent of the stream runoff is derived from the snowpack (Brown & Skau, 1975).

Water use has historically been for agriculture and livestock watering. However, recent development of the area and reduction of grazing have switched the primary water uses to domestic, fisheries, and agriculture. A switch to domestic use and recent emphasis on water quality dramatizes the importance of the study of sediments.

Information gained in this study can be used to estimate total sediment yield of the east-central portion of the Sierra Nevada. Recent growth of the area has sent urban sprawl to the foothills of the mountains. The headwater areas are being affected by more intense foot and recreational vehicle traffic.

Sediment has been measured in all water supplies, both undisturbed and man-controlled. In excess quantities, sediment impairs recreation, increases cost for water control projects, and can be harmful to aquatic life. Sediment decreases both the capacity and the useful life of a reservoir. Therefore, sediment is considered as a pollutant (National Water Commission, 1973). Man's activity usually increases the sediment load in streams. However, before this can be verified, the stream load for undisturbed areas must be measured and documented. A thorough knowledge of how and from where sediment is derived may influence planners and developers to avoid problem areas.

METHODOLOGY

Site Selection

Watersheds were selected on the basis of perennial flow, diversity and representativeness of geologic and geomorphic characteristics, and absence of upstream diversions. The watersheds have from first to fourth order streams, and areas range from 1.61 km.² (0.62 mi.²) to 39.86 km.² (15.43 mi.²). Sampling points were located at the outlet of each watershed.

The total sediment study started in the spring of 1977, using six watersheds. An unusually dry winter and spring caused the study to be extended through the spring snowmelt of 1978. The data base was also extended to include sixteen watersheds. One sampling site was abandoned when high flows destroyed the gaging site. It is on the 1978 snowmelt data that most of the analysis was based.

Data Collection

Snowmelt data collection for 1978 was started in early April, on a weekly basis, and was continued through August. The sampling period ranged from 77 to 121 days, depending upon how long it took for the snow to melt off each watershed in question. Daily samples are composed of three to five separate instantaneous samples spaced throughout the day. This procedure concentrates on measuring near the daily peak discharge. During the summer months, bi-weekly sampling replaced weekly sampling. This period was far into the recession limb of the annual hydrograph where very little loss of accuracy is thought to occur due to length of time between samples.

Sediment Load

Total sediment data was collected using a flumetype structure, developed and described by John Fisher (Fisher, 1978). The flume installation on Thomas Creek

is shown in Figure 2. The structure smoothly funnels the entire flow of the stream over a slot where the bedload is piped to an accessible outlet where the bedload is captured using an 0.08 mm mesh sleeve and transferred to storage containers. Loss of bedload in the transfer process is assumed to be less than 5 percent by weight, based upon field observations. Sampling times varied from 5 seconds to 120 seconds, depending upon flow conditions and the amount of sediment. The most common sample length was 30 seconds.

Suspended sediment samples were taken using a U.S. DH-48 depth integrating sampler. Depth integrating samplers obtain the average concentration of the suspended sediment throughout the sampling cross-section. Concentration is expressed in dimensions of mass per unit volume. All samples, both bedload and suspended sediment concentration, were triplicated to insure a representative data base. "Flume" suspended sediment concentrations were taken at the downstream end of the flume after the bedload had dropped out. The sum of "flume" suspended sediment yield and bedload yield is considered to equal the total sediment yield.

It was found that under high flows some of the bedload was caught up in the turbulence over the slot and was not captured. Later modifications of the Fisher flume solved this problem by building a trough

Figure 2. A view of the Thomas Creek flume. Streamflow and vegetation of the stream are typical of the study area.

through which the bedload can travel and by increasing the width of the slot to two inches. The flume is designed to handle flows of up to 2.26 m³/sec. (80 ft³/sec.).

Values for total sediment and "flume" suspended sediments were compared to a suspended sediment sample taken just upstream of the flume. Suspended sediment concentration taken at this upstream site is defined as the "natural" suspended sediment. The purpose of this sample is twofold. First, the "flume" suspended sediment sample was dominated by more turbulence than in normal stream cross-section. Thus, in order to get more representative data for comparing suspended sediment concentrations documented by other authors, a natural cross-section had to be used. Secondly, an estimate of the percent of the total sediment measured by suspended sediment alone can be obtained. This information can be combined with measured suspended sediment data now available for the east-central Sierra Nevada to arrive at a more accurate idea of the total sediment yield.

The sampling site of the "natural" suspended sediment was also used as the cross-section for discharge readings. These measurements were taken after the "flume" suspended sediment and bedload measurements were taken. A Price or pygmy current meter, depending upon flow conditions, was used to estimate the discharge.

. Each watershed was field surveyed to inventory and

rate the perennial and ephemeral channels that flowed during the 1978 snowmelt period. A modified version of the classification developed by Lohrey (1977) was used. The inventory for each site included geology, slope, estimated snowmelt flow, stream channel and upper bank sediment composition, stability of the stream channel, vegetation, and mass wasting of the area. The survey also noted sediment traps, i.e., lakes and diffuse meadows, as well as sediment and water source areas. (See appendix A).

Laboratory Analysis

Suspended sediment concentrations for both the "flume" and the "natural" samples were obtained using the standardized procedure explained by Lohrey (1977). Suspended sediment yield values were obtained by multiplying concentration times its associated discharge to derive values in units of Kg/day (lb/day). Daily sediment hydrographs of yield values were planimetered to obtain daily values which were then used as points on a snowmelt sediment hydrograph. The snowmelt sediment hydrograph was planimetered to obtain the total yield of sediment. Representative sediment hydrographs for both daily and snowmelt periods can be seen in Figures 2 and 3. Associate values for "flume" and "natural" suspended sediment, bedload, and total sediment are labeled.

An assumption was made that the snowmelt sediment

yield approximates the annual sediment yield. Field observations show that very little sediment is transported during the fall and winter months (Howe, 1972). Not only are the concentrations of the suspended sediment greatly reduced, an average of 200 mg/l during the snowmelt period versus 7mg/l during the fall and winter, but the streamflow discharges are also reduced. Under low streamflow discharges, gravelled stream beds are protected by an armored layer (Milhous, 1973).

Eedload was dried in an oven at 60°C for 24 hours and weighed to an accuracy of 0.1 grams. Again, daily sediment hydrographs and snowmelt sediment hydrographs were produced.

Total sediment yield is considered to be equal to the sum of the "flume" suspended sediment yield and bedload yield. The area planimetered under each watershed's snowmelt sediment hydrograph is assumed to represent the annual sediment yield for that particular watershed, in units of Kg/year. Sediment production rate is defined as sediment yield per unit area of the watershed. Concentrations were not expressed because of the difficulty in determining concentrations of bedload.

After drying and weighing, the bedload was sieved using standard techniques (AASHO, 1970) in a RO-TAP sieve shaker. Log - log graphs of grain size diameter vs. cummulative percent by weight were developed. Two grain size diameters were obtained: grain size where 65 percent by weight is finer and where 50 percent is finer by weight. This is defined as D_{65} and D_{50} , respectively. These two sizes, along with depth, width, and slope of the channel section were used to predict bedload using the Meyer-Peter & Muller and Einstein's bedload equations.

Data Analysis

Sediment yield is controlled by the interaction and inter-dependence of many variables. Many variables can be expected to have high dependence on each other; for example, channel length and watershed area. Other variables show more independent characteristics, although separately each will often have an influence in predicting sediment yield. Frequently, it takes the combination of several of these variables to form a more realistic prediction of sediment yield. The use of a reverse step-wise regression analysis has been used in earlier studies (Howe, 1972; Brown, 1972; Brown, Howe, and Skau, 1973). Its use has been found to be applicable to watershed processes involving water quality (Anderson, 1954; Brown, Howe, and Skau, 1973; Hindall, 1976; and Rebinson, 1976).

The reverse step-wise regression was used in this analysis to develop predictive equations for sediment

yield and sediment production rates of suspended sediments, bedload, and total sediment. A seventh predictive equation was derived to predict the suspended sediment/total sediment ratio.

Independent Variables

The thirteen independent variables used in this analysis are listed in Table 1. The criteria for selection of the variables is often times as important as the variables themselves. It was found that variables describing the energy of the flowing water, stability of the stream channel, and source of the sediment explains the variation that occurs in sediment yield. Two other criteria for selection of variables were also considered. They are annual precipitation and land use. An assumption was made that the annual precipitation varied very little in the study area during the study period. No major land use activities were present in any of the study watersheds. One or more of the criteria considered for selecting variables, energy of the flowing water, stability of the stream channel, source of the sediment, annual precipitation, and land use has been found to be useful in other areas for predicting sediment yield (Anderson, 1954, 1970; Robinson, 1976; and Gerson, 1977). These variables are easily measured by an on-site investigation with the aid of a topographic map. The methodology for measuring

Table 1. Independent Variables Used

	Variables	Mean	Minimum	Maximum
1.	Channel Area (Km ²)	53.99	12.02	116.20
2.	Mean Channel Slope (%)	12.0	7.2	20.0
3.	Peak Width/Depth Ratio	12.9	2.8	26.6
4.	Max/Min Discharge Ratio	27	4	116
5.	Streamflow (mm)	193.9	7.6	543.8
6.	Peak Discharge (m ³ /sec)	0.54	0.07	1.64
7.	Peak Depth of Flow (m)	0.66	0.39	1.06
8.	Drainage Density (mi/mi ²)	2.29	1.18	4.87
9.	Mean Bifurcation Ratio	4.3	1.0	5.5
10.	% of Basin Bare of Vegetation	8	1	45
11.	% Hard Geology	60	1	100
12.	Mean Grain Size, by weight (mm)	1.74	0.38	4.90
13.	Elevation of Sampling Point (m)	2066	1725	2806

each variable along with the values obtained in the study area can be found in Appendix B.

Several of the variables are based upon an on-site stream inventory. Even variables as elementary as drainage density were found to be different when the values obtained using a standard U.S. Geological Survey topographic map were compared to values obtained from an on-site survey. The simple correlation found when comparing the drainage densities obtained when using the two methods was 0.11. A stream survey measures the stream reaches that showed evidence of streamflow.

An attempt was made to use the Forest Service Stream Reach Inventory (Pfankuch, 1975). It was found not to be statistically significant when correlated with any of the dependent variables. Based on use of the Forest Service inventory, it appears that the streams in this study area are too small to be adequately represented by the inventory.

Several geologic and soil variables were tried although none were found to be statistically significant. One reason for this may be that geologic and soil maps for the study area are usually broad in their coverage. They often do not give the detail necessary to separate geologically similar but erosively dissimilar rock and soil type. For example, on a geologic map there is usually no distinction made between andesite and and hydrothermally altered andasite or rhyolite, rhyolitic pyroclastics, and indurated rhyolite. Interbedding of the material and closeness of contacts make such detailed mapping difficult. However, their erosive properties are greatly different.

A list of variables found to show statistical significance when correlated with the dependent variables can be found in Appendix C.

RESULTS AND DISCUSSION

Predictive equations showing strong statistical significance have been developed for sediment yield and sediment production rate by using variables that explain energy of the flowing water, stream channel stability, and source of the sediment. The general form of the equation is as follows:

 $Ln Y = \sum_{i=1}^{N} a + b_i x_i$

where:

- Y = dependent variable
- a = constant
- b = regression coefficient
- x = independent variable

n = number of independent variables used.

Several dependent variables were used. They are suspended sediment yield and production rate, bedload yield and production rate, total sediment yield and production rates, and suspended sediment/total sediment ratio. Total sediment is considered to equal the sum of "flume" suspended sediment and bedload. Values of yield and production rates for "natural" suspended sediment represent suspended sediment as a dependent variable. Statistical information for the predictive equations based on the seven dependent variables are listed in Tables 2 through 5.

The multiple correlation coefficient, R^2 , represents the fraction of the variation in the dependent variable explained by the equation. Large simple correlation coefficients are used to detect important independent variables. The 't' values provide a guideline as to the relative importance of the independent variable. The standard error of the estimate is abbreviated "SEE". If the regression equation is explaining a large part of the variation, the standard error of the equation will be less than the standard deviation of the dependent variable (Haan, 1977).

There are four variables found to be important in predicting both sediment yield and sediment production rate. These variables are maximum discharge/minimum discharge ratio; mean channel slope, peak width/depth ratio, and channel area. Others are used in combination in predicting the different dependent variables.

The maximum discharge/minimum discharge ratio explains how much the peak discharge deviates from baseflow. The higher the ratio, the more concentrated 2.1

Table 2. Statistical Information for Total Sediment Equations

Ln Total Yield

R*R	=	0.966**		Mean	=	4.842
SEE	=	0.332	Std.	Dev.	=	1.452
Constant	=	2.6781				

Variable	Regression Coefficient	Correlation Coefficient	t-value
Channal Araa	0120	70744	0 5544
Channel Alea	.0128	.12/~~	9.55**
Mean Channel Slope	1772	518*	-6.55**
W/D Ratio	-1.3464	.355	-5.86**
Streamflow Ln	.7830	.272	5.28**
Max/Min Discharge	.0146	.676*	3.53**

· · ·

Ln Total Production Rate

R*R	=	0.868*		Mean	=	2.588
SEE	=	0.658	Std.	Dev.	=	1.362
Constant	=	0.2839				

Variable	Regression Coefficient	Simple Correlation Coefficient	t-value
Charles C2	2 2015	(10*	7 77 44
Streamilow Ln	1.2815	.018*	2.11
W/D Ratio	1734	.408	-3.04**
Mean Channel Slope	1407	340	-2.59*
Max/Min Discharge	.0237	.777**	2.94*
Channel Area	.0091	.321	2.83*
Depth of Flow	-9.1395	.513*	-1.83

** Statistically significant at the 99% level. * Statistically significant at the 95% level.

Table 3. Statistical Information for Suspended Sediment Equations

Ln Suspended Sediment Yield

R*R	=	0.962**		Mean	=	4.389
SEE	=	0.341	Std.	Dev.	=	1.396
Constant	=	0.4367				

Variable	Regression Coefficient	Simple Correlation Coefficient	t-value
Channel Area	.0125	647*	9 02**
Streamflow Ln	1.0835	.466	7.11**
Mean Channel Slope	1518 -	. 473	-5.54**
W/D Ratio	1171	.488	-4.95**
Max/Min Discharge	.0079	.698*	1.86

Ln Suspended Sediment Production Rate

R*R	= 0.912**		Mean	=	2.110
SEE	= 0.518	Std.	Dev.	=	1.400
Constant	=-2.3936				

Variable	Regression Coefficient	Simple Correlation Coefficient	t-value
Streamflow Ln	1.0151	.786**	4.55**
Bifurcation Ratio	32.84	330	-3.01**
Channel Area	.0078	.204	3.42**
Max/Min Discharge	.0117	.754**	1.79
W/D Ratio	0364	.485	1.15

**Statistically significant at the 99% level. * Statistically significant at the 95% level. Table 4. Statistical Information for Bedload Equations

Ln Bedload Yield

R*R	=	0.927**		Mean	=	3.120
SEE	=:	0.594	Std.	Dev.	=	1.659
Constant	=	6.2931				

Variable	Regression Coefficient	Correlation Coefficient	t-value	
Channel Area	0144	704**	6 88**	
W/D Ratio	1552	.111	-4.41**	
Mean Channel Slope	1909	591*	-4.31**	
Peak Disch. Ln	.7829	.432	3.34**	
Bifurcation Ratio	2992	.052	-2.56*	

Ln Bedload Production Rate

R*R	=	0.899**		Mean	=	0.847
SEE	=	0.594	Std.	Dev.	=	1.410

Variable	Regression Coefficient	Simple Correlation Coefficient t-value		
Bifurcation Ratio	7889	373	-4.70**	
Channel Area	.0105	.390	4.13**	
Max/Min Discharge	.0258	.572*	3.96**	
W/D Ratio	1220	.187	-3.27**	
% Bare	.0565	233	2.88**	

** Statistically significant at the 99% level. * Statistically significant at the 95% level. the streamflow is. The more water that is concentrated over a short period of time, the higher the energy of that water and the more sediment is transported. Also, baseflow often does not have the needed energy to transport sediment. Therefore, the higher the difference between peak discharge and baseflow, the higher the probability of sediment transport. When defining maximum discharge/minimum discharge ratio, the minimum discharge was terminated at 0.50 cfs. This was done to avoid the problem of streams turning ephemeral in dry years.

