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Abstract 

The explosion of whole genome sequence and environmental sequence data 

afford us the opportunity to explore protein diversity and protein function. This is 

particularly exciting given the nascent field of synthetic biology. A comprehensive 

computational analysis of extant proteins is needed in order to define the limitations on 

protein structure and diversity from a bioengineering perspective. This paper focuses on 

defining an upper limit for protein diversity using computational approaches derived 

from linguistic analyses. These methods are used to make a prediction on the upper limit 

of unique proteins and number of highly conserved motifs. Motifs deemed highly 

conserved will, more than likely represent important structural components of basic 

proteins. Results were gathered from two large data sets: all of the currently available 

microbial genome sequences available from NCBI and the Global Ocean Survey data set. 

There were 6.6 million unique proteins at 95% amino acid identity. The majority of 

unique motifs in these data sets were only found once. The motifs deemed highly 

conserved in lifestyle groupings of organisms and individual organisms were analyzed 

for function based on a conserved domain search. The importance between pathogenicity 

and cell motility and secretion related genes and proteins was observed. These motifs 

represent potential new drug targets or areas of future experimentation. 
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Table Legends 

Table 1: Data summary for four major datasets used in analysis of motif and 

protein diversity.  

Table 2: Analysis of databases used for motif analysis. Data from the four major 

datasets was analyzed for motif usage as described in methods section 1. 

Table 3: Table of predictions for motif saturation points. Based upon the six-

parameter exponential saturation curve M
Mmax

= A ⋅ e
−
a
p + B ⋅ e

−
b
p + C ⋅ e

−
c
p  and the data 

collected from methods section 1. 

Table 4: Major functional categories in gene annotation. 

Table 5: Genera distribution of original dataset.  

Table 6: Genera distribution of equalized dataset. 

Table 7: List of organisms used for motif based life style comparison. Generated as 

described in methods section 5. 
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Figure Legends 

Figure 1: Number of protein clusters resulting from 70% clustering with cd-hit.  

Figure was generated as described in Methods (6). The number of proteins 

sequenced is on the x-axis and the number of 70% unique protein clusters are on 

the y-axis. 

Figure 2: Cumulative distribution of 6mers. Saturation curved of number of proteins 

(x-axis) and number of motifs occurring at least once (y-axis). The three 

databases used are indicated by the figure legend. The randomly generated 

database based on equal amino acid frequencies, assumes all amino acids have an 

equal probability of occurring, 5%. 

Figure 3: Cumulative distribution of 7mers. As in figure 2 but for the motif length of 

7mer. 

Figure 4: T-score distribution for observed versus expected values of varying motif 

lengths for Actinobacillus pleuropneumoniae serovar. Values were derived as 

described in Methods 2. was used for determination of what is an 

overrepresented motif. 

Figure 5: Comparison of functional protein categories between Actinobacillus 

pleuropneumoniae serovar and Orientia tsutsugamushi Boryong based on 

motif usage. Conserved motifs of 6-8 amino acids in length were matched to 

functional categories (Methods 3) and usage was compared (Methods 4).  

Figure 6: Comparison of functional motif usage between several fundamental 

phylogenetic bacterial groups. Data are the percent of over occurring motifs 

dedicated to a given functional group according to a BLAST of the CDD 
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database. Values themselves are calculated from the average of the logarithm base 

two of the group on the right over the group on the left (Methods 4). Final values 

and errors are based on the average of motifs of six through eight amino acids in 

length. 
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Introduction 

Proteins are on average 300 amino acids long⎯ with 20 possible amino acids this 

represents more possible combinations than there are atoms in the observable universe. 

The future of synthetic protein design is dependant on parameterizing the possible 

combinations of sequence space.  Proteins are not random assortment of short motifs; 

they are highly organized structurally with short random assortments of motifs. It has 

been known for over thirty years that amino acids follow non-random distributions 

(Black, Jarkins and Stenzel 1976).  Despite this, the actual structural limitations of 

proteins are still largely unknown. As ordered as proteins are in three dimensions, amino 

acid usage follows basic thermodynamic principles and cost minimization. Organisms 

tend to use smaller amino acids (by mass) more frequently than larger ones (Barrai, 

Violina and Scapoli 1994) (Dufton 1997). The hypothesized reason for this is a 

combination of decreasing metabolic costs and increasing genetic stability (Dufton 1997).  

Looking for these sorts of correlations has driven the field of bioinformatics for the 

majority of the past 35 years; however, with the recent improvements in sequencing 

techniques and the explosion of data available more robust statistical analyses are 

possible. A moderate correlation between conserved motifs, or small segments of 

proteins, and overall protein sequence similarity indicated that motif analysis could be 

used in an effort to understand protein function (David, et al. 2003). Recent work 

correlated 3D domains with protein functionality and protein uniqueness and concluded 

that protein structural diversity had plateaued (Jaroszewski, et al. 2009). Despite these 

findings we still cannot answer the question of where protein diversity (based on 

sequence similarity or function) reaches its limit. The approach taken in these 
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computational analyses attempts to measure uniqueness of sequence on the motif level. 

Projections are made for the number of unique motifs of varying sizes. The purpose of 

this is not only to describe protein diversity, but also to look at highly conserved motifs. 

Highly conserved motifs would logically lend themselves to overall protein functionality, 

whereas less conserved motifs are more likely to describe protein uniqueness. By 

discovering and quantifying the frequency of conserved motifs (words of N size) it is 

possible to define standard parts that could be used in the creation of overall protein 

structure, in order to maximize the efficiency of synthetic biology and bioengineering. 

