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A general smooth curve of genus six lies on a quintic del Pezzo surface. In [AK11],

Artebani and Kondō construct a birational period map for genus six curves by taking

ramified double covers of del Pezzo surfaces. The map is not defined for special genus

six curves. In this dissertation, we construct a smooth Deligne-Mumford stack P0

parametrizing certain stable surface-curve pairs which essentially resolves this map.

Moreover, we give an explicit description of pairs in P0 containing special curves.
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1 Introduction

In [AK11], the authors construct a birational period map

ϕ :M6 99K D/Γ,

where the source denotes the moduli space of genus six curves and the target parametrizes

certain lattice-polarized K3 surfaces (see, for example, [Dol96, Section 1]). Their con-

struction of ϕ is as follows. The canonical model of a general smooth curve C of genus

six is a quadric section of a unique smooth quintic del Pezzo surface Σ5 embedded

anti-canonically in P5. The double cover of Σ5 branched along C will be a K3 surface.

Taking the period point of this surface defines ϕ. More precisely, the output of ϕ is a

lattice-polarized K3 surface where the lattice has rank 5 (note thatM6 and D/Γ are

15-dimensional, while the moduli space of polarized K3 surfaces is 19 dimensional).

A smooth curve of genus six is called special if it is one of the following four

types: hyperelliptic, trigonal, bielliptic, or plane quintic. The canonical model of any

non-special smooth curve of genus six lies on a unique weak del Pezzo surface (see,

for example, [AK11, Proposition 1.1]), so ϕ extends over such curves. Note that ϕ

does not extend over special curves; the canonical models of these curves do not lie

on weak quintic del Pezzo surfaces in P5. Moreover, Artebani and Kondō prove that

the birational period map ϕ induces an isomorphism

M6 \ {special curves} → (D \ H)/Γ,

where H denotes a discriminant divisor. Artebani and Kondō show that H has 3

irreducible components and that the general member of these components corresponds

to a genus six curve with a node in Σ5, the union of a plane quintic and a line in
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P2, and the union of a trigonal curve C of genus six and a section e ∈ |KC − 2g1
3| in

P1 × P1 respectively ([AK11, Theorem 0.2]). The K3 surfaces corresponding to such

curves are also constructed via double covers branched along these curves.

The goal of this paper is to construct a space resolving the indeterminacy of ϕ

and give a modular interpretation for this space. Studying birational period maps has

been a topic of significant interest in the literature. Shah in [Sha80] defines a period

map for the GIT (geometric invariant theory) space of plane sextics by taking ramified

double covers of P2. The indeterminacy occurs precisely along the locus of triple conic

curves, which he resolves by blowing it up. Kondō in [Kon00] defines a birational

period map for curves of genus three by taking four-fold cyclic covers of P2 branched

along quartic curves, which induces an isomorphism between the moduli space of non-

hyperelliptic curves of genus three and the arithmetic quotient of a period domain

minus a discriminant divisor. Similarly, Kondō in [Kon02] constructs a birational

period map for genus four curves by taking triple covers of quadric surfaces in P3

branched along non-hyperelliptic curves. Artebani in [Art09] expands upon Kondō’s

work in genus three by considering the GIT space for plane quartics and completely

resolves the indeterminacy of the period map on the level of compactifications by

blowing up the double conic locus. In [CMJL12], the authors expand upon Kondō’s

work in genus four by constructing a GIT model forM4 and resolving the period map

using techniques from Looijenga. In [LO16], Laza and O’Grady study the relationship

between GIT and Satake-Baily-Borel compactifications of quartic K3 surfaces.

To resolve the period map ϕ for genus six curves, rather than using GIT, we appeal

to Hacking’s theory of stable pairs developed in [Hac01], [Hac04] and generalized in

[DH18]. A stable pair is a surface-curve pair satisfying certain properties for moduli

theoretic purposes. The moduli spaces of stable pairs constructed in these papers are

modified versions of the KSBA (Kollár, Shepherd-Barron, Alexeev) compactification.
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In Section 3, we will formally define stable pairs and their allowable (Q-Gorenstein)

families. We remark that work of Hyeon and Lee in [HL10] reveals that Hacking’s

compactification of plane quartic curves is already useful for the analogous period

map question in genus three: in this case, Hacking’s space extends the period map

over hyperelliptic curves. We should also note that in [AET19], the authors construct

a stable pair compactification of K3 surfaces of degree 2.

Using Hacking’s framework, we can consider a moduli stack P of stable pairs whose

general point is a pair of the form (Σ5, C), where C is smooth and of class −2KΣ5

(see Definition 3.9). We define two open substacks of P that will be necessary for us:

Definition 1.1. Let P0 ⊂ P be the open substack parameterizing stable pairs (X,D)

such that:

1. The surface X has only combinations of du Val, index two cyclic quotient sin-

gularities, and simple elliptic singularities.

2. The curve D has at worst ADE singularites and avoids the singularities of X.

In (1), we allow “empty” combinations of singularities, hence the surface X may have

only some of the listed singularities or may even be smooth.

Let Psm
0 ⊂ P0 be the open substack parametrizing stable pairs (X,D) satisfying

properties (1) and (2) with D smooth.

We remark that an index 2 cyclic quotient singularity arising on a stable pair in

P is a class T singularity (see Definition 3.12).

The main result of this paper is the following:

Theorem 1.2. The stack P0 is Deligne-Mumford, smooth, and fits into the diagram

P0

M6 (D/Γ)∗

j ϕ̃

ϕ
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where j is the natural (birational) forgetting map and ϕ̃ extends the double cover

construction of ϕ. Moreover, the map j restricts to a surjective morphism

j|Psm
0

: Psm
0 �M6 \ H6,

where H6 denotes the hyperelliptic locus.

In the statement of this theorem, (D/Γ)∗ denotes the Satake-Baily-Borel com-

pactification of D/Γ. The content of this theorem is that Psm
0 resolves the map ϕ

over plane quintic, trigonal, and bielliptic curves (all special curves except the hyper-

elliptics). The proof of this theorem will involve explicit construction of stable pairs

(X,D) containing special genus six curves. Using these pairs, we verify surjectivity

of j over smooth non-hyperelliptic curves. Table 1 in Section 4 gives a complete list

of the pairs we construct. We note that these pairs lie in three distinct boundary loci

in P0, denoted Z1, Z2, and Z3. By “boundary” here, we mean pairs (X,D) such that

X is singular and does not have du Val singularities. We describe these boundary

loci below by giving the dimension and general member of each.

1. Z1: 14 dimensional (a divisor). The general member is a pair (X,D) where X

is constructed by choosing a line transverse to a smooth plane quintic curve in

P2, blowing up the 5 points of intersection, and contracting the strict transform

of the line. This contraction produces a 1
4
(1, 1) cyclic quotient singularity. The

curve D is the image of the quintic in X.

2. Z2: 14 dimensional (a divisor). The general member is a pair (X,D) where X

is constructed by first choosing a trigonal curve of genus six C on P1 × P1 and

a ruling e meeting C transversely in 4 points. Then we blow up the four points

of intersection between C and e and contract the strict transform of e. This
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contraction also produces a 1
4
(1, 1) cyclic quotient singularity. The curve D is

the image of C in X.

3. Z3: 10 dimensional. The general member is a pair (X,D) where X is a cone in

P5 over an elliptic curve embedded in P4 via a degree 5 line bundle and D is a

smooth quadric section of X (a bielliptic curve).

Moreover, we verify that given any pair (X,D) in P0, the double cover of X

branched along D yields a (degeneration of a) K3 surface with “insignificant limit

singularities” (see [Sha79], [Sha80] for the definition of such singularities). In dimen-

sion 2, these are precisely the Gorenstein semi-log canonical (slc) singularities. Since

the period map for K3 surfaces extends over degenerations with such singularities,

the map ϕ̃ is indeed a morphism as asserted in the theorem (see Proposition 4.6.23

and Proposition 4.6.25). The K3 surfaces associated to the pairs (X,D) over plane

quintics and trigonal curves will be closely related to components of the discriminant

divisor described by Artebani and Kondō (we discuss this in Remark 4.6.24).

We also remark that we can resolve the map j via the simultaneous stable reduc-

tion of Casalaina-Martin and Laza for families of ADE curves (see [CML13, Theorem

3.5, Corollary 6.3]). We will see in Section 4 that this process yields a space that also

resolves ϕ over the hyperelliptic curves (see Remark 4.6.28).

We remark that one motivation for using stable pairs to resolve ϕ stems from the

Hassett-Keel program for genus six curves. In [Mül14], Müller shows that the final log

canonical model of M6 parametrizes quadric sections of Σ5. Given a one-parameter

degeneration of quadric sections of Σ5 over the germ of a smooth curve, we can modify

it so that the new special fiber is a stable pair. This stable reduction process involves

applying techniques from the minimal model program. By enumerating singular

quadric sections of Σ5 by topological type and running this process, the hope is to
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construct a complete list of the pairs in P. We describe some explicit examples of

this process in Section 5, but completing this approach is left for future work. A list

of the non-ADE isolated singularities appearing on quadric sections of Σ5 appears in

Section 5.

It is worth noting that the authors in [DH18] successfully use this technique of

relying on an auxiliary moduli space to naively complete one-parameter families and

then running stable reduction. In this case they are able to give an explicit description

of the boundary of the KSBA space X they consider. The general member of X is a

smooth (3, 3) curve in P1 × P1. They exploit the existence of a surjective morphism

H3
4(1/6 + ε)→ X,

where the source denotes a weighted Hurwitz space of genus four triple covers of P1.

This morphism is explicitly given by

[φ : C → P1] 7→ (P(E), C)

where E denotes the Tschirnhausen bundle of φ. By degenerating covers in the

Hurwitz space and applying this Tschirnhausen construction, the authors are able to

naively complete one-parameter families of pairs and then run stable reduction. They

give an explicit description of the pairs in X using this approach.