In the study area, the snowmelt period contributes the greatest bulk of suspended sediments, about 90 percent (Skau and Brown, unpublished). This was also noted in small streams in the Rocky Mountains of west-central Alberta (Nanson, 1974). The effects of concentrated streamflows can also be seen in intense summer rainfalls and floods.

Floods not only have the obvious effects on greatly increasing sediment carried downstream by the flood (McPherson and Rannie, 1969; Anderson, 1970), but the watershed characteristics in regard to sediment supply are changed for a number of years after the flood. Suspended sediment concentrations were found to be 2 to 3.7 times greater after the flood than before in sixteen northern California watersheds (Anderson, 1970). Flood

damage was found to effect fragile higher elevations of the watershed three times more severely than the lower elevations (Anderson, 1970).

Mean channel slope was used to represent the energy of the flowing water. The negative correlation can be explained if one looks closely at the steep stream sections. Steep reaches often flow over bedrock and boulders. These areas are very poor sediment sources. Also, steeper sections have a step-like profile which causes much of the available energy to be dissipated. Channel sections with lesser slopes are usually in areas of deeper soils and smoother channel profile. Milder slopes, 5 to 15 percent, may provide the best combination of energy and sediment source to produce highest sediment yields .

The peak width/depth ratio has a positive simple correlation. Channel capacity, over time, adjusts to the size and streamflow of the watershed above the reach. The lift force acting on the channel sediments is in part associated with depth of flow. Lift force can be broken into two components: pressure effects from the velocity gradient impinging on particles lying on the streambed, and momentary upward velocity components of turbulence. The former component is defined as the Bernouli lift.

Bernouli lift is maximized in shallow, rapid flow. Particle motion is initiated in streams of this type at shear stresses lower than predicted. At greater depth of flows, Bernouli lift exerts a smaller influence on particle motion (Baker and Ritter, 1975). The Forest Service Stream Reach Inventory uses this variable to rate the stability of a stream reach.

When the peak width/depth ratio is combined in a multiple regression matrix, a negative correlation coefficient results. This may be due to inter-correlation among the independent variables.

Using the variable source concept, it is seldom that rainfall intensity exceeds infiltration in forested areas (Hewlett and Troendle, 1975). Because of this, true overland flow is rarely seen. The main contributing area of sediment is the stream channel network. The portion of the channel network that has had water flowing in it during the past year is defined as the channel area. Therefore, the variable "channel area" expresses the source of the sediment. The larger the channel area, the larger the available supply of sediment.

In mountainous areas, streambank erosion accounts for the largest part of the total sediment source. Values range from 54 percent in the mountain and valleys of western Oregon (Anderson, 1954) to an estimated 66 to 90 percent in the intermountain areas of the west (Robinson, 1976). Streambank erosion is caused by cutting and cave-ins of the streambank, soil encroachment on

channel banks (up to 15 percent of the total sediment yield as defined by Anderson, 1970), and mass wasting. Streambank erosion in agricultural lands has been estimated at only 26 percent of the total sediment source (Robinson, 1976).

These four variables: maximum discharge/minimum discharge ratio, mean channel slope, width/depth ratio, and channel area, alternate as to which one is most statistically significant in explaining the variance of the dependent variable. The fact that all four variables are consistent in the predictive equations is very encouraging from the viewpoint of understanding sediment yield.

Streamflow is always an important variable when trying to explain sediment transport. The more water available, the higher the probability of sediment transport (Anderson, 1954; Hindall, 1976).

The mean bifurcation ratio relays an idea of the drainage pattern. A high bifurcation ratio, like drainage density, indicates infiltration rates and capacities of the soil are low. This causes water to concentrate in the stream channels quicker, causing higher peak flows (Branson, Gifford, and Owen, 1972).

Suspended Sediment/Total Sediment Ratio

A predictive equation that describes the suspended sediment/total sediment ratio is the first step toward
obtaining a working estimate of the total sediment yield without actually measuring bedload. The equation described in Table 5 attempts to explain complex interactions between suspended sediment and bedload even though the equation does not meet the requirements to be statistically significant at the 95 percent level. Most of the variables used in this equation can be obtained in the same manner as in the other equations. However, some new variables have been introduced. Again, the methodology used to obtain values for the new variables can be found in Appendix B.

Hard geology is defined as volcanics, except pyroclastics, and glaciated granitics. Differences between glaciated and nonglaciated granites is important in mountainous terrain. Erosion has been accelerated since the original granitic uplifts some 160 million years ago. Granites are noted for their rapid decomposition. Glaciation removes most of the accululated material. The amount of material moved can be seen in glacial moraines and areas of glacial till. The result is that glaciation leaves an area of glaciated granites with less of a sediment source than an area of nonglaciated granites.

Different geologies not only have different erosivity indexes (Anderson, 1954; Thompson and White, 1964; and Bailey, 1973), but they also tend to form

Table 5. Statistical Information for Suspended Sediment/ Total Sediment Ratio Equation

Suspended Sediment/Total Sediment Ratio

R*R	=	0.732NS		Mean	=	67 00
SEE	=	16.542	Std.	Dev.	=	24 163
Constant	=	237.64				21.100

Variable	Regression Coefficient	Simple Correlation Coefficient	t-value
Peak Discharge Ln	-42.726	.233	-3.48**
% Hard Geology	.976	.604*	3.48**
Mean Grain Size	19.137	.014	2.55*
Elev. at Sampling Pn	t0240	.212	-2.55*
Streamflow Loge	30.028	.486	2.40*
Drainage Density	-17.97	.242	-2.28

**Statistically significant at the 99% level. * Statistically significant at the 95% level. different sized material (Bailey, 1973). Volcanics tend to form finer particles while granitics often weather into coarse sands and gravels. It is easier for a fine sized particle to stay in suspension that a larger particle. The implication is that the higher the percentage of fine material, the higher the probability that suspended sediment makes up a large percentage of the total sediment. This accounts for the positive simple correlation of % Hard Geology.

The higher streamflows have a higher probability of transporting sediment. This has been stated in previous discussions, but it is also demonstrated with a positive simple correlation for both streamflow and peak discharge. It must be remembered that suspended sediment concentrations are multiplied by stream discharge to obtain sediment yield. Because of this, streamflow is automatically weighted toward suspended sediments.

The study area has a history of limestone and sandstone deposition, uplifted and metamorphosed by granitic blocks. Extensive Pliocene and Pleistocene volcanics cut through and topped the granite blocks, leaving the area with metamarine, metasedimentary and/or volcanic rocks in the higher elevations. Granitics appear on the surface as the result of erosion. The higher the elevation, the higher the percentage of hard

geology. Again, hard geology will tend to weather into finer material which has higher probability of being transported in the suspended phase.

The correlation of drainage density with the suspended sediment/total sediment ratio shows a trend along the same lines as geology. Higher drainage densities are associated with more impermeable material, usually harder geology (Branson, Gifford, and Owen, 1972).

Explanation of variables is based on the simple correlation coefficients. The variables act to modify each other which may change the sign of the regression coefficient as compared to the simple correlation coefficient. Two groups of variables can be separated when explaining the suspended sediment/total sediment ratios: those that describe the energy of the flowing water and geology. Geology determines both the source of the sediment as well as the stability of the stream channel. Again, the same criteria that was used for predicting sediment has shown to be useful for predicting the suspended sediment/total sediment ratio.

Applicability of Bedload Formulas

The predictive equations discussed were calibrated by direct determination of the total sediment. Direct determination is always difficult and often impossible due to lack of time, funds, or expertise. Bedload formula are often used to estimate the amount of bedload transported (McPherson, 1971, 1974; Robinson, 1976). It has been assumed that at least an "order of magnitude" approximation can be made using accepted formulas (Dunne and Leopold, 1978). The Meyer, Peter & Muller (1948) and the Einstein (1950) bedload formulas were used in this study in combination with measured bedload to check this assumption.

All bedload and total load equations give the maximum capacity of sediment that can be carried under a given hydraulic condition. Therefore the actual bedload transport may be less than the transporting capacity. Formulas should be selected that were developed or adapted to areas of similar geography to that of the study area.

The Meyer, Peter & Muller equation was studied because of its increasing popularity within the U.S. Geological Survey and with other researchers, both in Europe (Graf, 1971) and in America (McPherson, 1971). Also, Meyer and Peter researched this equation in alpine and subalpine rivers (Graf, 1971). The working equations for both the Meyer, Peter, & Muller (1948) and the Einstein (1950) bedload formulas can be found in Appendix D.

Observed rates of bedload transport for the Sierra Nevada study area ranged from 0.001 Kg/sec. (0.001 1b/sec.) to 0.150 Kg/sec. (0.068 lb/sec.) with a mean of 0.022 Kg/sec. (0.010 lb/sec.). Observed rates on the East Fork River, Wyoming, were found to range from 0.008 Kg/sec. (0.004 lb/ sec.) to 2.84 Kg/sec. (1.29 lb/sec.) with a mean of 0.600 Kg/sec. (0.28 lb/sec.)(Leopold & Emmett, 1976). Both sets of observed rates show low bedload yield. Predictive values for the Sierra Nevada study area using the Meyer, Peter & Muller formula ranged from 10.8 Kg/sec. (4.91 lb/sec.) to 818.2 Kg/sec. (371.9 lb/sec.) with a mean of 187 Kg/sec. (85 lb/sec.). Therefore, the predictive values are three orders of magnitude higher than the observed values.

The high predicted values were largely the result of the high stream slopes found in the study area. Stream slope was used as an approximation of the energy slope. In mountainous areas this approximation does not hold. Streams are usually very turbulent, in part due to the stair-stepped profile of the channel. This profile can be seen even in the lower reaches of the channel. Turbulence releases some of the energy of the flowing water, reducing the energy slope but not the stream slope. Therefore, the stream slope is greater than the energy slope which may explain the over prediction found with use of the bedload formula.

Using the idea of over estimating the energy slope, this study used observed bedload to find predictive slopes. The resulting slopes vary in a narrow range around 0.0005. This approaches the stream slope of many rivers where the strength of bedload formulas have been shown. Further studies are needed to determine an adequate approximation of the energy slope in mountainous areas.

Einstein's bedload formula relies on a relationship between a discharge parameter and a parameter that defines the intensity of bedload transport. To obtain the discharge parameter, grain size diameter is divided by slope and depth. A high slope causes the value of the discharge parameter to be too low to be used in the relationship. Again, the energy slope was approximated by the stream slope.

Stream slope was measured by taking the average slope of a 15 meter (50 foot) section while the energy slope should be measured precisely at each cross-section. Therefore, a better method of estimating energy slope is needed. Use of bedload formulas in mountainous areas should be approached with caution.

Although the Meyer, Peter & Muller equation grossly over-predicts bedload yield, the formula is better at predicting the shape of the sediment hydrograph. Figure 5 shows predicted versus observed snowmelt sediment hydrograph for a typical drainage basin. It appears that most of the bedload is transported during the short period of time of high discharges. Investigations on gravel bottomed streams have reported an armored layer

that controls bedload transport. The armored layer prevents sand and finer material of the bed from being entrained in the flow unless the armoring particle's are first moved (Milhous, 1973). Breakdown of the armored layer usually involves higher velocities.

SUMMARY AND CONCLUSION

Daily samples of suspended sediment and bedload were taken on fifteen small watersheds on the east side of the Sierra Nevada. Monitoring was done on a weekly basis during the 1978 snowmelt period. Bedload was measured using a modified flume. The sum of bedload and suspended sediment was considered to equal the total sediment.

Analysis of the data included developing empirical equations for sediment yield and production rates as well as testing the applicability of other predictive equations. The developed predictive equations include estimates of suspended sediment, bedload, and total sediment. Watershed characteristics were found to explain a statistically significant amount of the variation found in the observed variables. The watershed characteristics describe the energy of the flowing water, stability of the stream channel, and source of the sediments. Each reflect an obvious though complex relationship with sediment yield. Quantifying the variables was achieved through a mixture of geomorphic and streamflow characteristics. The most powerful variables, in terms of explaining sediment yield, were channel area, maximum discharge/ minimum discharge ratio, mean channel slope, and width/depth ratio. An on-site investigation is a requisite for determination of many of the variables. Different watershed characteristics were found to aid in predicting the suspended sediment/total sediment ratio. Energy of the flowing water as well as geology were found to explain most of the variation shown in the observed variables.