Methods 

(1) Creation and Counting of Motifs 

(a) Datasets 

The following data sets were used: (1) 832 fully sequenced Bacteria and Archaea 

genomes (NCBI 2009) clustered with cd-hit (Li and Godzik 2009) to remove redundant 

sequences with greater than 95% similarity. (2) All 6.1 million protein fragments from 

the global ocean survey database (GOS) (The J. Craig Venter Institute 2009), also 

clustered at 95% similarity. (3) A combination of the two databases above clustered with 

a 95% similarity maximum. (4) All sequenced Bacteria and Archaea were grouped 

according to broad lifestyle categories (free-living/pathogenic gram-positive/gram-

negative organisms); these databases came from the clustered individual organisms (1), 

but were not clustered once proteins were conglomerated, more in Methods (5). (5) 

Randomly generated database to mimic (3), based on approximate amino acid 

frequencies. 
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(b) Randomization of protein order 

When necessary in order to eliminate variable unique motif growth caused by 

grouping of similar proteins, proteins were placed into random order using BioPerl 

module: Bio::DB::Fasta (Stein 2001) to access all proteins without placing them into 

memory, then Perl module List::Util (Barr 1997) to randomize the order of the proteins 

themselves (Computer Code 1b).  

(c) Creation of motifs 

All proteins were broken into motifs. Motifs in these contexts are defined as short 

amino acid segments of a set length, an Nmer, where N=2, 3…. Motifs were formed by 

starting at every residue on the protein and going N amino acids over. All motifs with an 

unknown amino acid were ignored. (Computer Code 1) 

(d) Counting of 2mers-6mers and small datasets 

For all datasets small enough to be taken into memory, the motifs counted using 

Perl’s hashing technique. As the number of proteins analyzed increased the number of 

unique motifs was counted. Unique motifs are defined as the different motifs that occur at 

least once in a given dataset. In addition at certain points in the data collection the 

distribution of motifs was recorded. (Computer Code 1b) 

(e) Counting of 7mers-12mers for large datasets 

A significant achievement in the analysis of large data sets was achieved by 

implementing a parallel procedure for counting very large lists of data. A technique was 

developed whereby lists of at least 1.2 billion motifs could be efficiently counted. Briefly 

the technique works as follows: for datasets too large to be taken into memory the 

counting was handled in pieces. This was done by creating files of approximately five 
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million motifs. These lists were then counted and sorted in parallel. In order to add files 

together they were each opened and the motifs were added together based on alphabetical 

order. In order to make this a more efficient method the files were added in sets. In other 

words file1 was added to file2 at the same time file3 was added to file4. Then file1+2 can 

be added to file3+4. In this fashion  iterations can be preformed instead of n; 

where n is the number of files. In this manner as long as the number of files is less than 

65,536 for 16 cores or 256 for 8 cores the addition of files will be more rapid than adding 

them in sequence. In a similar method as (d) the number of unique motifs and the 

distribution data was recorded at certain key points in the data. (Computer Code 1c) 

(f) Analysis of protein diversity 

Protein diversity was estimated by fitting the count of unique motifs as a function 

of protein number to a six-parameter exponential saturation curve: 

M
Mmax

= A ⋅ e
−
a
p + B ⋅ e

−
b
p + C ⋅ e

−
c
p  

Where M  is the number of motifs found, Mmax  is the theoretical maximum number of 

motifs, 20n (n being the motif length), A,a,B,b,C, c  the six parameters fit by MATLAB, 

and p  the number of proteins analyzed.  

In order to estimate the number of possible proteins from the number of motifs 

the following formula was used: 

 

Where xi  is the percent of possible motifs of length i . The reasoning behind this is as 

follows: The number of ways the motifs can be placed in a protein of length i  is, 
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ignoring overlap restrictions, x j( )i− j+1  where x j( )  is the number of motif of length j  in 

existence. This does not yield the number of possible proteins since overlap is excluded, 

however if each one of these places is limited to x j  of the total plausible jmers then the 

final set must be limited by a factor of x ji− j+1  as well. 

(2) Determination of motifs for analysis 

Motifs were created from database input as described in Methods (1c) and 

counted as described in Methods (1d). Expected motif frequencies were calculated in 

two ways based on probability theory, firstly by the multiplication of components: 

   
P x1x2x3x4xn( ) = P x1( ) ⋅ P x2( ) ⋅ P x3( ) ⋅ P x4( )P xn( )  

Where  represents an amino acid and  represents motifs in a set order. An 

obvious problem with this is that it relies heavily on the amino acids all being 

independent of one another. Since this is not the case a second method of calculation was 

used: 

 

Note that this formula still assumes some level of independence between component 

motifs; however the idea of expectation is based on motifs of slightly shorter length, not 

on the occurrence of individual amino acids. This causes the set of over-expected Nmers 

to be less identical to the over expected (N-1)mers, than would be created by the previous 

method. This is caused by the fact that an over-expected 4mer, , would more than 

likely indicate the over-expected 5mer,   x1x1x1x1xi  in the first method versus the second 

method where the expected value is based on the 4mer frequency. 
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Once expected values were calculated over-expected motifs were chosen for 

analysis based on a one-tailed Student’s t-Test with a p-value 0.25. Over-expected 

motifs will be referred to as conserved motifs. (Computer Code 2) 

(3) CDD blast technique 

Conserved motifs of length 6-8 as determined by Methods(2) were BLASTed 

against the CDD database (Marchler-Bauer, et al. 2009) using an rpsblast (Altschul, et al. 

