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Abstract

Prior to the 1989 Loma Prieta earthquake, seismic hazard maps were 

constructed for California (Wesnousky, 1986). I reconstructed the hazard 

maps of Wesnousky (1986) for the San Francisco Bay region to examine 

the effects of 1) the crustal stress release associated with the Loma Prieta 

earthquake and 2) new evidence of slip rates and paleoearthquake histories 

for Bay area faults. The new maps indicate a high probability that 

heavily populated areas in the San Francisco Bay region will experience 

strong ground motions of > O.lg on hard rock sites during the next 50 

years. The reconstructed maps are of limited utility because they consider 

only relatively low levels of ground motion on hard rock sites. Therefore, 

I constructed another set of maps that show higher levels of strong ground 

motion (> 0.4 cm/sec and > 0.5g) and combine the relationships of strong 

ground motion for hard rock sites with amplifications due to local site 

geology (Borcherdt et al., 1991). A consequence is that the largest 

predicted levels of ground motion commonly do not lie directly adjacent to 

mapped fault zones but rather in regions of weakly consolidated 

Quaternary alluvium along the margins of the San Francisco Bay.
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Introduction

Prior to the Loma Prieta earthquake, the probability of strong 

ground motions due to earthquakes in the southern San Francisco Bay 

region was considered to be high, in apparent accord with the occurrence 

of the Loma Prieta earthquake (Wesnousky, 1986; Figure 1). The high 

probability was in part due to then current geologic and geodetic estimates 

that the average accumulation of slip along the San Andreas was 12 mm/yr 

(Wesnousky, 1986) and last ruptured in 1906, producing coseismic surface 

offsets ranging from 0.5 to 1.5 m along the Loma Prieta section of the 

fault (Lindh, 1983; Sykes and Nishenko, 1984; Scholz, 1985). In that 

regard, at the time figure 1 was constructed, the amount of slip 

accumulated along the Loma Prieta section of the San Andreas was 

estimated to equal about 1 meter ([1986 - 1906] x 12 mm/yr), comparable 

to the fault slip that occurred in 1906. Hence, that section of the fault was 

viewed to be in the later stages of the strain accumulation cycle and, in 

turn, the seismic hazard within the vicinity was considered to be high 

(Wesnousky, 1986).

In accord with the concept of elastic rebound, the seismic hazard, or 

probability of strong ground shaking due to an earthquake on a specific 

fault, excluding probable aftershocks, is generally considered lowest during 

the period immediately following a major earthquake - the time when 

accumulated strain is minimal. The Loma Prieta earthquake represents such 

a major earthquake. As a result, to first order, we might expect the 

regional seismic hazard within the San Francisco Bay area to be 

significantly altered in comparison to the years immediately prior to the
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Figure 1. Contour map constructed prior to the Loma Prieta event 
(Figure 3b in Wesnousky (1986)) that shows the estimated 
probability for the 50 years subsequent to 1986 that 
Quaternary faults mapped in the San Francisco Bay region 
would produce peak horizontal ground accelerations
>0.1g.
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October 17 event. Similarly, a number of seismological, geological, and 

geodetic studies of the San Andreas and other Bay Area faults have brought 

new data to bear on the slip rates and paleoearthquake histories of faults 

within the San Francisco Bay region. In this paper, I reconstruct the 

hazard maps of Wesnousky (1986) to examine the effects of 1) the crustal 

stress release associated with the Loma Prieta earthquake and 2) new 

evidence of slip rates and paleoearthquake histories for Bay Area faults.

The map of Wesnousky (1986) (Figure 1) was calculated for 

estimates of strong ground motion at hard rock sites. That strong ground 

motions can be modified by local site conditions is well known (Lawson, 

1908; Gilbert, 1909; Borcherdt, 1975; Su, 1992). Most recently, 

Borcherdt and others (1991) have reported an empirical correlation 

between strong ground motion and specific geologic units in the Bay Area 

(Table 1). I incorporate these empirical relationships with an existing 

geologic map (Borcherdt, 1975) for a part of the San Francisco Bay 

Region to illustrate the increased resolution and, hence, utility of hazard 

maps which result from including site amplification effects.

Construction of the Hazard Maps

Knowledge regarding the slip rates and the past history of 

earthquakes along each fault in the Bay Area formed the foundation for 

construction of hazard maps in Wesnousky (1986). The exact methodology 

has been detailed in Wesnousky (1983) and Wesnousky (1986) and is 

briefly reviewed in Appendix A. As well, the slip rates and earthquake
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histories of each fault were outlined in Wesnousky (1986). Therefore, I 

limit my review of data to those fault zones where paleoseismic studies 

have been made or earthquakes have occurred since 1986. I also note that 

Holocene observations are more likely reflective of the current long-term 

activity than are estimates made from offsets of older rocks and therefore, 

my discussion is limited to studies of Holocene rocks. The San Andreas, 

Hayward, and Calaveras fault systems which are the major fault systems of 

the region will be the focus of discussion. Figure 2 shows the faults 

considered in this study. Data and references bearing on the slip rates of 

all faults used in the calculations are summarized in Appendix B.

Fault Slip Rates

Geological estimates of the San Andreas fault slip rate to the north of 

San Juan Bautista range from about > 7.5 to 28 mm/yr. Hall (1984) 

interpreted a displaced channel on the San Francisco Peninsula at the north 

end of Crystal Springs Reservoir to suggest a minimum late Holocene fault 

slip rate of >12 mm/yr. However, in a recent reexamination of that site, 

additional radiocarbon dates on multiple new samples showed that the 

original 1130 ± 160 yrs B. P. radiocarbon age on which the 12 mm/yr slip 

rate was based is incorrect (Tim Hall, personal communication). The new 

data suggest a minimum slip rate of > 7.5 mm/yr. Farther north, near 

Olema, Niemi and Hall (1992) determined a minimum slip rate of 24 ± 3 

mm/yr for the San Andreas north of the junction with the San Gregorio 

fault from an offset buried channel dated at 1800 ± 78  yrs B. P. The 

channel date is the weighted average of six tree-ring-calibrated radiocarbon 

dates with a 2-sigma range. Near Point Arena, Prentice (1989) interpreted
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Figure 2. Map of study area, a) shows location of Quaternary faults
within the greater San Francisco Bay Area. Teeth are placed 
on hanging wall side of thrust and reverse faults.



Figure 2b

Figure 2. b) shows locations of sites discussed in text.
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a buried Holocene offset channel (2356 - 2709 yrs B. P.) to place a 25 ± 3 

mm/yr maximum on the slip rate of the San Andreas fault (Prentice et al., 

1991). The channel date is dendrochronologically calibrated and spans the 
2-sigma error.

Estimates of slip rate over much shorter periods of time have also 

been placed on the San Andreas fault with geodetic observations. Geodetic 

surveys spanning the fault from San Francisco south to the latitude of 

Coyote Lake, during the period of 1970 to 1980, show strain rates that 

imply that about 12 ± 4 mm/yr is accumulating along the fault (Prescott et 

al., 1981). Geodetic surveys are also consistent with a similar slip rate 

near Point Reyes further to the north (Prescott and Yu, 1986). However, 

more recent analysis of geodetic data by Matsu'ura et al. (1986) argue for 

upwards of 26 ± 3 mm/yr slip accumulation along the peninsular San 

Andreas. A recent report by the Working Group (1990) also cites 

unpublished geodetic analyses that permit a slip rate of 26 to 32 mm/yr 

along this section of the fault. Galehouse (1991) observed no creep on the 

San Andreas for the past eleven years. In summary then, geological 

estimates and modeling of geodetic data allow slip rates between about 7.5 

and 32 mm/yr on the peninsular San Andreas.

Figure 1 was constructed with an assumed peninsular San Andreas 

slip rate of 12 mm/yr. The assumption appeared to be supported by the 

apparent agreement between the late Holocene geologic rate of 12 mm/yr 

(Hall, 1984) and geodetic data (Prescott et al., 1981). Although recent 

developments and reanalysis of the geologic data do not rule out a 12 

mm/yr rate, there now exists no firm basis for using 12 mm/yr as a 

preferred slip rate. I note here that (1) the Loma Prieta earthquake
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produced 1.6 m of lateral coseismic slip (Lisowski, 1990) and (2) it had 

been 83 years since the 1906 earthquake ruptured this segment of the San 

Andreas. Assuming that all the lateral slip accrued since 1906, the time of 

the last major earthquake along this section of the fault, one may estimate a 

strike-slip rate of 19 mm/yr. A 19 mm/yr slip rate is also the median value 

for the slip rate values I reviewed. I thus assume the peninsular San 

Andreas slips at 19 mm/yr, an increase of 7 mm/yr over the slip rate 

assumed for construction of figure 1. It should also be noted that the 

Working Group (1990) adopted a slip rate of 19 ± 3 mm/yr.

The Hayward and Calaveras faults are subparallel to and lie east of 

the San Andreas fault. The Calaveras fault splays northeastward from the 

San Andreas fault 30 km southeast of Hollister. Ten kilometers southwest 

of Hollister, Perkins and Sims (1988) determined a 9 mm/yr slip rate on 

the Calaveras fault from radio-carbon dates (14,425 ± 215 CAL yrs B. P.) 

of an offset alluvial terrace riser. They interpret this as a minimum value 

because it is south of the latitude at which slip is transferred from the San 

Andreas fault to the Calaveras system and further suggest the Calaveras 

fault slips between 15 and 20 mm/yr northwest of Hollister. Geodolite 

measurements of Savage et al. (1979) are consistent with 17 ± 2 mm/yr of 

right-lateral slip across the section of the Calaveras fault located south of 

the Hayward fault. Prescott et al. (1981) further interpreted that the 17 ± 

2 mm/yr is divided between the Hayward and Calaveras faults to the north.

Recent trenching studies along the Hayward fault near Union City by 

Lienkaemper and Borchardt (1991) have yielded an estimate of the 

minimum geologic slip rate of 8 + 0.6 mm/yr for the past 8,260 + 90 

years. This age is calibrated and has a one sigma range. They also note
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that the average historic creep has been approximately 5 mm/yr. 

Measurements by Galehouse (1991) confirm a creep rate between 4 and 5 

mm/yr on the Hayward fault for the past eleven years. Based on synthesis 

of historic creep rates, geodetic data, historical seismicity, and long term 

geologic slip rates, Lienkaemper and others (1991) have proposed a deep 

slip rate of 9 mm/yr for the Hayward fault with a locked zone between 3 

and 10 km. Prescott and Lisowski (1982) determined strain rates from 

both small (1-2) and large (10-30 km) aperture geodetic networks that 

straddle the Hayward fault. They concluded that no more than 4 mm/yr of 

slip is presently accumulating as elastic strain in rocks adjacent to the fault, 

whereas the total rate of displacement measured geodetically is about 8 

mm/yr (Prescott et al., 1981). However, since that time, the strength of 

that conclusion has been questioned by the author (Prescott, pers. comm.). 

Hence, the relation between surface creep and crustal stress accumulation is 

not well understood for the Hayward fault. Wesnousky (1986) assumed 

that a 4 mm/yr slip rate is characteristic of the strain accumulation rate on 

the Hayward fault based on the analysis of Prescott and Lisowski (1982). 

Because it is not clear whether or not significant crustal strain is being 

released by aseismic creep, I follow Lienkaemper et al. (1991) and assume 

the slip is 9 mm/yr.

The Rodgers Creek-Healdsberg and Maacama fault zones are right- 

step northward extensions of the Hayward fault zone. Budding and others 

(1990) interpreted offset buried channel deposits along the Rodgers Creek 

fault to indicate a minimum slip rate equal to 2.1 to 5.8 mm/yr for the past 

1,200 years. More recently, new radiocarbon dates 

(dendrochronologically calibrated one-sigma range) from the same site,
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suggest slip rates are higher; between 6.4 and 10.4 mm/yr for the past 750 

years (Schwartz et al., 1992). Galehouse (1991) found no evidence of 

creep on the Rodgers Creek and West Napa faults until late in 1990 when 

both began showing some evidence of movement. For construction of the 

Hazard map, each is assumed to slip at the same rate as the Hayward fault 
(9 mm/yr).

