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ABSTRACT 

 

The RhoA/ROCK pathway has been targeted for study for the treatment of 

smooth muscle disorders, including gastrointestinal (GI) motility disorders. Since [Ca
2+

] 

in smooth muscle tissue initiates contraction, the RhoA/ROCK pathway allows for 

continual contraction at any level of Ca
2+

 within the cell. Using MYPT1, MYPT-pT696, 

MYPT1-pT853, LC20, pS19, and Rho kinase (ROCK 2), key components of 

RhoA/ROCK regulation of smooth muscle contraction, colon smooth muscle was 

analyzed for changes in MYPT1 and LC20 phosphorylation in both the membrane and 

cytosolic fractions. Carbachol (CCh), the Rho kinase inhibitor, SR-43677, and the PI3-

kinase inhibitor, LY294002, were utilized to further determine RhoA/ROCK’s effect on 

MYPT1 and LC20 phosphorylation. Overall, higher levels of MYPT1, MYPT1-pT696 

and pT853, and ROCK2 were found  in the membrane fraction of the colon smooth 

muscle lysates. LC20 and pS19 were shown to have higher basal levels in the cytosolic 

fraction of the colon smooth muscle lysates. CCh caused an overall increase in the levels 

of MYPT1, MYPT1-pT696 and pT853, ROCK2, LC20, and pS19 with increasing 

exposure to CCh. Treatment with SR-43677 caused a decrease in MYPT1-pT853 in both 

fractions of the lysates, with MYPT1 showing a slight decrease and MYPT1-pT696 

showing an increase in the pellet. LY294002 treatment did not have any significant effect 

on MYPT1, or MYPT1-pT853 or pT696, but overall caused a decrease in expression in 

the membrane fraction. Our results indicate that the RhoA/ROCK pathway is membrane-

dependent, with its downstream effectors translocating to the membrane upon 

RhoA/ROCK activation.  
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INTRODUCTION 

It is estimated that approximately 60-70 million people in the United States are 

affected by digestive diseases, including gastrointestinal (GI) motility disorders 

[NIDDK]. GI motility disorders can result from neural or muscular problems within the 

GI tract. Recent studies have shown that the RhoA/ROCK pathway may play a 

fundamental role in generating GI smooth muscle pathophysiology; and that it may also 

provide a target for therapeutic interventions of many GI motility disorders including: 

gastroesophageal reflux disease (GERD),  gastroparesis, adynamic ileus, colonic inertia, 

Hirschsprung’s disease, Ogilvie’s syndrome, and hemorrhoids [Ito, Rattan 2010].  

GI smooth muscle cell (SMC) contraction is initiated by the concentration of 

calcium (Ca
2+

) within the cell [Sanders]. Intracellular calcium can bind with Calmodulin 

and the Ca
2+

/Calmodulin complex then has the ability to activate myosin light chain 

kinase (MLCK). MLCK is responsible for phosphorylating myosin light chain (LC20), in 

the 20 kDa regulatory region, at Ser19 or Thr18 [Amano, Bitar, Hirano 2003, Hirano 

2007]. LC20 phosphorylation allows for the activation of the myosin ATPase, which 

results in muscle contraction by the generation of cross-bridges between actin and myosin 

2 [Amano].  

As smooth muscle contraction is regulated by intracellular [Ca
2+

], it would be 

expected that the contractile force would be relative to the amount of Ca
2+

 within the cell 

[Amano, Hirano 2003, Hirano 2007]. However, this is not the case. It is now known that 

the contractile force is relative to the amount of phosphorylation of LC20 [Patil]. Since 
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LC20 phosphorylation is indicative of contractile strength, researchers have been 

studying how smooth muscle remains contracted at specific [Ca
2+

].  

Myosin light chain phosphatase (MLCP) is responsible for dephosphorylating 

LC20, which results in smooth muscle relaxation [Hirano 2003, Hirano 2007]. MLCP is 

composed of three regions: a 38 kDa catalytic PP1cδ (protein phosphatase type 1, δ 

isoform), a 20 kDa regulatory unit, and the 110 kDa myosin phosphatase-targeting 

subunit (MYPT1) [Hartshorne, Hirano, Sanders, T Wang 2009]. Inhibition of MLCP 

causes the SMC of the GI tract to remain contracted through MLCP being unable to 

dephosphorylate LC20 [Rattan 2010]. There are two pathways that lead to the inhibition 

of MLCP. The first pathway involves the activation of Protein Kinase C (PKC) leading to 

the phosphorylation of CPI-17. When CPI-17 is phosphorylated, it is able to inhibit 

MLCP via its catalytic subunit, PP1cδ [Hartshorne]. The second pathway is the 

RhoA/Rho Kinase (ROCK) pathway. 