We should also remark that there are very few examples in the literature of KSBA

spaces where the boundary has been described completely. The authors in [Hac04]

and [DH18] are able to give very explicit descriptions of the spaces they consider (we

have already discussed the latter work). In [Hac01] and [Hac04], for each d ≥ 3,

Hacking constructs a moduli space Pd of stable pairs whose general member is a pair

(P2, Cd), where Cd is smooth of degree d. To describe the pairs in this space, Hacking
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heavily exploits the fact that the Picard number ρ(P2) = 1. Note that the authors in

[DH18] also work in a low Picard number setting: ρ(P1 × P1) = 2. Hacking is able

to classify the log terminal surfaces arising as degenrations of P2: Each such surface

arises as Q-Gorenstein deformation of P(a2, b2, c2), where (a, b, c) is a solution of the

Markov equation

a2 + b2 + c2 = 3abc.

Moreover, all solutions of this equation can be obtained from the solution (1, 1, 1) via

mutation (regard the equation as a quadratic in one of the three variables and replace

that variable with the other root). One would hope to find a similar combinatorial

story that would classify the log terminal surfaces in KSBA spaces where the general

surface has higher Picard number, but this is not yet understood. There is a natural

starting point: In Section 3 (see Definition 3.12 and Proposition 3.13), we describe the

combinatorial classification of class T singularities; these are either rational double

points or cyclic quotient singularities of the form

1

p2q
(1, dpq − 1)

where p, q are integers and d is co-prime to q. A cyclic quotient singularity of this

form is also called a Tq-singularity. Moreover, these are precisely the log terminal

surface singularities in KSBA spaces. There is a correspondence between normal

toric surfaces X with T1 singularities and full exceptional collections of vector bundles

on the generic fiber of a one-parameter Q-Gorenstein smoothing of X (see [Hac16],

Section 2.5.1). However, we see in Section 4 of this thesis that degenerations of Σ5

will have Tq singularities for q > 1. The upshot of this discussion is that even trying

to classify the log terminal surfaces which arise as Q-Gorenstein degenerations of Σ5

is very difficult.
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We should also remark that in [HL10], the authors identify both Hacking’s com-

pactification of plane quartic curves and the Satake-Baily-Borel compactification of

Kondō’s period space in [Kon00] with certain log canonical models ofM3. One might

ask: How do P and (D/Γ)∗ fit into the Hassett-Keel story for genus six curves? We

also leave this question for future work.

The dissertation is organized as follows. Section 2 will describe some salient

features of the geometry of special genus six curves. In Section 3, we will recall the

theory of stable pairs and establish a smoothability criterion for such pairs with mild

surface singularities. Section 4 will be devoted to proving Theorem 1.2. The proof

will entail explicitly constructing surface-curve pairs using the geometry of special

curves and then applying the smoothability criterion. Section 5 gives some examples

of computing stable limits of one-parameter degenerations of quadric sections of Σ5,

and we recover some of the pairs constructed in Section 4.

We should also note that a shorter version of this dissertation has been published

as a paper ([Gol20]).

2 Geometry of special curves

In this section, for each smooth non-hyperelliptic special curve C of genus six men-

tioned in the introduction, we give a natural surface S into which C embeds. This will

guide our search for stable pairs containing a given curve. We also introduce stratifi-

cations of plane quintic and trigonal curves after specifying certain marked divisors.

Throughout this paper, Fn will denote the Hirzebruch surface P(OP1 ⊕OP1(−n)).

2.1 Plane quintics

Of course, such a curve embeds in P2.
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Definition 2.1.1. A marked plane quintic curve is a pair (C,E) where C is a plane

quintic curve and E is a hyperplane section.

In Section 4, for each marked smooth plane quintic curve (C,E), we exhibit a

stable pair containing C. Marked smooth plane quintic curves (C,E) are stratified

by partitions (a1, . . . , a5) of 5; the partition represents the non-zero coefficients of the

points in the support of E. For example, a pair (C,E) of type (1, 1, 1, 1, 1) means

that E = `|C , where ` is a line transverse to C. On the other hand, a pair (C,E)

of type (5) means that E = `|C , where ` meets C in a single point with intersection

multiplicity 5.

2.2 Trigonal curves

Recall the construction of a rational normal surface scroll in Pg−1. For two non-

negative integers a and b such that a+ b = g− 2, a rational normal surface scroll Sa,b

is the join of two rational normal curves of degrees a and b with complementary linear

spans. Equivalently, Sa,b can be defined as the rational ruled surface P(OP1(−a) ⊕

OP1(−b)).

Now, consider a smooth trigonal curve C ⊂ Pg−1. The linear system of quadrics

containing C cuts out a rational normal surface scroll Sa,b (see [ACGH85, Proposition

3.1]). We now define some numerical invariants associated to the embeddings of

smooth trigonal curves in scrolls that help us stratify such curves.

Definition 2.2.1. Let Sa,b denote the rational normal surface scroll containing a

given smooth trigonal curve C. The quantity M = |a − b| is called the Maroni

invariant of C.

Tautologically, a smooth trigonal curve C of Maroni invariant M embeds into the

Hirzebruch surface FM . We note that for genus six, there are only two possible values

9



for M : 0 and 2. When M = 0, by genus considerations, such a curve has class 3e+4f

on P1 × P1, where e and f denote the classes of the two rulings.

When M = 2, such a curve has class 3e+ 7f on F2, where e denotes the negative

section and f denotes the fiber class of the projection F2 → P1 (the latter cuts out

the g1
3 on C). The negative section has a unique point of intersection with C; denote

this point p. Let fp denote the unique fiber containing p.

Any smooth trigonal curve C of genus six has not only a unique g1
3 but also a

unique g1
4 of class KC − 2g1

3. If C has Maroni invariant 0, then this g1
4 is cut out by

e on P1 × P1. If C has Maroni invariant 2, the g1
4 is cut out by e+ f .

Definition 2.2.2. A marked trigonal curve of genus six is a pair (C,E) where C is

a trigonal curve of genus six and E is a divisor in the unique g1
4 associated to C.

In Section 4, for each marked smooth trigonal curve of genus six (C,E), we exhibit

a stable pair containing C. We will use the following notation to stratify marked

smooth trigonal curves of genus six (C,E):

1. Type (2; [a1], a2, a3, a4): A pair (C,E) is of this type if C has Maroni invariant

2 and

E = a1p+
∑
i

aipi.

Note that when C has Maroni invariant 2, the point p is always in the support

of E. The ai necessarily form a partition of 4. Note that a1 > 1 if and only if

E = (e+ fp)|C , and a1 = 1 if and only if E = (e+ f0)|C for some fiber f0 6= fp.

2. Type (0; b1, b2, b3, b4): A pair (C,E) is of this type if C has Maroni invariant 0

and

E =
∑
i

bipi.

The bi necessarily form a partition of 4.
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2.3 Bielliptic curves

A bielliptic curve is one that admits a 2 : 1 cover of an elliptic curve. A smooth genus

six bielliptic curve can be realized as a quadric section of a cone in P5 over a smooth

elliptic curve embedded in P4 via a degree 5 line bundle. The curve avoids the vertex

of the cone (see [Kon05, Lemma 3.3], for example). Moreover, for a bielliptic curve of

genus six (in fact for genus greater than five), the bielliptic involution is unique (see

[Acc94, Chapter 5], for example) and the quotient by this involution is isomorphic to

the exceptional elliptic curve for the minimal resolution of this cone.

3 Moduli of stable pairs

In this section, we outline the theory of stable pairs. We refer the reader to [Hac01],

[Hac04], and [DH18] for more details. The key idea is that the forthcoming definitions

allow us to construct the moduli stacks P, P0, and Psm
0 (recall Definition 1.1).

Definition 3.1. Let X be a surface and D an effective Q-divisor on X. The pair

(X,D) is said to be semi log canonical (slc) (resp. semi log terminal (slt)) if the

following conditions hold:

1. X is Cohen-Macaulay and has at worst normal crossings singularities in codi-

mension 1.

2. The divisor KX +D is Q-Cartier.

3. Let ν : Xν → X denote the normalization of X, δ the double curve of X,

Dν and δν the inverse images of D and δ. Then the pair (Xν , δν + Dν) is log

canonical (resp. log terminal).
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Definition 3.2 ([DH18, Definition 2.1]). Let m,n be positive co-prime integers with

m < n. Let X be a projective, reduced, connected, Cohen-Macaulay surface and D

an effective Weil divisor on X. We say that (X,D) is a stable pair of type (m,n) if

the following conditions hold:

1. No component of D is contained in the singular locus of X.

2. For some ε > 0, the pair (X, (m/n+ε)D) is slc, and the divisor KX+(m/n+ε)D

is ample.

3. The divisor nKX +mD is linearly equivalent to zero.

4. χ(OX) = 1.

Definition 3.3 ([DH18, Definition 2.3]). A Q-Gorenstein family of stable pairs of

type (m,n) is a pair (π : X → T,D ⊂ X ), where D is a relative effective Weil divisor

and π is a flat, proper, Cohen-Macaulay morphism with slc surfaces as geometric

fibers, satisfying the following additional conditions:

1. ω
[i]
π commutes with base change for every i ∈ Z, and on each geometric fiber,

some reflexive power of ωπ is invertible.

2. OX(D)[i] commutes with base change for every i ∈ Z.

3. Each geometric fiber is a stable pair of type (m,n).

For brevity, we will occasionally write “stable pair” and omit “of type (m,n).”

We will eventually specialize to the case (m,n) = (1, 2). Geometrically, Q-Gorenstein

families of stable pairs are those which lift locally to canonical coverings (to be defined

below). It is often more convenient to use this geometric definition when discussing

Q-Gorenstein deformations of singularities. We formally define canonical cover and

12



the geometric version of Q-Gorenstein deformation of a stable pair below, following

[Hac04]. Recall that the index of a Q-Cartier Weil divisor D at a point P in a normal

variety X is the smallest positive integer such that ND is Cartier near P .