1990). The CDD database contains conserved protein domains from the following 

conserved domain databases: cd, pfam, smart, COG, KOG, PRK, TIGR, and LOAD_. 

Using this database allows a reduction in random matches since this database only uses 

domains that are considered functional which reduces the number of random coils and 

similar DNA portions  that potentially skews results; this is important considering the 

large e-values, on average 300 for 6mers 250 for 7mers and 8mers, necessarily returned 

by short motifs. The BLAST returned results that contained functional categories 

describing general cellular functions detailed in table 4; these categories were parsed 

from all results that matched at least 80% of the motif length. The count associated with 

functional categories was determined by the number of occurrences of the corresponding 

motif in the original database. (Computer Code 2) 

(4) Comparison technique 

Functional categories were counted using the techniques described in Methods 

(3). Following this the counts were translated into percentages and compared other data 

sets (e.g. gram positive free-living organisms were compared to gram-positive 

pathogens). The term , is defined as the percent of functional category  dedicated 
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to bacterial group  for motif length . The following formulae were used for the 

analysis: 

 

Where  is based on a normal distribution. These data were plotted on vertical bar graph 

in order to represent over-expression for certain functional categories among groups. 

(Computer Code 2) 

(5) Selection of microbial genomes 

The 649 sequenced bacterial genomes that could be split into lifestyle categories 

were obtained from NCBI then were split into four lifestyle categories, free-

living/pathogenic gram-positive/gram-negative organisms. Inconsistencies between the 

four groups necessitated equalizing the groups. This was done in several stages. First all 

organisms belonging to the same species were removed, at random, until only one of each 

species remained. The same process was repeated for all genera with more than four 

species until each genus was represented by only four or fewer organisms. Seventeen 

genera were then chosen at random until the number of organisms was greater than or 

equal to thirty-four. If the number of organisms was less than thirty-four, a genus with 

only one organism was removed and another was chosen at random from the list. 

Following this thirty-four organisms were chosen from the list, making sure that all 

genera still only represented by one organism were selected. This was done in order to 

insure four lists with 34 organisms and 17 genera. Protein conservation was determined 
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by counting the number of clusters found in a 70% similarity grouping by cd-hit (Li and 

Godzik 2009) before and after the grouping. The reduced dataset was used for all 

subsequent comparisons between groups. 

(6)  Determination of 70% unique proteins 

Each data set was clustered at 70% identity in order to determine how many 

potentially unique proteins. This is a proxy to unique function. Proteins from combined 

Bacteria, Archaea and GOS dataset were randomly ordered as in Method (1b). These 

proteins where then used to generate files with incrementally larger numbers of proteins. 

The files were clustered using cd-hit with a 70% similarity cut-off. These results were 

tabulated and graphed in comparison to a 1:1 protein to cluster line. 

Computer Code 

(1) p36-countAllMers.pl 

Number of lines:  36 

Description:  Takes in a list of protein files in FASTA format and runs three programs on 

said files. The first program (a) is used to calculate amino acid frequency. The 

second program (b) is used to calculate the number of unique 2mers-6mers along 

with distribution of motifs. Finally the third program (c) is used to calculate the 

number of unique 7mers-12mers. 

(a) p34-AAFreqForFile.pl 

Number of lines: 117 

Description:  Takes in a protein file in FASTA format and iterates through the proteins 

counting the occurrences of each amino acid. The results are output to a new file. 
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(b) p35-count1t6Motifs.pl 

Number of lines: 358 

Description:  Takes in a protein file in FASTA format, randomizes the order, and then 

proceeds to make a large file with all motifs. This file is then taken into memory 

using hashing, while at certain key points the distribution of motifs and the 

number of unique motifs found so far are output to files. This creates between 2 

and 14 protein dictionaries and distributions. 

(c) p32-countAllMers.pl 

Number of lines: 1065 

Description:  Takes in a randomized protein file in FASTA format, splits the proteins into 

motifs and puts 5 million motifs into as many files as necessary to cover all 

motifs. Each file is counted and alphabetically sorted in parallel. Then files are 

added in groups using parallel processing (Methods1e) in order to decrease the 

number of necessary iterations. 

(2) p-04compareGenomAtoGenomeB.pl 

Number of lines: 1142 

Description: Takes in a protein file in FASTA format, splits the proteins into motifs of 

size 4-8 (in separate files) then uses 4mers and 5mers to calculated expected 

values for 6mers (Methods 4). These values were compared to actual occurrences 

of motifs using a one-sampled Student’s t-test. Motifs with a  are then 

rpsblasted against the CDD database (Methods 3) this is repeated in parallel with 

another number of protein files for comparison as describe in Methods 4. These 

results were graphed using small python codes automatically. 
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Results and Discussion 

(1) Defining protein diversity on motif appearances. 

Using a relatively small computer cluster and the open source computer languages 

of Perl and python tools were developed to analyze very large: genome, protein and motif 

data sets. The combined Bacteria, Archaea and GOS data set had 6.6 million proteins of 

an average length of 247 amino acids. Table 1 details many of the statistics for the GOS 

and the combined microorganism databases, as well as the weighted random dataset 

created to mimic a complete protein database. From Table 1 the combined dataset of 15.2 

million proteins yields only 6.6 million 95% unique proteins, this is retention of only 

43.4% of sequenced proteins. This indicates a large amount of data redundancy, which is 

where the necessity to cluster the data comes from. If the same proteins have been 

sequenced more often then a motif may appear to be falsely important.  