The Meyer, Peter & Muller (1948) and Einstein (1950) bedload formulas were found to over-estimate the observed bedload values by up to three orders of magnitude. The high predictive values are largely the result of assuming the stream slope approximates the energy slope. This approximation is not valid in mountainous areas where the stream slope is greater than the energy slope. Until a better method of estimating the energy slope is achieved, use of bedload formulas should be approached with caution.

Use of the developed predictive equations is limited to the small area of study. However, the basic criteria for choosing the independent variables should be valid in most mountainous areas. The total sediment yield data collection will be continued for at least two more years and should provide verification of the developed equations or derivation of better equations.

LITERATURE CITED

- Anderson, Henry W. 1954. Suspended sediment discharge as related to streamflow, topography, soil, and land use. Transactions of the American Geophysical Union. 35(2):268-281.
- Anderson, H.W. 1957. Relating sediment yield to watershed variables. Transactions of the American Geophysical Union. 38:921-924.
- Anderson, Henry W. 1970. Relative contributions of sediment from source areas, and transport processes. Proceedings, A Symposium Forest land Uses and Stream Environment. Corvallis, Oregon. 55-63 pp.
- American Association of State Highway Officials, 1970. Standard specifications for highway materials and methods of sampling and testing. AASHO, Washington, D.C. 817 pp.
- Bailey, Robert G. 1973. Land capability classification of Lake Tahoe Basin. USDA Forest Service. 68 pp.
- Baker, Victor R., Dale F. Ritter. 1975. Competence of rivers to transport coarse bedload material. Geological Society of American Bulletin. 86:975-978.
- Branson, F.A., G.F. Gifford, and J.R. Owen. 1972. Rangeland hydrology: Society of Range Management Denver. 84pp.
- Brown, J.C. 1972. A preliminary analysis of factors affecting nitrogen and phosphorous production from small watersheds. M.S. Thesis, Univ. of Nevada, Reno, Nevada. 121 pp.
- Brown, J.C., C.M. Skau, and W.R. Howe. 1973. Nutrient and sediment production from forested watersheds, Proceedings of the American Society of Agricultural Engineers Annual Meeting. June 17-20. University of Kentucky. Lexington, Kentucky. 33 pp.

Brown, J.C., C.M. Skau, and Neal Read. 1974. Nutrients and suspended sediments for forested watersheds in the east-central Sierra Nevada. Proceedings of the American Society of Agricultural Engineers Annual Meeting. New York, New York. 33 pp. Brown, J.C., C.M. Skau, 1975. Chemical composition of snow in the east-central Sierra Nevada. Cooperative Report series, Publication No. AG-1. Fleischmann College of Agriculture, Univ. of Nevada, Reno, Nevada. 13 pp.

- Brown, J.C., M. Lohrey, and C.M. Skau. 1977. Variable sources of suspended sediments and nutrients from small, forested watersheds. Project Report, OWRT A-662-Nevada Water Resources Center, Desert Research Institute, University of Nevada-Reno.
- Chow, Ven Te. (editor). 1964. Handbook of applied hydrology. McGraw-Hill Book Co., New York. 1418 pp.
- Dunne, Thomas and Luna B. Leopold. 1978. Water in environmental planning. W.H. Freeman and Co. San Francisco, California. 818 pp.
- Fisher, John Bailey. 1978. Flume development for a study of bedload and suspended sediment in Clear Creek drainage, eastern Sierra Nevada. M.S. Thesis, University of Nevada. Reno, Nevada. 83 pp.
- Gerson, Ran. 1977. Sediment transport for desert watersheds in erodible materials. Earth Surface Processes. 2:343-361.
- Graf, Walter Hans. 1971. Hydraulics of sediment transport. McGraw-Hill, New York, New York.
- Haan, Charles T.: 1977. Statistical methods in hydrology. Iowa State University Press, Ames, Iowa. 378 pp.
- Hewlett, J.D., and C.A. Troendle. 1975. Non-point and diffused water sources: a variable source area problem. Proceedings, A.S.C.E. Symposium on Watershed Management. Logan, Utah. 21-46 pp.
- Hindall, S.M. 1976. Measurement and prediction of sediment yields in Wisconsin streams. U.S. Geol. Survey, Water-Resources Invest. 54-75. 27 pp.
- Howe, W.R. 1972. Suspended sediment production and basin characteristics of twenty-four Truckee River subbasins. M.S. Thesis, Univ. of Nevada. Reno, Nevada. 45 pp.

Leopold, L.B. and W.W. Emmett. 1972. Some rates of geomorphological processes. Geographia Polonica. 38:27-35.

- Lohrey, Michael H., L.B. Leopold and W.W. Emmett. 1977. Variable sources of suspended sediment and nutrients from small watersheds. M.S. Thesis, University of Nevada-Reno. Reno, Nevada. 63 pp.
- McPherson, H.J., and W.F. Rannie. 1969. Geomorphic effects of the May 1967 flood in Graburn watershed, Cypress Hills, Alberta, Canada. Journal of Hydrology 9. 307-321 pp.
- McPherson, H.J. 1971. Dissolved, suspended and bed load movement patterns in Two O'clock Creek, Rocky Mountains, Canada, Summer 1969. Journal of Hydrology 12. 221-233 pp.
- McPherson, H.J. 1974. Sediment yields from intermediatesized stream basins in southern Alberta. Journal of Hydrology. 25:243-257.
- Milhous, Robert T. 1973. Sediment transport in a gravel-bottomed stream. PhD Dissertation. Oregon State University. Corvallis, Oregon. 246 pp.
- Morris, R.J., C.M. Skau, and V. Vitale. 1969. A preliminary study of the relationships between water quality and watershed characteristics for the Truckee River. Center for Water Resources Research, Desert Research Institute in cooperation with Renewable Natural Resources Division, Fleischmann College of Agriculture, University of Nevada, Reno, Nevada. 15 pp.
- Nanson, Gerald C. 1974. Bedload and suspended-load transport in a small, steep, mountain stream. American Journal of Science. 274:471-486.
- National Water Commission, 1973. Water policies for the future, final report to the president and to the Congress of the United States, Washington, D.C. 579 pp.
- Pfankuch, Dale J. 1975. Stream reach inventory and channel stability evaluation. USDA Forest Service, Northern Region, Publication No. R1-75-002. 26 pp.

- Ritter, John R. 1967. Bed-material movement, Middle Fork Eel River, California. U.S. Geological Survey Prof. Paper 575-C, C219-C221 pp.
- Robinson, A.R. 1977. Relationship between soil erosion and sediment delivery. The Int'l. Association of Hydrological Sciences, Vol. 22. Preceedings of Paris Symposium on Erosion and Solid Matter Transport in Inland Waters. July 1977. 159-167 pp.
- Thompson, G.A. and D.E. White. 1964. Regional geology of the Steamboat Springs area, Washoe County, Nevada. Geological Survey Professional Paper 458-A. 50 pp.
- Ward, Peter R.B. 1977. Transport of bed load and suspended load by rivers from low rainfall areas in Africa. The Int'l. Association of Hydrological Sciences, Vol. 22. Preceedings of Paris Symposium on Erosion and Solid Matter Transport in Inland Waters. July 1977. 142-148 pp.

43 APPENDICES

APPENDIX A - Stream Classification Forms

Permanial streak Classification, pupe

Date	Time		01	Crew .	when breve	
(0112.0*)	PERENNIAL STRE	EAM CLA	SSIFICAT	ETON .		
Stream	Tributary			Site	Cha Gra	nnel dient
Snoumelt flow (.1 ft)	Roughnas	ss		-	Geology	•
Hidth	(Scale to size o	of chan	nel) l'	Hard vol	canics	
Depth 1/4	· Smooth		2) Soft vol	canics	
Depth 1/2	Intermédiate		. 3	Hard gra	nitics	
Depth 3/4	Mostly turbulent and pools)	t (riff	les 4) Soft grai	nitics	- And -
			. 5)	Alluvium		
	Chanr	nel Bot	tom	• • •		•
Composition				Angula	arity	
Boulders & bedrock (1'-)%	1) Shai	rp edges	+ corners	, plant su	rfaces
Cobbles & Rock (2"-1')	2	2) Rous	nded edg	l jes + corne	ers, plane	
Gravel (0.1"-2.0")	ž.	3) Wel	rfaces	roughened d in all d	limensions	
Fine sand, silt & clay	5	.b	lane sur	faces smoo	oth	·
Fine dead organic			Stabi	ility (inon	ganics)	244
live vecetation	· · · · ·	1) Pa:	rticles	packed, re	sist dis-	
norr 1 forbe		2) No	derately	packed, s	ome	
sinculas		3) Un	consolid	dated, move	es easily	
the bes, she, she		W	nen wall	ked on	Rote	
Source Area	6	eneral	Sedir	cent Trans	AYON' (
Veg. type	Area drains	s into	lake	and maps	Mart is	
Veg. density %	s	ize of	lake			(acres)
Area	(acres) Area dra	ains in	to meado	W	-	
Slope 9	flow in	n chann	el ·	-	· · · · ·	
	flow d	iffuses	1	-		
Other		size			(acres)	

45

..

Perennial Stream Classification, page 2.

	Lower Ba	anks							
Composition	Left : Right	t <u>Stability</u>							
Boulders & bedrock (1')	Tran in	1) Particles packed, resist							
Couples & rock (2"-1')		 2) Moderately packed, some dislodgement when kicked 							
fine sand, silt, clay	3) Unconsolidated, moves - easily when walked on								
Fine dead organic debris		the set control							
Live vegetation grass & forbs shrubs		Cutting Left : Right							
Correction	1)	Little cr mone (<10%)							
- Estiment & Ledroca (11-4	2)	Intermediate							
tessin Lock (2*-1*)	. 3)	Rearly continuous (<75%)							
Grand (0.1"-7.0"]	Upper I	Bank							
Slope Left : Right 0-30	Mass Wasting 1) No evidence 2) Infrequent	of accurrence							
65+	3) Frequent sl away new m	umps, peak flow carries							
Sectore to be a	4) Mass wastin area affec	g extensive - large							
Composition	Left : Right	Stability (inorganics) Left : Right							
Boulders & Bedrock (1'-)		1) surface strongly resis-							
Couples & rock (2"-1')		2) surface moderately :							
Gravel (0.1"-2.0")		3) surface not aggre- gate; single grain							
Fine sand, silt, clay		Current Data							
Fine dead organic debris		Sta. Dist. Depth Time Count							
Live vegetation		1							
gress & forbs		2							
starubs -		3							
		<u> </u>							
		5							
		6							
		8							

Stream	Tributary		Site		Channal Condicat	
Snownelt flow (.1 ft)	Roughr	1855			Goology	
tridth	(Scale to size	e of ch	annel)	1)	Hard volcanies	•
Depth 1/4	Smooth		and the second	2)	Soft volcanics	
Depth 1/2	Intermediate	Smith	and stay	3)	Hard granitics	
Depth 3/4	Mostly turbule	ent (ri	ffles	4)	Soft granitics	-
	and pools)		telles - 1	5)	Alluvium	-
	Entra dalla		1999 - A.			
in materia	Channel Bot	ttom an	d Lower Ban	nks		
Composition			- Sector	2124	. Cooulenite	
Boulders & bedrock (1'		1)	Sharn ed	+ 265	Angularity	
Cobbles & rock (2"-1')		.,.	rougher	ned .	corners, prate surraces	
Gravel (0.1"-2.0")		2)	Rounded e	edges	+ corners, plane	
Fine sand, silt & clay		3)	Well-rour	nded	in all dimensions,	
Fine dead organic	a,		plane s	surfa	ces smooth	
Live vegetation			Stabi	lity	(inorganics)	
grass & forbs		1)	Particles	s pac	ked, resist dis-	
shrubs ·	6° P	2)	Hoderate	ent w ly pa	cked, some	
Endimenta (un to 2"		21	dislod	gemen	t when kicked	2
Seaments (up to z	L	3)	when we	alked	on on	
five death of bottom sed	imante	(0 11)	Cutti		Loft , Diah	
Ave. depth of Docton sed		10.1)	little of	r. non	a (clog)	
100	Server di	21	Intermed	iate	- (-10.5)	
		. 3)	Nearly c	ontin	HOUS (75%)	-
193 (E7	of a state that is a		neur iy ci	onem		-

	Upper Banks							
lope Left : Right	Mass Wasting	eft : Right						
3-30 :	1) No evidence of occurrence	:						
0-65 :	2) Infrequent of small slumps							
65+	 Frequent slumps, peak flow carries away new material 							
	 Mass wasting extensive - Targe area affected 							
Composition douidars & badrock (1'-~)	Left : Right Stability (inorganics) : 1) surface strongly re	Left : Right sis- :						
Cobales & rock (2"-1')	2) surface moderately resistant							
Gravel (0.1"-2.0")	: -3) surface not aggreg:	ite; :						
Fine sand, silt, clay								
Fine dead organic debris								
Live vegetation								
grass & forbs shrubs								
	General							
Source area	Sediment traps							
Veg. type	Area drains into lake							
Veg. density%	size of lake	(acres)						
Area(ar	cres) Area drains into meadow							
Slope 😤	flow in channel							
	flow diffuses							
	size (acres)							

Ephemeral Stream Classification, page 2.

Hetholorogy for Becornie on Ledgeordiers Mail he

APPENDIX B - Methodology for

Determining Independent Variables

Methodology for Determining Independent Variables

Several of the variables used have not been standardized. However, they appear in the predictive equations described in the text, and their method of measurement should be explained. This section will develop an understanding of the methodology used.

Values of some of the variables change from year to year because of the variation in annual precipitation pattern and resulting streamflow. The resulting change in values may be large even though the method developed to obtain the values remains constant. Variables will be discussed in two sections: those that may change annually and those that remain constant. Tables for both categories can be found after the methodology.

Variables that may change annually are:

- 1.) Streamflow production;
- 2.) peak discharge;
- 3.) maximum discharge/minimum discharge ratio;
- 4.) channel area;
- 5.) drainage density;
- 6.) peak width/depth ratio;
- 7.) peak depth of flow; and
- mean grain size diameter or d₅₀;
 Variables that remain constant are:
- 1.) mean channel slope;
- 2.) mean bifurcation ratio;

- 3.) percent of basin bare of vegetation;
- 4.) percent hard geology; and

5.) elevation of sampling site.

1.) Total streamflow is an estimate of the amount of water delivered out of a watershed by a stream. On gaged watersheds, total streamflow is determined by measuring the area under a streamflow hydrograph. Several methods have been developed to estimate streamflow for ungaged watersheds (Chow, 1964). Streamflow production is total streamflow divided by the drainage area of the basin.