RhoA is a monomeric G-protein that becomes activated when bound to GTP 

[Somlyo], following membrane depolarization [Azam, Y Wang 2009]. RhoA has been 

shown previously to migrate to the plasma membrane with agonist stimulation [Gong]. 

Once at the membrane, RhoA is anchored by GDI proteins, which prevent diffusion back 

into the cytosol. Translocation of ROCK2 to the plasma membrane allows it to become 

activated through coupling to GTP-bound RhoA [Rattan 2010]. ROCK2 can prevent 

dephosphorylation of LC20 through three different mechanisms: 1) phosphorylation of 

myosin phosphatase targeting unit-1 (MYPT1) leading to the inhibition of MLCP, 2) 

prevention of myosin light chain-20 (LC20) from becoming dephosphorylated, and 3) 
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activity similar to MLCK (maintenance of LC20 phosphorylation) [Rattan 2010, 

Mizuno]. 

The purpose of this study was four-fold. First, we set out to determine if there 

were different basal levels of expression between the membrane and cytosolic fractions 

of colon smooth muscle tissue of MYPT1, pT696-MYPT1, pT853-MYPT1, and ROCK2. 

Second, utilizing two different Carbachol treatments (30 seconds and 1 minute), we 

attempted to determine if there was a difference in expression and phosphorylation of 

MYPT1, pT696-MYPT1, pT853-MYPT1, ROCK2, LC20, and pS19 in the cytosolic and 

membrane fractions of the colon. It has previously been shown that SR-3677, a highly 

selective Rho kinase inhibitor, causes a significant decrease in p-LC20 [Feng]. Other Rho 

kinase inhibitors have been shown to decrease the MYPT1- pT853 levels in the cytosolic 

fraction of smooth muscle tissue [T Wang 2009]. For the third part of this experiment, we 

looked into whether or not MYPT1-pT853 decreases within the membrane fraction as 

well. The final task of this experiment was to see if LY294002, a phosphoinositol-3-

kinase (PI3-kinase or PI3K) inhibitor, causes a decrease in total MYPT1 in the membrane 

fraction of the colon, as it has been shown previously that PI3-kinase may be required for 

activation of the RhoA/ROCK pathway [Azam, Yoshioka].  We show that ROCK2, 

MYPT1, MYPT1-pT696 and pT853 have a greater amount of protein expression in the 

pellet, which contains the membrane fraction, and LC20 and pS19 are more highly 

concentrated in the supernatant, which contains the cytosolic proteins. These results 

further the hypothesis that the RhoA/ROCK pathway is highly active at the membrane 

and not in the cytosol, with the possibility that MYPT1 is recruited to the membrane for 

phosphorylation. Our experiments also support the further study of Rho-kinase inhibitors 
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and PI3-kinase inhibitors as an alternative pharmacotherapeutic strategy for treatment of 

GI motility disorders. 

MATERIALS AND METHODS 

Colon Muscle Tissue Preparation 

Experiments were all done in compliance with the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals, with the protocols having been 

previously approved by the University of Nevada, Reno Institutional Care and Use 

Committee. Six to eight week old Male C57Bl/6 mice (from Charles River Laboratories, 

Wilmington, MA, USA) were anaesthetized using isofluorane, euthanized via 

decapitation, and the colons removed. The muscle tissue was obtained through sharp 

dissection, by removing the mucosa and submucosa, on a Sylgard-lined dish containing 

oxygenated Krebs solution.  

After dissection, two colons were selected to be treated with Carbachol (CCh), 

and each was equilibrated, separately, in 40 mL Krebs at 37°C for 50 minutes. The Krebs 

was changed every 20 minutes to ensure the tissue remained vital. After the tissues were 

equilibrated, 1 µM CCh was added to each colon. One colon received CCh treatment for 

30 seconds and the other for 1 minute. Two tissues were selected to be treated with either 

the Rho kinase inhibitor, SR-3677 or the phosphoinositide-3 kinase (PI3K) inhibitor, 

LY294002. Tissues were equilibrated in 20 mL of 37°C oxygenated Krebs for 50 

minutes. The tissues were then placed in separate beakers containing 20 mL 37°C, fresh, 

oxygenated Krebs and 0.3 µM tetrodotoxin (TTX) for 10 minutes.  After TTX treatment, 
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one colon received 3 µM SR-3677 compound and the other received 20 µM LY294002 

compound, and were incubated for 30 minutes. 

Control and drug-treated colon tissues were fixed in an ice-cold acetone (20 mL), 

10 % trichloroacetic acid (TCA), and 10 mM dithiothreitol (DTT) for two minutes. 