The 43% unique proteins at 95% is seen even more dramatically in Figure 1 

which represents the number of proteins that are 70% unique. At 0.1 million there are 

0.08 million unique protein clusters (84%), where as at 15.2 million there are only 3.6 

million unique protein clusters (24%).  The unique protein curve digressed from nearly 

1:1 to a 1:4 ratio of proteins sequenced to new proteins found. This curve is saturating at 

such a rate that sequencing will soon reach a point where very few novel proteins can be 

found from sequencing. According to these results and simple curve fitting to an 

exponential distribution indicates a 1:100 ratio of new proteins to sequenced proteins 

after 53 million proteins 

Protein diversity was also computed by estimating the number of motifs possible 

for a given length and extending that to the number of proteins. In a perfect system there 
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are approximately 20247 or approximately 2.26·10321 possible proteins. This is an 

incredible number, and is not possible to reach given that there are approximately 1080 

atoms in the observable universe (Villanueva 2009). However given some percent of 

Nmers it is possible to calculate the maximum according to that mathematical estimate 

using the following formula: 

 

Where  is the percent of motifs found with length . Data extension of the 6mer 

(Methods (1f)) dataset indicates approximately 98% (Table 3) of possible motifs will be 

found (Figure 2). This would correlate to 0.75% of possible 247mers being found. This 

correlates to the upper bound on the number of proteins in existence. Although this 

number is still 1.70·10319 possible proteins this represents a reliable but high upper bound. 

Prediction of 7mers indicates an upper bound of 57%, which would bring the total 

number of possibilities down to 3.31·10262. Even these significant reductions do not bring 

the limit down to reasonable levels. Barring more data it seems unreasonable to attempt 

to predict protein primary sequence diversity based solely on motif diversity. 

This high upper bound does not make for reasonable predictions, however we can 

safely assume that not all motifs can occur in every location. Let us assume that in any 

given position 25% of the possible motifs can be found. In addition to the overlap of 

motifs must contain motifs from the set itself, with a minimum overlap of one amino acid 

there are  possible combinations out of  possible jmers correcting for the number 

of overlaps j we assume that only  can be found for any given overlap we can say: 
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Using this we can say that there are approximately 1.35·1048 possible proteins based on 

the number of 6mers, better yet, however, we can say that there are only 35 million 

possible proteins based on the projected number of 7mers. 35 million is a far more 

reasonable limit for protein diversity, and given the current rate of protein discovery at 

least 70 million proteins would need to be sequenced to find this number of 95% unique 

proteins given the current 1:2 ratio of novel proteins to sequenced proteins. Since this 

ratio will increase as more proteins are sequenced, the number of proteins necessary for 

proteome completeness is most likely significantly larger than this. 

An upper boundary to protein diversity can help to classify the primary sequence 

functional level and define possible ways for modular protein design in the field of 

synthetic biology. Discussed below is an attempt at classifying bacterial lifestyle based 

on motif usage, however when attempting to identify motifs of certain function purely 

numerically it may prove more useful to group motifs based on function. For instance the 

motif  could be simplified to , where  is any amino acid if 

all motifs of that form are linked to a certain function. It is well accepted that these sorts 

of mutations take place in the genome of organisms. This will significantly decrease the 

motif pool and help parameterize our estimates of protein diversity and novel function. 

Defining these parts will allow for direction in the synthesis of proteins by describing the 

potential building blocks. 

A base set of key functional motifs is important for applications to synthetic 

biology, knowing without doubt what this set is could prove very useful. In order to 

determine approximately when all existent 7mers will be found a linear approximation 

was made. The approximation was the projected number of proteins necessary to reach 
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57% of 7mers was estimated using a linear extension of the data present since the data is 

largely linear (Figure 3). Based on this linearization the number of proteins needed is 

approximately 10 million. This is necessarily an under-estimation as the linear 

approximation quickly outgrows the actual curve. 

(2) Species lifestyle as defined by motif usage. 

Are there motifs that appear in specific groups of organisms, species or lifestyles 

that define a specific group? The relationship between conserved motifs that were over-

observed in organisms and their relationship to functional categories was explored based 

on the methods described in section 2. Conserved motif are defined as occurring more 

often than expected with a corresponding  based on an independent one 

sampled Student’s t-test. This p-value was used based on the t-score distribution to ensure 

a significant number of data points above the cut-off while still creating some level of 

statistical significance. Figure 4 represents the distribution of t-scores for motifs of 6-8 

amino acids for Actinobacillus pleuropneumoniae serovar. The distribution of 6mers 

maintains the generally accepted normal distribution required for t-scores; however the 

bell curve loses shape for the larger motif sizes. This causes very few motifs to be 

considered conserved, with 386,782 conserved 6mers versus only 740 conserved 8mers. 

Considering the significantly larger number of possible 8mers with the corresponding 

low number of conserved motifs these data create large statistical variance. The 

conserved motifs, once determined, were analyzed to determine relations to protein 

functional categories (Methods 3). Although there are at least thirty different cog 

categories, the top twenty were chosen for analysis, the details of which can be seen in 

Table 4. These results were then compared to similar results for another randomly 
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selected microorganism, Orientia tsutsugamushi Boryong. The comparison was described 

in methods section 4. Results are seen in Figure 5.  