The Calaveras Fault also appears to have a complex relationship 

between surface creep and strain accumulation. Although it is generally 

assumed the Calaveras is creeping, there have been four and possibly five 

moderate earthquakes historically (Wesnousky, 1986). Galehouse (1991) 

observed a creep rate of 10 mm/yr in the Hollister area but found no creep 

at the northwest end of the fault. I follow Wesnousky (1986) and assign a 

slip rate of 7 mm/yr. The Concord and Green Valley faults are the right- 

step continuation of the Calaveras fault (Page, 1982), and each is assumed 

to slip at the same rate as the Calaveras fault. There are no geologic slip 

rates for these two faults but Galehouse (1991) found creep rates of 3-4 

mm/yr on the Concord fault and 5-7 mm/yr on the Green Valley fault.

Wesnousky (1986) reviewed the meager data on the San Gregorio- 

Hosgri fault. I use the same interpretation here because no new data are 

available. Finally, it should be noted that the sum of slip rates across the 

major faults in the study area is consistent with 3 8 + 3  mm/yr measured 

geodetically across the San Andreas-Calaveras fault system in the Hollister 

area (Matsu'ura and others, 1986).
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Fault Behavior and Recurrence Intervals

Information regarding fault slip rate provides a measure of the strain 

accumulation rate along a fault. It is the paleoseismological and historical 

record of earthquakes and the distribution of coseismic slip observed in 

those earthquakes that provide some basis for hypotheses regarding the 

future behavior of faults. I follow Wesnousky (1986) and estimate the size 

of future events from fault length and repeat times of ruptures.

The San Andreas fault in Figure 3a is divided into 4 segments which 

are labeled A, B, C, and D. The basis of the divisions is the historical 

record of earthquakes and the distribution of slip that occurred during the 

largest of those earthquakes. More specifically, the San Francisco 1906 

earthquake produced surface ruptures along a 420-km-long section of the 

San Andreas that strikes northward from San Juan Bautista (Lawson, 1908; 

Thatcher, 1975; Prentice and Schwartz, 1991). Lawson (1908) reported 

coseismic surface offsets averaged 2.5-5.0 m between Los Altos and Point 

Arena in 1906, but measurements south of Los Altos were significantly 

less; between 0.5 and 1.5 meters. Reexamination of geodetic data 

bracketing the 1906 earthquake confirm a decrease in the 1906 slip 

function to the south of Crystal Springs Reservoir, but do not reflect the 

factor of two difference indicated by surface offsets (Thatcher and 

Lisowski, 1987). A new study of the surface expression of the San 

Andreas fault in the southern Santa Cruz mountains (Prentice and 

Schwartz, 1991) suggests that the surface displacements reported by 

Lawson (Lawson, 1908) in this area were not coseismic surface faulting of 

the San Andreas, but were shaking induced slope failures and fractures. 

Therefore, none of the reported measurements of surface offset are
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Figure 3. Map showing segmentation of (a) the San Andreas fault.



Figure 3. Map showing segmentation of (b) the Calaveras fault, and (c) the Hayward fault. Segments are 
based on the extent and location of historical earthquakes and fault geometry.
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reliable as indicators of the fault offset in the Santa Cruz mountains in 1906 

(Prentice and Schwartz, 1991). However, Prentice and Schwartz (1991) 

present evidence which implies that surface rupture did occur on the San 

Andreas fault in 1906 as far south as San Juan Bautista. Best estimates of 

coseismic offset from geodetic analysis place slip during the 1906 event 

between 3.4 m and 4.4 m to the north of Crystal Springs reservoir and a 

lesser range of 3.8 to 2.4 m to the south of Crystal Springs reservoir 

(Thatcher and Lisowski, 1987).

Segment A corresponds to the portion of the 1906 rupture north of 

Crystal Springs reservoir (figure 3a). At Point Arena, Prentice (1989) 

estimated a recurrence time of 200-400 years for paleo-earthquakes based 

on excavations into an alluvial fan where a minimum of five earthquakes

were recognized. Using Wesnousky's (1986) seismic moment relationship 
(T = M̂ /Mp ; see appendix A), the assumed 19 mm/yr slip rate, and the

420-km-long rupture length, the repeat time of 1906-type earthquakes is 

calculated to be 200 years; at the lower bound of geologic estimates 

(Prentice, 1989). Similarly, the 3.4 to 4.4 m offsets estimated geodetically 

for the 1906 earthquake along segment A may be divided by the 19 mm/yr 

slip rate to place limits on the average return time for rupture of segment 

A. This calculation gives a recurrence interval between 179 and 232 years. 

For my reconstructions, it is assumed that segment A is characterized by 
Mw=7.8 each 200 years - less than the 300 years previously used by

Wesnousky (1986).
Historical documents provide evidence that, in addition to the most 

recent Loma Prieta earthquake, a major earthquake also ruptured the San 

Andreas fault in 1838 (Louderback, 1947). Based on interpreted intensities
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at Monterey and San Francisco, Louderback suggested that the fault 

rupture extended from near San Francisco to San Juan Bautista. In 1865 a 

moderate sized earthquake (estimated magnitude 6.3, Toppozada et al., 

1981) occurred in the south bay. Because of the uncertainty concerning it's 

location (McNutt and Toppozada, 1990; Tuttle, 1990), I do not include it in 

the analysis of the San Andreas fault. I also do not include the 1890 

earthquake which is thought to have ruptured the San Andreas north of San 
Juan Bautista (Ellsworth, 1991) because of it's small size (Mj = 6.0).

The 1989 Loma Prieta earthquake was not accompanied by primary 

surface faulting. Geodetic observations of the Loma Prieta earthquake 

have been fit best by a fault model characterized by oblique slip on a 

buried 37-km-long plane dipping 70° to the southwest and striking N44°W 

(Lisowski et al., 1990). Slip during the event was limited to between 5 km 

and 17.5 km depth and characterized by 1.6 m and 1.2 m of right-lateral 

and reverse slip, respectively. Analysis of seismicity prior to the 

earthquake suggests that the San Andreas fault has a vertical dip, whereas 

the Loma Prieta earthquake occurred on a dipping plane that showed no 

prior seismic activity (Olson, 1990; Dietz and Ellsworth, 1990). A recent 

geomorphic study (Prentice and Schwartz, 1991) of the San Andreas fault 

in the Santa Cruz mountains shows the fault to be a simple through-going 

typical strike-slip fault which was probably defined by a simple rupture 

scarp in 1906. Segall and Lisowski (1990) compared geodetic data 

spanning both the 1906 and 1989 earthquakes and concluded that the 1989 

fault model could not explain the 1906 displacements. Thus, although the 

1989 earthquake occurred along the San Andreas fault zone, the seismicity 

and geodetic data and a reevaluation of the geologic data have been used to
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suggest that the Loma Prieta and 1906 earthquakes did not rupture along 

the same fault plane. However, in view of the close proximity of the Loma 

Prieta rupture plane to the vertical plane of the San Andreas, it cannot be 

ruled out that shear stress along the San Andreas was significantly reduced 
by the Loma Prieta earthquake.

The behavior of the San Andreas fault between San Francisco and 

San Juan Bautista is very complicated. Large earthquakes, such as the 1906 

earthquake, nucleate northwest of this area and rupture through it, but this 

section of the fault also generates large earthquakes whose rupture zones 

are confined to it (such as the 1989 Loma Prieta earthquake). The 

seismicity pattern is sparse and clustered (Hill and others, 1991). Gaps, 

such as the one filled by the Loma Prieta earthquake and it’s aftershocks, 

occur between the clusters. Just north of the Loma Prieta rupture zone, in 

the Portola Valley area, a prominent gap currently exists (Olson, 1990). I 

divide this section of the San Andreas fault into segments based on the 

length and location of the Loma Prieta rupture zone and coseismic slip 

during the 1906 earthquake. Segment B corresponds to the 53-km-long 

section of the San Andreas fault that lies between the northern terminus of 

the Loma Prieta rupture zone and Crystal Springs reservoir where there 

was a relative drop in coseismic offset during the 1906 earthquake (Figure 

3a) and segment C is the approximately 37-km-long rupture length of the 

1989 Loma Prieta earthquake. The Portola Valley gap lies within segment 

B.

Because of the complexity associated with historical earthquakes 

along segments B and C, estimating future recurrence intervals for 

moderate to large earthquakes are not straightforward. Segment B
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ruptured in 1838 and 1906. If it is assumed that the minimum coseismic 

slip that occurred on segment B in 1906 (2.5 m) accrued in the 68 years 

subsequent to 1838, a slip rate of 37 mm/yr is implied. This is greater than 

available geologic and geodetic estimates I have reviewed. In that regard, 

68 years is likely a minimum estimate of the average return time. 

Interpretation of geodetic measurements places best estimates of coseismic 

offset along segment B between about 2.5 and 3.5 meters (Thatcher and 

Lisowski, 1987) in 1906. At the assumed slip rate of 19 mm/yr, it would 

take between 131 and 184 years to accumulate 2.5 m and 3.5 m, 

respectively. In my assignment of recurrence intervals for segment B, I 

assume 68 years is a minimum repeat time, 184 years is a maximum repeat 

time, and 131 years is the average repeat time for earthquakes. Segment C 

ruptured in 1906 and 1989 and likely ruptured in 1838. I use the 83 year 

time interval between the 1906 and 1989 earthquakes as a recurrence 

interval for segment C.

The extent of historical earthquake ruptures and the location of the 

mapped discontinuities in fault strike were used by Wesnousky (1986) to 

divide the Calaveras fault zone into four segments (Figure 3b), each 

assumed capable of producing moderate sized earthquakes. The same 

interpretation is used here in the reconstruction of the hazard map because 

no new data on slip rate or recurrence have been reported since 1986.

The Hayward fault zone splays off the Calaveras fault at a point south 

of San Francisco Bay, striking northwestward a distance of about 120 km. 

Segmentation of the fault (figure 3c) is similar to that put forth in 

Wesnousky (1986). Segments A and B include the Silver Creek-Coyote 

Creek and Evergreen fault systems, respectively (Aydin, 1982), show
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predominantly reverse-type motion (e.g. Bryant, 1982; Page, 1982), and 

are 18 to 25-km-long. The 36-km-long segment of the fault that ruptured 

in a magnitude 6.8 (Toppozada et al., 1981) earthquake on October 21, 

1868 (Lawson, 1908) is labeled C in Figure 3c. A recurrence interval 

between 250 - 400 years is inferred for this segment of the Hayward fault 

from offset, tilt, and liquefaction of late Holocene pond and fluvial deposits 

at the north end of Tule Pond, Fremont (near Union City) (Williams, 

1991). An event similar to the 1868 event may have also ruptured the 

Hayward fault in 1836 (Louderback, 1947). Although data for it’s location 

is vague Louderback (1947) presents evidence for surface rupture in the 

Oakland area. It has most recently been suggested (Working Group, 1990) 

that the event ruptured segment D and, as such, is assumed in 

reconstruction of the hazard map.

The Rodgers Creek-Healdsberg fault has no historical record of 

rupture. However, geologic evidence (Budding et al., 1991) indicate a 
maximum recurrence of Mw = 7 earthquakes between 248 and 679 years

(Budding et al., 1991). A more recent examination of another site along 

the fault provides evidence for three paleoearthquakes during the last 1000 

years (Schwartz et al., 1992). The one sigma range dendrochronologically 

corrected ages indicate a recurrence interval between 170 and 490 years.

Discussion

Hazard Maps for Strong Ground Motion on Hard Rock Sites

Reconstructed maps showing the probability of peak strong ground 

accelerations of > O.lg for hard rock sites during the 50 years subsequent
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to the 1989 Loma Prieta earthquake are shown in Figure 4. At the time of 

Wesnousky’s (1986) investigation, a simple model of fault behavior was 

allowed by the relatively few data for the recurrence behavior of this 

section of the fault. New data imply a more complicated behavior and 

various viable scenarios exist to predict the future rupture behavior of the 

Peninsular San Andreas fault. Minimum (68 years) and maximum (184 

years) estimates for the return time of Segment B on the San Andreas fault 

are reflected in figure 4a and 4b, respectively. For both figures 4a and 4b, 

it is assumed that the Loma Prieta earthquake released all the strain 

accumulated on segment C since 1906. However, given arguments exist 

that this may not be true, I also show in figures 4c and 4d the likelihood of 

strong ground motions assuming segment C on the San Andreas fault last 

rupture in 1906 and not 1989. Figures 4c and 4d are constructed similarly 

to figures 4a and 4b, respectively, with the exception that the former 

figures (Figures 4c and 4d) assume accumulated strain was not released in 

1989.