Following fixation, tissues were immediately frozen in liquid nitrogen and stored at -

80°C until ready for lysing. 

Lysis of Tissues 

Tissues were placed on ice for 5 minutes to thaw and were washed three times for 

one minute in an ice-cold acetone (1 mL), 10 mM DTT solution to remove any excess 

TCA. Microcentrifuge tubes containing the wash and colon were inverted at regular 

intervals during the washing process. Following the acetone-DTT wash, the colons were 

placed in a final wash containing 500 µL MYPT1 lysis buffer (50 mM Tris HCl pH 8.0, 

60 mM β-glycerophosphate, 0.5% NP-40, 0.2% SDS, 100 mM NaF, 2 mM EGTA, 25 

mM Na-pyrophosphate, and 1 mM DTT) and 1mM PMSF (phenylmethanesulfonyl 

fluoride, a protease inhibitor) for two minutes. The lysis buffer, for homogenizing the 

tissues, was prepared using 20 µL fasudil hydrochloride (a Rho-kinase inhibitor, Tocris 

Biosciences, Ellisville, MO, USA), 5 mg of a protease-inhibitor (PI) tablet (Roche 

Diagnostics, Indianapolis, IA, USA) and 1 mL of MYPT1 lysis buffer. The tissues were 

each homogenized in 500 µL MYPT1 lysis buffer and centrifuged at 4°C for 10 minutes 

at 3000g. Following centrifugation, the supernatants from each sample were removed and 

the membrane fraction (pellet) was resuspended, by vortexing, in 225 µL 1x PBS and 10 

mM PMSF.   
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Bradford Assay of Lysed c57 Colon Tissues  

To determine colon tissue protein concentration, the lysed tissue pellets and 

supernatants were diluted 5 and 10 times. All sample and standard solutions were run in 

duplicate. Bovine gamma globulin (BGG) was used as the protein standard to compare 

the lysed colon tissue samples to. BGG stock (1 µg/µL) was diluted one time in 1x PBS. 

The first row of a 96-well microplate was designated for the standards with increasing 

concentration going from left to right across the row: 0 µg/µL (blank), 3 µg/µL, 6 µg/µL, 

9 µg/µL, and 12 µg/µL. Microplate well concentrations were generated by adding either 

BGG or tissue sample (pellet or supernatant) to distilled water, obtaining a total volume 

of 160 µL. To each well, 40 µL of Bio-Rad Protein Assay reagent was added, and then 

mixed by pipetting 8-10 times. After addition of the dye, the plate was let sit for 10 

minutes prior to analysis by a microplate reader.  If the correlation coefficient reported by 

the microplate reader was below 0.90, the Bradford Assay was repeated.  

Preparation of Pellets and Supernatants for SDS-PAGE analysis 

To prevent protein degradation of the entire sample due to the freeze-thaw 

process, the supernatant was divided into two aliquots, based on the volume and protein 

concentration obtained from tissue lysis. The aliquot of the supernatant not being 

prepared for SDS-PAGE analysis was stored at -80°C for further use. If the pellet protein 

concentration was too low (<2 µg/µL) for the amount of sample obtained, the samples 

were not aliquotted. To each supernatant and pellet sample 25 µL 5x SDS/100 µL sample 

was added along with 200 µL 0.5M DTT/1000 µL 5x SDS. Each sample was vortexed 

and then boiled at 100°C for 5 minutes. Following boiling, the samples were centrifuged 

at 2000g for 30 seconds.  
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SDS-PAGE and Western Blot Analysis 

Control and CCh treated colons were run in 10% SDS-PAGE gels; and the SR-

3677 and LY294002 treated samples were each run on 12% SDS-PAGE gels. All of the 

gels were run in SDS running buffer for 55 minutes at 150 volts (V) at room temperature.  

Nitrocellulose membranes were used for both the control and CCh treated SDS-

PAGE gels, and polyvinylidene fluoride (PVDF) membrane was used for the SR-3677 

and LY294002 treated tissues. Prior to use, the PVDF membrane was soaked in methanol 

for 10 seconds, distilled water for one minute, and then 1x Transfer Buffer (700 mL DW, 

200 mL methanol, 100 mL 10x transfer buffer) for two minutes.  

The nitrocellulose paper, filter paper, and scouring pads were all thoroughly 

soaked in 20% methanol 1x Transfer buffer before placement on the cassette for the 

control and CCh samples SDS-PAGE gels. For the LY294002 and SR-3677 compound 

gels, the filter paper and scouring pads were soaked in a 30% methanol 1x Transfer 

buffer (100 mL 10x Transfer buffer, 600 mL DW, and 300 mL methanol) before 

stacking. The cassettes were run in either 20% methanol (Control and CCh gels) or 30% 

methanol 1x transfer buffer (SR-3677 and LY294002 gels) on ice and in the cold room. 