A. pleuropneumoniae is a pathogenic Gammaproteobacteria responsible for 

fibrinohaemorrhagic pneumonia (Sebunya and Saunders 1983). O. tsutsugamushi is a 

pathogenic Alphaproteobacteria that causes scrub typhus (Leelarasamee, et al. 2004). The 

large variance of the functional categories (Figure 5) causes most of the categories to 

return non-significant results. However, there were differences between A. 

pleuropneumoniae and O. tsutsugamushi with the secondary metabolites biosynthesis, 

transport and catabolism, post translational modification, nucleotide transport and 

metabolism, DNA replication, recombination and repair, and amino acid transport and 

metabolism functional categories all favoring O. tsutsugamushi; while the inorganic ion 

transport and metabolism and RNA processing and modification functional categories 

favor A. pleuropneumoniae. The two most significant differences based on values and 

variance were a 31% difference favoring post translational modification for A. 

pleuropneumoniae and a 20% difference favoring inorganic ion transport and metabolism 

for O. tsutsugamushi. 

With this method of motif analysis and assignment to functional categories we 

can detail motifs and proteins under significant selection pressure compared to other 

groups. Closer inspection of motifs in the post translational modification functional 

category revealed several 6mers that matched multiple chaperone proteins in A. 

pleuropneumoniae. GIDLGT and KRLIGR each matched three proteins in A. 

pleuropneumoniae and one in O. tsutsugamushi. These motif matches to chaperones and 

similar examples in the broader category of posttranslational modification are favored in 
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A. pleuropneumoniae as compared to O. tsutsugamushi. The biological reasoning for this 

is unclear; however, these sorts of patterns can help to identify possible differences 

between certain groups and between organisms. We can speculate that posttranslational 

modification motifs are under greater conservative pressure in are under greater pressure 

in A. pleuropneumoniae. The importance of these motifs to A. pleuropneumoniae could 

be tested in a laboratory situation, however due to the over expected appearance in the 

chaperone proteins one would expect a significant loss of functionality with significant 

changes to these motifs.  

Similar analysis of motifs from inorganic ion transport and metabolism revealed 

the motif ILVGLF to be important in three sodium ion pumps in O. tsutsugamushi, but 

not even found in A. pleuropneumoniae. Sodium ion pumps are inarguably important to 

bacterial homeostasis and as such this motif may represent a potential antibiotic target. In 

order to determine the validity of this argument the location and importance of the motif 

must be determined in 3D modeling, to determine the accessibility, in conjecture with 

laboratory experiments to determine the importance to function, nonetheless this does 

represent one of the potential uses for protein classification by motifs. 

(3) Selection of microbial genomes 

Analysis of the original 649 fully sequenced bacterial genomes indicated several 

inconstancies between lifestyle groups. The four groups, free-living/pathogenic gram-

positive/gram-negative, had between 80 and 247 genomes per group, with the number of 

genera ranging from 17 to 114 (Table 5).  In addition to this, analyses of the groups in 

the original data set indicated proteins in pathogenic gram positive organisms had more 

than twice as many redundant sequences than the free-living counterparts. In order to 
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check if this was due to the unequal distribution of genomes and organisms, the groups 

were equalized as described in methods section 5. Once the datasets were equalized 

(Table 6) protein conservation levels became far less distinct, with pathogens having 

only 1.3x as many redundant sequences as compared to the free-living counterparts. This 

reduced dataset is used in all future data analyses. 

Using the methods outlined in sections 2-4 motifs were compared among the 

groups of organisms detailed in Table 7. In the comparison between pathogenic and free-

living organisms the functional category, cell motility and secretion, showed an average 

difference of 2.2% favoring the pathogens, and amino acid transport and metabolism 

showed an average difference of 2.7% favoring the free-living organisms. In the 

comparison between gram-positive and gram-negative organisms signal transduction 

showed an average difference of 6.6% favoring gram positive organisms, and a 5.1% 

difference favoring gram-negative organisms in carbohydrate transport and metabolism 

(Figure 6). 

The overrepresentation of cell motility and secretion reflects the necessity of these 

pathways for pathogenicity. Many pathogens such as Clostridium difficile rely on the 

release of cytotoxins for pathogenicity (Borriello 1998) or the ability to burrow into the 

epithelial lining such as several gut based pathogens (Fischer, Prassl and Haas 2009). 

Closer inspection of motifs for cell motility and secretion in pathogens returned 

the motif AAKTIDR which is linked to twitching motility proteins across all four groups. 

Although this does not differentiate groups it does identify an important motif for 

motility. The fact that it is not only conserved in pathogens, but in free-living organisms 
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as well is indicative of the importance of this motif to overall motility. Given interest in 

cell motility useful data may result from the study the affects of mutations to this motif.  

Although there are countless numbers of motifs available for similar analyses in 

order to extract sincerely useful information a hypothesis may be presented. For example 

if a protein was of interest it would be possible to compare its motifs to the databases and 

select the most conserved motifs for mutation experiments, allowing for more precision 

in mutation experiments. A full survey of protein motifs could yield interesting 

relationships between motif usage and lifestyle, however due to the vastness of this 

particular dataset this sort of analysis is difficult without testing a specific hypothesis. 