End point hypotheses for segments B and C of the San Andreas fault 

are shown in figure 4 to illustrate the range of spatial distributions of 

strong ground motion within the San Francisco Bay region. The difference 

in the probability of strong ground motion between figure 4a and 4b shows 

that the uncertainties in our knowledge of the future behavior of segment B 

of the San Andreas fault has a large impact on the predicted strong ground 

motions within the region. Nonetheless, in all cases, the probability is 

approximately 50% or better that the heavily populated areas of the region 

will experience strong ground motions of 0.1 g or more during the next 50 

years. While this probability is lower than predicted before the Loma



Figure 4. Maps showing estimated probability that Quaternary faults in the San Francisco Bay region will 
produce peak horizontal ground accelerations > O.lg for hard rock sites during the 50 years 
subsequent to 1989 Loma Prieta event, a) assumes the 68 year minimum repeat time for the 
Peninsula segment of the San Andreas fault (see text) and that the Loma Prieta event released 
all the crustal strain accumulated since 1906. b) assumes the 184 year maximum repeat time for 
the Peninsula segment of the San Andreas fault (see text) and that the Loma Prieta event 
released all the crustal strain accumulated since 1906.

too



Figure 4. c) assumes the 68 year minimum repeat time for the Peninsula segment of the San Andreas fault 
(see text) and that the Loma Prieta event did not release the crustal strain accumulated since 
1906. d) assumes the 184 year maximum repeat time for the Peninsula segment of the San 
Andreas fault (see text) and that the Loma Prieta event did not release the crustal strain 
accumulated since 1906.

to

* l ilui m
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Prieta earthquake, it is still quite a bit higher than was expected. New slip 

rate studies of the Hayward and Rodgers Creek faults have resulted in 

calculating an increased likelihood of strong ground motions in the East 

Bay with respect to Wesnousky's 1986 map. The hazard in the East Bay 

and northward remains high regardless of the rupture scenario for the San 
Andreas fault.

Hazard Maps Including Effects of Local Soil Site Conditions

An inadequacy of the maps in figure 4 is that they assume all sites 

are hard rock sites, but studies show that horizontal ground motion at the 

surface of a soil site can be substantially larger than that in the bedrock 

below (Borcherdt, 1975). Studies of site amplification show that 

modification of ground motion is systematically related to the surficial 

geology (Borcherdt et al., 1975; Borcherdt et al., 1991; Su et al., 1992); 

younger loosely consolidated sediment having the highest amplification. Su 

and others (1992) used a recursive stochastic inverse method to determine 

the site amplification from coda waves in central California. They 

classified the numerous geologic formations into five geologic units by age. 

Within each unit the mean site amplification was associated with the median 

geologic age. Their results correlate well with strong motions during the 

Loma Prieta earthquake outside the epicentral region (50 km), but do not 

agree with observations within 50 km of the epicenter. They attribute this 

disagreement to non-linear behavior of the sediment. Borcherdt and others 

(1975) analyzed horizontal ground motions from nuclear explosions in 

Nevada to determine the average amplification of geologic units in the 

southern San Francisco Bay area. They classified six geologic units based
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on seismic response to low strain data. The amplification values were 

further refined by Borcherdt and others (1991) based on average shear 

wave velocities (Fumal, 1991) to a depth of 30 m and strong ground 

motions which occurred during the Loma Prieta earthquake (Borcherdt et 

al., 1991). Borcherdt and Glassmoyer (1992) found amplifications due to 

site geology during the Loma Prieta earthquake not statistically different 

from the values predicted by Borcherdt and others (1991). A geologic 

map with six units differentiated by physical properties and geologic 

characteristics was compiled by Borcherdt and others (1975) (Figure 5a). 

I digitized this map (Figure 5b) and used the amplification values from 

Borcherdt and others (1991) to incorporate local site effects into the hazard 

maps. Descriptions and amplification values for the six generalized 

geologic units are listed in table 1.

Although the correlations between site amplification and geologic 

unit were determined for measurements of velocity response, for 

illustrative purposes, I also use the same amplification values to construct a 

map showing the probability of acceleration. In figure 6a, I show the 

probability of ground velocities > 40 cm/sec for the area around San 

Francisco Bay during the next 50 years and, for the same period of time, I 

show the probability of occurrence of accelerations > 0.5g in figure 6b. 

Notice that this level of acceleration is 5 times the level of strong ground 

motion shown for the hard rock sites. In both maps, I assume that the 

Loma Prieta earthquake released the strain accumulated since 1906 along 

segment C of the San Andreas fault and that the average recurrence 

interval for segment B of the San Andreas is 131 years, which is the



Figure 5. a) Geologic map of the southern San Francisco Bay area from Borcherdt and others (1975) 
b) Digitized map of soil sites taken from the geologic map compiled by Borcherdt and others 
(1975). Descriptions of the geologic units are listed in table 1.
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Table 1. Soil Site Conditions (modified from Borcherdt and others, 1975)

Geological unit Symbol Amplification

estuarine Bay Mud 
Artificial fill

Qm 5.70

(Holocene)
Alluvium Qal 2.50
(Quaternary)

Sedimentary rocks 
(Quaternary and Tertiary)

QTs 1.70

Sedimentary rocks 
(Tertiary and Mesozoic)

TMzs 1.40

Franciscan Complex KJf 1.00
(Cretaceous)

Description

Unconsolidated water-saturated mud. Consists of mud 
deposited in San Francisco Bay, artificial fill overlying bay 
mud, and estuarine mud at the mouths of coastal streams.

Unconsolidated to weakly consolidated silt, sand, and 
gravel. Consists of late Pleistocene and Holocene 
alluvium. Includes minor deposits of late Pleistocene and 
Holocene beach and dune sand, and marine terrace 
deposits.
Weakly to moderately consolodated and indurated 
mudstone, sandstone, and conglomerate. Consists of the 
Santa Clara Formation along the southwestern margins of 
the bay basin, and the Irvington and Livermore Gravels 
(Rogers, 1966; Jenkins, 1943) along the northeastern 
margin of the bay basin.
Moderately to highly consolidated and indurated chert, 
shale, sandstone and conglomerate. Consists of all bedrock 
units except Franciscan Complex and plutonic rocks. 
Predominantly Mesozoic marine shale and sandstone 
northeast of the Hayward fault, and Tertiary marine 
sandstone, shale, chert and minor amounts of volcanic 
rocks in the upland areas throughout the southern bay 
region. Underlies parts of younger sedimentary units. 
Mostly well-indurated sandstone and shale but includes 
subordinate amounts of greenstone, chert, limestone, 
conglomerate, and metamorphic rocks of blueschist facies. 
Generally highly deformed and locally intensively sheared 
with hard blocks of various lithologies in a matrix of clay 
materials. Constitutes the basement complex northeast of 
the San Andreas fault and in the small area southwest of the 
fault between the Pilarcitos fault and the San Andreas fault.



Table 1. Soil Site Conditions (continue)

Geological unit Symbol Amplification Description

Granitic rocks 
(Cretaceous)

0 .6 3  Consists of Montara Quartz Diorite (Curtis and others,
1958) and Ben Lomond (Baldwin, 1967) Quartz Diorite. 
Generally jointed and deeply weathered. Constitutes the 
basement complex southwest of the San Andreas fault 
except for the small area notheast of the Pilarcitos fault.



Figure 6. Map showing estimated probability that Quaternary faults in the San Francisco Bay region will 
produce peak horizontal ground a) velocities > 40 cm/sec and b) accelerations > 0.5g during the 
50 years subsequent to 1989 Loma Prieta event. These maps include amplification due to soil 
site effects. Geologic conditions at the site are taken from the geologic map of the southern San 
Francisco Bay area compiled by Borcherdt and others (1975).

K>
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average value for that segment of the fault. It is clear that the maps (figure 

6) are strongly modified by incorporation of site effects. For example, the 

highest levels of probability track closely with the distribution of Bay mud. 

High probabilities are also associated with areas of Quaternary alluvium.

Conclusion

To summarize, in the East Bay, fault slip rates and paleoearthquake 

studies are interpreted to indicate an increased level of hazard with respect 

to that recognized in 1986. This high level of hazard is insensitive to 

different rupture scenarios of the San Andreas fault. New evidence 

indicates a more complex behavior for the San Andreas fault than was 

considered in 1986. However, plausible interpretations of fault behavior 

show that the probability remains high that strong ground motions of 0.1 g 

or more will occur on hard rock within heavily populated areas during the 

next 50 years. This result was unexpected at the beginning of this study. I 

expected a very low probability in the area around the Loma Prieta 

segment of the San Andreas fault. Finally, incorporation of local site 

geology increased the level of strong ground motion and dramatically 

changed it's distribution. It is clear that the largest advances to be made 

will result from incorporation of site amplification effects due to local 

geologic conditions.
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APPENDIX A

Methodology

The hazard maps are based on a combined data set encompassing 

instrumental, historical, and geological observations. The methodology 

used to construct the maps have been described in detail (Wesnousky, 1986; 

Wesnousky, 1983). It is based on a simple model of mechanical fault 

behavior whereby the average repeat times of earthquakes on faults or fault 

segments are approximated to equal

where the seismic moment M® of the expected event is determined from 

paleoseismic evidence, historical seismicity, or an empirical fault length 

versus seismic moment relationship (Wesnousky, 1986) (Figure 1A). The 
geologically or geodetically determined moment rate M® is a function of

fault slip rate or more specifically, M® = puwl, where q = rigidity (3 x 

1011 dyn/cm2), u = slip rate, w = width (15 km), and 1 = length of the fault 

or fault segment considered. Each fault or fault segment is assumed to 

rupture along the entire segment in one large event. I do not take into 

account small earthquakes. For faults that have some slip due to creep at 

depth, I use a slip rate equal to the total estimated slip rate minus the creep

rate.
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Figure 1A. Seismic moment M0 versus rupture length 1. Solid symbols 
indicate earthquakes on major plate boundary faults 
generally characterized to have slip rates of 1 cm/yr or 
greater. Earthquakes on faults with lesser slip rates are 
shown by open symbols. Lines form log M0 = A + B log 1 
are fit through the solid and open symbols, respectively. 
Squares, triangles, and circles correspond to normal, 
reverse, and strike-slip type earthquakes, respectively. The 
vertical and horizontal bars of the cross in lower right 
comer of plot correspond to a factor of 3 in Mo and 50% 
in 1, respectively. Taken from Wesnousky (1986).
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Strong Ground Motion

Levels of strong ground motion at a gridwork of sites are calculated 

using the strong ground motion relationship of Joyner and Boore (1988). 
The predictive equation is

log y = a + b( M -6) + c( M -6)2 + d log r + k r (2A)

for 5.0 < M < 7.7 moment magnitude 
and r = (r02 + h2)1/2

where r0 is the shortest distance (km) from the recording site to the 

vertical projection of the earthquake fault rupture on the surface of the 

earth and values of a, b, c, d, k, and h are given in table 1A for predicting 

parameters corresponding to the larger of the two horizontal components. 

I use values for predicting parameters which yield peak horizontal ground 

acceleration at rock sites. The moment magnitude (M) is related to the 
seismic moment M® through the equation M = 2/3 (log M® - 16.1) (Hanks

and Kanamori, 1979). As mentioned above, the seismic moment for each 

expected event is determined from paleoseismic evidence, historical 

seismicity, or an empirical fault length versus seismic moment relationship 

(Wesnousky, 1986). Although the Joyner and Boore (1988) attenuation 

equation underestimated the strong ground motion during the Loma Prieta 

earthquake (Boore et al., 1989), for comparative purposes with Wesnousky 

(1986), I use the Joyner and Boore relationships (1988) . Therefore, my 

predicted strong ground motions may be somewhat underestimated.