2.) Peak discharge is a measure of the potential energy of the moving water. Stream discharge is equal to the channel cross-section area times the associated velocity. Area can be derived by measuring the peak depth of flow through use of a crest gage and determining the width. Velocity is estimated. For this study, the peak discharge was the maximum instantaneous velocity measured for each creek.

3.) The maximum discharge/minimum discharge ratio represents the flashiness of the stream. The maximum, or peak, discharge can be obtained using the method described above. Minimum discharge must be measured during winter flows. A value of 0.50 cfs was used to represent the minimum discharge for discharges less than 0.50 cfs. 4.) Assuming that the channel system is the source of the sediment (Anderson, 1954, 1970; Hewlett & Troendle, 1975; and Robinson, 1976), it is easy to visualize an expanding channel system giving rise to a greater sediment supply. The channel system expands and contracts throughout the year, due to changing moisture conditions. In mountainous areas, the greatest channel expansion is due to snowmelt (Dunne & Leopold, 1978).

Channel length was found to be highly correlated with channel area (r = 0.91). Channel length along with the depth of the snowmelt flow for individual years can be easily identified in the field. Minimum channel widths were about 10 cm.

Channel Area = $\sum_{i=1}^{n} (W_i + 2D_i)L_i$

where:

W = width of channel cross-section

D = average depth of channel cross-section

L = length of channel reach.

Topographic maps rarely show more than perennial stream channels. Expansion of the stream channel system can only be measured through use of an on-site investigation.

5.) Drainage density is equal to channel length, in miles, divided by the effective drainage area of the watershed.

6.) The width/depth ratio expresses the effects of different lift that forces have on sediment transport,

along with the capacity of the stream channel to carry floods. Stream channels are constantly changing shape due to deposition and scour. At the same time, the streamflow changes from year to year, and even hour to hour. Therefore the width/depth ratio will vary over time. The peak width/depth ratio was used as a variable for convenience to the land planner. A crest gage can be used to measure the peak depth of flow. The associated width can be obtained by an on-site investigation.

7.) Peak depth of flow reflects the streamflow for the individual year. For some years, the channel is fuller than in other years. This is due to changes in precipitation amounts and patterns. Again, a crest gage can be used to measure the peak depth of flow.

8.) The mean grain size diameter of the bedload that is transported is obtained by seiving the bedload and plotting log - log graphs of grain size diameter versus percent of the bedload which is finer, by weight. It has not been documented as to whether this variable changes from year to year. However, field observations show large debris flow which are moved by intense streamflows. These debris flow have large sized material, much larger than the grain sizes that were moved during the study period. Further study is needed to determine whether this variable will change from year to year as the result of changing streamflows. Variables that Remain Constant

1.) Mean channel slope is computed using USGS topographic maps as follows: (Chow, 1964).

i. The stream is broken up into a number of segments, each having approximately homogenous slope.

ii. The length of each segment is measured with an opsiometer on the USGS topographic maps, and converted to feet using the map scale.

iii. The difference in elevation is, in feet, recorded for each segment as being the difference between the highest and lowest points of elevation in the segment.

iv. Slope of each segment, in feet per foot, is computed by dividing the difference in elevation within the segment by the length of the segment.

v. The square root of the slope for each segment is recorded.

vi. Next the length of each segment divided by the square root of the slope of each segment is computed and recorded.

vii. The weighted mean slope for the main channel is computed by dividing the total length of all the segments by the sum of item 6 for all segments, and squaring this quantity. Dimensions are feet per foot and are converted to percent.

2.) Bifurcation ratio is an estimate of the drainage pattern. The bifurcation ratio will not be precisely the same from one stream order to the next because of chance variations in watershed geometry. However, there will be a trend toward a constant (Chow, 1964). A mean value for all stream orders was used to represent this constant. The bifurcation ratio is equal to the number of stream segments of a given order divided by the number of stream segments of the next higher order. A stream survey map was used to measure the number of stream segments for each order.

3.) Low altitude, color aerial photographs were obtained for each study watershed. Through use of photogrammetry techniques, the vegetation cover was divided into four classes: bare, shrub, meadow, and forest. The percent, by area, of the watershed covered by each vegetative type was determined through use of a dot grid.

4.) Geology was measured from the best available geologic map. The watershed boundaries were deliniated, and the percent of the watershed in each geologic category was determined. Hard geology was defined as volcanics, except pyroclastics, and glaciated granites.

5.) Elevation of the sampling site was measured off a standard USGS topographic map.

VARIABLES THAT SHOW ANNUAL CHANGE

Creek	Stream Flow (cm)	Peak Dschg (m ³ /sec)	Max/ Min Dschg	Channel Area (km ²)	Drainage Density (mi/mi ²)	Peak W/D Ratio	Peak Depth of Flow (m)	d ₅₀ (mm)
Brownie	54.4	1.10	78	30.34	1.76	10.7	1.14	1.58
Browns	12.5	0.22	15	35.37	2.31	6.2	0.82	1.06
By Day	17.6	0.42	30	70.91	1.90	12.5	0.60	1.32
Cottonwood	8.4	0.38	6	60.05	1.24	10.3	0.66	3.13
Deep	5.9	0.30	11	65.13	1.55	10.3	0.69	1.70
Dunderberg	15.9	0.20	4	23.34	1.59	11.3	0.47	0.66
Eagle	37.4	1.47	19	106.44	1.95	21.5	0.87	3.46
East	12.0	0.11	8	22.81	4.87	10.8	0.49	0.38
Hawkins	22.3	0.34	24	12.02	2.74	10.4	0.57	1.32
Horsethief	22.9	0.99	31	23.82	1.18	17.9	0.71	4.90
No Name	12.0	0.23	10	23.06	1.67	21.2	0.42	1.20
Rock	0.8	0.07	5	94.39	1.35	2.8	0.64	1.11
Spratt	37.7	1.65	116	116.20	4.30	26.6	0.89	2.44
Thomas	6.7	0.19	15	77.03	2.00	11.8	0.90	1.02
West	24.6	0.37	26	48.94	3.91	9.7	0.74	0.84

NU Y UU I UI YI

VARIABLES THAT ARE CONSTANT

IN U Y UUY I UI XI

Creek	Mean Channel Slope(%)	Mean Bifurca- Ratio	% of Basin Bare of Vegetation	% Hard Geology	Elevation of Sampling Point (m)
Brownie	12.0	3.0	1	83	2180
Browns	11.5	2.5	4	22	1755
By Day	9.0	3.5	1	79	2170
Cottonwood	9.6	4.5	1	12	1950
Deep	10.0	5.3	9	35	1950
Dunderberg	15.4	7.0	4 5	89	2770
Eagle	9.4	5.0	20	97	2260
East	19.7	3.7	0	100	1880
Hawkins	13.3	1.0	0	91	2465
Horsethief	7.4	5.0	4	15	2115
No Name	7.2	3.0	12	43	2220
Rock	12.0	5.4	0	1	1740
Spratt	8.7	5.5	13	62	1725
Thomas	15.0	5.2	1	76	1850
West	20.0	4.7	10	100	1950

Some se variables erre cestes a company contration esta the expension variables. Variables that showed shown on the next page. The objective of restance all en the variables was to disable the host repression constitut the rest page. The objective of restance all constitut the rest page. The objective of restance all shown of the series and combanitors of originates when constitut the restance of a size of restances are were if a variable showed a size size origination. If

APPENDIX C - Variables Showing Statistical Significance

PRISTA

A PR & PR A

Some 54 variables were tested as to simple correlation with the dependent variables. Variables that showed statistical significance at the 95 percent level are shown on the next page. The objective of testing all of the variables was to develop the best regression equation. Therefore many combinations of variables were tested using the reverse step-wise regression process. Even if a variable showed a high simple correlation, it might have been so highly inter-correlated with other variables that its contribution to explaining the variance found in the dependent variable would have been small.

Simple Regression Coefficients Showing Statistical Significance at the 95% Level.

	Variable	Suspe Yield	end	led Prod.	Yj	Bed1 Leld	oa Pr	nd rod.	Yi	Tot eld	al Pr	od.	
1.	Streamflow Total	.86	:	.64	:	.63	:		:	.65	:	.54	
2.	Streamflow Production	.66	:	.82	:		:	.57	:		:	.60	
3.	Peak Discharge	.88	:	.79	:	.63	:	.60	:	.76	:	.70	
4.	Channel Length	.50	:		:	.72	:		:	.57	:		
5.	Channel Area	.69	:	•	:	.82	:		::-,,;	.66	:		
6.	Wetted Perimet	er	:		:	.60	:		:		:		
7.	Wetted Perimet x Total Channel Composition	er.60	:		:	.76	:		:	.66	:		
8.	Wetted Perimet x Cutting	er.76	:		:	.72	:		:	.79	:	.61	
9.	Total Channel Composition : Channel Length	1	:	.57	•		:	.71	:		:	.70	
10.	Relief Ratio	57	:		: •	.63	:		:		:		
11.	Ave. Daily W/I Ratio	.69	:	.50	:		:		:	.69	:	.59	
12.	Peak W/D Ratio	.69	:	.52	:		:		:	.66	:	.58	
13.	% of Basin wit Channel Slopes <u>></u> 20%	h ;	:		:	.60	:		:		:		
14.	% of Basin wit Slopes > 40%	h	:		:	.55	:		:		:		

60

Ш

The Never, Peter & Multer (1945) bediead formula is sed upon the tractive force eranciple. The working sation is:

APPENDIX D - Bedload Formulas

= stream slops

- a specific weight of sellapet (Ng/m)

. . offective grain size draweter, D₅₀ (

"- hedload trensport weight, under vater (Ke/

An essention was made that no beddorms were evident fore $\frac{1}{2} - 1$. The tare [0.04761, [910,] expresses the call tractive force. In order to change the dry bedloo

, the failowing formula is used

its of the dry bedlend transport is Agricelovia. In to determine the total budlood transport for the ALL THUN THUN

The Meyer, Peter & Muller (1948) bedload formula is based upon the tractive force principle. The working equation is:

$$\gamma \left(\frac{K_{\rm B}}{K_{\rm G}}\right)^{3/2} R_{\rm h} S - 0.047 (\gamma_{\rm s} - \gamma) D_{\rm E} = 0.25 \left(\frac{\gamma}{\rm g}\right)^{1/3} (G_{\rm s}'')^{2/3}$$

where:

 γ = specific weight of water (Kg/m³) K_B = Strickler's roughness coefficient for the bed

$$(m^{1/3}/sec)$$

$$K_G = \text{grain roughness } (m^{1/3}/\text{sec})$$

- R_h = hydraulic radius, which can be approximated by depth of streamflow (m)
- S = stream slope

 γ_s = specific weight of sediment (Kg/m³)

 $D_E = effective grain size diameter, D_{50}$ (m)

g = acceleration due to gravity (m/sec²)

G_s"= bedload transport weight, under water (Kg/sec·m).

An assumption was made that no bedforms were evident. Therefore $\frac{K_B}{K_G} = 1$. The term $\{0.047(\gamma_s - \gamma)D_E\}$ expresses the critical tractive force. In order to obtain the dry bedload rate, G_s' , the following formula is used:

 $G_s' = \frac{\gamma}{\gamma_s - \gamma} G_s''$ The units of the dry bedload transport is Kg/sec·m. In order to determine the total bedload transport for the channel width:

$$G_s = G_s'b$$

where:

b = width of sediment moving section of the channel (m)

 G_s = bedload transport rate (Kg/sec) The Meyer, Peter & Muller bedload formula and the Einstein bedload formula are based upon the tractive force principle, properties of the grain and the flow causes the movement.

The Einstein procedure is very complicated, composed of nearly thirty steps. However, the result is a bedload function. Einstein defines the bedload function as "the rate at which various discharges will transport different grain sizes of the bedload material in a given channel,"(Graf,1971). The relationship between a discharge parameter, Ψ , and a bedload parameter, Φ , is given in graphical form and represents the Einstein bedload equation. The equation to define the discharge parameter is:

$$\Psi = \frac{\frac{\Upsilon_{s} - \Upsilon}{g}}{\frac{\Upsilon}{\frac{\gamma}{g}}} \qquad \frac{D_{E}}{SR_{h}}$$

Experiments have determined the discharge-bedload relationship. Therefore, to obtain the bedload parameter, a graph is used. The bedload transport weight (Kg/sec·m) is:

$$G_{g}' = \frac{\Phi \gamma_{g}}{\frac{\gamma_{g}}{\frac{\gamma_{g} - \gamma}{g}}} \frac{1}{g(D_{E})^{3}}$$

Again, to obtain the total bedload transport weight (Kg/sec), G_s' is multiplied by the width of the sediment moving section

the channel.

All of the bedload equations are derived such that they predict the maximum bedload that a stream in equilibrium can possibly carry under a given hydraulic and sedimentary condition. Except for a few cases, the bedload motion has been studied in small-scaled laboratory flumes. The application of bedload equations to field studies remain limited and should be approached with caution.
APPENDIX E Suspended Sediment and Bedload Data

note: (e) indicates estimated values.