For overnight transfers, the cassettes were run for 17 hours at 35 V; and for rapid 

transfers, the cassettes were run at 100 V for 90 minutes.   

The control and CCh treated supernatants and pellets were compared by western 

blotting with MYPT1, pS19, LC20, MYPT1-pT696, MYPT1-pT853, and ROCK2 

antibodies. SR-3677 and LY294002 compound treated supernatants and pellets were 

compared to controls with MYPT1, MYPT1-pT853, and MYPT1-pT696 antibodies. All 

blots were incubated with ECL Block (GE HealthCare Biosciences, Piscataway, NJ, 
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USA) for 30 minutes prior to addition of primary antibodies. All primary antibodies were 

diluted 1000-fold, except the LC20 and pS19 antibodies which were diluted 250-fold. 

Blots were incubated with primary and secondary antibodies for one and half hours while 

rocking.  Between primary and secondary antibody incubations, blots were washed three 

times for 5 minutes with 1x PBS/0.2% Tween-20. Protein bands were detected using 

horseradish peroxidase-conjugated secondary antibodies diluted 50,000-fold, except for 

LC20 and pS19 blots which were diluted 25,000-fold. 

Following secondary antibody incubation, the blots were washed two times for 5 

minutes with 1x PBS/0.2% Tween-20 and allowed to sit in 1x PBS while prepping for 

visualization with ECL Advantage (GE HealthCare Biosciences, Piscataway, NJ, USA). 

Band visualization was completed with a CCD camera-based detection system with 

Visionworks software (Epi Chem II, UVP Laboratory Products, Upland, CA, USA).  

For densitometry, images were converted to TIFF files, inverted and auto-leveled using 

Adobe Photoshop (CS2, V9.0.2, Adobe System, San Jose, CA, USA).  

Materials 

 Tetrodotoxin and carbachol were purchased from Calbiochem (La Jolla, CA, 

USA).  SR-3677 and LY294002 were purchased from Enzo Life Sciences (Plymouth 

Meeting, PA, USA).  Bradford Assay and Western blot materials (nitrocellulose, and 

PAGE gel components) were purchased from BioRad (Hercules, CA, USA). The goat 

anti-MLC20, rabbit anti-pS19 MLC20, rabbit anti-MYPT1, rabbit anti-pT696-MYPT1, 

rabbit anti-pT853-MYP1, rabbit anti-ROCK2 antibodies were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). Horseradish peroxidase-conjugated secondary 

antibodies were purchased from Chemicon (Temecula, CA, USA).  
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Statistical Analysis 

 Adobe Photoshop adjusted, TIFF images were used to determine densitometry 

and densitometry values were determined using VisionWorks software. To determine the 

amount of expression per µg of protein, the densitometry values were divided by the 

amount of protein (µg) added into the well. Densitometry values are expressed as 

averages ± SD in pixel intensity units (PIU). Significance was determined using t-test, 

where P <0.05 is considered significant.  

RESULTS 

Determination of basal levels of MYPT1, MYPT1-pT696, MYPT1-pT853, and ROCK2 

in cytosolic and membrane fractions 

Using a positive-control that had been used previously for MYPT1 expression 

experiments, basal level of expression was determined between the pellet and 

supernatant. Two separate colons were used to perform the experiment in duplicate to 

ensure that if the variance was different between the two fractions, that it wasn’t a single 

occurrence. In comparison with the positive control, the supernatants of both colons 1 

and 2 , showed similar levels of MYPT1 expression at 20 µg, with a distinct increase in 

amount from 10 to 20 µg (Figure 1A). Expression of MYPT1 in the pellet was only 

slightly higher (1.36*10
7
± 8.39*10

6
 PIU) than in the supernatant (1.07*10

7
± 6.95810

6
 

PIU). Expression of MYPT1-pT696 also varied between the supernatant 

(8.62*10
6
±7.81*10

6 
PIU) and the pellet (1.07*10

7
±7.80*10

6
 PIU); with the pellet, for 

both colons, showing a greater amount of expression (Figure 1B). MYPT1-pT853 

showed a significant difference between the protein and the pellet (P=0.0345) with 

expression in the pellet at 1.98*10
7
±1.54*10

7
 PIU and in the supernatant at 

1.40*10
7
±1.19*10

7
 PIU (Figure 1C). ROCK2 expression also showed a significant 
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difference in expression (P=0.0275) between the pellet (1.10*10
6
± 1.44*10