For maps which include the effects of local site conditions, a two tier 

method is used to generate the Strong ground motions.
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Table 1 A. Parameters in the predictive equations of Joyner and Boore 
(1988) for the larger of two horizontal components.

PEAK ACCELERATION

a b c h d k
0.49 0.23 0.0 8.0 -1.0 -0.0027

PEAK VELOCITY

a b c h d k
2.17 0.49 0.0 4.0 -1.0 -0.0026
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First, I estimate the level of strong ground motion for a hard rock site at 

each grid point. For these calculations, I use values for predicting 

parameters corresponding to the larger of the two horizontal components 

(Table 1 A). Then I multiply the level of hard rock strong ground motion 

by a local site amplification factor. To determine the local site 

amplification factor, I digitized the geologic map compiled by Borcherdt 

and others (1975) and assigned an amplification value to each geologic unit 

(Borcherdt and others, 1991). The final estimated level of strong ground 

motion is a combination of the strong ground motion due to source size and 

source to site distance and the local site amplification that is related to 

geologic materials at the site. I do not include amplifications due to basin 

geometry, directivity of the rupture, or critical reflections from 

boundaries such as the Moho.

Probability

The probability of occurrence of a given ground motion is a function 

of the frequency of occurrence of the specified ground motion and the time 

period for which one is concerned. More concisely, the probability that the 

occurrence time R of a certain level of strong ground motion will occur 
during the period of time from t̂  to t2, conditional to tj years having

elapsed since the last occurrence of similar ground shaking, is generally 

expressed as
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JfT (t) dt

P(t1<R<t2l R>q) = ^ (3A)
JfT ( t ) dt

where fT (t) is an assumed probability density function. To calculate fT (t), I

separate the data set (Quaternary faults) into two disjoint sets - a time 

independent set and a time dependent set.

For faults where I have no information regarding the past history of 

earthquakes, the occurrence of specific levels of strong ground motion at a 
site is described as a Poisson process and, hence, fT (t) is appropriately

defined by the exponential function X,e‘H  where X  is the frequency of 

occurrence of the level of ground motion specified. With empirical 

relationships between seismic moment, source to site distance, and strong 

ground motions, equation 1A and data describing the length and average 

slip rate of faults in the San Francisco Bay area, the average expected 

frequency of occurrence of seismic shaking may be computed at a 

gridwork of sites for a range of different levels. The value X ,  for a given 

level of strong ground motion at site location j, is defined by the relation

N

(4A)

i=l

where Tj are the average repeat times of the N faults that are capable of 

producing a specific level of ground motion at site location j. Thus, for the
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time independent case, repeated use of equations (4A) and (3A) for a given 

level of strong motion at a gridwork of sites provides the initial base map. 

Additionally, where appropriate data were available, the time-dependency 

of seismic hazard was incorporated by taking into account the occurrence 
times of historical earthquakes.

Toward that end, I define the expected date Te of rupture on a fault 

to equal Tjast + T, where Tjast is the date of the last earthquake rupture and 

T is the estimated time necessary to accumulate strain equal to that released 

in the previous earthquake. It is also assumed that the actual recurrence 
times distribute normally about values of T and hence estimates of Te may

be described with the normal probability density function

- (t - T)2/2o2
e (5A)

where the standard deviation o is assigned to represent the confidence 
given to a predicted value of Te. More recently studies (Working

Group, 1988; W orking Group, 1990) have suggested the use of 

lognorm al or Weibull distributions because they eliminate the 

physically unrealistic possibility of an earthquake occurring before 

time equals 0, which is allowed by equation 5A. Nonetheless, for 

comparative purposes with Wesnousky (1986), I maintain use of 

equation 5A in this analysis. A value of 0.33 is assumed for o; based

on Sykes and Nishenko's (1984) study of the reccurrence behavior of three 
fault segments in California. Substitution of fT (t) in equation 3A results in

an estimate of the probability that the rupture time Te of a fault will occur 

during the next At = t2-ti years conditional to q years having elapsed since
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Tiast- This method reflects the concept that the likelihood of an earthquake 

on a specific fault or fault segment is minimal immediately following Tlast 

and increases as a function of time. The time-dependent and time- 

independent probabilities are combined using established statistical 

methods. The hazard maps thus incorporate both conditional time- 

independent probability estimates for faults where I have no information 

about fault rupture histories and conditional time-dependent estimates of 

probability for faults in the Bay area that either ruptured historically or 

have had prehistoric ruptures that have been dated from Quaternary 

geologic studies.



Fault Location1 S2 L3 M4
lat long

Antioch A 38.1 121.8 10 6.3
Antioch B 38.0 121.8 19 6.6
Big Valley 39.0 122.9 rl 16 6.5

Browns Valley * 36.9 121.3 29 6.8
Burdell Mountain 38.1 122.6 21 6.6
Calaveras A 
(Coyote Lake)

37.0 121.5 rl 28 5.7

Calaveras B 
(Morgan Hill)

37.3 121.7 rl 28 6.3

Calaveras C 37.5 121.8 rl 31 6.3
Calaveras D 37.7 122.0 rl 23 6.3
Carmel* 36.6 121.9 28 6.8
Collayami 38.9 122.8 rl 18 6.6
Concord 38.0 122.0 rl 24 6.7

Cordelia 38.3 122.1 22 6.7
Corral Hollow * 37.7 121.6 17 6.5
Green Valley 38.2 122.1 35 6.9

APPENDIX B

Quaternary Faults

Slip Rate6
C5 Mn Mx Pr T7 D 8 A9 Reference10

(mm/yr)

C Jennings (1975)
C Jennings (1975)
B 2675 h q Wesnousky (1986) 

Hearn et al. (1976) 
Clarke et al. (1984)

C Jennings (1975)
C Jennings (1975)
A 17.0 82+ h h Wesnousky (1986) 

Prescott et al. (1981) 
Savage et al. (1979)

A 7.0 17.0 150+ h h See segment A

A 7.0 150+ h Wesnousky (1986)
A 7.0 150+ h h Wesnousky (1986)
C Jennings (1975)
B 1.0 0.1 h q Hearn et al. (1976)c
A 7.0 183 Wesnousky (1986)

Harsh and Burford (1982)
C Herd and Helley (1977)
C Jennings (1975)
A 7.0 242 Wesnousky (1986)

Herd and Helly (1977) 
Frizzell and Brown (1976)

to-j

pr r t  y i s i  1



Fault Location1 
lat long

S2 L3

Greenville 37.7 121.7 rv 28
Hayward A 37.2 121.7 II 18
(Coyote and Silver 

Creek faults)
Hayward B 37.4 121.8 rl 32
(Evergreen fault)
Hayward C 37.6 122.0 rl 32

Hayward D 37.9 122.3 rl 49
Healdsburg 38.6 122.8 rl 32

King City 36.0 121.6 57
Las Positas 37.6 121.7 In 10

Livermore 37.7 121.8 8
Los Altos * 37.3 122.1 14
Los Gatos * 37.2 121.9 15

Quaternary Faults (co n tin u e)

Slip Rate6
M4 C5 Mn Mx Pr T7 D 8 A 9 Reference10

(mm/yr)

6.8 B 0.1 0.7 3585 h h Wright et al. (1982)
6.6 A 9.0 118 h h see text

Wesnousky (1986)

6.9

6.9

A 9.0 149 h h see text
Wesnousky (1986)

A 6.0 9.0 9.0 189 h h see text
Working Group (1990) 
Lienkaemper et al. (1991) 
Prescott el al. (1981)
Prescott and Lisowski (1982) 
Lawson (1908)

7.0 A 9.0 240 h h see segment C
6.8 A 9.0 178 see text

Wesnousky (1986) 
Jennings (1975)

7.1 C Jennings (1975)
6.3 B 0.04 1.6 873 t q Carpenter and Clark (1982)c 

Herd and Brabb (1980)
6.2 C Jennings (1975)
6.4 C Jennings (1975)
6.5 C Jennings (1975)



Quaternary Faults (con tinue)

Fault Location1
Slip Rate6

S2 L3 M4 C5 Mn Mx Pr T7 D 8 A9 Reference
lat long (mm/yr)

Maacama 39.1 123.1

Midway 37.7 121.6
Oneil 36.9 121.0
Ortigalita A 37.1 121.2

Ortigalita B 37.0 121.1
Ortigalita C 36.9 121.0
Ortigalita D 36.7 120.9
Paicines 36.8 121.3

Panoche Pass * 36.6 121.1
Pleasonton 37.7 121.9
Rinconada 35.8 120.9

Rodgers Creek 38.3 122.6

San Andreas A 38.5 122.8
(Shelter Cove to

Crystal Springs)

151 7.6 A

r 11 6.3 B 0.1
r 18 6.5 A 0.3
? 25 6.7 C 0.01

? 18 6.6 C 0.01
? 18 6.6 c 0.01
? 21 6.6 c 0.01

rl 36 6.9 A 5.0

22 6.6 C
9 6.2 C

rl 136 7.6 A 2.4

51 7.0 A 2.1

rl 420 7.8 AA 7.5

9.0 541

0.5 2651
1.8 984

0.04 10000+ Vq

0.04 10000+ Vq
0.04 10000+ Vq
0.04 10000+ Vq
13.0 1.0 1727 h

12.0 2.4 1883 h P

10.0 9.0 248

30.0 19.0 200+ h h

Wesnousky (1986) 
Pampeyan et al. (1981)
Herd (1978)
Herd and Helley (1977) 
Shedlock et al. (1980)c 
Lettis (1982)c
Anderson et al. (1982)
Clark et al. (1984) 
see segment A 
see segment A  
see segment A 
Wesnousky (1986)
Harsh and Pavoni (1978) 
Ellsworth (1975)
Savage et al. (1973)
Lisowski and Prescott (1981) 
Jennings (1975)
Jennings (1975)
Durham (1965)b 
Hart (1976)b 
Budding et al. (1991) 
Schwartz et al. (1992) 
see text 
Prentice (1989)
Matu’ura et al. (1986)
Hall (1984)
Prescott and Yu (1986) VO



Quaternary Faults (co n tin u e)

Fault
Slip Rate6

Location1 S2 L3 M4 C5 Mn Mx Pr T7 D 8 A 9 Reference10
lat long (mm/yr)

San Andreas B 37.4 121.1 rl 53 6.8 AA 7.5 30.0 19.0 131+ h h see text
(Crystal Springs Thatcher (1987)

to Los Gatos) Matu’uraet al. (1986) 
Hall (1984)
Prescott et al. (1981)

San Andreas C 37.1 121.9 rl 37 6.6 AA 7.5 30.0 19.0 83+ h h see text
(Los Gatos to Thatcher (1987)

Hecker Pass) Matu’ura et al. (1986) 
Prescott et al. (1981)

San Andreas D 36.6 121.2 rl 86 7.0 AA 7.5 39.0 5.0 262 h h Wesnousky (1986)
(Hecker Pass to Burford and Harsh (1980)

Bitterwater) Clark et al. (1984)
San Benito 36.6 121.1 rl 24 6.7 A 5.0 13.0 1.0 1291 see Paicines fault
San Gregorio - 37.1 122.3 rl 190 7.7 A 7.0 19.0 7.0 824 h q Weber and Cotton (1981)c
Hosgri Weber and Lajoie (1980)c 

Clark etal. (1984)
San Joaquin 36.9 120.8 ? 21 6.6 A 0.2 2.0 1083 Vq Lettis (1982)c
Sargent-Berrocal 37.0 121.7 rr 51 7.1 A 4.0 1.0 2225 h Savage et al. (1979) 

H ayet al. (1980)
Seaside* 36.5 121.7 23 6.7 C Jennings (1975)
Tolay 38.2 122.5 14 6.5 C Jennings (1975)
Vaca 38.3 122.0 rl 7 6.1 A 0.3 4.0 260 h q Kneupfer (1977)c
Verona 37.6 121.8 r 8 6.2 B 0.02 0.1 0.1 9735 t q Herd and Brabb (1980)c
West Napa 38.3 122.3 17 6.5 C Herd and Helley (1977)



Quaternary Faults (con tin u e)  

Slip Rate6
Fault Location1 

lat long
S2 L3 M4 C5 Mn Mx Pr

(mm/yr)
T7 D 8 A 9 Reference10

Zamora 38.8 121.9 n 21 6.6 A 0.2 0.5 0.3 4631 y  q Harwood et al. (1981 )c
Harwood and Helley (1982)c

Zayante-Vergales 37.0 121.8 rr 50 7.1 B 0.1 1.3 3140 t q Coppersmith (1979)c 
Dupre (1975)c

1 - Location of fault. Coordinates mark approximate midpoint of fault or fault segment.
2 - Fault type (eg. reverse (r), normal (n), right-lateral (rl), left-lateral (11), right-reverse (lr),

right-vertical (rv), left-vertical (rv), right-normal (m), left-normal (In).
3 - Fault length (kilometers)
4 - Moment-magnitude Mw of earthquake expected for rupture of entire fault length, estimated with

slip-rate dependent emperical relations between seismic moment M0 and fault length Wesnousky 
(1986) in figure 1A, and assuming the emperical relation log M0 = 1.5MW +16.1 (Hanks and 
Kanamori, 1979).