「「

ALL STATISTICS

	To	tal Yield of	Snowmelt Se	diment	Watershed	Suspended Sediment/
Creek	Flume metric tons	Natural metric tons	Bedload metric tons	Total metric tons	Area ₂ Km ²	Total Sediment %
Brownie	320.78	368.55	51.60	372.37	5.96	86
Browns	59.43	46.80	75.39	134.82	8.24	44 -
By Day	409.63	362.83	68.68	527.29	9.97	78
Cottonwood	102.54	106.90	27.39	129.93	26.60	79
Deep	118.64	87.55	70.27	188.91	20.80	63
Dunderberg	26.00	15.85	1.91	27.91	6.29	93
Eagle	695.91	749.49	134.10	830.01	19.43	84
East	10.56	12.15	0.68	11.24	4.64	108
Hawkins	83.51	61.00	17.32	100.83	1.61	83
Horsethief	62.32	64.22	11.25	73.57	9.69	62
No Name	14.65	14.07	5.25	19.89	5.39	74
Rock	36.79	36.73	121.69	158.48	39.96	23
Spratt	2,477.38	1,073.64	216.45	2,693.83	12.95	92
Thomas	53.68	52.20	12.76	66.44	18.62	81
West	42.12	40.95	7.16	49.37	5.36	85

1 1 W 1 1 1 1 1 1 1 1 1

BROWNIE CREEK

									Nat	ura	ispended : 1	Sea	Flum	e			Bedload				
Date	:	Time	:	Temp. C°	:	Disch. m ³ /sec	:	Vel. m/sec	Conc. mg/l	:	Yield kg/day	1	Conc. mg/1	:	Yield kg/day	1	Yield kg/day	:	D ₅₀ mm	:	D ₆₅ mm
4-29		1030 1430 1730 1930		4 - 4 - 4 - 4 - 4		.12 .12 .12 .12		.33 .33 .33 .33	0 0 0 4.3		0 0 0 50		0 0 23.5	*****	0 0 0 272				.23 .23 .23 .23		.34 .34 .34 .34
5-3	*****	1200 1500 1300 2000		4 4 4 4		.17 .17 .17 .17 .17		.43 .43 .43 .43	6 3 46 33	······	83 47 774 662		1 5 46 40		14 78 774 802		4 20 - 		.23 .23 .23 .23		.35 .35 .35 .35
5-12		1130 1430 1700 1945		7 8 3		.22 .25 .31 .39		.58 .58 .60 .71 .	8 15 114 129		150 330 3077 4333		2 18 102 122		37 395 2753 4098		38 72 134 184		1.2 .84 .45 .34		1.8 1.5 .68 .51
5-18		1100 1400 1700 1900		5 6 5 4		.55 .26 .31 .35		.35 .59 .61 .66	37 8 13		1753 212 390		4 1 8		53 26 240		59 101 94 180		1.2 2.8 1.2 1.5		2.5 (e) 5.0 2.0 2.5
5-28		1100 1400 1700 1900		6 7 6 5		.24 .33 .43 .54		.51 .76 .69 .80	10 16 95 170		210 458 3540 8015		10 24 77 124		211 687 2870 5846		104 96 314 638		2.1 1.7 1.5 2.6		3.4 2.7 2.5 4.3
6-4		1100 1500 1715 1930		6 6 5 4		.49 .64 .64 .70		.80 .89 .83 .88	7 77 307 306		295 4270 17002 18410		10 47 276 354		422 2606 15285 21298		197 704 979		1.3 1.0 1.3 1.0		2.1 1.7 2.1 1.7
6-13		1230 1430 1645 1900		11 7 . 8		.68 .82 .98 1.10		.79 .75 .83 .87	24 165 318 313		1415 11719 27107 29812		48 125 337 446		2831 8878 28727 42480		1284 3479 9079 8578		2.6 2.9 2.4 3.2		3.7 4.3 3.7 5.0

238 11

1. 1. 1.

BROWNIE #2

	-								Natu	suspended S ral ·	ediment F	lume	3	Bedload				
Date	:	Time	:	Temp. C°	:	Disch. m³/sec	:	Vel. m/sec	Conc. mg/1	Yield kg/day	Conc mg/1	•	: Yield : kg/day	Yield kg/day	:	D ₅₀ . mm	:	D ₆₅ mm
6 - 22		1045 1330 1600 1745		7 9 9 8		.35 .42 .56 .56		.71 .79 .84 .84	11 : 24 : 25 : 40 :	330 875 1214 1940	19 17 48 42		: 571 : 620 : 2330 : 2037	218 214 190 531		2.2 1.75 1.1 2.1		3.3 2.6 1.7 3.3
7-9		1015 1345 1600 1800		9 13 13 13 11		.14 .15 .24 .38		.44 .53 .53 .73	56 64 67 12	701 835 1416 390	56 69 53 10		701 900 1120 325	24 15 27 43		1.35 .84 1.5 1.2		2.0 1.25 2.6 2.0
7-19		1145 1500 1800		11 11 11		.15 .15 .15		.75 .75 .75	15 0 14	180 0 201	12 2 16		144 23 230	· 2 4 · 5		.89 .89 .89		2.0 2.0 2.0
8-2		0830 1130 1430 1700		12 12 12 12 12		.05 .05 .05 .05		.48 .48 .48 .48	21 20 14 43	87 97 60 186	13 17 18 11		54 82 78 48	2 2 4 32		4.0 4.0 4.0 4.0		7.0 7.0 7.0 7.0
			100															

1 1 20 1 1 20 1 1 20 1 1 1

89

BROWN'S CREEK

								Nat	Sura	spended S	ediment Flume		Bedload		
Date	:	Time	:	Temp. C°	:	Disch. m ³ /sec	 Vel. m/sec	Conc. mg/l	::	Yield kg/day	Conc. : mg/1 · :	Yield kg/day	Yield kg/day	: D ₅₀ : mm	: D ₆₅ : mm
4-01		0935 1250 1700		4 4 4		.13 .13 .13	 .35 .35 .35	15 38 33		189 410 366	16 30 31	201 324 344	20 12	: .75 : .76 : .76	: 1.05 : 1.05 : 1.05
4-09		0920 1230 1545 1840 2055		7 7 7 7 7 7		.06 .06 .06 .06 .06	 .21 .21 .21 .21 .21	9 41 13 18		45 250 76 113	2 10 42 14 17	8 50 256 82 106	2 1 6 6 4	.88 .88 .88 .88 .88 .88 .88	: 1.25 : 1.25 : 1.25 : 1.25 : 1.25 : 1.25
4-16		0920 1220 2050		3 2 2		.07 .04 .04	 .29 .16 .16	17 23 14		106 89 54	26 18 19	162 69 73	1687 829 340	: 1.5 : 1.5 : 1.5	: 2.0 : 1.9 : 1.9
4-23		0920 1230 1640 2030		6 8 8 6		.06 .06 .07 .06	 .23 .22 .27 .27	29 9 21 33		158 45 119 175	22 26 15 42	120 130 85 223	186 178 328 159	.9 1.2 1.35 1.1	: 1.3 : 1.6 : 1.7 : 1.45
4-28		1130 1445 1845 2030		8 8 7 7		.09 .09 .11 .11	 .30 .30 .34 .34	13 10 22 21		98 80 204 195	8 14 20 33	60 112 185 306	1588 853 1090 894	: 1.1 : .92 : 1.0 : 1.0	: 1:5 : 1.3 : 1.4 : 1.4
5-06		1130 1500 1745 2200		8 8 8 8		.09 .09 .12 .12	 · .32 .32 .40 .40	35 25 58 38		270 193 607 398	75 42 80 62	579 325 837 649	1298 749 817 2065	: 1.3 : 1.3 : 1.15 : 1.15	: 1.75 : 1.75 : 1.55 : 1.55
5-11		1045 1415 1700 1945		8 8 9 7		.13 .13 .18 .18	 .37 .38 .45 .45	18 - 41 39 47		207 477 593 740	46 : 33 : 65 : 39 :	530 384 988 614	2260 1623 1452 2151	.9 .74 :1.2 :1.5	: 1.4 : 1.1 : 1.7 1.95

69

BROWN'S CREEK #2

			-						Nat	Sura	spended So	edin	nent Flume	e		Bedload				
Date	: ::	Time	:	Temp. C°	: :	Disch. m ³ /sec	. :	Vel. m/sec	Conc. mg/1	:	Yield kg/day		Conc. ng/l	:	Yield kg/day	Yield kg/day	:	D ₅₀ mm	:	D ₆₅ mm
5-17		0930 1300 1600 1845		8 8 12 12		.14 .14 .19 .19		.36 .36 .43 .43	24 23 122 197		268 279 1918 3226		140 ' : 30 : 140 : 248 :		1564 364 2200 4061	1519 1043 793 2257		.92 .92 .92 .92		1.35 1.35 1.45 1.45
5-25		1130 1400 1630		7 7 7		.09 .09 .09		.29 .29 .29	19 23 20	* * * *	144 174 150		116 62 47		879 470 353	508 386 241	:1.	15 15 15		1.65 1.65 1.65
5-31		1015 1245 1530 1830		8 8 11 11		.13 .13 .16 .16		.32 .32 .38 .38	57 46 67 115		677 479 949 1467		82 106 86 111		974 1105 1218 1416	607 895 830		82 82 8 8		1.2 1.2 1.2 1.2
6-7		1030 1400 1645 1915		10		.17 .14 .22 .21		.44 .39 .52 .47	56 57 127 160		818 672 2373 2877		122 94 97 200		1781 1108 1812 3595	2312 1752 1415 4008	:1.	1 76 94 · 3		1.8 1.1 1.4 2.2 (e
6-16		1130 1430 1700		11 11 11		.09 .09 .09		.27 .27 .27	12 18 25		95 142 197		32 22 12		252 173 95	373 127 136	:1. :1. :1.	45 45 45		2.1 (e 2.1 (e 2.1 (e
6-27		1030 1310 1615 1845		12 . 12 12 12 12		.07 .07 .07 .07		.29 .29 .29 .29	9 10 - 8 9		56 62 55 56		10 9 8 8	•	62 56 55 50	64 27 31 37		9 9 9 9		1.3 1.3 1.3 1.3
7-14		1015 1330 1600 1745		18 18 18 18		.05 .05 .05		.31 .31 .31 .31	82 89 89 85		407 391 341 316		75 : 74 : 57 : 101 :		372 325 218 375	17 12 21 21		78 78 78 78		1.2 1.2 1.2 1.2

7.4 -1

BY DAY

DT DF	11								Nat	Sura	spended S	ediment Fl	ume		Bedload		
Date	:	Time	:	Temp. C°	::	Disch. m³/sec	: Ve : m/	1. sec	Conc. mg/1	:	Yield kg/day	Conc. mg/l	:	Yield kg/day_	Yield kg/day	: D ₅₀ : mm	: D ₆₅ : mm
4-11		1200 1500 1730 2000		6 4 -1 2		.10 .14 .16 .15		45 54 58 54	160 452 548 510		1334 5369 7658 6764	160 905 766 922		1334 10739 10704 12229	300 1024 317 3299	: 2.35 : 2.35 : .3 : 1.8	: 1.4 : 3.8 : .45 : 2.8
4-22		1130 1430 1730		7 6 4		.10 .14 .14		39 45 45	36 71 118		325 870 1435	42 137 142		380 1680 1727	235 156 425	1.2 .86 .86	·: 1.8 : 1.7 : 1.7
4-26		1415 1800 2045		7 4 3		.20 .21 .21		54 56 56	254 462 330		4403 8597 6140	293 555 531		5078 10327 9881	1660 2029 3551	1.6 1.65 1.65	.: 2.7 : 2.5 : 2.8
5-05		1330 1645 2015		5 5 3		.13 .24 .26		58 55 66	193 123 90		2125 2581 2056	261 198 166		2873 4155 3792	1017 1383 845	4.6 2.05 1.7	:10+ : 3.6 : 3.3
5-15		0845 1300 1615 1900		4 9 9 6		.38 .37 .42 .38		81 80 81 81	123 184 241 142		3796 5828 8827 4978	157 124 264 154		4846 5828 5399	1603 1433 181 986	2.6 3.3 .44 2.6	4.5 5.6 .6 4.5
5-24		1030 1400 1630 1900		7 .11 9 7	*****	.24 .23 .23 .25		60 55 55 61	11 15 13 8		226 295 259 175	12 11 16 27		246 217 319 589	165 173 104 29	1.4 1.4 1.4 .41	2.3 2.45 2.45 . 2.45 6
5-31		1400 1645 2030		12 8		.27 .27 ,30		60 60 62	568 496 414		13271 11990 10647	477 489 457		11145 11820 11753	481 579 834	.22 .22 .22	.47 .47 .47 .47
6-8		1130 1430 1715 1915		11 14 14 12		.32 .32 .26		65 65 53	176 255 235 274		4884 7077 5352 6080	187 210 289 258		5190 5828 6578 5939	927 2004 664 1183	1.3 1.3 1.4	: 2.1 : 2.1 : 2.5 : 2.5

71

7

BY DAY #2

									Nat	sura	ispended Si	Flume		Bedload			
Date	:	Time	:	Temp. C°	:	Disch. m ³ /sec	:	Vel. m/sec	Conc. mg/1	:	Yield kg/day	Conc. :. mg/1 :	Yield kg/day	Yield kg/day	: D ₅₀ : mm	:	D ₆₅ mm
6-15		1000 1330 1600 1830		8 13 13 12		.17 .15 .15 .16		.43 .40 .40 .42	32 41 37 40		469 515 499 518	37 · : 36 : 41 : 34 :	542 453 553 440	189 133 110 107	: 1.3 : 1.3 : .78 : 1.3	: 2	2.3
6-22		1150 1430 1615 1815		15 16 16 16		.10 .10 .10 .10		.30 .29 .29 .29	18 28 23 21		149 237 195 178	22 31 24 34	182 262 203 288	28 31 19 .20	.70 1.0 1.0 1.0 1.0	: 1	.1 .95 .95 .95
7-6		1045 1330 1600 2045		11 14 14 13		.07 .07 .10 .10		.52 .52 .62 .62	85 75 81 80		542 458 707 675	63 97 78 78 78	401 592 680 658	12 33 18 12	1.0 1.0 1.15 1.15		.0 .0 .8 .8
7-21		1400 1815		20 20		.03 .02		.16 .13	22 12		48 21	0 :	05	6 11	· .3 · .32	:	.43 .43