Definition 3.4. Let P ∈ X be an slc surface germ of index N . The canonical

covering π : Z → X is defined by

Z = Spec
X

(OX ⊕OX(KX)⊕ · · · ⊕ OX((N − 1)KX)),

where the multiplication structure is determined by a choice of isomorphismOX(NKX) ∼=

OX .

We will also use the terminology index one cover to express the same idea (recall

that KZ is Cartier, hence has index 1). Let ξN be a primitive N th root of unity.

There is a natural µN action on each OX(iKX) given by multiplication by ξiN , and

we note that the canonical covering morphism π is a cyclic quotient of degree N by

the induced action on Z.

Definition 3.5. Let (P ∈ X,D) be the germ of a stable pair, N be the index

of X, Z → X the canonical covering, and DZ the inverse image of D. We say

that a deformation (X ,D)/S of (X,D) is Q-Gorenstein if there is a µN -equivariant

deformation (Z,DZ)/S of (Z,DZ) extending the natural µN action on Z whose µN

quotient is (X ,D)/S.

Remark 3.6. We say that (X,D) satisfies the index condition if the divisorial pullback

of D to the canonical covering at every surface germ of X is Cartier. For stable pairs

of type (m,n) = (1, 2), this condition is vacuous. See [DH18, Definition 2.4] for

more details. We note that Definition 3.5 is equivalent to conditions (1) and (2) of

Definition 3.3 if the index condition holds.
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It is clear how to modify the definition of Q-Gorenstein family in the context of

surfaces (no marked curve) or surface germs: simply forget all conditions involving

the marked divisor.

Definition 3.7. We say that a stable pair (X,D) is smoothable if there is a Q-

Gorenstein deformation (X ,D)/∆ of (X,D) over the germ of a smooth curve such

that the generic fiber Xη of X/∆ is smooth.

It follows from parts (2) and (3) of Definition 3.2 that for a stable pair (X,D),

the divisors −KX and D are both ample. In particular, if (X,D) is smoothable, X

must smooth to a del Pezzo surface.

Theorem 3.8 ([DH18, Theorem 2.5]). There is a Deligne-Mumford stack F whose

objects are Q-Gorenstein families of stable pairs of type (m,n) satisfying the index

condition.

Definition 3.9. Fix (m,n) = (1, 2). Let FK2=5 ⊂ F be the open and closed substack

parametrizing stable pairs (X,D) with K2
X = 5. Let P denote the component of

FK2=5 whose general point is a pair (Σ5, C) where C is smooth of class −2KΣ5 .

We note that FK2=5 is in fact an open and closed substack of F since K2 (and

moreover (K + D)2) is constant in Q-Gorenstein families of stable pairs (see, for

example, [Has99]). Also, now it makes sense to define the open substacks P0 and Psm
0

of Definition 1.1 (the openness follows from the fact that the set of allowed singularity

types for pairs in these substacks is closed under Q-Gorenstein deformation).

Remark 3.10. The properness of the stack F in general is a delicate issue. There is

a partial valuative criterion properness proven in [DH18, Proposition 2.11]: Up to

base change, a family over a DVR with smooth generic fiber can be completed to

a family where the special fiber is a stable pair. Moreover, this new family will be
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Q-Gorenstein if the special fiber satisfies the index condition (recall Remark 3.6), but

there is no reason that the index condition should hold a priori. However, as noted

in Remark 3.6, for stable pairs of type (m,n) = (1, 2), the index condition holds

vacuously. Hence P is proper.

We will now give some properties of stable pairs of type (m,n) and their fami-

lies. We begin with a description of some singularities that arise on stable pairs and

conclude with a smoothability criterion for pairs with such singularities.

Definition 3.11. Fix co-prime positive integers a and r with a < r. Let Z/rZ act

on C2 via the diagonal matrix ξr 0

0 ξar

 ,

where ξr is a primitive rth root of unity. The resulting singularity is called a cyclic

quotient singularity of type 1
r
(1, a).

Such singularities are uniquely determined by their minimal resolutions. The

exceptional locus of the minimal resolution of a cyclic quotient singularity of type

1
r
(1, a) is a chain of rational curves E1, . . . , En with self-intersections E2

i = −ci < 0

for all i. The ci can be computed via the continued fraction

r

a
= c1 −

1

c2 − 1
c3−...

. (3.1)

Conversely, given Ei, ci, and a continued fraction representation as in (3.1), we

say that the singularity created by contracting the Ei is of type 1
r
(1, a). We remark

that this notation depends on one of the two possible orderings of the Ei.

Definition 3.12 ([KSB88, Definition 3.7]). A surface singularity is said to be of

class T if it is a cyclic quotient singularity and admits a Q-Gorenstein one-parameter
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smoothing.

In the definition of class T given in [KSB88], a deformation X/S is said to be Q-

Gorenstein if KX is Q-Cartier. This is an a priori weaker condition than the notion

of Q-Gorenstein given in Definition 3.5. However, as remarked in [HP10, Section 2.1],

the two notions coincide when the central fiber X has quotient singularities and the

base S is a smooth curve. There is a well known classification of class T singularities

due to Kollár and Shepherd-Barron which we now present.

Proposition 3.13 ([KSB88, Proposition 3.10]). A class T singularity is either a

rational double point (ADE, du Val) or a cyclic quotient singularity of type

1

p2q
(1, dpq − 1) (3.2)

where p, q are integers and d is co-prime to p.

We make a few remarks about class T singularities. Class T singularities are pre-

cisely the log terminal Q-Gorenstein-smoothable surface singularities ([Pro17, The-

orem 3.4]). For a given class T singularity, there is an irreducible component of its

deformation space parametrizing Q-Gorenstein deformations. Hence, Q-Gorenstein

deformations of class T singularities are class T ([KSB88, Theorem 3.9, Section 7]).

A non-du Val class T singularity of the form in (3.2) has index p and canonical cover

of type Apq−1. The µp action on the equation

f = xy + zpq = 0 (3.3)

is given by

(x, y, z) 7→ (ξx, ξ−1y, ξdz) (3.4)
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(see the remarks immediately following Proposition 5.3 in [BR95], for example). We

will also need to make use of the following theorem.

Theorem 3.14 ([HP10, Theorem 3.1]). Let X be a projective surface with log canon-

ical singularities such that −KX is big. Then there are no local-to-global obstructions

to deformations of X. In particular, if the singularities of X admit Q-Gorenstein

smoothings, then X admits a Q-Gorenstein smoothing.

Before establishing the smoothability criterion, we need two important facts.

Lemma 3.15. Let (X,D) be a stable pair of type (m,n) such that X has class T

singularities and D is Cartier. Then H1(OD(D)) = 0.

Proof. By Lemma 3.14 in [Hac04], H1(OX(D)) = 0 since X is log terminal (this is a

consequence of Kodaira vanishing). Now, the exact sequence

0→ OX → OX(D)→ OD(D)→ 0

induces a long exact sequence in cohomology

· · · → H1(OX(D))→ H1(OD(D))→ H2(OX)→ · · ·

By Serre duality, H2(OX) = H0(KX)∨ = 0 since KX is anti-ample. The result is

immediate.

Lemma 3.16 ([Hac01, Lemma 5.5]). Let X be a surface with log canonical and Q-

Gorenstein smoothable singularities with −KX ample, and let X/∆ be a deformation

of X over the germ of a smooth curve. Then the restriction map

PicX → PicX
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is an isomorphism.

The proof mimics a portion of the proof of the proposition cited. We include it

for the reader’s convenience.

Proof. We have a commutative diagram

PicX PicX

H2(X ,Z) H2(X,Z)

The restriction map H2(X ,Z) → H2(X,Z) is an isomorphism because X is a

homotopy retract of X . The map PicX → H2(X,Z) fits into the long exact sequence

in cohomology

· · · → H1(OX)→ PicX → H2(X,Z)→ H2(OX)→ · · ·

associated to the exponential sequence. Using Serre duality and the fact that −KX

is ample, we see that H2(OX) = 0 as in the proof of Lemma 3.15.

By Theorem 3.14, X admits a one-parameter smoothing over the germ of a smooth

curve to a del Pezzo surface Y . Since χ(OY ) = 1, we must have H1(OX) = 0. Hence

the map PicX → H2(X,Z) is an isomorphism.

Since H1(OX) = H2(OX) = 0, by cohomology and base change, R1f∗OX =

R2f∗OX = 0. Since ∆ is affine, H1(OX ) = H2(OX ) = 0 (see [Har77, Theorem III.3.7,

Exercise III.8.1, Theorem III.12.11]). By considering the exponential sequence as

before, we see that the map PicX → H2(X ,Z) is an isomorphism. Therefore, the

restriction map PicX → PicX is also an isomorphism.
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We now present the main theorem of this section. As in the previous lemma, let

∆ denote the germ of a smooth curve.

Theorem 3.17. Let (X,D) be an slc stable pair such that X has class T singularities

and D is Cartier. Then the following hold:

1. (X,D) is smoothable.

2. The generic fiber of any Q-Gorenstein deformation of (X,D) over ∆ is smooth-

able.

3. Any Q-Gorenstein deformation of the singularities of X over ∆ can be realized

on a stable pair.

Proof. By Theorem 3.14, a Q-Gorenstein smoothing of the singularities of X over

∆ lifts to a Q-Gorenstein smoothing X/∆ of X. By Lemma 3.15, H1(OD(D)) = 0,

hence by [Has99, Corollary 3.2], we can lift this family of surfaces in turn to a family

of slc pairs (X ,D)/∆ satisfying all the conditions of a Q-Gorenstein family except (a

priori) that the generic fiber is a stable pair.

Since nKX +mD ∼ 0, by Proposition 3.16, we have the relation nKX +mD ∼ 0.