5 - Slip rate class : AA > 10 mm/yr, A > 1 mm/yr, B > 0.1 mm/yr, C > 0.01 mm/yr. Fault assumed
to be class C when no slip rate data are available and assigned a slip rate equal toO.Ol mm/yr for 
hazard map development.

6 - The minimum (Mn) and maximum (Mx) values of slip rate reported by referenced investigators.
The preferred (Pr) value of rate, when listed, is used for estimating T. Otherwise, T is estimated 
with either the minimum, or average of the minimum and maximum reported rates, depending on 
which limits are placed on the respective faults.

7 - Repeat time of, rupture for each fault estimated with equation 1, unless marked by +. Repeat times
estimated to be greater than 10000 years are not listed.



8 - The reported slip rate is determined from predominantly horizontal (h), vertical (v), dip-slip (d),
or the total (t) component of displacement.

9 - Youngest feature used to determine slip rate and/or repeat time along entire fault zone; Holocene
(h), Pleistocene (q), Pliocene (p), or Miocene (m). Range of slip rates may reflect rates 
determined from older offsets as well.

10 - References regarding location, slip rate, and repeat time of each fault. A subscript a, b, or c 
following the reference indicates that values of slip rate are those reported by a) Anderson 
(1979), b) Bird and Rosenstock (1984), and c) Clark et al. (1984), respectively.

* - Fault name assumed without reference to earlier studies.
+ - Based on historical information, trenching studies, or other geological inferences, rather than 

equation 1. Cases discussed in the text.
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APPENDIX C

The programs used to calculate the strong ground motion array were 

written by Steve Wesnousky in 1985 and modified by myself in 1991. 

They are not be presented here. The program which follows generates 

maps from the strong ground motion array, a fault input file, and a 

boundary file. The plotting program, plothaz, is written in standard 

fortran 77 with calls to the GK-2000 plotting package library. All maps 

presented in this Thesis were plotted on a Sun workstation.



PROGRAM plothaz

this is the main program which drives subroutines to plot 
the following types of seismic hazard data.

1 1| QUATERNARY FAULTS PRODUCING GROUND ACCELERATION'
' 2 I EXPECTED RETURN TIME OF LARGE EARTHQUAKES 1 
1 3 1 PROBABILITY OF A LARGE EARTHQUAKE'
• 4 | PEAK HORIZONTAL GROUND ACCELERATION'
' 5 | PEAK HORIZONTAL GROUND VELOCITY'
' 6 | soil site map')

The strong motion data is generated by steve's seismic 
hazard programs.

character*20 FNAME, plotitle, HLseg(2)
character*l ans
logical highlight, showtitle
logical hazplot, bold
common /fltplt/ hazplot, bold
logical BW
common /screen/ BW
logical crop
common /testframe/ crop
logical checkshift
common /check/ checkshift
integer numfile, segcolor, HLcolor(2)
INTEGER wkid, plot 
common /sun/ wkid 
common /pltype/ plot
real xoffset, yoffset, Txoffset, Tyoffset
common /movexy/ xoffset, yoffset, Txoffset, Tyoffset
integer numtemp 
real coord, temp
dimension coord(12), temp(lOOOO) 
common /plotline/ numtemp, temp
integer wtype, errind, nawk 
integer connid, errlun, ilun, olun 
Data errlun, ilun, olun /6,0,0/ 
data wkid /1/

**{begin main program}**
crop = .false, 
call hazin
if (plot .EQ. 99) goto 99020
write(*,*) 'do you want to crop the plot? (Y) 
read(*,100) ans 
if (ans .EQ. 'Y') then 

crop = .true, 
call getbounds 

endif
xoffset = 4.0 
yoffset = 12.0
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write(*,1) xoffset, yoffset 
1 formate xoffset = \F3.1,' yoffset = \F4.1/
+ do you want to move the probability label'5 (Y) ‘ ) read(*,100) ans ' V ’ '
if (ans .EQ. 'Y •) then
write(*,*) 'xoffset, yoffset' 
read(*,*) xoffset, yoffset 

endif
showtitle = .false.
write(*,*) ‘do you want to print a title? (Y) ' 
read(*,100) ans 
if (ans .EQ. 'Y ') then 

showtitle = .true.
write(*,*) 'what is the title of the plot?' 
read)*,*) plotitle 
write(*,*) 'xoffset, yoffset' 
read(*,*) Txoffset, Tyoffset 

endif
BW = .false.
write (*,*) ‘do you want B&W (Y) or color (default)?'
read(*,100) ans
if (ans .EQ. 'Y ') BW = .true.

10 write(*,*) ' FAULT INPUT FILENAME : '
READ(*,*) FNAME
OPEN (unit=3, file=FNAME, err=10, status=‘old' ,

+ access= ' sequential' , form=' formatted' )
** skip strong motion relationship ** 
do 20, i=l,9 

read(3,*)
20 continue

highlight= .false. 
i=0

25 write(*,26)
26 format ('Do you want to highlight a fault segment? (Y) '

+ /'maximum 2 segment')
read(*,100) ans 
if (ans.EQ.'Y ') then 
highlight = .true. 
i=i+l 
maxseg=i

30 write(*,*) ' FAULT segment INPUT FILENAME : '
READ(*,*) HLseg(i)
OPEN (unit=4, file=HLseg(i) , err=30, status='old',

+ access='sequential', form='formatted‘ )
close(4) 
write(*,31)

31 format('color of segment'/ 'yellow = 12'/'green = 14') 
read(*,*) HLcolor(i)
goto 25 

endif
bold = .false.
write(*,*) 'Do you want the crosshairs? (Y) 
read(*,100) ans 
if (ans .EQ. 'Y') then
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checkshift = .true, 
call getlatlong 

else
checkshift = .false, 

endif
*

*

* ***{BORDER INPUT FILE}**
OPEN (unit=2, file='border.i', err=99010, status=1 old', 

+ access=' sequential', form= ' formatted' )m =1
40 read(2,110,end=60) (coord(j), j =1,12) 

do 50, i=l,12
temp(m) = coord(i) 
m = m+1 

50 continue 
goto 40 

60 continue
temp(m) = 99.0 
temp(m+1) = 0.0 
numtemp = m 
close(2)

*

100 format (Al)
110 format (F6.2,F7.2,F6.2,F7.2, F6.2, F7.2,

+ F6.2,F7.2,F6.2,F7.2,F6.2,F7.2)
*

■A:*****************************************************-****
★

connid = olun * 256 + ilun 
call gopks (errlun,-l) 
call gqewk (1,errind,nawk,wtype) 
if (errind .NE. 0) goto 99000 
call gopwk (wkid,connid,wtype) 
call gpause (wkid)★
call gacwk (wkid)*
call screencolor 
if (hazplot) then

* ** hazard map ** 
call plothaz

call hazcode 
call hazlabel 

else
* ** fault map **

call faultcode 
call faultlabel 

endif
numfile = 3 
segcolor = 8
call faultseg(numfile,segcolor) 
close(3) 
call statebound 
if (highlight) then 
bold = .true, 
numfile = 4
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do 210, i=l,maxseg
OPEN (unit=4, file=HLseg(i), err=210, status=•old', 

+ access-1 sequential', form='formatted')segcolor = HLcolor(i) 
call faultseg(numfile,segcolor) close(4)

210 continue 
endif
call frame
if (showtitle) call prtitle(plotitle) 
call gpause (wkid) 
call gdawk (wkid)
call gclwk (wkid) 
call gclks

********************************************* ****************
*

write(*, *) 'do you want to print the color array? (Y) ' 
read(*,100) ans
if (ans .EQ. 'Y') call prtarray

'error openning work station' 
errind

'can not find border.i'

stop
99000 write(*,*) 

write(*,*) 
call gclks 
stop

*

99010 write(*,*) 
close(2) 
close(3)

99020 write(*,*) 
stop 
end

*

****************************************************************
****************************************************************
*

subroutine hazin

'plot type EQ 99'

this subroutine reads and formats hazard data from Steve's hazard 
program. It fills the array CALflt with integer color codes 
for the hazard map.

character*20 FNAME
character*l ans
logical soilsite
logical hazplot, bold
common /fltplt/ hazplot, bold
INTEGER plot, CALflt(1000,1000)
common /pltype/ plot
common /global/ CALflt
real soil (1000,1000)
common /site/ soilsite, soil
real xscale, yscale, northB, southB, westB, eastB
common /coord/ xscale, yscale, northB, southB, westB, eastB
real xcenter, ycenter, xshift, yshift
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common /centerline/ xcenter, ycenter, xshift, yshift
integer xmax, ymax, cellat, cellong, cellpoints
common /cellscale/ xmax, ymax, cellat, cellong, cellpoints
real proportion, latmult, longmult
common /ratio/ proportion
data latmult, longmult /10.5,8.5/
WRITE (*,20)

20 FORMAT ('ENTER INTEGER 1,2,3,4, OR 5, RESPECTIVLY FOR MAPS OF'/ 
+ '1| QUATERNARY FAULTS PRODUCING GROUND ACCELERATION'/
+ ' 2 | EXPECTED RETURN TIME OF LARGE EARTHQUAKES'/
+ ' 3 | PROBABILITY OF A LARGE EARTHQUAKE'/
+ ' 4 | PEAK HORIZONTAL GROUND ACCELERATION'/
+ ' 5 1 PEAK HORIZONTAL GROUND VELOCITY'/
+ ' 6 | soil amplification map'/
+ ’ 7 | Quaternary fault map')
read(*,*) plot 
if (plot.EQ.7) then 
hazplot = .false, 

call getbounds 
else

hazplot = .true.
10 write(*,*) ' INPUT FILENAME : '

READ(*,*) FNAME
OPEN (unit=l, file=FNAME, err=10, status='old',

+ access='sequential', form='formatted')
read(1,100) xmax, ymax, cellpoints, northB, southB,

+ westB, eastB, proportion
endif
**{set scale)**
yYscale = latmult * (northB - southB) 
yXscale = longmult * (westB - eastB) 
test = proportion * xmax 
if (test .GT. ymax) then 
yscale = yYscale 

else
yscale = yXscale 

endif
write(*,22) yYscale, yXscale, yscale 

22 format(/'scale 1 is ',F6.2,'scale 2 is ',F6.2/
+ 'recommended scale is ’,F6.2)
write(*,*) 'do you want to change the recommended scale? (Y)' 
read(*,120) ans 
if (ans .EQ. 'Y') then
write(*,*) 'enter scale factor' 
read(*,*) yscale 

endif
xscale = yscale / proportion
**{set array shift}** 
xshift = 0. 
yshift = 0.
xcenter = (westB - eastB)/(0.2 * (xmax - 1)) 
ycenter = (northB - southB)/(0.2 * (ymax - 1))

**{list parameters}**



write(*,110) northB, southB, westB, eastB,
+ cellpoints, proportion, plotwrite(*,*) 'type Y to continue' 
read(*,*) ans
if (ans .NE. 'Y') goto 99010 
if (plot.EQ.7) return★
do 35, m=l, xmax 
do 30, n=l, ymax 