These hypothesis all demand significant laboratory testing to validate, however, 

they could lead to practical applications. For instance the identification of protein 

domains that are important to pathogenic bacteria and not to host organisms or free-living 

organisms could lead to the development of more targeted antibiotics. This is becoming 

increasingly more important in modern medicine with the advent of antibiotic resistance 

and the significant block of research indicating the importance of free-living 

microorganisms in overall health (Savage 2001), especially in the gut. 

Conclusions and Future Work 

In 1995 The Institute for Genomic Research sequenced the first full bacterial 

genome, less than 15 years later we have over 800 fully sequenced bacterial genomes, 

well over 15 million bacterial protein sequences, several fully sequenced human genomes 

and countless other sources of genomic data. This explosion of data has changed biology 

from a field driven by laboratory breakthroughs into a field desperate for a way to 

analyze the incredible amounts of data that accumulate. The advent of new statistical 
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methodology and computer science techniques into biology has aided greatly in this 

analysis, however the analytical potential of bioinformatics is still in its infancy. 

In this thesis I analyzed 15 million proteins from two major databases: accrued 

Bacteria and Achaea genomes (NCBI 2009) and the global ocean survey database (The J. 

Craig Venter Institute 2009). This was accomplished in part by creating over 100 

programs in the computer languages of Perl, python and MATLAB. My analysis focused 

on motifs: small portions of protein sequences. The goals of my thesis were to discover 

two major things, (1) a limitation to the number of proteins in existence and (2) a new 

link between primary sequence and protein function. 

The significance of this lies in directing other fields of biology. Synthetic biology, 

which focuses on the creation of proteins, could be greatly benefited by knowing the 

limitations that nature has created in the forms of possible functional units and protein 

diversity. In order to create novel proteins intelligently there must be a toolkit of allowed 

combinations, something I started to define. In addition to this the common practice of 

mutating proteins, thought to be key to biochemical pathways or lifestyles such as 

pathogenicity, may be more directed in both selecting of the key proteins and in the 

selecting of mutation sites.  

For example, in several recent papers type VI secretion systems have been shown 

to be key to pathogenicity (Mougous, et al. 2006) (Pukatzki, et al. 2006).  Burtnick et. al. 

discovered that the type VI secretion system was essential to Burkholderia mallei by 

mutating the T6SS-1 gene (Burtnick, et al. 2010). This required the creation of several 

different mutant strains as well as the significant testing to determine the importance of 

this pathway to pathogenicity. Using the databases and methods created here we have 
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shown again the importance of secretion systems to pathogenicity through over-

representation of conserved motifs in this category. This comparison alone does not 

directly support the importance of this particular secretion pathway, however this places 

statistical emphasis on this direction. 

In order to determine proteins of high importance in pathways, pathogenicity or 

other aspects of biology we could use these tools to develop a system based on number 

and conservation level of conserved motifs that could define a robust scoring systems. 

The proteins with the highest scores are hypothesized to hold high importance in the 

group chosen. Following this, mutations of the most important proteins could be selected 

based off a similar scoring system that ranks potentially important residues. This work 

cannot be done intelligently, however, without further study of motif diversity. We still 

need to define the motif size (if one exists) that is both linked to functionality and acts at 

the level of fitness and selection.  However, the steps taken here provide both a 

theoretical and operational framework for future work.  
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Tables 

 

Table 1: Data summary for four major datasets used in analysis of motif and protein diversity.  

 GOS Prokaryote Genomes Combined Dataset Weighted Random 

Pre-Cluster at 95% 

Number Of Proteins 6,115,750 9,110,345 15,226,095 n/a 

GC Content 39.082% 52.723% n/a n/a 

GC Content Variance 0.005% 1.749% n/a n/a 

Number Of Organisms n/a 832 n/a n/a 

Number Of Collection 

Sites 57 n/a n/a n/a 

Post-Cluster at 95% 

Number of Proteins 4,101,959 2,563,135 6,621,965 6,621,965 

Average Protein 

Length 208.55 308.42 246.88 247 

Protein Length 

Standard Deviation 117.12 259.78 191.91 0 

Amino Acid Use 

   Alanine 7.08% 9.99% 8.45% 8.00% 

   Arginine 4.57% 0.98% 5.19% 5.00% 

   Asparagine 5.52% 5.51% 4.64% 4.00% 

   Aspartic acid 5.62% 6.12% 5.56% 6.00% 

   Cysteine 1.08% 3.92% 1.03% 1.00% 

   Glutamic acid 6.03% 7.63% 6.07% 6.00% 

   Glutamine 3.16% 2.08% 3.39% 4.00% 

   Glycine 6.91% 5.95% 7.24% 8.00% 

   Histidine 1.90% 4.73% 1.98% 2.00% 

   Isoleucine 7.87% 10.17% 6.94% 7.00% 

   Leucine 9.48% 2.36% 9.79% 9.00% 

   Lysine 7.13% 3.69% 5.97% 6.00% 

   Methionine 2.11% 4.61% 2.23% 3.00% 

   Phenylalanine 4.68% 3.67% 4.31% 4.00% 

   Proline 3.92% 5.89% 4.24% 4.00% 

   Serine 7.14% 5.99% 6.58% 6.00% 

   Threonine 5.29% 5.41% 5.34% 6.00% 

   Tryptophan 1.17% 7.11% 1.21% 1.00% 

   Tyrosine 3.24% 1.27% 3.08% 3.00% 

   Valine 6.12% 2.92% 6.58% 7.00% 
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Table 3: Table of predictions for motif saturation points. 