5
 PIU) and the 

supernatant (2.00*10
5
± 8.33*10

4
 PIU) (Figure 1D).  

This experiment also helped determined what amount of supernatant and pellet 

should be loaded into the wells to minimize overexposure of bands, leading to 

densitometry values that would be inaccurate. At 20 µg of pellet protein, both control 

colons showed a decrease in expression when compared to the positive control (Figure 

1A-C). This decrease can be attributed to so much protein being located in the pellet, and 

the band becomes overexposed and bleached, which causes a decrease in the 

densitometry value. 
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Figure 1. Expression of MYPT1, MYPT1-pT696 and pT853, and ROCK2 vary 

between the supernatant and the pellet in colon smooth muscle tissue. Two separate 

colons were analyzed for basal levels of MYPT1, MYPT1-pT696 and pT853, and 

ROCK2 levels. MYPT1, MYPT1-pT696 and MYPT1-pT853 colon #2 were analyzed 

with 10 and 20 µg of supernatant and pellet protein. MYPT1-pT853 colon #1 and 

ROCK2 were analyzed with 20, 40, and 60 µg of supernatant and 10 and 20 µg of pellet 

protein. 20 µg of (+)-control colon was used for comparison. MM/PSS (Magic Mark and 

Precision Plus) are the protein standards used. Abbreviations in image: SN is for 

supernatant, and P is for pellet. All images are representative blots of data collected. 

Some densitometry data was omitted due to decreases in PIU at higher protein 

concentrations. These decreases are due to band bleaching and overexposure as a result of 

excessive protein within the well. A. MYPT1 expression was higher in the pellet than in 

the supernatant, but did not vary significantly. B. MYPT1-pT696 was seen to be higher in 

the pellet than in the supernatant, but levels did not vary significantly. C. MYPT1-pT853 

was expressed significantly higher in the pellet than in the supernatant (P<0.05).               

D. ROCK2 was shown to be significantly higher in the pellet than in the supernatant 

(P<0.05).  
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Comparison of CCh and basal levels of MYPT1, MYPT1-pT696, MYPT1-pT853, 

ROCK2 in cytosolic and membrane fractions 

Treatment with 30s of CCh caused an increase of MYPT1 expression in the 

supernatant (2.52*10
6
±9.66*10

5
 PIU) when compared to the control (1.07*10

7
± 6.95810

6
 

PIU), but only reached a significant difference (P=0.0286) at 1min CCh treatment 

(2.39*10
6
±2.64*10

5
 PIU) (Figure 2A). There was no significant difference in supernatant 

MYPT1 expression (P=0.804) between the 30s and 1min CCh treatments. Comparison 

between the 30s CCh treatment (3.76*10
6
±2.07*10

6
 PIU) and control pellet expression of 

MYPT1 revealed that there was a significant difference (P=0.0369), but not at 1min of 

CCh (3.76*10
6
±2.52*10

6
 PIU, P=0.062) (Figure 2A). No significant difference (P=0.998) 

was seen in pellet expression of MYPT1 when comparing 30s versus 1min CCh 

treatment. 

MYPT1-pT696 expression did not have a significant difference in expression 

between the supernatant control (8.62*10
6
±7.81*10

6 
PIU) and both CCh treatments (30s: 

1.11*10
6
±3.13*10

5
 PIU and 1min: 1.09*10

6
±8.44*10

4
 PIU). This was also seen when 

comparing the control (1.07*10
7
±7.80*10

6
 PIU) and CCh treated pellets 

(3.46*10
6
±4.38*10

5
 PIU and 1min: 4.92*10

6
±1.13*10

5
 PIU). When comparing the 

supernatant and pellet at 30s CCh treatment, no difference was seen in expression of 

MYPT1-pT696; but at 1min CCh treatment, there was a significant difference (P=0.004), 

with the pellet (4.92*10
6
±1.13*10

5
 PIU) having a greater level of expression than the 

supernatant (1.09*10
6
±8.44*10

4
 PIU) (Figure 2B). There was also no significant increase 

in expression with increasing exposure to CCh in either the supernatant or the pellet.  

Expression of MYPT1-pT853 did not greatly differ at either 30s 

(2.46*10
6
±5.83*10

5
 PIU) or 1min CCh treatment (2.37*10

6
±9.59*10

5
 PIU) in the 
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supernatant. In contrast, the pellet showed a significant increase in expression (P=0.0115) 

with an increase in exposure to CCh (30s: 2.14*10
6
±1.55*10

5
 PIU and 1min: 

5.58*10
6
±1.09*10

6
 PIU) (Figure 2C). It was also seen that there was not an overall 

difference in expression between control and CCh treated supernatants. Similar results 

were seen when comparing control and CCh treated pellets (Figure 2C).   