CALflt(m,n) = 0 
30 continue 
35 continue

soilsite = .false.
*

* **{input data}**
if (plot .EQ. 1) then 

call column 
call plotlin 

else
if (plot .EQ. 2) then 

call column 
call plot2in 

else
if (plot .EQ. 3) then 

call column 
call plot3in 

else
if (plot .EQ. 4) then 

call plot4in 
else

if (plot .EQ. 5) then 
call plot5in 

else
* ** plot EQ 6 **

call plot6in 
endif 

endif 
endif 

endif 
endif 
close(1)*

100 format (2 (15) , lx,14,2(lx,F6.3),2(lx,F7.3) , lx, F5.3) 
110 format (/2(lx,F5.2),2 (lx, F6.2),lx,14,lx,F4.2,lx,12) 
120 format (Al)

*

return
99010 write(*,*) 'program stopped by operator' 

plot = 99 
close(1) 
return 
end

*

**********************************************************

subroutine getbounds
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this subroutine reads the boundaries for a Quaternary fault map.
logical crop 
common /testframe/ crop
integer xmax, ymax, cellat, cellong, cellpoints 
common /cellscale/ xmax, ymax, cellat, cellong, cellpoints 
real proportion 
common /ratio/ proportion
real xscale, yscale, northB, southB, westB, eastB 
common /coord/ xscale, yscale, northB, southB, westB, eastB 
real tempnorthB, tempsouthB, tempwestB, tempeastB 
common /cropB/ tempnorthB, tempsouthB, tempwestB, tempeastB
WRITE(*,*)'ENTER WEST AND EAST BOUNDING COORDINATES'
READ (*,*) tempwestB, tempeastB
write(*,*)'ENTER SOUTH AND NORTH BOUNDING COORDINATES'
READ (*,*) tempsouthB, tempnorthB
WRITE(*,*) 'enter number of gridpoints per degree'
READ (*,*) numptdeg 
if (.NOT.crop) then
write(*,*) 'ratio between lat and long?' 
read(*,*) proportion 
westB = tempwestB 
eastB = tempeastB 
northB = tempnorthB 
southB = tempsouthB 

endif
NXXX = ( (westB - eastB) * numptdeg) + 1 
NYYY = ( (northB - southB) * numptdeg) + 1 
cellpoints = numptdeg
WRITE(*,2060) westB, eastB, southB, northB, cellpoints 

2060 FORMAT('west boundary is ',F7.2,' east boundary is ',7 1 .2 /
+ 'south boundary is ',7 1 .2 ,' north boundary is ',7 1 .2 /
+ 'number of points per degree is ',16/)
return 
end

•k
**********************************************************
*

subroutine getlatlong
•k
* this subroutine reads the latitude and longitude for
* placement of the crosshairs.*

integer xmax, ymax, cellat, cellong, cellpoints
common /cellscale/ xmax, ymax, cellat, cellong, cellpoints
real lathair, longhair
common /haircoord/ lathair, longhair
real xscale, yscale, northB, southB, westB, eastB
common /coord/ xscale, yscale, northB, southB, westB, eastB

*

*

write(*,*) 'What is the latitude of the crosshair' 
read(*,*) lathair
write(*,*) 'What is the longitude of the crosshair' 
read(*,*) longhair

★
★
*
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cellat = ((lathair - southB) * cellpoints) + 1 
cellong = ((WestB - longhair) * cellpoints) + 1★
return
end

•k
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
★

*

*

*
*
*

*

subroutine column

this subroutine chooses the proper column to be read based 
on the strong ground motion level chosen by the user.

INTEGER icol 
common /index/ icol 
real ACC 
real levell, 
real level8, 
data levell, 
data level5, 
data level8,

level2, level3, level4, level5, level6, level7 
level9, levellO, levelll, levell2, levell3 
level2, level3, level4 /0.065,0.075,0.085,0.095/ 
level6, level7 /0.15,0.25,0.35/
1eve19, levellO /0.45,0.55, 0.65/

data levelll, levell2, levell3 /0.75, 0.85,0.95/

write(*,*) 'enter peak horizontal ground motion' 
read{*,*) ACC 
if (ACC .LT. levell) then 

icol=l 
else
if (ACC .LT. Ievel2) then 

icol=2 
else
if (ACC .LT. Ievel3) then 

icol=3 
else
if (ACC .LT. Ievel4) then 

icol=4 
else
if (ACC .LT. Ievel5) then 

icol=5 
else
if (ACC .LT. Ievel6) then 

icol=6 
else
if (ACC .LT. Ievel7) then 

icol=7 
else
if (ACC .LT. Ievel8) then 

icol=8 
else
if (ACC .LT. Ievel9) then 

icol=9 
else
if (ACC .LT. levellO) then 

icol=10 
else



if (ACC .LT. levelll) then 
icol=ll 

else
if (ACC .LT. Ievell2) then 

icol=12 
else
if (ACC .LT. Ievell3) then 

icol=13 
else

icol=14
endif

endif
endif

endif
endif

endif
endif

endif
endif

endif
endif

endif
endif
write(*,100) icol 

100 format(2x,'1= ',12)
return
end

******************************************************** *

subroutine plot1in

INTEGER CALflt, icol 
DIMENSION CALflt(1000,1000) 
common /global/ CALflt 
common /index/ icol 
integer fault 
dimension fault(14) 
integer maxhaz, devastate 
data maxhaz, devastate /16,17/

10 read(1,100,end=20) n, m, (fault(j), j =1,14)
if (fault(icol).GT.maxhaz) fault(icol) = devastate 
if ((fault(icol).EQ.0).OR.(fault(icol).EQ.1)) then 
CALflt(m,n) = fault(icol) 

else
if ((fault(icol). G T .1).AND.(fault(icol).LT. 5)) then 
CALflt(m,n) = 1 

else
if ((fault(icol).GT.4).AND.(fault(icol).LT.9)) then 
CALflt(m,n) = 2 

else
if ((fault(icol).GT.8).AND.(fault(icol).LT.13)) then 
CALflt(m,n) = 3 

else
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if ((fault(icol).GT.12).AND.(fault(icol).LT.17 CALflt(m,n) = 4 
else

CALfIt(m,n) = 5 
endif 

endif 
endif 

endif 
endif 
goto 10 

20 continue
*

100 format(213,1413)
*

return
end*

**********************************************************
*

subroutine plot2in
*

*

INTEGER CALfIt, icol 
DIMENSION CALflt(1000,1000) 
common /global/ CALflt 
common /index/ icol 
real repeatT, returnT 
DIMENSION repeatT(14)

*
10 read(1,100,end=20) n, m, (repeatT(j), j=l,14) 

returnT = 1/repeatT(icol) 
if (returnT .GT. 1000) then 

CALflt(m,n) = 0 
else

if (returnT .GE. 500) then 
CALflt(m,n) = 1 

else
if (returnT .GE. 250) then 

CALflt(m,n) = 2 
else

if (returnT .GE. 100) then 
CALflt(m,n) = 3 

else
if (returnT .GE. 50) then 
CALflt(m,n) = 4 

else
* **{returnT LT 50}**

CALflt(m,n) = 5 
endif 

endif 
endif 

endif 
endif 
goto 10 

20 continue

) then

100 format(213,14F6.5)
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*

return
end

*

■fr*******************************************^^ **********
*

subroutine plot3in
*

*

INTEGER CALflt(1000,1000) , icol 
common /global/ CALflt 
common /index/ icol 
real prob 
dimension prob(14)

★

*

10 read (1,100, end=20) n, m, (prob(j), j=l,14) 
if (prob(icol) .LT. 0.01) then 
CALflt(m,n) = 0 

else
if (prob(icol) .LT. 0.2) then 

CALflt(m,n) = 1 
else

if (prob(icol) .LT. 0.4) then 
CALflt(m,n) = 2 

else
if (prob(icol) .LT. 0.6) then 

CALflt(m,n) = 3 
else

if (prob(icol) .LT. 0.8) then 
CALflt(m,n) = 4 

else
CALflt(m,n) = 5  

endif 
endif 

endif 
endif 

endif 
goto 10 

20 continue
*

100 format(213,14F6.4)
*

return
end

*

**********************************************************
★

subroutine plot4in*
★

INTEGER CALflt(1000,1000) 
common /global/ CALflt 
real grmotion 
DIMENSION grmotion(20)

*

* ** plot acceleration **
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n = 1
read(l, 100,end=30) (grmotion(j), j =1,20) 

do 20, i=l,20
if (grmotion(i) .LT. 0.05) then 

CALfIt(m,n) = 0 
else

if (grmotion(i) .LT. 0.1) then 
CALflt(m,n) = 1 

else
if (grmotion(i) .LT. 0.2) then 
CALflt(m,n) = 2 

else
if (grmotion(i) .LT. 0.3) then 
CALflt(m,n) = 3 

else
if (grmotion(i) .LT. 0.5) then 
CALfIt(m,n) = 4 

else
**{grmotion GT .50}**
CALfIt(m,n) = 5 

endif 
endif 

endif 
endif 

endif
if (m .EQ. Ill) then

if (n .EQ. 101) goto 30 
m = 1 
n = n + 1 

else
m = m + 1 

endif 
20 continue 

goto 10 
30 continue
100 format(20F4.2)

return
end

************************************************

subroutine plot5in

INTEGER CALfIt(1000,1000) 
common /global/ CALflt 
real grmotion 
DIMENSION grmotion(20)

** plot acceleration ** 
m = 1 
n = 1
read(l, 100,end=30) (grmotion(j), j=l,20) 

do 20, i=l,20
10



if (grmotion(i) .LT. 6) then 
CALflt(m,n) = 0 

else
if (grmotion(i) .LT. 20) then 
CALflt(m,n) = 1 

else
if (grmotion(i) .LT. 40) then 
CALflt(m,n) = 2 

else
if (grmotion(i) .LT. 60) then 
CALfIt(m,n) = 3 

else
if (grmotion(i) .LT. 80) then 
CALflt(m,n) = 4 

else
**{grmotion GT .50)** 
CALflt(m,n) = 5 

endif 
endif 

endif 
endif 

endif
if (m .EQ. Ill) then

if (n .EQ. 101) goto 30 
m = 1 
n = n + 1 

else
m = m + 1 

endif
20 continue 

goto 10 
30 continue

100 format(10F6.0)
return
end

***************************************************

subroutine plot6in
this subroutine inputs the soil data for plotting 
a soil amplification map.

integer il, jl, i2, j2, i3, j 3, i4, j4, i5, j5 
real Al, A2, A3, A4, A5 
integer zero 
data zero /0/

10 read(l, 100,end=20) il,j1,Al,i2,j2,A2,i3,j3,A3, 
+ i4,j4,A4,i5,j5,A5
if (i5.GT.zero) then 

call geology(il,jl,Al) 
call geology(i2,j2,A2) 
call geology(i3,j3,A3)



call geology(i4,j4,A4) 
call geology(i5,j5,A5) 

else
if (i4.GT.zero) then 

call geology(il,jl,Al) 
call geology(i2,j2,A2) 
call geology(i3,j3,A3) 
call geology(14,j4,A4) 

else
if (i3.GT.zero) then 

call geology(il,jl,Al) 
call geology(i2fj2,A2) 
call geology(i3,j3,A3) 

else
if (i2.GT.zero) then 

call geology(il,jl,Al) 
call geology(i2,j2,A2) 

else
call geology(il,jl,Al) 

endif 
endif 
endif 
endif 
goto 10

20 continue
100 format(5(lx,14,lx,14,F5.2))

return
end

********************************************************* 

subroutine geology(i,j,soilsite)
this subroutine determines the color of the array CALflt 
based on the soil amplifications read in plot6in.