Based upon the six-parameter exponential saturation curve 

M
Mmax

= A ! e
"
a
p + B ! e

"
b
p + C ! e

"
c
p  and the data collected from methods 

section 1. 

Motif Length 
Percent of possible 

actually found. 

Percent of possible 

predicted to be found. 

4 100% 100% 

5 99.96% 100% 

6 89.68% 98% 

7 34.45% 57% 
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Table 4: Major functional categories in gene annotation. 

Functional Category Abbreviation 

Translation Translation 

Transcription Transcription 

Signal transduction Signal Transduction 

Secondary metabolites biosynthesis, transport and catabolism Secondary metabolites 

RNA processing and modification RNA 

Post translational modification Post trans mod 

Nucleotide transport and metabolism Nucleotide Meta/trans 

Lipid transport and metabolism Lipid meta 

Intracellular trafficking and secretion Intracellular 

Inorganic ion transport and metabolism Inorg ion trans/meta 

Energy production and conversion Energy prod/conv 

Defense mechanisms Defense 

DNA replication, recombination and repair DNA replication 

Coenzyme transport and metabolism Coenzyme meta 

Cell motility and secretion Cell motility/ secretion 

Cell envelope biogenesis, outer membrane Cell envelope 

Cell division and chromosome partitioning Cell division 

Carbohydrate transport and metabolism Carb trans/meta 

Amino acid transport and metabolism Amino acid meta 
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Table 5: Genera distribution of original dataset.  

  Free- Free+ Path- Path+ 

Total Organisms 214 80 247 108 

Number of genera 114 42 58 17 

Average number of organisms per genus 1.88 1.90 4.26 6.35 

Lowest number of organisms in a genus 1 1 1 1 

Highest number of organisms in a genus 14 9 17 29 

 



 28 

 

Table 6: Genera distribution of equalized dataset. 

  Free- Free+ Path- Path+ 

Total Organisms 34 34 34 34 

Number of genera 17 17 17 17 

Average number of organisms per genus 2.00 2.00 2.00 2.00 

Lowest number of organisms in a genus 1 1 1 1 

Highest number of organisms in a genus 4 4 4 4 
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Table 7: List of organisms used for motif based life style comparison. Generated as described in methods section 5.

Free-Living Gram-Negative 

• Candidatus_Azobacteroides_pseudotrichonymphae_genomovar__CFP2-PID29025 

• Candidatus_Blochmannia_floridanus-PID443 

• Candidatus_Desulfococcus_oleovorans_Hxd3-PID18007 

• Candidatus_Pelagibacter_ubique_HTCC1062-PID13989 

• Coprothermobacter_proteolyticus_DSM_5265-PID30729 

• Desulfovibrio_desulfuricans_G20-PID329 

• Desulfovibrio_vulgaris_Hildenborough-PID51 

• Geobacter_bemidjiensis_Bem-PID17707 

• Geobacter_lovleyi_SZ-PID17423 

• Geobacter_metallireducens_GS-15-PID177 

• Geobacter_uraniumreducens_Rf4-PID15768 

• Hahella_chejuensis_KCTC_2396-PID16064 

• Magnetospirillum_magneticum_AMB-1-PID16217 

• Nitrosomonas_europaea-PID52 

• Nitrosomonas_eutropha_C71-PID13913 

• Pelodictyon_luteolum_DSM_273-PID13012 

• Pelodictyon_phaeoclathratiforme_BU_1-PID13011 

• Prosthecochloris_aestuarii_DSM_271-PID12749 

• Prosthecochloris_vibrioformis_DSM_265-PID12607 

• Rhodoferax_ferrireducens_T118-PID13908 

• Rhodospirillum_centenum_SW-PID18307 

• Rhodospirillum_rubrum_ATCC_11170-PID58 

• Shewanella_ANA-3-PID13905 

• Shewanella_frigidimarina_NCIMB_400-PID13391 

• Shewanella_sediminis_HAW-EB3-PID18789 

• Shewanella_woodyi_ATCC_51908-PID17455 

• Solibacter_usitatus_Ellin6076-PID12638 

• Synechococcus_CC9605-PID13643 

• Synechococcus_PCC_7002-PID28247 

• Synechococcus_WH_7803-PID13642 

• Synechococcus_elongatus_PCC_6301-PID13282 

• Thermodesulfovibrio_yellowstonii_DSM_11347-PID30733 

• Thermosipho_africanus_TCF52B-PID27767 

• Thiomicrospira_crunogena_XCL-2-PID13018 

 