1 3 457 1 3 2 3 1 1 3 3 1 1 4

72

7

COTTONWOOD CREEK

								Natu	Sura	spended Se 1	ediment F	lume		Bedload				
Date	Time	:	Temp. C°	::	Disch. m³/sec	:	Vel. m/sec	Conc. mg/l	:	Yield kg/day	Conc mg/1	. :	Yield kg/day	Yield kg/day	::	D ₅₀ mm	::	D ₆₅ mm
4-14	1310 1715 2030		8. 9 4		.16 .16 .16	:	.53 .53 .53	51 64 57	:	677 861 762	50 72 68		664 969 909	183 380 264		1.30 1.30 1.30		2.00 2.00 2.00
4-20	1200 1500 1715 1945		6 7 6 5		.13 .13 .13 .13		.51 .51 .51 .51	24 28 22 31		272 318 250 351	21 27 24 26		239 306 272 295	95 68 64 55		1.30 1.30 1.30 1.30		2.00 2.00 2.00 2.00
4-27	: 1415 : 1720 : 2030		11 12 9		.18 .22 .22	: :	.53 .62 .62	·25 45 42		389 859 802	20 78 54		312 1490 1031	472 633 789		1.25 1.62 1.62		1.85 2.70 2.70
5-06	: 1245 : 1545 : 1845 : 2130		6 11 9 6		.20 .17 .23 .20		.59 .52 .63 .59	31 37. 43		547 554 850	32 35 37		564 523 732	219 267 285		1.70 1.55 2.40 1.70		3.00 2.43 4.05 3.00
5-11	: 1130 : 1445 : 1745 : 2015		8 13 12 8		.26 .30 .30 .34	: : : :	.68 .75 .75 .75 .79	79 57 125 161		1743 1440 3189 4655	102 69 131 178		2250 1743 3342 5146	489 338 1263 1800		3.40 2.40 2.40 8.00	(e) (e) (e)	5.80 4.00 4.00 10+ (e
5-17	: 1145 : 1500 : 1800 : 2000		7 12 11 9		.33 .31 .33 .31		.81 .77 .81 .72	110 98.5 103 93		3124 2650 2898 2496	100 68 121 173		2840 1814 3404 4645	288 1395 756 632		4.80 7.20 4.80 5.50		9.00 (e 10+ (e 9.00 (e 10 (e
5-25	: 1145 : 1445 : 1700 : 1900		7 11 11 9		.37 .35 .33 .37		.76 .72 .66 .76	37 36 47 44		1165 1068 1344 1389	56 35 49 35		1763 1038 1401 1105	284 166 236 222		3.30 1.50 3.60 3.30		6.00 (e 3.10 9.40 (e 6.00 (e
5-29	: 1230 : 1600 : 1900 : 2130		9 14 12 9		.37 .37 .38 .38		.75 .75 .72 .72	80 91. 116 100		2550 2900 3845 3315	67 70 86 92		2135 2231 2851 3049	215 265 269 384		4.0 4.0 3.6 3.6		7.6 (e 7.6 (e 7.0 (e 7.0 (e

73

COTTONWOOD #2

						4			Nati	Sus	pended Se	ediment Flum	e	Bedload		
Date	:	Time	:	Temp. C°	: .	Disch. m ³ /sec	:	Vel. m/sec	Conc. mg/l	:	Yield kg/day	Conc. mg/1	Yield kg/day	Yield kg/day	: D ₅₀ : mm	: D ₆₅ : mm
6-6		1050 1410 1650 2000		10 14 16 13		.37 .33 .34 .34		.77 .69 .69 .69	29 42 43 43		938 1185 1283 1260	29 40 42 44	: 938 : 1129 : 1253 : 1289	374 259 315 145	: 3.70 : 4.1 : 4.6 : 4.6	: 5.6 : 6.4 (e) : 7.6 (e) : 7.6 (e)
6-14		1100 1400 1645 1900		9 14 14 13		.18 .28 .31 .31		.45 .63 .71 71	33 45 42 41		514 1071 1120 1097	31 38 39 37	483 905 1040 990	277 114 189 144	: 4.3 : 2.7 : 2.7 : 2.7	7.0 (e) 4.0 4.0 4.0 4.0
6-30		1215 1600 1900 2045		12 16 16 11		.16 .14 .16 .14		.49 .45 .49 .45	22 17 13 19		307 205 172 227	24 13 20 19	335 157 266 227	69 43 53 38	: 3.2 : 1.85 : 3.2 : 1.85	6.0 (e) 3.2 6.0 (e) 3.2
7-12		1100 1430 1715		13 18 20		.11 .11 .09		.38 .38 .32	84 89 67		791 838 508	70 87 120	659 819 909	19 12 14	: 1.2 : 1.2 : .8	: 2.0 : 2.0 : 1.5
								-					120			
														•		
														25		
																1.0 6.0 (4) 9.0 (4) 9.1 (4)
		-						2000			1.1.1.1.2					

74

DEEP CREEK

		1							Nat	Sura	spended S	ediment Flume	2	Bedload		•
Date	::	Time	::	Temp. C°	::	Disch. m ³ /sec	:	Vel. m/sec	Conc. mg/l	::	Yield kg/day	Conc. mg/1	Yield kg/day	Yield kg/day	: D ₅₀ : mm	: D ₆₅ : mm
4-14		1345 1745 2100		10. 6 4		.09 .08 .08		.43 .37 .41	78 66 60		579 453 428	.128 · 72 61	951 494 435	980 163 194	: 1.2 : 1.1 : 1.0	: 1.8 : 1.5 : 1.4
4-20		1230 1530 1745 2015		8 7 7 4		.09 .09 .09 .09		.39 .39 .39 .39	29 36 19 28		215 267 141 207	25 23 16 25	185 170 119 185	51 38 33 27	.80 .80 .80 .80	1.1 1.1 1.1 1.1
4-27		1500 1800 2100		11 9 7		.09 : .09 .09		.37 .40 .40	17 75 85		139 601 682	30 84 107	245 673 858	278 317 362	1.0 .90 .90	: 1.4 : 1.2 : 1.2
5-06		1315 1615 1915 2200		6 9 8 4		.11 .08 .08 .12		.45 .53 .53 .45	42 48 51 57		410 320 340 569	60 47 46 50	585 313 307 499	527 264 227 161	1.1 1.1 1.1 1.1 1.0	1.5 1.5 1.5 1.5
5-11		1215 1515 1800 2050		12 10 7		.11 .14 .17 .17		.50 .59 .62 .62	84 97 208 279		811 1201 3044 4084	115 130 178 209	1111 1609 2605 3059	1213 632 831 497	1.1 1.1 .76 .76	1.5 1.6 1.25 1.25
5-17		1215 1530 1830 2030		8 11 9 8		.17 .11 .21 .23		.63 .47 .71 .70	100 162 243 214		1461 1597 4367 4192	134 87 148 221	1985 857 2660 4329	2074 1127 1557 1529	1.8 1.5 1.4 1.2	: 2.8 : 2.3 : 2.2 : 2.1
5-25		1215 1500 1720 1930		7 11 11 8		.13 .12 .18 .14		.52 .50 .62 .53	53 35 44 86		47 21 60 83	47 21 60 83	50 222 915 995	419 292 396 249	: 2.0 : 2.0 : 2.0 : 1.6	: 2.9 : 3.2 : 2.9 : 2.8
5-29		1320 1645 1945 2200		9 11 8 7		.19 .25 .23 .25		.55 .65 .60	94 231 321 241		1514 4899 6327 5265	91 192 576 296	1465 4072 11354 6466	559 2183 3939 3833	.88 : 3.5 : 3.5 : 3.8	: 1.9 : 6.0 (e) : 5.2 : 6.0 (e)

DEEP #2

90000									Natu	Su	spended S	Sed	iment Flume		Bedload			-	
Date	::	Time	:	Temp. C°	::	Disch. m ³ /sec	. :	Vel. m/sec	Conc. mg/l	::	Yield ĸg/day	1	Conc. : mg/1 :	Yield kg/day	Yield kg/day	::	D ₅₀ mm		D ₆₅ mm
6-6		1140 1445 1730 2030		9. 13 13 11		.14 .20 .24 .30		.42 .55 .64 .65	71 199 183 195		842 3488 3791 5110		66 : 103 : 282 : 301 :	783 1805 5842 7889	360 859 970 5541		1.4 1.4 1.0 5.6		2.5 2.2 1.8 7.8 (e)
6-14		1200 1430 1715 1945		10 13 13 11		.14 .13 .14 .15		.54 .41 .47 .55	26 31 32 39		318 346 391 512		60 : 41 : 44 : 43 :	734 458 538 572	1169 448 430 398		2.6 1.5 1.8 1.9		4.3 •2.5 3.2 3.2
6-30		1300 1630 1930 2115		12 14 13 11		.11 .10 .11 .10		.40 .36 .39 .36	9 5 12 8		84 42 111 67		5 : 6 : 12 : 15 :	47 50 111 125	41 . 102 373 144		.68 2.1 3.9 2.1		1.45 4.6 6.8 4.6
7-12		1130 1400 1740		14 17 17		.07 .07 .06		.33 .33 .29	90 88 81		578 511 409		59 : 59 : 66 :	379 343 333	28 37 36		1.3 1.3 .96		2.0 2.0 1.6

76

E

.

DUNDE	REI	RG						Nat	Sura	spended S	ediment Flume		Bedload			
Date	:	Time	:	Temp.	:	Disch. m ³ /sec	 Vel. m/sec	Conc. mg/l	:	Yield kg/day	Conc. mg/1	Yield kg/day	Yield kg/day	: D ₅ (: nm) ::	D ₆₅ nm
6-8		1030 1400 1700 1845		9 11 10 8		.11 .11 .11 .11	 .51 .51 .51 .51	11 24 17		104 254 180	10 13 74 35	52 123 782 370	20 56 42 32	:3 : .3 : .3 : .3		.52 .52 .52 .52
6-14		1145 1430 1630 1815		8 10 9 8		.13 .13 .13 .13	 .63 .63 .63 .63	9 13 16 7		95 154 187 80	3 2 8 3	32 24 93 34	16 -19 30 25	.3.3.3.3.3		.45 .45 .45 .45
6-22		1230 1530 1800		10 8 7		.05 .05 .05	 .87 .87 .87	21 21 24		139 151 173	12 13 15	79 94 108	1 2 3	.20 .20 .20	5	.27 .27 .27
7-1		1230 1530 1815		9 9 8		.13 .13 .13	 .62 .62 .52	4 7 4		49 85 42	6 13 0	73 159 0	8 · 6 7	.8 .8 .8		1.2 1.2 1.2
7-13		1030 1350 1600 1800		13 16 14 12		.17 .17 .19 .20	 .76 .73 .79 .82	72 65 78 100		1036 958 1260 1768	70 71 76 86	1007 1046 1228 1520	23 28 26 31	.4 .47 .37 .32		.58 .6 .52 .47
7-19		1115 1530 1830		11 12 12		.05 .05 .05	 1.50 1.50 1.50	5 0 1		59 0 12	3 1 1	35 12	7 7 6	.43 .43 .43		.54 .54 .54
8-2		1020 1330 1600 1815		9 13 11 9		.12 .14 .14	 .46 .52 .52 .67	17 19 16 14		179 225 189 224	19 13 12 13	200 154 142 208	19 16 14 15	.56 1.75 1.75 2.0		.74 2.8 2.8 3.05

FAGLE

LAGLE								Nat	Stur	uspended Se al	ediment Flume		Bedload			1
Date	: Time	:	Temp. C°	:	Disch., m ³ /sec	:	Vel. m/sec	Conc. mg/1	:	Yield kg/day	Conc. mg/1	Yield kg/day	Yield kg/day	: D ₅₀ : mm	::	D ₆₅ mm
5-14	1330 1530 1845		8. 8 4		.46 .54 .63	:	.75 .77 .79	142 338 282		5668 15794 15314	148 354 289	5907 16542 15694	929 1514 1490	: 3.9 : 5.0 : 3.9		6.4 (e) 6.4 (e) 6.2 (e)
5-25	1145 1400 1630 1815		9 11 11 9		. 32 . 38 . 38 . 45		.62 .63 .63 .63	11 7 16 21		323 212 523 816	7 11 20 45	205 333 653 1749	469 468 294 703	3.9 3.4 4.4 5.3		5.5 5.5 6.6 (e) 7.6 (e)
6-1	: 1115 : 1330 : 1600 : 1800		7. 9 7		.56 .51 .66 .70		.71 .65 .71 .73	37 42 39 11		1783 1854 2219 663	49 52 15 16	2362 2296 854 965	2291 2659 3257	: 3.4 : 3.0 : 3.2 : 4.2		5.6 5.0 5.0 6.2 (e)
6-9	10.30 1.300 1530 1815		6 9 9 7		.98 .86 1.18 1.19		.74 .63 .77 .75	122 132 475		10391 9857 48991	140 128 250 445	11924 9559 25638 45897	1843 4049 2475 3329	3.0 4.5 8.0 3.6		4.5 6.5 (e) 9.1 (e) 5.5
6-15	: 1000 : 1300 : 1600 : 1800		3 8 8 7		1.11 1.11 1.34 1.34		.76 .76 .82 .82	88 52 85 113		8468 5004 9884 13087	55 46 84 98	5292 4426 9729 11350	1976 2172 2172 3070	4.8 3.6 2.7 2.7		7.6 (e) 5.6 4.7 4.7
6-22	: 1400 : 1645 : 1845		10 8 7		1.25 1.45 1.47		.85 .90 .90	29 41 49		3137 5147 6246	25 40 51	2704 5022 6502	272 539 793	: 2.3 : 2.2 : 4.6		3.4 3.3 8.2 (e)
7-6	: 1200 : 1500 : 1720 : 1830		10 11 10 9		.93 1.16 1.21 1.24		.75 .88 .87 .89	76 92 543 116		6098 9263 57030 12410			304 151 301 198	: 7.0 (e : 1.4 : 2.7 : 1.3	· · · · · ·	10+ 2.2 6.2 (e) 2.4 (e)
7-21	: 1200 1500 1730		10 14 13		1.0 1.0 1.0		.80 .80 .80	15 20 17		6278 1730 1470	14 17 18	1211 1470 1557	38 91 43	: 2.1 : 2.1 : 2.1	••••••	3.4 (e) 3.4 (e) 3.4 (e)

EAGLE #2

						Natura	spended Se 1 ·	fiment Flume		Bedload	
Date : T	ime :	Temp. C°	: [Disch. : m ³ /sec :	Vel. m/sec	Conc. : mg/l :	Yield kg/day	Conc. : mg/l :	Yield kg/day	Yield kg/day	D ₅₀ : D ₆₅ mm : mm
B-2 : 10 : 11 : 10	020 : 330 : 630 :	9. 16 16	:	.70 : .58 : .59 :	.58 .52 .51	26 : 25 : 26 :	1572 1258 1337	22 : 34 : 39 :	1330 1711 2006	65 65 55	1.1 : 1.9 .90 : 1.5 1.0 : 1.7
4-39	100										
	1410						100				
						報告					
										WARE	
	- 43 (P) - 24 (P)	ċ		- 							