INTEGER CALflt(1000,1000) 
common /global/ CALflt 
integer i,j 
real soilsite
real geoll, geol2, geol3, geol4, geol5, geol6 
data geoll, geol2, geol3 /0.5,0.9,1.3/ 
data geol4, geol5, geol6 /1.5,2.4,5.6/
if (soilsite .GT. geol6) then 

CALflt(i,j) = 10 
else

if (soilsite .GT. geol5) then 
CALflt(i,j) = 11 

else
if (soilsite .GT. geol4) then 
CALflt(i,j) = 12 

else
if (soilsite .GT. geol3) then 
CALflt(i,j) = 13
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if (soilsite .GT. geol2) then 
CALfIt(i,j) = 14 

else
if (soilsite .GT. geoll) then 
CALfIt(i,j) = 15 

else
CALflt(i,j) = 0 

endif 
endif 

endif 
endif 

endif 
endif★
return
end

★
**********************************************************
ie
**********************************************************
**********************************************************
*

subroutine screencolor★
logical BW 
common /screen/ BW 
INTEGER wkid

e l s e

common /sun/ wkid
if (BW) then

call gscr (wkid, 0,1. O O 0)
call gscr (wkid,1,0. 99,0.99, 0.99)
call gscr (wkid,2,0. 85,0.85, 0.85)
call gscr (wkid,3,0. 65,0.65, 0.65)
call gscr (wkid,4,0. 45,0.45, 0.45)
call gscr (wkid,5,0. I—1 O »-> O 1)
call gscr (wkid,6,0. OOOO 0)
call gscr (wkid,7,0. oooo 0)
call gscr (wkid,8,0. oooo 0)
call gscr (wkid,9,0. oooo 0)
call gscr (wkid,10,0 .05,0.05 ,0 .05)
call gscr (wkid,11,0 oo .4)
call gscr (wkid,12,0 .66,0.66 ,0 .66)
call gscr (wkid,13,1 .0,1.0,1 .0)
call gscr (wkid,14,0 .92,0.92 ,0 .92)
call gscr (wkid,15,0 .995,0.995 ,0.995)

else
**{color}**

{black}
call gscr (wkid,0,0.0,0.0,0.0) 
{blue}

call gscr (wkid,1,0.0,0.0,1.0) 
{light blue}

call gscr (wkid,2,0.65,0.7,1.0) 
{purple}

call gscr (wkid,3,0.75,0.0,0.85)



{pink}
call gscr (wkid,4,1.0,0.7,0.9) {dark red}
call gscr (wkid,5,0.8,0.0,0.1) 
{white}

call gscr (wkid,6,1.0,1.0,1.0)
{red}

call gscr (wkid,7,1.0,0.0,0.0) 
{yellow}

call gscr (wkid,8,1.0,1.0,0.0)
{off white} (for faults in bkgnd)

call gscr (wkid,9,0.7,0.7,0.7)
{soil red}

call gscr (wkid,10,0.8,0.0,0.0) 
{orange}

call gscr (wkid,11,1.0,0.7,0.0) 
{light yellow}

call gscr (wkid,12,1.0,1.0,0.2) 
{very light blue}

call gscr (wkid,13,0.8,0.85,1.0) 
{green}

call gscr (wkid,14,0.0,0.85,0.1) 
{dark blue}

call gscr (wkid,15,0.0,0.08,0.9) 
endif
return
end

******************************************************* 

subroutine plothaz
this subroutine plots a cell array (the seismic hazard)

INTEGER wkid, CALfIt(1000,1000) 
common /sun/ wkid 
common /global/ CALfIt 
logical checkshift 
common /check/ checkshift
integer xmax, ymax, cellat, cellong, cellpoints
common /cellscale/ xmax, ymax, cellat, cellong, cellpoints
real xscale, yscale, northB, southB, westB, eastB
common /coord/ xscale, yscale, northB, southB, westB, eastB
real xcenter, ycenter, xshift, yshift
common /centerline/ xcenter, ycenter, xshift, yshift
integer dimx, dimy, ncs, nrs, dx,dy
integer tranum
real px, py, qx, qy, cellxscale, cellyscale 
data dimx, dimy /1000,1000/ 
data tranum /!/

cellxscale = xscale * (cellpoints/10) 
cellyscale = yscale * (cellpoints/10)
call gswn (tranum, 0.0,cellxscale,0.0,cellyscale)
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call gselnt (tranum)
*

ncs = 1 
nrs = 1
px = xshift * 10. 
py = yshift * 10. 
dx = xmax 
dy = ymax 
gx = px + dx 
qy = py + dy

k

if (checkshift) calfIt(cellong,cellat) = 8
call gca (px, py, qx, qy, dimx, dimy, ncs, nrs, dx, dy, CALf It)

k

return
end

k

***************************************************************
*

subroutine hazlabel
*

character*10 accdim, veldim 
character*20 title 
dimension title(6) 
character*12 explain 
dimension explain(36) 
integer tranum, plot 
common /pltype/ plot
real xoffset, yoffset, Txoffset, Tyoffset
common /movexy/ xoffset, yoffset, Txoffset, Tyoffset
real xl, x2, x3, x4, x5, yl, y2
real x, y, xl(2), yl(2)
data tranum /l/

* **{underline}**
data yl, y2 /-0.4,-0.4/
data xl, x2, x3 , x4, x5, x6 /7.0,5.5,8.0,10.5,10.0,7.3/

* **{plotl}**
data title(1) /'NUMBER'/
data explain(1) /' 0'/, explain(2) /' 1 - 4'/
data explain(3) /' 5 - 8'/, explain(4) /' 9 - 12'/ 
data explain(5) /'13 - 16'/, explain(6) /' >16'/

* **{plot2}**
data title(2) /'YEARS'/
data explain(7) /' > 1000'/, explain(8) /'500 - 1000'/
data explain(9) /'250 - 499'/, explain(lO) /'100 - 249'/
data explain(ll) /' 50 - 99'/, explain(12) /' < 50' /

* **{plot3}**
data title(3) /'PROBABILITY'/
data explain(13) /' < 0.01'/, explain(14) /'0.01 - 0.19'/
data explain(15) /'0.2 - 0.39'/, explain(16) /'0.4 - 0.59'/
data explain(17) /'0.6 - 0.79'/, explain(18) /'0.8 - 1.0'/

* **{plot4}**
data title(4) /'ACCELERATION'/
data explain(19) /' < 0.05'/, explain(20) /'0.05 - 0.09'/
data explain(21) /' 0.10 - 0.19'/, explain(22) /'0.20 - 0.29'/
data explain(23) / ' 0.3 0 - 0.49'/, explain(24) /' > 0.50'/

* **{plot5}**



61

data title(5) /'VELOCITY'/
data explain(25) /' < 6'/, explain(26) /' 6 - 19'/
data explain(27) /'20 - 39'/, explain(28) /'40 - 59'/ 
data explain(29) /'60 - 79'/, explain(30) /• >80'/

* **{plot6}**
data title(6) /'GEOLOGIC UNIT'/ 
data explain(31) /' Qm'/, explain(32) /' Qal' / 
data explain(33) /' QTs'/, explain(34) /' TMzs'/ 
data explain(35) /' KJf'/, explain(36) /' Kg'/

* **{dimensions}**
data accdim, veldim /'(g)','(cm/s)'/*

★
call gswn (tranum,0.0,40.0,0.0,31.945) 
call gselnt (tranum)

*

call gstxfp(-7,2) 
call gstxci(6)

•k

* **{write explaination}** 
call gschh(0.6) 
x = xoffset +2.3 
y = yoffset - 0.6 
yl(l) = yl + yoffset 
y 1(2) = y2 + yoffset 
if (plot -EQ. 1) then 
3=1
xl (2) = xl 
else

if (plot .EQ. 2) then 
3=7
xl(2) = x2 + xoffset 

else
if (plot .EQ. 3) then 

3=13
xl(2) = x3 + xoffset 

else
if (plot .EQ. 4) then 

j=19
xl(2) = x4 + xoffset 

else
if (plot .EQ. 5) then 

j=25
xl(2) = x5 + xoffset 

else 
3=31
xl(2) = x6 + xoffset 

endif 
endif 

endif 
endif 

endif
do 20, i=l,6 
y = y - 1.5
call gtx (x,y,explain(j) )
3 = j + 1 

20 continue
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★

* **{write title}**
if (plot .GT. 2) then 

call gschh(0.8)
if (plot .EQ. 6) call gschh(0.6) 
x = xoffset + 0.1 
xl(l) = x 

else
call gschh(1.0) 
x = xoffset + 0.5 
xl(l) = x 

endif
y = yoffset
call gtx (x,y,title(plot))

*

* **{write dimensions}**
if (plot .GT. 3) then 

call gschh(0.6) 
if (plot .EQ. 4) then 
x = xoffset + 9.4 
call gtx(x,y,accdim) 

endif
if (plot .EQ. 5) then 
x = xoffset + 6.5 
call gtx(x,y,veldim) 

endif 
endif

* **{underline}**
call gpl (2,xl,yl)*
return
end★

*****************************************************************
subroutine hazcode

*

integer plot 
common /pltype/ plot
real xoffset, yoffset, Txoffset, Tyoffset
common /movexy/ xoffset, yoffset, Txoffset, Tyoffset
real px(4), py(4), X(5), Y(5)
integer tranum, color
data tranum /l/*

*
call gswn (tranum, 0.0,40.0,0.0,31.945) 
call gselnt (tranum)*
call gsfais(l) 
if (plot.LT.6) then 

color = 5 
else

color = 15 
endif
px(l) = xoffset + 0.5 
px(2) = px(1)
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px(3) = xoffset + 2.0
px (4) = px(3)

p y  ( i ) = yoffset - 11.5
py (2) = yoffset - 10.0
py(3) = py (2)
py (4) = py(l)
do 20, i=l, 6

do 10, j=l,4
p y ( j )  = p y ( j )  + 1 . 5

10 continue
call gsfaci(color) 
call gfa (4,px,py) 
color = color - 1 

20 continue★
call gsplci(6) 
py(1) = yoffset - 11.5 
py(2) = yoffset - 10.0 
py(3) = py(2) 
py(4) = py(l) 
do 40, i=l,6 

do 30, j =1,4
p y ( j )  = p y ( j ) + 1 . 5  
X ( j )  = p x ( j )
Y(j) = py(j)

30 continue
X(5) = px(1)
Y (5) = py(1) 
call gpl (5,X,Y)

40 continue
*

return
end★

*********************************************************
*

subroutine faultcode
*

integer tranum, color
real px, py
dimension px(4), py(4)
data tranum /1/
data px(l), px(2) 716.0,26.0/

call gswn (tranum,0.0,150.0,0.0,119.8) 
call gselnt (tranum)
py(1) = 10.0 
py(2) = 10.0 
color = 5 
do 20, i=l,3 

do 10, j=l,2
p y ( j )  = p y ( j )  + 5.0 

10 continue
color = color + 1
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call gsplci(color) 
call gpl (2,px,py) 

20 continue
return
end

****************************************** ★ ★★★★★★★★★it**********★
subroutine faultlabel

★

character*20 title 
character*20 explain 
dimension explain(3) 
integer tranum 
real x, y, xl, yl 
dimension xl(2), yl(2) 
data tranum /l/
data xl(1), xl(2), yl(l), yl(2) /2.0,5.,3.3,3.3/
data title /' FAULTS'/
data explain(1) /'Quaternary Rate'/
data explain(2) /'Plio-Miocene Rate'/
data explain(3) /'No Rate'/★

★
call gswn (tranum,0.0,15.0,0.0,11.98) 
call gselnt (tranum)

*

call gstxfp(-7,2) 
call gstxci(6) 
call gschh(.2) 
x = 3. 
y = 3.0 
do 20, i=l,3 
y = y - .55
call gtx (x,y,explain(i))

20 continue
call gschh(.4) 
x = 2.0 
y = 3.5
call gtx (x,y,title) 
call gsplci(6) 
call gpl (2,xl,yl)★
return
end★