Therefore, nKXη + mDη ∼ 0 by restriction. We also note that χ(OXη) = 1, since

χ(OX) = 1. Now, fix ε such that KX + (m/n+ ε)D is ample. Passing to a sufficiently

high multiple N such that N(KX + (m/n + ε)D) is Cartier and restricting to the

generic fiber shows that KXη + (m/n + ε)Dη is ample as well. This concludes the

proof of (1).

Since the hypotheses of the theorem are preserved under any Q-Gorenstein defor-

mation over ∆, (2) is immediate.

For (3), lift a Q-Gorenstein deformation of the singularities of X to a Q-Gorenstein

deformation of slc pairs as above. Repeating the argument in the proof of (1) shows

that the generic fiber is also a stable pair.
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Remark 3.18. The first claim in the theorem can be strengthened slightly: We may

assume the singularities of X are log canonical and Q-Gorenstein-smoothable, if we

also require that H1(OD(D)) = 0.

4 Proof of main result: resolving ϕ

This section will be devoted to proving Theorem 1.2. Let P denote the moduli space

in Definition 3.9. Again, for brevity, we will simply use the terminology “stable pairs”

(omitting “of type (m,n)”).

Using the stratifications in Section 2, for each marked smooth plane quintic or

trigonal curve (D,E), we exhibit a stable pair (X,D). For each bielliptic curve

D, we exhibit a stable pair (X,D). Stability of these pairs will be addressed in

Proposition 4.6.1. In this section, we also explain how to address the hyperelliptic

curves. Throughout, we will abuse notation and write D for both the curve that we

start with and its image in any birational model of the surface into which D naturally

embeds.

4.1 Marked plane quintics

For a given marked plane quintic curve (D,E) of type (a1, . . . , a5), choose a line ` in

P2 such that

E = `|D =
∑
i

aipi.

Separate D from ` by blowing up, and contract the strict transform of ` and any

exceptional curves of self-intersection strictly less than −1. We obtain a surface X

with singularity type

1

4
(1, 1)⊕

⊕
ai>1

Aai−1.
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We have constructed the desired pair (X,D).

4.2 Marked trigonal curves, type (0; b1, b2, b3, b4)

Given a marked trigonal curve of genus six and Maroni invariant 0 denoted (D,E),

embed D in P1 × P1. The curve D has class 3e + 4f . Choose a particular ruling

e0 ∈ |e| such that E = e0|D on D. Separate D from e0 by blowing up. Contracting

the strict transform of e0 and all exceptional curves of self-intersection strictly less

than −1 yields a surface X with singularity type

1

4
(1, 1)⊕

⊕
bi>1

Abi−1.

We have constructed the desired pair (X,D).

4.3 Marked trigonal curves, type (2; [a1], a2, a3, a4)

For a given pair (D,E) of this type, embed D in F2. Let e denote the negative section

and choose f such that E = (e + f)|D. Separate D from e ∪ f by blowing up. If

necessary (this will depend on whether a1 = 1 or a1 > 1), further separate D from

the chain of curves connecting the strict transforms of e and f by blowing up. This

process yields a chain C of rational curves of self-intersection

[−3,−2, . . . ,−2︸ ︷︷ ︸
a1 − 1

,−3].
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Contracting C along with any exceptional curves of self-intersection strictly less than

−1 produces a surface X with singularity type

1

4(a1 + 1)
(1, 2a1 + 1)⊕

⊕
ai>1
i6=1

Aai−1.

The quotient singularity of X is index two class T . We have constructed the desired

pair (X,D).

4.4 Bielliptic curves

As noted in Section 2, such a curve D embeds as a quadric section of an elliptic

cone X of degree 5 in P5, hence D necessarily has class −2KX (which is ample).

Moreover, H1(OD(D)) = 0 by Serre duality. Since X is log canonical and D avoids

the singularity, (X,D) is a smoothable slc stable pair by Theorem 3.17. Note that

any smoothing of the elliptic singularity is automatically Q-Gorenstein, since the

singularity is Gorenstein. Since K2
X = 5, the pair smooths to (Σ5, C) where C is

smooth of class −2KΣ5 , as desired.

4.5 Hyperelliptic curves

There is a complete list of ADE-singular plane sextic curves given in [Yan96, Table

2]. In particular, we can find such a curve with an A13 singularity and four nodes

in general position. Blow up the four nodes to recover Σ5, and let D be the strict

transform of the sextic. By construction, D has class −2KΣ5 . Stable reduction

of a curve with an A13 singularity yields a smooth genus six hyperelliptic curve.

Moreover, every such curve arises in this way (see [Has00, Example 6.2.1]). It follows

immediately from Definition 3.2 that the pair (Σ5, D) is stable. By deforming the
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A13 curve in Σ5, we obtain a Q-Gorenstein smoothing of this pair to (Σ5, C) where

C is smooth of class −2KΣ5 .

4.6 Proof of main theorem

We have completed the list of pairs necessary to prove Theorem 1.2. The following

sequence of propositions will constitute our proof.

Proposition 4.6.1. All of the pairs constructed in (4.1) – (4.5) are smoothable stable

pairs of type (1, 2). Moreover, all of these pairs lie in P0.

Proof. We outline the general technique for showing that each pair over the trigonal

curves and plane quintics lies in P0 below. Note that we have already addressed the

pairs associated to the bielliptic and hyperelliptic curves in (4.4) and (4.5).

Fix one of these pairs (X,D) such that D is a smooth plane quintic or trigonal

curve. Let φ : X ′ → X be the minimal resolution. We have seen X ′ can be realized

as a sequence of blow-ups of a smooth surface in which D naturally embeds and

whose intersection theory is well understood (see Section 2). As a result, there is

a natural set of generators for PicX ′. We have seen that X has index 2 class T

singularities (and potentially also has type A singularities) and is in particular Q-

factorial. We can express φ∗(−2KX) and φ∗(D) in terms of these Picard generators,

and we determine that they are linearly equivalent. Moreover, φ∗(D) coincides with

D′ (the strict transform of D), since D avoids the singularities of X. By the projection

formula, we obtain D = −2KX . This computation also verifies that −KX is ample;

one checks that φ∗(−KX) is nef and trivial precisely along curves contracted by φ. We

also see that (KX)2 = 5. Moreover, since X is log terminal and D avoids singularities,

(X,D) is slc. Combining all of this, we see that (X,D) satisfies the hypotheses of

Theorem 3.17. Thus, (X,D) smooths to (Σ5, C), where C is smooth of class −2KΣ5
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as desired.

Example 4.6.2 (Marked trigonal curves, type (2; [4])). Let D be such a curve in F2, let

e denote the negative section, and let fp denote the distinguished fiber (see Section

2). Let φ1 : X ′ → F2 denote the sequence of blow-ups described in (4.3), and let Gi

(i = 1, 2, 3, 4) be the φ1-exceptional divisors with intersection form



−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1


Let φ2 : X ′ → X be the contraction for pairs of the given type described in (4.3).

Let D′, e′, and f ′p be the relevant strict transforms under φ1, and let D′′ be the image

of D in X. The curves f ′p and e′ meet G3 and G1 respectively in a single point, while

both are disjoint from the rest of the Gi. The curve D′ meets G4 in a single point

and is disjoint from the rest of the Gi. We show that the pair (X,D′′) is stable and

satisfies the hypotheses of Theorem 3.17 with K2
X = 5, hence this pair lies in P.

We compute

φ∗1(KF2) = KX′ −G1 − 2G2 − 3G3 − 4G4. (4.6.1)

On the other hand,

φ∗1(KF2) = φ∗1(−2e− 4fp) = −2e′ − 4f ′p − 6G1 − 10G2 − 14G3 − 14G4, (4.6.2)

hence

KX′ = −2e′ − 4f ′p − 5G1 − 8G2 − 11G3 − 10G4. (4.6.3)
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Next, using (4.6.3), we see that

φ∗2(−2KX) = 3e′ + 7f ′p + 9G1 + 15G2 + 21G3 + 20G4. (4.6.4)

Also, since D′′ avoids the singularities of X, φ∗2(D′′) = D′. We compute

φ∗1(D) = D′ +G1 + 2G2 + 3G3 + 4G4. (4.6.5)

On the other hand,

φ∗1(D) = φ∗1(3e+ 7fp) = 3e′ + 7f ′p + 10G1 + 17G2 + 24G3 + 24G4. (4.6.6)

Therefore, by combining (4.6.4), (4.6.5), and (4.6.6),

D′ = 3e′ + 7f ′p + 9G1 + 15G2 + 21G3 + 20G4 = φ∗2(−2KX). (4.6.7)

By the projection formula, D′′ = −2KX .

To verify ampleness of KX + D′′ = −KX , we choose e′, f ′p and the Gi as Picard

generators for X ′. Fix an irreducible curve C ⊂ X; we need to show that this curve

is positive against −KX . Since X is Q-factorial, we can pull back to the minimal

resolution to compute intersection numbers. If C ′ (the strict transform of C under

π2) is not e′, f ′p or any of the Gi, it is non-negative along each. By non-degeneracy

of the intersection pairing on X ′, in fact C ′ must be strictly positive along at least

one of them. Since we can write π∗2(−KX) as a positive linear combination of e′, f ′p

and the Gi, it follows that we only need to check how this pullback intersects each of

them. Ampleness of −KX is immediate.

The pair (X,D′′) is slc since X is log terminal (class T ) and D′′ avoids singularities.
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We conclude that (X,D′′) is an slc stable pair. Moreover, K2
X = 5 and the pair satisfies

the hypotheses of Theorem 3.17.