79

EAST CREEK

12151									N	satur	uspended Se	ediment Flume		Bedload		۰.	
Date	:	Time	:	Temp. C°	:	Disch m³/sec	:	Vel. m/sec	Conc mg/1		Yield kg/day	Conc. : mg/1 :	Yield kg/day	Yield kg/day	: D ₅₀ : mm	:	D ₆₅ mm
4-5		1115 1545 1900		4 · 4 3		.06		.25 .25 .25	1: 20 2!	3 :	68 98 107	5 12 9	26 59 39	2	.28 .28 .28		.47 .47 .47
4-12		1215 1400 1730		5 6 4		.06 .06 .06		.27 .27 .37	61 51 50	5 :	. 344 324 288	44 56 55	233 319 283	14 12	.36 .36 .36		.54 .54 .54
4-19		1130 1400 1700 1915		7 7 6 4		.06 .06 .06		.26 .26 .26 .26	24 3 20 24	4 : 1 : 5 : 4 :	133 160 120 126	34 25 24 21	188 129 111 110	2 1 6	.44 .44 .44 .44		.56 .56 .56
4-30		1100 1400 1645 1945		5 5 4 4		.06 .06 .06		.26 .26 .26 .26	1 2: 1 2: 1 2:	7 : 3 : 7 : 9 :	101 108 83 142	14 13 15 12	83 61 74 59	4 4 5 4	.29 .29 .29 .29 .29		.45 .45 .45 .45
5-07		0915 1215 1525 1815		3 8 7		.07 .07 .07 .07		.30 .30 .30 .30		8 : 0 : 4 : 2 :	105 58 88 74	5 4 19 10	29 23 119 63	4 4 6 6	.32 .32 .32 .32 .32		.50 .50 .50 .50
5-16		1200 1515 1730 1930		6 7 6 4		.09 .09 .11 .11		.31 .31 .37 .37	4- 3 2- 1-	4 : 6 : 4 : 4 :	332 292 223 130	47 40 26 31	355 325 242 288	25 33 18 18	.62 .62 .54 .54		.90 .90 .76 .76
5-24		1140 1430		6 6		.07		.28		7 : 6 :	37 40	3 :	16 . 13		.27 .27	:	.40 .40
5-30		1230 1530 1800 2000		13 10		.09 .09 .09		.41 .41 .41	1	5 : : : : : : : : : : : : : : : : : : :	115 114 125	14 16 14	108 130 109	3 4 6	.28 .28 .28 .28		.43 .43 .43 .43

80

EAST #2

									Nat	Sura	ispended S	ediment Flume		Bedload				
Date	::	Time	:	Temp. C°	:	Disch. m ³ /sec	:	Vel. m/sec	Conc. mg/l	:	Yield kg/day	Conc. : mg/1 :	Yield kg/day	Yield kg/day	:	D50 .mm	:	D ₆₅ mm
6-7		1100 1400 1630 1830		9. 11 11		.05 .05 .05 .05		.23 .23 .23 .23	7 . 9 4		34 53 16	11 : 8 : 3 :	54 47 12	17 21 18		.42 .42 .42 .42 .42		.74 .74 .74 .74
6-16		1120 1445 1745		10 12 12		.07 .05 .05		.30 .22 .22	12 14 7		74 59 30	11 17 8	68 72 34	5 6 28		.30 .67 .67		.43 .81 .81
6-21		1415 1645		11 10		.06 .06	::	.26 .26	10 13		53 69	11 12	58 64	32		.19 .19	:	.30

07

=

HAWKINS

ILANKING	,							Nat	Su	spended S	Sedime	Flum	e		Bedload			
Date	: Time	:	Temp. C°	:	Disch. m ³ /sec	: :	Vel. m/sec	Conc. mg/l	:	Yield kg/day	Cor mg	nc. /1	: Yield : kg/day	, [Yield kg/day	::	D ₅₀ mm	: D ₆₅ : mm
6-7	1200 1445 1730 1915	:	8. 7 6 6		.17 .34 .27 .26		.80 1.39 .90 .85	38 210 317 208		550 6230 7391 4722 .	1 1 4 2	54 70 38 48	: 2227 : 5043 : 10212 : 5630		833 300 426 407		.82 .21 .72 .72	: 1.20 : .37 : 1.3 : 1.4
6-15	1115 1415 1645 1830		8 9 9 8		.11 .11 .11 .11		.51 .51 .51 .51	8 10 8 11 -		78 98 78 107		13 8 5 15	: 127 : 78 : 49 : 146		102 138 78 56		3.7 3.7 3.7 3.7	: 5.0 (e) : 6.0 (e) : 6.0 (e) : 6.0 (e)
6-21	1130 1430 1730		8 9 9		.06 .06 .06		.42 .43 .43	22 15 10		119 83 55	,	9 9 2	49 105 11		12 16 20	: 22	.6	: 4.7 : 4.7 : 4.7
6-29	1030 1400 1615 1815		7 10 11 9		.04 .04 .04 .05		.28 .36 .33 .41	7 10 9 8		24 35 32 32	1	0 6 9 9	.35 21 31 36		23 35 26	: 1 : 1 : 1 : 1	.65 .65 .65	: 2.6 (e) : 2.6 (e) : 2.6 (e) : 2.6 (e)
7-11	1130 1430 1700		9 11 12		.04 .04 .04		.32 .31 .28	2 1 1		7 4 3		1 1 2	4 4 6		2 2 1	:	.15 .15 .15	.26 .26 .26
										in a second								
								- 3										
										- 10			100		No.			
				*														
																		-

HORSETHIEF CREEK

							-	Nat	Su	spended Se	ediment Flume		Bedload				
Date	::	Time	:	Temp. C°	:	Disch m ³ /sec	 Vel. m/sec	Conc. mg/l	:	Yield kg/day	Conc. : mg/1 :	Yield kg/day	Yield kg/day	:	D ₅₀ mm	:	D ₆₅ mm
4-06		0500 0645 0845 1130		2 · 3		.05 .05 .05 .05	 .75 .75 .75 .75	3 4 3 9		23 23 18 45	7 1 3 7	53 6 18 35	.7 1.9 .4 1.2		.50 .50 .50 .50		.80 .80 .80 .80
		1330 1530 1730 1945		1 2 1 0		.05 .05 .05	 .75 .75 .75 .75	11 10 10		65 61 59	6 10 10 2	35 61 59 12	.5 1.4 .7 .5		.50 .50 .50		.80 .80 .80 .80
4-13		1100 1515 1700 2130		4 4 3 1		.19 .19 .19 .19	 .72 .72 .72 .72	26 26 35 36		288 359 791 658	29 26 30 30	321 359 678 560	2 3 5 3		.34 .34 .34 .34		.42 .42 .42 .42
4-18		1100 1430 1700 1930		4 4 4 2		.13 .13 .13 .13 .13	 .15 .15 .15 .15 .15	4 7 16 9		50 73 155 104	1 3 13	13 31 125	3 1 3		.50 .50 :50 .50		.70 .70 .70 .70
4-26		1100 1400 1630 2000		5 5 4 3		.16 .16 .16 .16	 .34 .34 .34 .34	20 18 20 17		243 249 283 231	22 20 15 25	267 276 212 314	2 3 4 4		.20 .20 .20 .20		.31 .31 .31 .31
5-19		1100 1400 1700 2000		7 6 7 4		.42 .68 .99 .99	 .67 .92 1.08 1.08	24 48 57 80		873 2837 4909 6890	30 64 52 79	726 3783 4479 6804	341 155 968 944	··· 4 ··· 5 ·· 4 ·· 4	.0 .6 .0		1.6 (e) 1.8 (e) 1.2 (e) 1.2 (e)
5-23		1230 1500 1800		4 4 4		.51 .49 .43	 .79 .77 .73	- 22 10 3		966 424 112	14 0 .7	. 615 0 26	. 154 53 33	: 6 1 . 5	.2 .8 .2		1.6 (e) 1.4 1.2 (e)
5-30		1230 1515 1815		7 8 5		.41	 .74 .74 74	4 3 4		127 107 152	8 7 5	354 350 190	26 21 14		.92 .92 .92	: 1 : 1 : 1	.10 .10 .10

HORSETHIEF #2

								Nat	ura	spended Se	Flu	me		Bedload			· • •	
Date	: Time	-	Temp. C°	:0	Disch. m ³ /sec	:	Vel. m/sec	Conc. mg/l	:	Yield kg/day	Conc. mg/1	: '	Yield kg/day	Yield kg/day	:	D ₅₀ mm	: [) ₆₅ nm
5-6	: 1130 : 1430 : 1700		10 13 14		.23 .27 .21		.64 .67 .58	6 3 7		122 70 124	8 8 8		163 186 142	501 41 432	: : : :	10+ 10+ 10+	: 10 : 10 : 10)+)+)+
6-15	: 1230 : 1500 : 1745 : 1915		10 14 13 13		.17 .12 .12 .12		.58 .43 .43 .43	3 3 2 4		45 30 20 40	5 5 2 3		74 50 20 30	248 193 717 60		10+ 7.0 7.0 7.0	: 10 (e)10 (e)10 (e)10	+ + +
5-21	: 1230 : 1530 : 1830		11 13 12		.12 .12 .12		.41 .41 .41	11. 8 13		114 83 134	11 4 10		114 41 103	340 122 202		10+ 10+ 10+	: 10 : 10 : 10	+ + +
7-5	1000 1350 1620 1840		8 12 13 12		.06 .05 .05 .15		.30 .28 .28 .28	0 0 0 0		0 0 0 0	5 0 0 0		0 0 0	222		5.6 1.2 .1.2 1.2	(e) 7 : 2 : 2 : 2	.5 (e) .0 .0
No. of Street,									*									
					-08 -09 -09			1282										
													•					

84

NO NAME CREEK

									Nat	Sura	spended Se	ediment Flume		Bedload		-		· · .
Date	:	Time	:	Temp. C°	:	Disch. m ³ /sec	:	Vel. m/sec	Conc. mg/l	:	Yield kg/day	Conc. : mg/1 :	Yield kg/day	Yield kg/day	::	D 5 0 mm	:	D ₆₅ mm
4-23		1100 1340 1640 1915		6 [.] 7 4 3		.06 .06 .10 .14		.33 .33 .47 .62	10 25 106 99		45 145 923 1189	14 21 106 94	63 122 923 1129	2 2 17 37		.15 .15 .11 .17		.21 .21 .16 .3
4-26		1145 1600 1915		6 3 2		.10 .14 .14		.32 .38 .38	36 61 65		297 764 814	32 64 61	264 802 764	19 60 90		.17 .35 .35		.17 .35 .35
5-05		1200 1515 1845		4 5 4		.13 .14 .14		.48 .56 .53	38.3 39 3	2:	432 482 36	25.7 : 42.9 : 10 :	291 530 119	209 320 110		.72 .92 1.15	:::::::::::::::::::::::::::::::::::::::	1.15 1.4 1.65
5-15		1115 1445 1745 2020		8 9 8 4		.17 .21 .23 .23		.34 .56 .58 .59	18 16 13 34		266 291 253 670	14 : 17 : 23 : 12 :	207 309 448 237	128 118 232 117		1.65 1.55 1.7 1.7		2.1 (e) 2.4 (e) 2.7 (e) 2.5 (e)
5-24		1130 1500 1745 2015		10 12 10 7		.14 .14 .14 .14		.66 .63 .66 .63	20 4 1 7		248 48 12 83	5 5 4 .3	64 60 49 4	24 212 42 172		1.4 2.2 1.4 2.2	2323	.1 (e) .5 .1 (e)
5-31		1230 1545 1945		1,3 9		.08 .08 .08		.58 .58 .58	24 29 53		167 201 368	17 : 16 : 20 :	118 111 139	20. 21 16		1.55		.6 .6
6-8		1 300 1600 1830		13 13 12		.05 .04 .04		.37 .32 .32	11 15		39 54	15 16	54 57	18 2 37		1.0 1.7 1.7	: 1	.5 .0 (e) .0 (e)
6-14		1230 1515 1800				.06		.24 .24 .24	5 4 4		25 20 20	3 : 10 : 3 :	15 50 15	24 93 177		2.25		.5

٠.

NO NAME #2

									. N	Si atura	ispende 1	d Se	diment Flu	me		Bedload		
Date	::	Time		Temp. C°	:	Disch., m ³ /sec	:	Vel. m/sec	Conc mg/1	• :	Yield kg/da	y	Conc. mg/1	: Yield : kg/da	y	Yield kg/day	: D ₅ (: mm	: D ₆₅ : mm
6-22	: : : :	1120 1430 1700	: : :	12 13 13		.42 .26 .26	: : : :	.36 .20 .20	9 19 16		31 40 32		18 17 22	: 61 : 36 : 44		11 22 25	: 2.7 : .9 : .9	: 6.0 : 1.4 : 1.4
		1003 · 14/4 16:02 1005									• • •							
											483			53				
						.05 .05 .04								203 17.9 181				
						883					275 203 284		67 57 10	144 213 316		38 22 4		12.00 13.00 (s)
						-05 -05 -05		422							•	19 10		
														100				1.25
				1							TRA					108	1.00	
					1		pin pin				10	4		and the second	30.2			1

ROCK CREEK

									Nat	Su	spended S	ediment Flume		Bedload			
Date	:	Time	::	Temp. C°	:	Disch. m ³ /sec	:	Vel. m/sec	Conc. mg/1	::	Yield kg/day	Conc. : mg/1 :	Yield kg/day	Yield kg/day	: D ₅₀ : mm	::	D ₆₅ mm
4-14		1145 1600 1900		10 11 9		.03 .04 .03		.33 .40 .35	57 57 60		148 176 140	51 58 48	133 179 112	14 20 32	: .90 : .70 : .70		1.75 1.25 1.10
4-20		1100 1415 1630 1845		8 10 9 7		.03 .03 .03 .03		.69 .69 .69 .69	31 25 33 27		89 72 95 77	27 25 29 25	77 72 83 72	28 457 19 . 24	: 1.0 : 1.0 : 1.0 : 1.0 : 1.0		1.45 1.45 1.45 1.45 1.45
4-27		1230 1600 1845		12 12 10		.03 .03 .03		.65 .52 .52	59 6 27		163 17 77	19 26 31	53 74 88	29 25 14	:		1.20 1.38 1.38
5-06		1130 1430 1730		6 7 10		.05 .05 .04		.64 .64 .62	43 51 54		170 201 192	53 : 49 : 51 :	209 193 181	50 13 14	.80 .80 .80		1.50 1.50 1.39
5-11		1030 1345 1645		9 13 13		.05 .05 .05		.55 .40 .42	68 68 71		273 293 294	67 67 88	269 289 365	39 22 48	1.10 .35 1.38		2.00 .50 3.50 (e
5-17		1100 1400 1700		7 - 11		.05 .05 .04		.47 .48 .44	72 70 120		305 314 447	53 77 131	225 345 488	49 26 90	.48 2.05 2.20		1.20 3.00 3.00
5-25		1100 1400 1615		8 11 11		.04 .06 .04		.38 .53 .42	57 94 47		.197 454 174	52 : 103 : 70 :	180 497 259	45 34 23	.86 .48 .50		1.25 .95 .88
5-29		1130 1500 1815		7 13 12		.07 .06 .04		.59 .50 .40	135 121 96		788 626. 351	134 120 93	. 782 621 340	109 105 761	.66 1.00 .69		1.12 1.52 1.02