****************************************************************
****************************************************************
★

subroutine faultseg(numfile,segcolor)
*

* this program reads Steve's California fault input
* file and plots all the faults.*
*

character*! skip, age



logical hazplot, bold 
common /fltplt/ hazplot, bold 
integer segcolor, numfile 
INTEGER wkid 
common /sun/ wkid
real xscale, yscale, northB, southB, westB, eastB
common /coord/ xscale, yscale, northB, southB, westB, eastB
real xcenter, ycenter, xshift, yshift
common /centerline/ xcenter, ycenter, xshift, yshift
INTEGER dlat, dlong, sdlat, sdlong, numseg, endtst, color
real mlat, mlong, smlat, smlong, lat, long
DIMENSION dlat(100), mlat(100), dlong(100), mlong(100)
DIMENSION lat(100), long(100)
integer tranum, numseg
data tranum /!/

call gswn (tranum, 0.0,xscale,0.0,yscale) 
call gselnt (tranum)

xtotalshift = xshift + xcenter 
ytotalshift = yshift + ycenter

40 read(numfile,*,end=90) skip 
read(numfile,100) numseg 
numpoints = numseg + 1 
if (numseg .EQ. 1) then 
**{read single segment fault)**

read(numfile,101) dlat(l), mlat(l), dlong(l), mlong(l),
+ dlat(2), mlat(2), dlong(2), mlong(2), age

50 read(numfile,102) endtst
if (endtst .NE. -1) goto 50 

else
**{read multisegment fault)**

read(numfile,101) dlat(l), mlat(l), dlong(l), mlong(l),
+ sdlat, smlat, sdlong, smlong, age

do 60, i=2,numpoints
read(numfile,101) sdlat, smlat, sdlong, smlong,

+ dlat(i), mlat(i), dlong(i), mlong(i), skip
60 continue
70 read(numfile,102) endtst

if (endtst .NE. -1) goto 70 
endif
do 80, i=l,numpoints

lat(i) = dlat(i) + (mlat(i)/60.0)
lat(i) = (10.0 * (lat(i) - southB)) + ytotalshift 
long(i) = dlong(i) + (mlong(i)/60.0) 
long(i) = (10.0 * (westB - long(i))) + xtotalshift 

80 continue
if ( (age .EQ. 'h') .OR. (age .EQ. 'q') ) then

color = 8 
else

if ( (age .EQ. 'p') .OR. (age .EQ. 'm') ) then
color = 7 

else
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* **{no rate}**
color = 6 

endif 
endif

*
if (hazplot) color = segcolor 
if (bold) then 

call gslwsc(3.0) 
color = segcolor 

endif
call gsplci(color)
call gpl(numpoints,long,lat)★
goto 40 

90 continue*
100 format(15)
101 format(4x,12, F5.1,14,F5.1,14,F5.1,14,F5.1,36x, A1)
102 format(16)

*

return
end

*

************************************************************************★
*

subroutine statebound
* this subroutine plots the state boundary, coastline,
* and lakes from the COMMON array temp.
ie

logical segflag 
INTEGER wkid, numtemp 
common /sun/ wkid 
real temp
DIMENSION CALflt(1000,1000), temp(10000)
common /global/ CALflt
common /plotline/ numtemp, temp
real xscale, yscale, northB, southB, westB, eastB
common /coord/ xscale, yscale, northB, southB, westB, eastB
real xcenter, ycenter, xshift, yshift
common /centerline/ xcenter, ycenter, xshift, yshift
real X, Y
DIMENSION X (2000), Y(2000) 
integer tranum, numseg 
data tranum /1/*

*
call gswn (tranum,0.0,xscale,0.0,yscale) 
call gselnt (tranum)★

*
xtotalshift = xshift + xcenter 
ytotalshift = yshift + ycenter
call gsplci(6) 
call gslwsc(l.O)
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j = 1
segflag = .false, 
do 10, i=l,numtemp,2 
if (temp(i) .GT. 90.0) then 

numseg = j - 1
if (segflag) call gpl(numseg,X,Y) 
j = 1
segflag = .false, 

else
* ** valid lat, long pair **

X(j) = (10 * (westB - temp(i+l))) + xtotalshift 
Y(j) = (10 * (temp(i) - southB)) + ytotalshift
j = j + 1
segflag = .true, 

endif
10 continue 

return 
end

★

********************************************************************* 
********************************************************************* 

subroutine frame
*

* this subroutine puts a frame around the plot
* subroutines: blackout
*

logical crop 
common /testframe/ crop 
logical checkshift 
common /check/ checkshift 
INTEGER wkid 
common /sun/ wkid
real tempnorthB, tempsouthB, tempwestB, tempeastB
common /cropB/ tempnorthB, tempsouthB, tempwestB, tempeastB
real xscale, yscale, northB, southB, westB, eastB
common /coord/ xscale, yscale, northB, southB, westB, eastB
real horizshift, vertshift
real xcenter, ycenter, xshift, yshift
common /centerline/ xcenter, ycenter, xshift, yshift
REAL latBx(2), longBx(2), latLy(2), longLy(2)
REAL latTx(2), longTx(2), latRy(2), longRy(2) 
real xtotalshift, ytotalshift 
integer tranum, numpoints, color 
data tranum, numpoints,color /1,2,6/

*

★
call gswn (tranum,0.0,xscale,0.0,yscale) 
call gselnt (tranum)

*

vertshift = 0.0 
horizshift = 0.0 
if (crop) then
vertshift = 10.0 * (tempsouthB - southB) 
horizshift = 10.0 * (tempwestB - westB) 
westB = tempwestB 
eastB = tempeastB 
northB = tempnorthB
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*

★

★

★

★

southB = tempsouthB 
endif
xtotalshift = xshift + xcenter + horizshift 
ytotalshift = yshift + ycenter + vertshift
latBx(l) = ytotalshift 
latBx(2) = ytotalshift 
longBx(l) = xtotalshift
longBx(2) = (10.0 * (westB - eastB)) + xtotalshift
latLy(l) = ytotalshift
latLy(2) = (10.0 * (northB - southB)) + ytotalshift
longLy(l) = xtotalshift 
longLy(2) = xtotalshift
latTx(l) = (10.0 * (northB 
latTx(2) = (10.0 * (northB 
longTx(l) = xtotalshift 
longTx(2) = (10.0 * (westB

southB)) + ytotalshift 
southB)) + ytotalshift
eastB)) + xtotalshift

latRy(1) 
latRy(2) 
longRy(1) 
longRy(2)

ytotalshift
(10.0 * (northB - southB)) 
(10.0 * (westB - eastB)) 
(10.0 * (westB - eastB))

+ ytotalshift 
+ xtotalshift 
+ xtotalshift

call blackout(longLy(1),longRy(1),latBx(l),latTx(l))
call gslwsc(3.0)
call gsplci(color)
call gpl(numpoints,longBx,latBx)
call gpl(numpoints,longLy,latLy)
call gpl(numpoints,longTx,latTx)
call gpl(numpoints,longRy,latRy)
if (checkshift)

+ call crosshair(longLy(1),longRy(1), latBx(1), latTx(1))
return
end

********************************************************************
★

subroutine blackout(leftB,rightB,bottomB,topB)
*

* this subroutine blacks out areas outside the plot
* It is a subroutine to frame.*

logical hazplot, bold 
common /fltplt/ hazplot, bold 
INTEGER wkid 
common /sun/ wkid
real xscale, yscale, northB, southB, westB, eastB
common /coord/ xscale, yscale, northB, southB, westB, eastB
real leftB, rightB, bottomB, topB
integer tranum, numpoints
real edge
real xl(4), yl(4), xr(4), yr(4)
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real xb(4), yb(4), xt(4), yt(4) 
data tranum, numpoints /1,4/ 
data edge /40.0/ 
data xl(l), yl(1), xl(2), yl(4) 
data yr(1), yr(4) /0.0,0.0/ 
data xt(2) /0.0/

/0.0,0.0,0.0,0.07

call gswn (tranum, 0.0,xscale,0.0,yscale) 
call gselnt (tranum)
yi(2) = topB
xl(3) = leftB
yl (3) = topB

k
xl(4) = leftB
xr(l) - rightB
xr (2) = rightB
yr (2) = topB
xr(3) = rightB + edge
yr (3) = topB

k
xr (4) = rightB + edge
xb(l) — xl(4)
yb(l) = yl (4)
xb (2) = leftB
yb(2) = bottomB
xb(3) = rightB
yb(3) = bottomB
xb (4) = xr (1)

k
yb(4) = yr (1)
xt(l) — xl(2)
yt (l) = yl (2)
yt (2) = topB + edge
xt (3) = rightB + edge
yt (3) = topB + edge
xt (4) = rightB + edge

k
yt (4) = topB

★ **{set blackout parameters}
call gsfais(l)

★ call gsfaci(0)
★ **{plot black boxes outside

call gfa 
call gfa 
call gfa 
call gfa

return
end

(numpoints,xl,yl) 
(numpoints,xr,yr) 
(numpo ints,xb,yb) 
(numpoints,xt,yt)

*********************************************************************
★

subroutine prtitle(plotitle)



7 0

*

* this subroutine blacks out areas outside the plot
* It is a subroutine to frame.
*

character*20 plotitle 
integer tranum, color
real xoffset, yoffset, Txoffset, Tyoffset
common /movexy/ xoffset, yoffset, Txoffset, Tyoffset
data tranum, color /1,6/★
call gswn (tranum,0.0,40.0,0.0,31.945) 
call gselnt (tranum)

★

call gsplci(color) 
call gschh(l.O)
call gtx (Txoffset,Tyoffset,plotitle)★
return
end★

*********************************************************************
ie

subroutine crosshair(leftB,rightB,bottomB,topB)★
INTEGER wkid 
common /sun/ wkid
real xscale, yscale, northB, southB, westB, eastB
common /coord/ xscale, yscale, northB, southB, westB, eastB
real xcenter, ycenter, xshift, yshift
common /centerline/ xcenter, ycenter, xshift, yshift
integer xmax, ymax, cellat, cellong, cellpoints
common /cellscale/ xmax, ymax, cellat, cellong, cellpoints
real lathair, longhair, hairxcoord, hairycoord
common /haircoord/ lathair, longhair
real testyh(2), testxh(2), testyv(2), testxv(2)
real xtotalshift, ytotalshift
integer tranum, numpoints, color
data tranum, numpoints, color /1,2,14/

*

★

★

*

call gswn (tranum,0.0,xscale,0.0,yscale) 
call gselnt (tranum)
xtotalshift = xshift + xcenter 
ytotalshift = yshift + ycenter 
hairxcoord = WestB - longhair 
hairycoord = lathair - southB
testyh(l) = (10.0 * hairycoord) + ytotalshift 
testyh(2) = (10.0 * hairycoord) + ytotalshift 
testxh(l) = leftB 
testxh(2) = rightB
testyv(l) = 
testyv(2) = 
testxv(l) = 
testxv(2) =

bottomB
topB
(10.0 * hairxcoord) + xtotalshift 
(10.0 * hairxcoord) + xtotalshift
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call gslwsc(2.0) 
call gsplci(color) 
call gpl(numpoints,testxh,testyh) 
call gpl(numpoints,testxv, testyv)
return 
end

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *********************************************************************

subroutine prtarray
this subroutine prints the color array in 5 files - 
colorl.b, color2.b, color3.b, color4.b, color5.b. 
these can be cut and pasted to form large hard copy 
array in matrix form.

INTEGER CALflt(1000,1000) 
common /global/ CALflt

****{read and format data}****
OPEN (unit=l, file='colorl.b', err=20, status=‘unknown',OPEN

+
(unit=l, 
access=1

OPEN
+

(unit=2, 
access:'

OPEN
+

(unit=3, 
access:'

OPEN
+

(unit=4, 
access:'

OPEN
+

(unit=5, 
access=1

do 10 , i=l,101

access:'sequential', f orm='formatted')
err=2 0, status='unknown1,1color4.b'

1 unknown'

10
100

write(l,100) 
write(2,100) 
write(3,100) 
write(4,100) 
write(5,100) 

continue 
format(lx,2513)

(CALflt(m,i) 
(CALflt(m,i) 
(CALflt(m,i) 
(CALflt(m,i) 
(CALflt(m,i)

formatted1

m = 3 1 , 5 5 )  
m=56,80) 
m=81,105) 
m=106,130) 
m=131,141)

close(1) 
close(2) 
close(3) 
close(4) 
close(5) 
return

20 write(*,*) 
close(1) 
close(2)

'error in open statement1



close(3) 
close(4) 
close(5) 
return 
end★

★
★ ★★★★★★★★★★★★•AT******************************************************
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