Example 4.6.3 (Marked trigonal curves, type (2; [3], 1)). Adopt the notation of Exam-

ple 4.6.2. In this case, the φ1-exceptional divisors Gi (i = 1, 2, 3, 4) have intersection

form 

−2 1 0 0

1 −2 0 1

0 0 −1 0

0 1 0 −1


Moreover, f ′p meets each of G2 and G3 in a single point, while avoiding the rest of

the Gi. The curve e′ meets G1 in a single point and no other Gi. The curve D′ meets

each of G3 and G4 in a single point and no other Gi. In this case, we compute

π∗2(−2KX) = 3e′ + 7f ′p + 9G1 + 15G2 + 6G3 + 14G4 = D′ = π∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose e′, f ′p, and the Gi as Picard generators for X ′. An analogous argument to that

in Example 4.6.2 implies that we only need to check that −KX is positive against G3

and G4, which it is. We again note that the pair (X,D′′) is slc since X is log terminal

and D′′ avoids singularities. Hence this pair is in fact an slc stable pair. Moreover,

K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.4 (Marked trigonal curves, type (2; [2], 2)). Adopt the notation of Exam-

ple 4.6.2. In this case, the φ1-exceptional divisors Gi (i = 1, 2, 3, 4) have intersection
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form 

−2 0 0 1

0 −2 1 0

0 1 −1 0

1 0 0 −1


Moreover, the curve f ′p meets each of G1 and G3 in a single point and avoids the other

Gi. The curve e′ meets G1 in a single point and avoids all other Gi. The curve D′

meets each of G3 and G4 in a single point and avoids all other Gi. In this case, we

compute

π∗2(−2KX) = 3e′ + 7f ′p + 9G1 + 6G2 + 12G3 + 8G4 = D′ = π∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose e′, f ′p, and the Gi as Picard generators for X ′. An analogous argument to that

in Example 4.6.2 implies that we only need to check that −KX is positive against G3

and G4, which it is. We again note that the pair (X,D′′) is slc since X is log terminal

and D′′ avoids singularities. Hence this pair is in fact an slc stable pair. Moreover,

K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.5 (Marked trigonal curves, type (2; [2], 1, 1)). Adopt the notation of Ex-

ample 4.6.2. In this case, the φ1-exceptional divisors Gi (i = 1, 2, 3, 4) have intersec-

tion form 

−2 0 0 1

0 −1 0 0

0 0 −1 0

1 0 0 −1


Moreover, f ′p meets each of G1, G2, and G3 in a single point and avoids all other Gi.
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The curve e′ meets G1 in a single point and avoids all other Gi. The curve D′ meets

each of G2, G3, and G4 in a single point and avoids all other Gi. In this case, we

compute

π∗2(−2KX) = 3e′ + 7f ′p + 9G1 + 6G2 + 6G3 + 8G4 = D′ = π∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose e′, f ′p, and the Gi as Picard generators for X ′. An analogous argument to that

in Example 4.6.2 implies that we only need to check that −KX is positive against G3

and G4, which it is. We again note that the pair (X,D′′) is slc since X is log terminal

and D′′ avoids singularities. Hence this pair is in fact an slc stable pair. Moreover,

K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.6 (Marked trigonal curves, type (2; [1], 1, 1, 1)). Adopt the notation of

Example 4.6.2, and let f0 6= fp be a fiber such that the marking can be realized as

the restriction of e + f0 to the given curve. In this case, the φ1-exceptional divisors

Gi satisfy G2
i = −1 for i = 1, 2, 3, 4 (the map φ1 is simply the blow-up of F2 at the

four distinct points of intersection of e ∪ f0 with the given curve). In this case, we

compute

π∗2(−2KX) = 3e′ + 7f ′0 + 6G1 + 6G2 + 6G3 + 2E4 = D′ = π∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose e′, f ′0 and the Gi as Picard generators for X ′. An analogous argument to that

in Example 4.6.2 implies that we only need to check that −KX is positive against

the Gi, which it is. We again note that the pair (X,D′′) is slc since X is log terminal

and D′′ avoids singularities. Hence this pair is in fact an slc stable pair. Moreover,
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K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.7 (Marked trigonal curves, type (2; [1], 2, 1)). Adopt the notation of Ex-

ample 4.6.2, and let f0 6= fp be a fiber such that the marking can be realized as the

restriction of e + f0 to the given curve. In this case, the φ1-exceptional divisors Gi

(i = 1, 2, 3, 4) have intersection form



−1 0 0 1

0 −1 0 0

0 0 −1 0

1 0 0 −2


Moreover, the curve f ′0 meets each of G1 and G2 in a single point and avoids all other

Gi. The curve e′ meets G3 in a single point and avoids all other Gi. The curve D′

meets each of G1 and G3 in a single point and avoids all other Gi. In this case, we

compute

π∗2(−2KX) = 3e′ + 7f ′0 + 12G1 + 6G2 + 2G3 + 6G4 = D′ = π∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose e′, f ′0, and the Gi as Picard generators for X ′. An analogous argument to that

in Example 4.6.2 implies that we only need to check that −KX is positive against

G1, G2, and G3, which it is. We again note that the pair (X,D′′) is slc since X is

log terminal and D′′ avoids singularities. Hence this pair is in fact an slc stable pair.

Moreover, K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.8 (Marked trigonal curves, type (2; [1], 3)). Adopt the notation of Ex-

ample 4.6.2, and let f0 6= fp be a fiber such that the marking can be realized as the

restriction of e + f0 to the given curve. In this case, the φ1-exceptional divisors Gi
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(i = 1, 2, 3, 4) have intersection form



−1 0 0 0

0 −1 1 0

0 1 −2 1

0 0 1 −2


Moreover, f ′0 meets G2 in a single point and avoids all other Gi. The curve e′ meets

G1 in a single point and avoids all other Gi. The curve D′ meets each of G1 and G2

in a single point and avoids all other Gi. In this case, we compute

π∗2(−2KX) = 3e′ + 7f ′0 + 2G1 + 18G2 + 12G3 + 6G4 = D′ = π∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose e′, f ′0, and the Gi as Picard generators for X ′. An analogous argument to that

in Example 4.6.2 implies that we only need to check that −KX is positive against G1

and G2, which it is. We again note that the pair (X,D′′) is slc since X is log terminal

and D′′ avoids singularities. Hence this pair is in fact an slc stable pair. Moreover,

K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.9 (Marked trigonal curves, type (0, 1, 1, 1, 1)). Adopt the notation of

(4.2). Let D be such a curve in P1 × P1, choose e0 ∈ |e| transverse to D, and choose

f0 ∈ |f | avoiding the points of intersection of D and e0. Let ψ1 : X ′ → P1×P1 be the

blow-up of P1 × P1 at the 4 points of intersection of D and e0, and let ψ2 : X ′ → X

denote the contraction of e′0 (the strict transform of e0 under ψ1). Let Gi (i = 1, 2, 3, 4)

be the ψ1-exceptional divisors, let f ′0 denote the strict transform of f0 under ψ1, let

D′ be the strict transform of D under ψ1, and let D′′ denote its image in X. We show

that (X,D′′) is a stable pair satisfying the hypotheses of Theorem 3.17 with K2
X = 5,
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hence this pair lies in P.

We compute

ψ∗2(−2KX) = 3e′0 + 4f ′0 + 2G1 + 2G2 + 2G3 + 2G4 = D′ = ψ∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify that KX + D′′ = −KX is

ample, we choose e′0, f
′
0, and the Gi as Picard generators for X ′. Fix an irreducible

curve C ⊂ X; we need to show that this curve is positive against −KX . Since X

is Q-factorial, we can pull back to the minimal resolution to compute intersection

numbers. If C ′ (the strict transform of C under ψ2) is not e′0, f
′
0 or any of the Gi, it is

non-negative along each. By non-degeneracy of the intersection pairing on X ′, in fact

C ′ must be strictly positive along at least one of them. Since we can write ψ∗2(−KX)

as a positive linear combination of e′0, f
′
0, and the Gi, it follows that we only need to

check how this pullback intersects each of them. Ampleness of −KX is immediate.

The pair (X,D′′) is slc since X is log terminal (class T ) and D′′ avoids singularities.

We conclude that (X,D′′) is an slc stable pair. Moreover, K2
X = 5 and the pair satisfies

the hypotheses of Theorem 3.17.

Example 4.6.10 (Marked trigonal curves, type (0, 2, 1, 1)). Adopt the notation of (4.2).

Let D be such a curve in P1 × P1 and choose e0 ∈ |e| with the given incidence

condition to D. Choose f0 ∈ |f | avoiding the points of intersection of e0 and D. Let

ψ1 : X ′ → P1×P1 and ψ2 : X ′ → X denote the blow-up and contraction respectively

described in (4.2). Let D′ denote the strict transform of D under ψ1, let e′0 be the

strict transform of D under ψ1, let f ′0 be the strict transform of f0 under ψ1, and

let D′′ denote the image of D in X. Let Gi (i = 1, 2, 3, 4) denote the ψ1 exceptional
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divisors, where the intersection form is given by



−1 0 0 1

0 −1 0 0

0 0 −1 0

1 0 0 −2


Moreover, each of D′ and e′0 meet each of G1, G2, and G3 in a single point, while both

avoid all other Gi. We compute

ψ∗2(−2KX) = 3e′0 + 4f ′0 + 4G1 + 2G2 + 2G3 + 2G4 = D′ = ψ∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose e′0, f
′
0 and the Gi as Picard generators for X ′. An analogous argument to that

in Example 4.6.9 implies that we only need to check that −KX is positive against

G1, G2, G3, and f ′0, which it is. We again note that the pair (X,D′′) is slc since X is

log terminal and D′′ avoids singularities. Hence this pair is in fact an slc stable pair.

Moreover, K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.11 (Marked trigonal curves, type (0, 3, 1)). Adopt the notation of (4.2).