87

0

ROCK #2

									Nat	Suspended Stural	ediment Flu	me	Bedload	9.9	
Date	:	Time	:	Temp. C°	:	Disch. m³/sec	:	Vel. m/sec	Conc. mg/l	: Yield : kg/day	Conc. mg/l	: Yield : kg/day	Yield kg/day	: D ₅₀ : nm	: D ₆₅ : mm
6-6		1240 1545 1830 2145		12 16 13 12		.04 .04 .04 .06		.49 .37 .37 .52	224 204 166 292	: 857 : 650 : 529 : 1582	182 163 165 317	: 696 : 520 : 526 : 1718	3360 2263 761 2555	:1.90 :1.62 :1.62 :1.80	:2.50 :2.50 2.50 :2.50
5-14		1015 1330 1700 2000		11 12 13 11		.06 .05 .04 .05		.70 .62 .55 .61	321 392 164 479	: 1605 : 1547 : 575 : 2149	278 295 130 197	: 1390 : 1164 : 456 : 884	7557 8008 1792 8351	:1.80 :1.25 :1.42 :2.00	:2.60 :1.90 :2.20 :2.62
6-30		1115 1500 1800		12 14 14		.03 .02 .02		.40 .34 .35	43 45 28	: 117 : 96 : 50	43 51 26	117 109 47	286 750 156	:1.20 :1.20 :.70	:1.72 :1.74 :1.21
						10						.7570			
	+ +			•				-12 ·	11.99 1200 100					4.6	
														3.4.4.1.	
										1 - 2430 1 - 4553 - 555 1 - 3721	A B B B	- 1004 1250 1250 1250		1.3 1.3 1.2 1.1	
- 23														424	

88

SPRATT CREEK

. .

									Natu	Suspanded S ural	ediment Flum	na	Bedload		
Date	:	Time	:	Temp. C°	:	Disch. m ³ /sec	:	Vel. m/sec	Conc. mg/l	: Yield : kg/day	Conc. mg/l	: Yield : kg/day	Yield kg/day	: D ₅₀ : mm	: D ₆₅ : mm
4-13		1230 1400 1745 1945		4 6 2 2		.28 .28 .31 .27		.45 .44 .47 .47	50 43 56 182	: 1190 : 1054 : 1503 : 4225	30 42 46 130	: 714 : 1030 : 1235 : 3018	75 141 180 103	: 1.0 : .98 : .80 : .82	: 1.4 : 1.4 : 1.2 : 1.35
4-18		1200 1600 1810 2045		8 7 4 3		.24 .24 .28 .30		.28 .28 .30 .34	19 13 18 19	: 388 : 265 : 436 : 487	16 17 14 21	: 326 : 347 : 339 : 538	34 228 38 47		: 1.2 : .1.60 : 1.15 : 1.40
4-26		1000 1300 1600 1900		6 6 5 4		.34 .35 .33 .40		.30 .34 .27 .30	41 42 41 43	: 1224 : 1259 : 1160 : 1435	44 41 39 45	: 1314 : 1230 : 1103 : 1554	76 65 72 96	: 1.10 : 1.25 : 1.05 : 1.10	1.50 1.80 1.55 1.65
5-23		1100 1400 1700		4 6 4		.85 .98 .97		.85 .90 .86	422 442 466	: 31007 : 37309 : 39129	338 578 930	: 24835 : 48789 : 78090	4928 4409 3037	: 3.8 (e : 3.4 : 5.6) 10+ (e) : 5.5 : 8.5 (e)
5-30		1130 1415 1700 1930		6 9 6 4		1.04 .99 1.41 1.28		.92 .82 .82 .84	189 300 610 324	: 16977 : 25691 : 74521 : 35777	314 499 800 553	: 28187 : 42732 : 97732 : 61063	5504 8198 9946 5882	4.6 3.0 2.4 1.05	: 7.8 (e) : 5.0 : 4.2 : 1.8
6-6		1030 1330 1600 1900		9 9 12 7		1.01 1.01 1.23 1.65		.87 .87 .69 .84	88 186 295 351	: 7670 : 16211 : 31396 : 50005	338 257 641 727	: 29459 : 22400 : 69219 :625601	2939 [°] 3006 8050 3974	: 3.4 : 3.4 : 7.2 : 4.3	: 4.6 : 4.6 : 10+ (e) : 6.4 (e)
6-16		1300 1545 1930		12 11		.64 .72 .77		.77 .82 .79	44 73 56	: ¹ 2430 : 4553 : 3727	125 100 133	6904 6237 8853	692 679 906	: 1.5 : 1.9 : 2.1	2.5 3.4 3.1
6-21		1130 1515 1730 1930		9 12 10 10		.56 .66 .84 .84		.73 .80 .92 .92	23 26 30 15	: 1123 : 1477 : 2190 : 1095	23 67 32 51	: 1123 : 3806 : 2336 : 3722	168 880 1400 2399	: 1:4 : 2.5 : 3.0 : 3.0	: 2.6 : 4.5 : 5.3 : 5.3

0 E

SPRATT #2

										Nat	Su sura	spended S 1	ied	iment Flu	me			Bedload					
Date	:	Time	:	Temp. C°	:	Disch. m ³ /sec	:	Vel. m/sec	1	Conc. mg/l	:	Yield · kg/day	1	Conc. mg/l	:	Yield kg/day	1	Yield kg/day	: :	D ₅₀ mm	:	D ₆₅ mm	-
7-5		1110	:	11	:	.22	:	.51		0	:	0	-	0	:	0	1	22	:	2.0	:	4.6	
	:	1500	:	13	:	.23	:	.57	1	0	:	0	-	12	:	240	1	21	:	1.1	:	1.8	
	1	1730		11	:	.46	:	.96	1	63	:	2500	1	0	:	0	1	1014	:	8.0	:	10+	
	:	1940	:	12	:	.33	:	.74	Ι.	16	:	461.3	1	0	:	0	1	177	:	1.0	:	1.4	

•

00

1

....

•

.

E

THOMAS CREEK

									Natu	Bedload									
Date	:	Time	:	Temp. C°	:	Disch. m³/sec	:	Vel. m/sec	Conc. mg/l	:	Yield kg/day	Conc. : ng/1 . :	: 1	Yield kg/day	Yield kg/day	::	D ₅₀ mm	: ::	D ₆₅ mm
4-01		1145 1445 1940		4 5 2		.17 .21 .16		.24 .26 .23	28 49 30		421 872 425	18 · 36 31	:	271 641 439	11 13		.17 .14 .15		.24 .19 .21
4-9		1100 1430 1715 1950		7 10 8 5		.12 .12 .12 .12 .12		.26 .26 .26 .26	· 39 44 67 43		331 551 655 455	34 · 25 71 58		288 313 695 614	8 11 12 · 8		.45 .45 .45 .45		.66 .66 .66
4-16	****	1040 1315		1 2		.13 .13	*.	.27 .27	32 28	:	370 314	28 21	:	323 236	50 36		.60 .60		.82 .84
4-23		1030 1530 1940		6 9 6		.09 .10 .11		.22 .26 .20	18 21 16	:	133 176 147	21 15 17	:	155 125 156	21 29 42		.82 .66 .76		1.1 .84 1.0
4-28		1000 1300 1600 1900		7 8 9 6		.11 .12 .12 .12		.23 .25 .25 .25	9 11 17 6		88 115 188 64	14 7 16 10		136 73 177 107	103 45 54 47		.6 .52 .52 .52		.90 .78 .78 .78
5-6		1000 1345 1630 2030		4 8 8 5		.14 .14 .14 .15		.27 .28 .28 .30	29 34 18 16		347 424 225 207	26 33 13 32		311 412 162 414	78 188 188 188 162		1.0 .76 .76 1.0		1.35 .98 .98 1.35
5-11		1200 1500 1830 2100		9 11 8 4		.16 .19 .19 .19 .19		.28 .30 .29 .29	27 38 72 32		384 639 1177 523	24 35 58 33		341 389 948 540	276 286 393 253		.98 .98 1.2 1.2		1.30 1.25 1.6 1.6
5-17		1045 1400 1700		7		.16 .18 .21		.31 .34 .34 .30	19 33 58 48		266 523 2285 723	26 60 .85 72		365 950 1523 1084	194 243 169 385		1.2 1.0 1.1 1.5		1.6 1.4 1.5 2.0

THOMAS #2

									Nat	Suspended S Natural			ne		Bedload			
Date	:	Time	:	Temp. C°	::	Disch. m ³ /sec	:	Vel. m/sec	Conc. mg/l	:	Yield kg/day	Conc. mg/1	:	Yield kg/day	Yield kg/day	: D ₅₀ : mm		D ₆₅ mm
5-25		1030 1300 1530 1730		4 · 8 7 7		.16 .16 .19 .18		.28 .29 .32 .31	31 32 36 35		421 457 582 547	25 39 44 36		340 556 711 563	112 127 144 139	: 1.25 : 1.0 : 1.15 : 1.3		1.8 1.55 1.7 1.85
5-31		1115 1415 1700 1940		9 12 11 8		.18 .16 .23 .22		.34 .30 .35 .34	41 52 71 70		646 699 1387 1351	66 61 73 96		1040 819 1426 1852	200 154 280 176	1.0 2.0 .9 .94	· · · · · · · · ·	1.55 3.6 1.3 1.5
6-7		1145 1500 1800 2015		10 		.20 .23 .28 .27		.28 .30 .31 .32	21 100 166 140		362 2030 3964 3271	36 72 187 127		621 1462 4465 2965	255 390 519 369	.84 1.0 2.65 2.65		1.3 1.6 3.5 (e) 3.5 (e)
6-16		1000 1300 1545 1830		7 11 13 11		.19 .18 .18 .19		.31 .30 .30 .31	32 32 42 46		530 512 671 767	29 42 45 42		481 671 719 700	86 89 110 107	: 1.0 : 1.5 : 1.5 : 1.3		1.5 1.5 1.5 1.8
6-27		0915 1415 1720 1930		8 . 12 . 11 . 11 . 11		.13 .13 .12 .12		.29 .29 .29 .29	22 31 25 21		239 337 267 222	23 28 25 27		250 305 267 285	51 57 173 122	: 1.0 : 1.0 : 1.1 : 1.0		1.45 1.45 1.45 1.4

92

20 E

WEST CREEK

								Nat	Sura	spended Se	ediment Flume		Bedload			
Date	: Time	: :	Temp. C°	:	Disch. m ³ /sec	:	Vel. m/sec	Conc. mg/1	:	Yield kg/day	Conc. : mg/1 :	Yieid kg/day	yield kg/day	: D ₅₀ : mm)	: D ₆₅ : mm
4-05	: 1300 : 1500	::	5 3	:	.03 .03	:	.29 .29	80 58	:::	230 90	56 : 58 :	161 90	.6 .6	: .33	3	: .50 : .50
4-12	1120 1330 1540 1830		5 6 4 3		.05 .05 .05 .05		.31 .31 .31 .31	52 36 67 59		237 125 260 237	46 39 53 59	210 135 205 237	1.0 2. .7	.50 .50 .50)))))	.75 .75 .75 .75 .75
4-19	1215 1500 1730 2000		7 4 3 2		.03 .03 .03 .03		.21 .21 .21 .21	16 25 35 39	*****	35 66 89 93	25 : 25 : 31 : 22 :	54 66 79 52	.2 .5 .4 .9	.06 .06 .05	7 7 7	.069 .069 .069 .069
4-30	: 1200 : 1500 : 1730 : 2030		4 4 4		.05 .05 .05		.24 .24 .24 .24	18 20 26 33		75 81 115 134	25 : 26 : 25 : 32 :	104 105 111 130	2 1 2 1			.48 .48 .48 .48
5-07	: 1020 : 1330 : 1615 : 1915		4 8 6 3		.06 .06 .06		.30 .30 .30 .30	1 6 15 12		5 31 91 58	7 6 16 13	34 31 97 63	3 2 3 4	. 30 . 30 . 30 . 30		.55 .55 .55 .55
5-16	: 1315 : 1600 : 1830 : 2000		6 6 3 3		.13 .13 .13 .13		.41 .41 .41 .41	14 21 21 24		165 241 233 267	26 : 13 : 22 : 30 :	307 149 244 333	29 26 21 19			1.10 1.10 1.80 1.80
5-24	: 1100 : 1400		4 5		.12 .14		.40	2	::	20 8	3 .:	30 48	46 30			1.15 1.45
5~30	: 1130 : 1430 : 1715 : 1845		9 13 8 6		.13 .14 .15 .14		.40 .41 .41	12 20 10 67		133 240 122 828	10 22 12 42	111 264 164 519	27 59 64 59	1.10 .90 .90		1.50 1.30 1.30 1.30

93

)207 F

WEST #2

Date									Nat	Suspended Natural			Sediment Flume					
	:	Time	:	Temp. C°	:	Disch. m ³ /sec	:	Vel. m/sec	Conc. mg/1	:	Yield kg/day	Cond mg/1	. :	Yield kg/day	Yield kg/day	: D ₅₀ : mm	:	D ₆₅ mm
6-6		1145 1445 1715 1830		8 9 7 7		.26 .29 .37 .33		.54 .54 .64 1.0	19 62 178 103		425 1642 5654 2924	24 79 143 101		537 2092 4551 2867	130 261 281 226	: 1.10 : 1.10 : 1.10 : .80		1.6 1.7 1.6 1.3
6-16		1200 1545 1830		9 12 11.		.31 .29 .29	· · · · · ·	.52 .49 .49	17 41 25		449 1015 619	16 40 22		423 991 545	216 140 226	: : 1.45 : 1.10 : 1.10		1.60 1.20 1.20
6-21		.1330 1620 1845		11 10 8		.21 .21 .21		.50 .47 .47	19 21 21		348 387 387	17 17 20		311 313 368	92 89 120	1.00 .90 .90	: 1	1.55 1.30 1.30

94

)207