Free-Living Gram-Positive 

• Acidothermus_cellulolyticus_11B-PID16097 

• Anoxybacillus_flavithermus_WK1-PID28245 

• Arthrobacter_aurescens_TC1-PID12512 

• Arthrobacter_chlorophenolicus_A6-PID20011 

• Candidatus_Desulforudis_audaxviator_MP104C-PID21047 

• Clostridium_acetobutylicum-PID77 

• Clostridium_cellulolyticum_H10-PID17419 

• Clostridium_novyi_NT-PID16820 

• Clostridium_thermocellum_ATCC_27405-PID314 

• Corynebacterium_efficiens_YS-314-PID305 

• Corynebacterium_glutamicum_R-PID19193 

• Corynebacterium_jeikeium_K411-PID13967 

• Dehalococcoides_BAV1-PID15770 

• Dehalococcoides_ethenogenes_195-PID214 

• Deinococcus_geothermalis_DSM_11300-PID13423 

• Deinococcus_radiodurans-PID65 

• Dictyoglomus_turgidum_DSM_6724-PID29175 

• Geobacillus_kaustophilus_HTA426-PID13233 

• Geobacillus_thermodenitrificans_NG80-2-PID18655 

• Lactobacillus_acidophilus_NCFM-PID82 

• Lactobacillus_delbrueckii_bulgaricus-PID16871 

• Lactobacillus_fermentum_IFO_3956-PID18979 

• Lactobacillus_sakei_23K-PID13435 

• Listeria_innocua-PID86 

• Listeria_welshimeri_serovar_6b_SLCC5334-PID13443 

• Mycobacterium_JLS-PID16079 

• Mycobacterium_KMS-PID16081 

• Salinispora_arenicola_CNS-205-PID17109 

• Salinispora_tropica_CNB-440-PID16342 

• Streptomyces_avermitilis-PID189 

• Streptomyces_coelicolor-PID242 

• Streptomyces_griseus_NBRC_13350-PID20085 

• Symbiobacterium_thermophilum_IAM14863-PID12994 

• Thermoanaerobacter_pseudethanolicus_ATCC_33223-PID13901 
 

 

 

 

Pathogenic Gram-Negative 

• Aeromonas_hydrophila_ATCC_7966-PID16697 

• Aeromonas_salmonicida_A449-PID16723 

• Agrobacterium_tumefaciens_C58_Cereon-PID283 

• Agrobacterium_vitis_S4-PID13372 

• Aliivibrio_salmonicida_LFI1238-PID30703 

• Bordetella_bronchiseptica-PID24 

• Bordetella_parapertussis-PID25 

• Bordetella_pertussis-PID26 

• Borrelia_garinii_PBi-PID12554 

• Borrelia_recurrentis_A1-PID18233 

• Borrelia_turicatae_91E135-PID13597 

• Brucella_abortus_9-941-PID9619 

• Brucella_canis_ATCC_23365-PID20243 

• Brucella_melitensis-PID180 

• Brucella_suis_ATCC_23445-PID20371 

• Chlamydia_muridarum-PID229 

• Helicobacter_acinonychis_Sheeba-PID17251 

• Helicobacter_hepaticus-PID185 

• Helicobacter_pylori_HPAG1-PID16183 

• Leifsonia_xyli_xyli_CTCB0-PID212 

• Parachlamydia_sp_UWE25-PID10700 

• Porphyromonas_gingivalis_W83-PID48 

• Proteus_mirabilis-PID12624 

• Pseudomonas_aeruginosa_PA7-PID16720 

• Pseudomonas_entomophila_L48-PID16800 

• Pseudomonas_mendocina_ymp-PID17457 

• Pseudomonas_syringae_phaseolicola_1448A-PID12416 

• Rickettsia_conorii-PID42 

• Stenotrophomonas_maltophilia_K279a-PID30351 

• Xanthomonas_campestris_8004-PID15 

• Xanthomonas_citri-PID297 

• Xanthomonas_oryzae_MAFF_311018-PID16297 

• Yersinia_pestis_Antiqua-PID16645 

• Yersinia_pseudotuberculosis_YPIII-PID28743 

 

Pathogenic Gram-Positive 

• Bacillus_anthracis_Ames_0581-PID10784 

• Bacillus_cereus_B4264-PID17731 

• Bacillus_thuringiensis_Al_Hakam-PID18255 

• Bacillus_weihenstephanensis_KBAB4-PID13623 

• Bacteroides_vulgatus_ATCC_8482-PID13378 

• Clavibacter_michiganensis_NCPPB_382-PID19643 

• Clostridium_botulinum_E3_Alaska_E43-PID28855 

• Clostridium_difficile_630-PID78 

• Clostridium_perfringens-PID79 

• Clostridium_tetani_E88-PID81 

• Corynebacterium_diphtheriae-PID87 

• Corynebacterium_urealyticum_DSM_7109-PID29211 

• Enterococcus_faecalis_V583-PID70 

• Listeria_monocytogenes_HCC23-PID29409 

• Lysinibacillus_sphaericus_C3_41-PID19619 

• Mycobacterium_abscessus_ATCC_19977T-PID15691 

• Mycobacterium_bovis-PID89 

• Mycobacterium_marinum_M-PID16725 

• Mycobacterium_smegmatis_MC2_155-PID92 

• Parabacteroides_distasonis_ATCC_8503-PID13485 

• Propionibacterium_acnes_KPA171202-PID12460 

• Renibacterium_salmoninarum_ATCC_33209-PID19227 

• Staphylococcus_aureus_RF122-PID63 

• Staphylococcus_epidermidis_RP62A-PID64 

• Staphylococcus_haemolyticus-PID12508 

• Staphylococcus_saprophyticus-PID15596 

• Streptococcus_gordonii_Challis_substr_CH1-PID66 

• Streptococcus_sanguinis_SK36-PID13942 

• Streptococcus_suis_98HAH33-PID17155 

• Streptococcus_uberis_0140J-PID353 

• Thermobifida_fusca_YX-PID94 

• Tropheryma_whipplei_Twist-PID95 

• Ureaplasma_parvum_serovar_3_ATCC_27815-PID19087 

• Ureaplasma_urealyticum-P
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