Let D be such a curve in P1 × P1 and choose e0 ∈ |e| with the given incidence

condition to D. Choose f0 ∈ |f | avoiding the points of intersection of e0 and D. Let

ψ1 : X ′ → P1×P1 and ψ2 : X ′ → X denote the blow-up and contraction respectively

described in (4.2). Let D′ denote the strict transform of D under ψ1, let e′0 be the

strict transform of D under ψ1, let f ′0 be the strict transform of f0 under ψ1, and

let D′′ denote the image of D in X. Let Gi (i = 1, 2, 3, 4) denote the ψ1 exceptional
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divisors, where the intersection form is given by



−1 0 0 0

0 −1 1 0

0 1 −2 1

0 0 1 −2


Moreover, each of D′ and e′0 meet each of G1 and G2 in a single point, while both

avoid all other Gi. We compute

ψ∗2(−2KX) = 3e′0 + 4f ′0 + 2G1 + 6G2 + 4G3 + 2G4 = D′ = ψ∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose e′0, f
′
0, and the Gi as Picard generators for X ′. An analogous argument to that

in Example 4.6.9 implies that we only need to check that −KX is positive against

G1, G2, and f ′0, which it is. We again note that the pair (X,D′′) is slc since X is

log terminal and D′′ avoids singularities. Hence this pair is in fact an slc stable pair.

Moreover, K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.12 (Marked trigonal curves, type (0, 4)). Adopt the notation of (4.2).

Let D be such a curve in P1 × P1 and choose e0 ∈ |e| with the given incidence

condition to D. Choose f0 ∈ |f | avoiding the points of intersection of e0 and D. Let

ψ1 : X ′ → P1×P1 and ψ2 : X ′ → X denote the blow-up and contraction respectively

described in (4.2). Let D′ denote the strict transform of D under ψ1, let e′0 be the

strict transform of D under ψ1, let f ′0 be the strict transform of f0 under ψ1, and

let D′′ denote the image of D in X. Let Gi (i = 1, 2, 3, 4) denote the ψ1 exceptional
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divisors, where the intersection form is given by



−1 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −2


Moreover, each of D′ and e′0 meet G1 in a single point, while both avoid all other Gi.

We compute

ψ∗2(−2KX) = 3e′0 + 4f ′0 + 8G1 + 6G2 + 4G3 + 2G4 = D′ = ψ∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose e′0, f
′
0, and the Gi as Picard generators for X ′. An analogous argument to that

in Example 4.6.9 implies that we only need to check that −KX is positive against G1

and f ′0, which it is. We again note that the pair (X,D′′) is slc since X is log terminal

and D′′ avoids singularities. Hence this pair is in fact an slc stable pair. Moreover,

K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.13 (Marked trigonal curves, type (0, 2, 2)). Adopt the notation of (4.2).

Let D be such a curve in P1 × P1 and choose e0 ∈ |e| with the given incidence

condition to D. Choose f0 ∈ |f | avoiding the points of intersection of e0 and D. Let

ψ1 : X ′ → P1×P1 and ψ2 : X ′ → X denote the blow-up and contraction respectively

described in (4.2). Let D′ denote the strict transform of D under ψ1, let e′0 be the

strict transform of D under ψ1, let f ′0 be the strict transform of f0 under ψ1, and

let D′′ denote the image of D in X. Let Gi (i = 1, 2, 3, 4) denote the ψ1 exceptional
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divisors, where the intersection form is given by



−1 0 1 0

0 −1 0 1

1 0 −2 0

0 1 0 −2


Moreover, each of D′ and the e′0 meet each of G1 and G2 in a single point, while both

avoid all other Gi. We compute

ψ∗2(−2KX) = 3e′0 + 4f ′0 + 4G1 + 4G2 + 2G3 + 2G4 = D′ = ψ∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose e′0, f
′
0, and the Gi as Picard generators for X ′. An analogous argument to that

in Example 4.6.9 implies that we only need to check that −KX is positive against

G1, G2, and f ′0, which it is. We again note that the pair (X,D′′) is slc since X is

log terminal and D′′ avoids singularities. Hence this pair is in fact an slc stable pair.

Moreover, K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.14 (Marked plane quintics, type (1, 1, 1, 1, 1)). Let D be a smooth plane

quintic and let ` be a line transverse to D. Let π1 : X ′ → P2 be the blow-up of P2 at

the 5 points of intersection of D and `, and let π2 : X ′ → X denote the contraction

of `′ (the strict transform of `). Let L denote the hyperplane class on P2, let Gi be

the five π1-exceptional divisors, let D′ be the strict transform of D under π1, and

let D′′ denote its image in X. We show that (X,D′′) is a stable pair satisfying the

hypotheses of Theorem 3.17 with K2
X = 5, hence this pair lies in P.
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We compute

π∗2(−2KX) = −2KX′ − `′ = π∗1(5L)−
5∑
i=1

Gi = D′ = π∗2(D′′),

hence by the projection formula,

D′′ = −2KX .

To verify that KX +D′′ = −KX is ample, we choose

`′ = π∗1L−
5∑
i=1

Gi

and the Gi as Picard generators for X ′. Fix an irreducible curve C ⊂ X; we need

to show that this curve is positive against −KX . Since X is Q-factorial, we can

pull back to the minimal resolution to compute intersection numbers. If C ′ (the

strict transform of C under π2) is not `′ or any of the Gi, it is non-negative along

each. By non-degeneracy of the intersection pairing on X ′, in fact C ′ must be strictly

positive along at least one of them. Since we can write π∗2(−KX) as a positive linear

combination of `′ and the Gi, it follows that we only need to check how this pullback

intersects each of them. Ampleness of −KX is immediate.

The pair (X,D′′) is slc since X is log terminal (class T ) and D′′ avoids singularities.

We conclude that (X,D′′) is an slc stable pair. Moreover, K2
X = 5 and the pair satisfies

the hypotheses of Theorem 3.17.

Example 4.6.15 (Marked plane quintics, type (2, 1, 1, 1)). Let D be a smooth plane

quintic curve and let ` be a line in P2 with the given incidence condition to D. Let

π1 : X ′ → P2 and π2 : X ′ → X be the blow up and contraction respectively described

in (4.1). Let D′ denote the strict transform of D under π1, let `′ be the strict
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transform of ` under π1, and let D′′ be the image of D′ in X. Let Gi denote the five

π1-exceptional divisors with intersection form



−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −2 1

0 0 0 1 −1


Moreover, `′ and D′ each intersect each Gi for i = 1, 2, 3, 5 in a single point, while

both are disjoint from G4. In this case, we compute

π∗2(−2KX) = 5`′ + 4G1 + 4G2 + 4G3 + 4G4 + 8G5 = D′ = π∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose `′ and the Gi as Picard generators for X ′. An analogous argument to that

in Example 4.6.14 implies that we only need to check that −KX is positive against

G1, G2, G3 and G5, which it is. We again note that the pair (X,D′′) is slc since X is

log terminal and D′′ avoids singularities. Hence this pair is in fact an slc stable pair.

Moreover, K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.16 (Marked plane quintics, type (2, 2, 1)). Let D be a smooth plane

quintic curve and let ` be a line in P2 with the given incidence condition to D. Let

π1 : X ′ → P2 and π2 : X ′ → X be the blow up and contraction respectively described

in (4.1). Let D′ denote the strict transform of D under π1, let `′ be the strict

transform of ` under π1, and let D′′ be the image of D′ in X. Let Gi denote the five

37



π1-exceptional divisors with intersection form



−1 0 0 0 0

0 −2 0 1 0

0 0 −2 0 1

0 1 0 −1 0

0 0 1 0 −1


Moreover, `′ and D′ each meet each Gi for i = 1, 4, 5 in a single point, while both are

disjoint from G2 and G3. In this case, we compute

π∗2(−2KX) = 5`′ + 4G1 + 4G2 + 4G3 + 8G4 + 8G5 = D′ = π∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose `′ and the Gi as Picard generators for X ′. An analogous argument to that

in Example 4.6.14 implies that we only need to check that −KX is positive against

G1, G4, and G5, which it is. We again note that the pair (X,D′′) is slc since X is

log terminal and D′′ avoids singularities. Hence this pair is in fact an slc stable pair.

Moreover, K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.17 (Marked plane quintics, type (2, 3)). Let D be a smooth plane quintic

curve and let ` be a line in P2 with the given incidence condition to D. Let π1 : X ′ →

P2 and π2 : X ′ → X be the blow up and contraction respectively described in (4.1).

Let D′ denote the strict transform of D under π1, let `′ be the strict transform of `

under π1, and let D′′ be the image of D′ in X. Let Gi denote the five π1-exceptional
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divisors with intersection form



−2 0 1 0 0

0 −2 0 1 0

1 0 −1 0 0

0 1 0 −2 1

0 0 0 1 −1


Moreover, `′ and D′ each intersect each of G3 and G5 in a single point, while both

are disjoint from G1, G2, and G4. In this case, we compute

π∗2(−2KX) = 5`′ + 4G1 + 4G2 + 8G3 + 8G4 + 12G5 = D′ = π∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose `′ and the Gi as Picard generators for X ′. An analogous argument to that in

Example 4.6.14 implies that we only need to check that −KX is positive against G3

and G5, which it is. We again note that the pair (X,D′′) is slc since X is log terminal

and D′′ avoids singularities. Hence this pair is in fact an slc stable pair. Moreover,

K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.18 (Marked plane quintics, type (3, 1, 1)). Let D be a smooth plane

quintic curve and let ` be a line in P2 with the given incidence condition to D. Let

π1 : X ′ → P2 and π2 : X ′ → X be the blow up and contraction respectively described

in (4.1). Let D′ denote the strict transform of D under π1, let `′ be the strict

transform of ` under π1, and let D′′ be the image of D′ in X. Let Gi denote the five
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π1-exceptional divisors with intersection form



−1 0 0 0 0

0 −1 0 0 0

0 0 −2 1 1

0 0 1 −2 0

0 0 1 0 −1


Moreover, `′ and D′ each intersect each Gi for i = 1, 2, 5 in a single point, while both

are disjoint from G3 and G4. In this case, we compute

π∗2(−2KX) = 5`′ + 4G1 + 4G2 + 8G3 + 4G4 + 12G5 = D′ = π∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose `′ and the Gi as Picard generators for X ′. An analogous argument to that

in Example 4.6.14 implies that we only need to check that −KX is positive against

G1, G2, and G5, which it is. We again note that the pair (X,D′′) is slc since X is

log terminal and D′′ avoids singularities. Hence this pair is in fact an slc stable pair.