ROCK2 had an approximate 10-fold expression increase in the pellet compared to 

the supernatant at both 30s and 1min treatment with CCh (Figure 2D). A t-test was 

unable to be performed due to pellet bands becoming overexposed at higher protein 

concentrations, which provided lower PIU values and were omitted for accuracy. 

However, this overexposure does indicate that there is a higher level of protein to be 

found in the pellet, since the pixel saturation level was reached, causing the bleaching 

seen in the bands. 

Overall, there was no increase in expression of pS19 in either the pellet or 

supernatant with 30s or 1min exposure to CCh, when compared to controls (Figure 2E). 

Expression was only slightly higher in the supernatants (30s: 1.24*10
6
±2.34*10

5
 PIU and 

1min: 1.98*10
6
±1.25*10

5
 PIU) than the pellets (30s: 8.78*10

5
±3.61*10

5
 PIU and 1min: 

1.15*10
6
±3.97*10

5
). As expected, there was an increase in level of expression with 

longer exposure to CCh (Figure 2E). 

  LC20 expression levels did increase with exposure to CCh in both the 

supernatant and pellet, but there was not an overall significant increase in LC20 levels 

with CCh treatment when compared to controls. Basal levels of LC20 were seen to be 

significantly higher (P=0.04) in the supernatant (1.22*10
6
±2.13*10

5
 PIU) than the pellet 

(6.62*10
5
±2.51*10

5
 PIU). Similarly, at 30s CCh treatment, there was a significant 
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amount more LC20 located in the supernatant (2.21*10
6
±3.24*10

6
 PIU) than in the pellet 

(6.40*10
5
±8.58*10

5
 PIU) (Figure 2F). At 1min CCh treatment, expression levels did not 

vary greatly between the supernatant (2.08*10
6
±1.26*10

6
 PIU) and the pellet 

(1.11*10
6
±6.22*10

5
 PIU).   
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Figure 2. Carbachol effects on expression of MYPT1, MYPT1-pT696 and pT853, 

ROCK2, pS19, and LC20. Control supernatants for these experiments were from the 

above determination of basal levels of MYPT1, MYPT1-pT696, MYPT1-pT853, and 

ROCK2, and the pellet was from a newly lysed colon. The (+)-control used in the 

ROCK2 experiment is the same used in the basal level experiments. 1 µM CCh was used 

to treat tissues.  MYPT1, MYPT1-pT696 and pT853, pS19 and LC20 were analyzed 

using 10 µg of either control colons, and both the 30s and 1min CCh treated tissues.  

Pellets were analyzed with 5 µg per well of control and CCh treated tissues. Loading 

pattern is as follows: colon #1, 30s CCh, 1min CCh, colon #2, 30s CCh, 1min CCh; and 

this is repeated once to allow for both supernatant and pellet comparison on the same gel. 

ROCK2 is analyzed using 20 µg of the (+)-control used previously and 10 and 20 µg of 

the 30s and 1min CCh treated tissues. Left side of ROCK2 blot is 30s CCh and right side 

is 1min CCh. All images are representative blots of collected data. Some densitometry 

data excluded due to band bleaching and overexposure. MM/PSS (Magic Mark and 

Precision Plus) are the protein standards used. Abbreviations in image: SN is for 

supernatant, P is for pellet, and CCh is for Carbachol. A. MYPT1 was shown to have a 

significant increase in expression in the pellet with both exposures to CCh when 

compared to controls (P<0.05) and supernatant expression was significant with 1min 

CCh treatment (P<0.05). B.  MYPT1-pT696 was found to be significantly higher in 1min 

CCh treated pellets than supernatants (P<0.05). No significant increases were seen when 

comparing controls and treated tissues, except with 30s CCh supernatant. C. MYPT1-

pT853 showed a significant level of increase in the pellets with an increase in CCh 

exposure (P<0.05). D. pS19 did not show a significant increase with CCh stimulation. E.  

Basal levels of LC20 were significantly higher in supernatant than pellet and also with 

30s CCh stimulation (P<0.05). 
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Comparison of SR-3677 and basal levels of MYPT1, MYTP1-pT696, MYPT1-pT853 in 

cytosolic and membrane fractions 

Treatment with the Rho kinase inhibitor, SR-3677, caused a decrease in MYPT1 

expression in the supernatant in comparison with the controls. Similar results were also 

seen in the pellet treated samples (Figure 3A). MYPT1-pT696 levels decreased in the 

supernatant, but not in the pellet with SR-3677 treatment when compared to controls 

(Figure 3B). A 10-fold decrease in MYPT1-pT853 expression was seen in both the 

supernatant and pellet of SR-3677 treated samples, as expected (Figure 3C).  

More experiments will need to be performed to determine the significance of 

these findings. Due to low sample size, average expression and a t-test were unable to be 

determined from our results.  

Comparison of LY294002 and basal levels of MYPT1, MYTP1-pT696, MYPT1-pT853 

in cytosolic and membrane fractions 

Incubation of colon tissue with PI3-kinase inhibitor LY294002 caused a decrease 

in supernatant MYPT1 expression, but an increase in pellet expression when compared to 

controls (Figure 4A). A full magnitude difference in expression was seen in MYPT1-

pT696 when comparing supernatants and pellets (both control and treated tissues), with 

only a slight decrease with LY294002 treatment (Figure 4B). Pellet expression of 

MYPT1-pT853 was higher in the control pellet than supernatant. A decrease in 

expression was seen with LY294002 treatment in the pellet, with an increase seen in the 

supernatant (Figure 4C). 

As with the preceding experiment, more experiments will need to be performed to 

determine the significance of these findings. Due to low sample size, average expression 

and a t-test were unable to be determined from our results. 
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Figure 3. Effects of Rho Kinase inhibitor, SR-3677, on MYPT1 expression and 

phosphorylation. A single control colon (colon #2) supernatant was used for comparison 

in these experiments. Control pellet sample is same as used in CCh comparison 

experiments. 3 µM of SR-3677 was used to treat colon muscle tissue and was incubated 

with 0.3 µM TTX prior to SR-3677 addition. 10 µg of SR-3677 treated and control 

supernatants and 5 µg of control and treated pellets were utilized for comparison. Tables 

under each image are representing densitometry data collected from the image directly 

above it. MM/PSS (Magic Mark and Precision Plus) are the protein standards used. 

Abbreviations in image: SN is for supernatant, P is for pellet, and PIU is pixel intensity 

units. A. Overall, MYPT1 expression is seen to be higher in the pellet than in the 

supernatant, with a decrease seen with addition of SR-3677 in both fractions. B. MYPT1-

pT696 levels decreased slightly with addition of SR-3677, and increased in pellet treated 

sample. Overall, levels did not vary significantly. C. Levels of MYPT1-pT853 were 

decreased 10-fold, in both supernatants and pellets, with treatment of SR-3677.  
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Figure 4. Effects of PI3-kinase inhibitor LY294002 on MYPT1 expression and 

phosphorylation. A single control colon (colon #2) supernatant was used for comparison 

in these experiments. Control pellet sample is same as used in CCh comparison 

experiments.  20 µM of LY294002 was used to treat colon muscle tissue and was 

incubated with 0.3 µM TTX prior to LY294002 addition. 10 µg of LY294002 treated and 

control supernatants and 5 µg of control and treated pellets were utilized for comparison. 

Tables under each image are representing densitometry data collected from the image 

directly above it. MM/PSS (Magic Mark and Precision Plus) are the protein standards 

used. Abbreviations in image: SN is for supernatant, P is for pellet, and PIU is pixel 

intensity units. A. MYPT1 expression decreased in the supernatant due to LY294002 

treatment, but was seen to increase in the pellet. B. MYPT1-pT696 levels showed a 10-

fold lower level of expression when compared to the supernatants in both treated and 

control tissues. No significant decrease was seen with addition of LY294002. C. 

MYPT1-pT853 levels were lower in pellet than supernatant upon treatment with 

LY294002. Basal levels are higher in pellet than in supernatant.  
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DISCUSSION  

 The RhoA/ROCK pathway is being heavily researched due to the possible use of 

inhibitors of this pathway to treat smooth muscle pathophysiology including GI motility 

disorders [Rattan], vascular, and pulmonary disorders [Olson, Somlyo and Somlyo]. This 

study was aimed at elucidating if the RhoA/ROCK complex remains at the membrane 

following activation, and whether its downstream affectors are recruited to the membrane 

as well.  

Determination of the basal levels of protein expression in the supernatants and 

pellets indicate that there is a higher level of expression in the pellet of MYPT1, MYPT1-

pT696 and pT853, and ROCK2. ROCK2 is a cytosolic protein [Rattan 2010] and other 

studies have also shown that it becomes activated at the membrane following 

translocation from the cytosol [Hirano 2003, Rattan 2010, Patil]. ROCK2 is also thought 

to become attached to the membrane through phosphoinositol binding [Olson]. Our 

results demonstrating that ROCK2 is more highly concentrated within the pellet than the 

supernatant further indicates that ROCK2 is recruited to the membrane for activation, and 

may remain attached to membrane instead of detaching and going back into the cytosol to 

interact with downstream proteins. Furthermore, ROCK2 interactions with MYPT1 may 

also most commonly occur at the membrane, and that MYPT1 may be recruited to the 

membrane for ROCK2 phosphorylation, as our results indicate that MYPT1 is found at 

higher levels in the pellet than in the supernatant.  