Moreover, K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.19 (Marked plane quintics, type (4, 1)). Let D be a smooth plane quintic

curve and let ` be a line in P2 with the given incidence condition to D. Let π1 : X ′ →

P2 and π2 : X ′ → X be the blow up and contraction respectively described in (4.1).

Let D′ denote the strict transform of D under π1, let `′ be the strict transform of `

under π1, and let D′′ be the image of D′ in X. Let Gi denote the five π1-exceptional
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divisors with intersection form



−1 0 0 0 0

0 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1

0 0 0 1 −1


Moreover, `′ and D′ each intersect each of G1 and G5 in a single point, while both

are disjoint from G2, G3, and G4. In this case, we compute

π∗2(−2KX) = 5`′ + 4G1 + 4G2 + 8G3 + 12G4 + 16G5 = D′ = π∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose `′ and the Gi as Picard generators for X ′. An analogous argument to that in

Example 4.6.14 implies that we only need to check that −KX is positive against G1

and G5, which it is. We again note that the pair (X,D′′) is slc since X is log terminal

and D′′ avoids singularities. Hence this pair is in fact an slc stable pair. Moreover,

K2
X = 5 and the pair satisfies the hypotheses of Theorem 3.17.

Example 4.6.20 (Marked plane quintics, type (5)). Let D be a smooth plane quintic

curve and let ` be a line in P2 with the given incidence condition to D. Let π1 : X ′ →

P2 and π2 : X ′ → X be the blow up and contraction respectively described in (4.1).

Let D′ denote the strict transform of D under π1, let `′ be the strict transform of `

under π1, and let D′′ be the image of D′ in X. Let Gi denote the five π1-exceptional
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divisors with intersection form



−2 1 0 0 0

1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1

0 0 0 1 −1


Moreover, `′ and D′ each meet G5 in a single point, while both are disjoint from

G1, G2, G3, and G4. In this case, we compute

π∗2(−2KX) = 5`′ + 4G1 + 8G2 + 12G3 + 16G4 + 20G5 = D′ = π∗2(D′′),

hence by the projection formula, D′′ = −2KX . To verify ampleness of KX + D′′, we

choose `′ and the Gi as Picard generators for X ′. An analogous argument to that in

Example 4.6.14 implies that we only need to check that −KX is positive against G5,

which it is. We again note that the pair (X,D′′) is slc since X is log terminal and D′′

avoids singularities. Hence this pair is in fact an slc stable pair. Moreover, K2
X = 5

and the pair satisfies the hypotheses of Theorem 3.17.

Remark 4.6.21. We note that the pairs (X,D) associated to plane quintics (Subsec-

tion 4.1) lie in the boundary locus Z1 described in Section 1 (which is now well-defined

as a result of Proposition 4.6.1). We remark that it follows from the construction of

(X,D) that Z1 is in fact a divisor: The locus of plane quintics inM6 is of dimension

12, and the moduli space of 5 points on P1 (the points of intersection between a quin-

tic and a line) is of dimension 2. We also see from this discussion that the fiber of the

forgetting map j : P0 99KM6 over a smooth plane quintic curve is 2 dimensional.

Similarly, the pairs (X,D) associated to trigonal curves (Subsection 4.2 and Sub-
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section 4.3) lie in the boundary locus Z2 described in Section 1. We remark that Z2

is in fact a divisor: The trigonal locus in M6 is of dimension 13, and the moduli of

4 points on P1 (the points of intersection between a trigonal curve with M = 0 on

P1×P1 and the appropriate ruling) is of dimension 1. We also see from this discussion

that the fiber of the forgetting map j : P0 99KM6 over a smooth trigonal curve of

genus six is 1 dimensional.

By definition, the pairs (X,D) in this subsection lie in the boundary locus Z3 ⊂

P0. Since the bielliptic locus in M6 is of dimension 10 and the bielliptic involution

is unique (recall Subsection 2.3), the locus Z3 is in fact 10 dimensional as asserted in

Section 1.

Proposition 4.6.22. The stack P0 is smooth and Deligne-Mumford.

Proof. Since F is Deligne-Mumford, so is P0.

The Q-Gorenstein deformation space of any singularity allowed on a surface in

P0 is smooth, since the possible singularities are du Val, cyclic quotient, or simple

elliptic of degree 5. The smoothness of the deformation space of this simple elliptic

singularity is proven in [Pin74, Section 9.2(b)]. Every deformation of this elliptic

singularity is Q-Gorenstein since this singularity is Gorenstein. There are no local-

to-global obstructions for deformations of any of the surfaces in U by Theorem 3.14.

By [Has99, Proposition 3.3], the Q-Gorenstein deformation space of any pair in Psm
0

is smooth.

Note that a pair (X,D) in P0 where D has ADE singularities is not slc, but the

conclusion of [Has99, Proposition 3.3] still holds since we require that D avoids the

singularities of X. Hence the deformation space of such a pair is smooth. We conclude

that P0 is smooth.
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Proposition 4.6.23. For any pair (X,D) in P0, the double cover of X branched

along D is a K3 surface with Gorenstein slc singularities.

Proof. Since D = −2KX , the double cover of X branched along D is, by definition,

X(2) = Spec
X

(OX ⊕OX(KX)),

where the OX-algebra structure is determined by multiplication by D. Let π : X(2) →

X be the natural morphism.

By definition of P0, the surface X(2) has only combinations of du Val and simple

elliptic singularities (including “empty” combinations).

For any pair (X,D) in P0, by adjunction and the fact that D ∼ −2KX , the line

bundle ωX(2) is trivial. Moreover,

h1(X(2),OX(2)) = h1(X,OX) + h1(X,OX(KX)) = 0.

Thus, X(2) is a K3 surface with Gorenstein slc singularities as claimed.

Remark 4.6.24. We comment on some notable aspects of the K3 surfaces associated

to the pairs (X,D) containing plane quintic and trigonal curves. For a generic pair

(X,D) associated to plane quintics in Subsection 4.1 (the general member of Z1), the

double cover of X branched along D is a K3 surface with an A1 singularity. This K3

surface corresponds to the generic point of the component of the discriminant divisor

H2 described by Artebani and Kondō. Moreover, the lattice-polarization in this case

is isomorphic to U(2)⊕D4 (see [AK11, Section 3]), which is in particular of rank 6.

This K3 surface can also be constructed by taking the minimal resolution of the

double cover of P2 branched along the union of D and ` and contracting the strict
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transform of ` (a (−2)-curve). We note that constructing periods for pairs (D, `) via

such double covers has already been considered in full detail in [Laz09] and is also

mentioned in [AK11].

For a generic pair (X,D) associated to trigonal curves in Subsection 4.2 (the

general member of Z2), the double cover of X branched along D is a K3 surface

with an A1 singularity. This K3 surface is the generic point of the component of

the discriminant divisor H3 described by Artebani and Kondō. Moreover, the lattice

polarization in this case is isomorphic to U ⊕ A⊕4
1 (see [AK11, Section 3]), which is

in particular of rank 6.

A complete description of the singularities appearing on theK3 surfaces associated

to the pairs constructed in this paper appears in Table 1.

Proposition 4.6.25. There is a period map

ϕ̃ : P0 → (D/Γ)∗.

Proof. Consider the tautological family W → P0. Taking the double cover of W

branched along the marked curves yields a family whose fibers parametrize K3 sur-

faces, except over pairs with elliptic singularities. Hence we have a rational period

map

ϕ̃ : P0 99K (D/Γ)∗

defined away from the elliptic cone pairs. Given a smoothing of such a pair over

a germ of a smooth curve, this period map uniquely extends over the closed point.

Since the double cover of any pair with elliptic singularities (in fact any pair in P0 by

Proposition 4.6.23) has insignificant limit singularities (see [Sha79, Theorem 1]), this

extension in fact does not depend on the smoothing. See, for example, the discussion

in [LO16, Section 3.3]. Since P0 is smooth, this rational period map extends to a
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morphism

ϕ̃ : P0 → (D/Γ)∗

as claimed. The image of pairs with elliptic singularities (including the elliptic cones

of Subsection 4.4) lies in the boundary of (D/Γ)∗.

Remark 4.6.26. We see that, as expected, ϕ̃ can have positive dimensional fibers: We

know that Z3 is 10 dimensional in P0 (recall Remark 4.6.21), and by [AK11, Remark

4.7], bielliptic curves are mapped to a 1 dimensional boundary component of (D/Γ)∗.

We note for completeness that the boundary of (D/Γ)∗ has 2 zero dimensional com-

ponents and 14 one dimensional components ([AK11, Corollary 4.2, Theorem 4.5]),

although the component corresponding to bielliptic curves is the only part of the

boundary we consider in this paper.

Proposition 4.6.27. The natural birational forgetting map j restricts to a surjective

morphism

j|Psm
0

: Psm
0 �M6 \ H6,

where H6 denotes the hyperelliptic locus.

Proof. By the explicit construction of the pairs in (4.1) – (4.5) and the definition of

Psm
0 (Definition 1.1), every smooth genus six non-hyperelliptic curve arises on a pair

in Psm
0 , and conversely, every curve on a pair in Psm

0 is smooth and of genus six. This

verifies the claim that j restricts to a surjection of Psm
0 onto M6 \ H6.

Remark 4.6.28. Consider the tautological family W → P0 as in the proof of Propo-

sition 4.6.25. We can construct a diagram
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P̃0 P0

M6

j̃

ν

j

via simultaneous stable reduction ([CML13, Theorem 3.5, Corollary 6.3]). Moreover,

the image of j̃ is a partial compactification ofM6. As noted previously, every hyper-

elliptic curve can be realized via stable reduction of a curve with an A13 singularity.