Carbachol stimulation of tissues caused an increase in MYPT1, MYPT1-pT696 

and pT853, and ROCK2 expression. Overall, the pellet showed a greater level of 

expression than the supernatant. Carbachol has been shown to increase MYPT1-
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pT853levels, but not MYPT1-pT696 levels, indicating that phosphorylation of MYPT1 at 

Thr853 is the site affected with CCh stimulation [T Wang 2009]. Interestingly, our results 

show that with an increase in CCh stimulation, there is a decrease in MYPT1-pT853 in 

the supernatant, and an increase in the pellet. As ROCK2 is the only kinase known to 

phosphorylate MYPT1 primarily at this site (Thr853) [Hirano 2007], and is also 

hypothesized to be more highly active at the membrane, an increase in phosphorylation at 

this site within the pellet is indicative that ROCK2 phosphorylation of MYPT1 occurs 

primarily at the membrane and not in the cytosol. Furthering this idea, our results also 

show that Carbachol stimulation seems to recruit MYPT1 from the cytosol to the 

membrane (as there were higher levels of MYPT1 in pellet than the supernatant). As 

ROCK2 is activated at the membrane (following depolarization); membrane ROCK2-

MYPT1 interaction is shown here to be enhanced with CCh stimulation. 

Most research has previously focused on utilization of other Rho Kinase 

inhibitors (HA-1077 and Y27632), and these have been shown to be effective in reducing 

Rho-kinase activity [Rattan 2008]. However, these inhibitors have been shown to have a 

broad specificity, and they may be regulating other kinases as well [Olson]. In our study, 

we utilized SR-3677, which has been shown to have a high affinity for ROCK2 and cause 

an inhibition in ROCK2-MYPT1 interactions [Feng]. Our results indicate that SR-3677 

does have an inhibitory effect on phosphorylation of MYPT1 at Thr853, and thus an 

inhibition of the RhoA/ROCK2 pathway. SR-3677 also caused a decrease in MYPT1 

present in the membrane fraction which indicates that it may prevent MYPT1 from being 

recruited to the membrane for phosphorylation by ROCK2. Interestingly, our results 

showed an increase in MYPT1-pT696 in the pellet with SR-3677 treatment; which 
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indicates that with ROCK2 inhibition, a second pathway may take over for inhibition of 

MLCP. 

It has been speculated that PI3-kinase plays a role in the activation of RhoA 

[Azam, Yoshioka], and thus ROCK activation leading to MYPT1 phosphorylation. It has 

been shown that ROCK2 can be partially activated with phosphoinositol lipids in the 

absence of RhoA-GTP [Yoneda]. Yoshioka et al. [2006] have shown previously that PI3-

kinase-C2α is the isoform of PI3-kinase that is responsible for regulating MCL20 

phosphorylation through the RhoA/ROCK pathway, by allowing binding to the pleckstrin 

homology domain of ROCK2 by phosphoinositol lipids. LY294002 has been used 

previously in experiments and was shown to cause a decrease in ROCK2 activity; 

however, it has also been shown to be less effective on PI3K-C2α [Yoneda]. PI3-kinase 

inhibitors act through suppressing membrane depolarization and can cause a decrease in 

RhoA-activity, and inhibition of ROCK2 activation [Yoshioka]. Thus, it would be 

expected to see a decrease in MYPT1 phosphorylation at Thr853, which our results show 

to be true. It is also shown in our results that the decrease in MYPT1-pT853 was higher 

in the pellet than the supernatant, which is to be expected as it is hypothesized that 

ROCK2 is binding to phosphoinositol lipids within the membrane [Olson]. An increase in 

MYPT1 with LY294002 treatment was also seen, which is most likely due to the control 

band containing a bleached spot, which decreased it densitometry value. More studies 

will be needed to see if LY294002 has a significant effect on suppressing the 

RhoA/ROCK2 pathway, which would allow this drug to be an alternative option for those 

suffering from GI motility disorders.  
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Our results have furthered the hypothesis that the RhoA/ROCK2 pathway is 

highly active at the membrane of smooth muscles cells of the GI tract. The results in this 

paper also help support the hypothesis that Rho Kinase inhibitors may be beneficial in 

regulating muscle contractions in the GI tract, and that the PI3-kinase pathway may also 

prove beneficial in helping treat GI motility disorders that do not respond to Rho Kinase 

inhibitors or other drug treatments. Although not all experiments indicated a significant 

difference in protein expression between the pellet and supernatant, it is possible that 

with further study of these comparisons (and thus a larger sample size) would allow us to 

obtain more data for comparison and more significant results.  
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