Therefore, the image of j̃ contains M6. By definition, P0 contains pairs of the form

(Σ5, C), where C has ADE singularities. Stable reductions of such curves may (and

will) be nodal; for example, consider cuspidal curves (these also exist on Σ5 by the

results in [Yan96, Table 2]). The image of j̃ consequently intersects the boundary of

M6. Note that P̃0 resolves the indeterminacy of j, but it is not immediately clear

how to describe this space in a modular way over pairs containing singular curves.

Table 1 below summarizes the pairs constructed in this section and their associated

K3 surfaces.

D Xsing Zi Singularities of K3

Plane quintic of type (a1, . . . , a5) 1
4
(1, 1)⊕

⊕
ai>1

Aai−1 Z1 A1 ⊕
⊕
ai>1

A⊕2
ai−1

Trigonal of type (0; b1, b2, b3, b4) 1
4
(1, 1)⊕

⊕
bi>1

Abi−1 Z2 A1 ⊕
⊕
bi>1

A⊕2
bi−1

Trigonal of type (2; [a1], a2, a3, a4) 1
4(a1+1)

(1, 2a1 + 1)⊕
⊕
ai>1
i6=1

Aai−1 Z2 A2a1+1 ⊕
⊕
ai>1
i 6=1

A⊕2
ai−1

Bielliptic Simple elliptic Z3 Simple elliptic
∼ −2KΣ5 with an A13 Smooth N/A A13

Table 1: Pairs (X,D) constructed in subsections (4.1) – (4.5) and their associated
K3 surfaces.
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5 Construction of stable pairs via stable reduction

In this section, we explain how to construct some of the pairs in the proof of Theo-

rem 1.2 via the Hassett-Keel program and stable reduction. We recall our discussion

from Section 1: In [Mül14], Müller shows that the final log canonical model of M6

parametrizes quadric sections of Σ5. In this section, we consider certain one-parameter

degenerations over the germ of a smooth curve of quadric sections of Σ5, where the

generic fiber is smooth. We show that these families of pairs can be modified so

that the new special fiber is a stable pair. In fact, we will recover some of the pairs

containing special curves constructed in the previous section. The stable reduction

process will involve applying the relative log minimal model program. We describe

some examples below.

5.1 Marked plane quintics of type (1,1,1,1,1)

Proposition 5.1.1. There exist quadric sections of Σ5 with unique singularities of

local analytic isomorphism type y5 = x5.

Proof. Let p1, . . . , p4 denote points in P2 in general position. Choose another point

p5, determining a smooth irreducible plane conic. Consider the union of this conic

with the four lines connecting p5 to each of the other pi. We have constructed a

reducible plane sextic curve with 5 components meeting transversely at p5. Blowing

up p1, . . . , p4 and anti-canonically embedding the resulting surface in P5 recovers Σ5

with a quadric section of the desired singularity type.

Remark 5.1.2. For future reference, let C0 denote a curve in Σ5 with this singularity

type. Note that the log canonical threshold of the pair (Σ5, C0) is 2/5 < 1/2, hence

this pair cannot be stable.
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Proposition 5.1.3. Let (S, C)→ T be a family of surface-curve pairs over the germ

of a smooth curve such that the generic fiber is a smooth quadric section of Σ5 and the

special fiber is (Σ5, C0). There exists a family (S ′, C ′)→ T ′ satisfying the following:

1. The generic fiber is isomorphic to the generic fiber of the original family.

2. The special fiber is a stable pair with a unique 1
4
(1, 1) singularity and marked

curve isomorphic to a smooth plane quintic.

Proof. We first run local stable reduction for the singularity of C0 in the special fiber.

We view (S, C)→ T as a family of surfaces S containing C. We perform a base change

t 7→ t5, where t is a uniformizing parameter of T . We denote this finite cover of T by

T ′. We then blow up S at the singular point of C0.

This process yields a reducible surface S1 ∪ S2 in the central fiber of the modified

family. Let the double curve on Si be denoted by Bi. The surface S1 is isomorphic to

Σ4 (a degree 4 del Pezzo surface) marked with C1 (the strict transform of C0). A local

computation shows that S2 is isomorphic to P2 marked with a smooth plane quintic

C2 meeting B2 transversely. On S1, the curve B1 is the exceptional divisor when we

blow up Σ5 at the singular point of C0, and on S2, the curve B2 is the hyperplane

class.

Note that the special fiber of the resulting family is still not a stable pair. Con-

sider the components of C1, denoted Fi for i = 1, . . . , 5. If H is the pullback of

the hyperplane class from P2 to Σ4 and the Ei are the exceptional divisors, we see

explicitly:

1. Fi = H − Ei − E5 for i = 1, . . . 4.

2. F5 = 2H −
5∑
j=1

Ej.
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These Fi are all irreducible (−1)-curves and hence span extremal rays in the

closure of the cone of effective curves NE(S1). Consequently, these curves also span

extremal rays in the closure of the relative cone of curves for our modified family.

The Fi are all KS1 + αC1 + B1-negative for all α > 1/2 by adjunction. We

explicitly construct flips of these curves. Note that after we flip one of these, each of

the remaining Fi can still be flipped via the same construction. A standard normal

bundle computation shows that blowing up any one of the Fi yields an exceptional

divisor isomorphic to P1× P1, realizing the curve as one of the rulings. Projecting to

the other ruling (this requires the contraction theorem) contracts Fi on S1 and blows

up the point B2 ∩ Fi on S2.

Flipping all of the Fi in this way yields a new surface S ′1∪S ′2, where S ′1 is isomorphic

to P2 and S ′2 is isomorphic to P2 blown up at 5 collinear points. Note that S ′1 has no

marked curve and S ′2 is still marked with a curve isomorphic to a smooth plane quintic

C ′2. The curve B1 becomes a conic B′1 in S ′1 after these flips. Hence the hyperplane

class H ′ in S ′1 is negative with respect to

KS′
1

+B′1 = −H ′,

which induces a divisorial contraction of S ′1. We are left with a surface S ′′2 , which

is simply the contraction of the (−4)-curve B′2 (the strict transform of B2 after the

flips) on S ′2. Hence S ′′2 has a unique cyclic quotient singularity of type 1
4
(1, 1).

Remark 5.1.4. We note that S ′′2 is precisely the surface constructed in (4.1) corre-

sponding to marked plane quintics of type (1, 1, 1, 1, 1).
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5.2 Marked trigonal curves of type (2; [4])

Proposition 5.2.1. There exist quadric sections of Σ5 with unique singularities of

local analytic isomorphism type y3 = x7.

Proof. By [Deg90, 1.10], there exists a plane sextic curve with such a singularity as

well as four nodes in general position. Blowing up these nodes and anti-canonically

embedding the resulting surface in P5 recovers Σ5 with a quadric section of the desired

singularity type.

Remark 5.2.2. For future reference, we will denote by C0 a curve with this singularity

type. The log canonical threshold of the pair (Σ5, C0) is less than 1/2, hence this pair

cannot be stable.

Proposition 5.2.3. Let (S, C)→ T be a family of surface-curve pairs over the germ

of a smooth curve such that the generic fiber is a smooth quadric section of Σ5 and the

special fiber is (Σ5, C0). There exists a family (S ′, C ′)→ T ′ satisfying the following:

1. The generic fiber is isomorphic to the generic fiber of the original family.

2. The special fiber is a stable pair with a unique 1
20

(1, 9) singularity and marked

curve isomorphic to a smooth genus six trigonal curve.

Proof. Running local stable reduction for the family (see [Has00]) yields a reducible

surface S = S1∪S2 in the central fiber. Define Bi as in Proposition 5.1.3. The surface

S1 is constructed by computing the embedded resolution of C0 and contracting the

exceptional divisors disjoint from its strict transform C1. Let Fi, i = 1, 2, 3, 4, 5,

denote the exceptional divisors for this embedded resolution, where the indexing

indicates the order in which these divisors appear as we repeatedly blow up points.

In particular, the divisor F5 denotes the exceptional curve which is not contracted

post-embedded-resolution. We see that S1 has two cyclic quotient singularities of
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type 1
7
(1, 4) and 1

3
(1, 2) along B1 = F5. The surface S2 is isomorphic to the weighted

projective space P(7, 3, 1), which has two cyclic quotient singularities of type 1
7
(1, 3)

and 1
3
(1, 1) along B2. Note that the singular points of S1 are also singular on S2.

The curve C2 ⊂ S2 is smooth and trigonal of genus six avoiding the singularities and

meeting B2 transversely at one point.

Note that by adjunction applied to C1 in S1, the pair (S1 ∪ S2, C1 ∪ C2) is not

stable. The embedded resolution computation also reveals that C1 is an irreducible

(−1)-curve. Flipping C1 as in Proposition 5.1.3 amounts to contracting C1 on S1

while blowing up the point C2 ∩B2 on S2.

We denote the remaining reducible surface S ′1 ∪S ′2. We will show that the divisor

−KS′
1
− F ′5

is ample, where F ′5 denotes the image of F5 in S ′1 after flipping C1. Let π1 : S1 → Σ5

denote the sequence of blow-ups required for the embedded resolution of C0, and let

π2 : S1 → S ′1 denote the contraction of Fi for i = 1, 2, 3, 4 and C1. We note that S ′1

is Q factorial, so pulling back divisors makes sense. We compute

π∗1(−2KΣ5) = −2KS1 + 2F1 + 4F2 + 6F3 + 12F4 + 18F5. (5.2.1)

On the other hand,

π∗1(−2KΣ5) = π∗(C0) = C1 + 3F1 + 6F2 + 7F3 + 14F4 + 21F5, (5.2.2)

hence

−2KS1 = C1 + F1 + 2F2 + F3 + 2F4 + 3F5. (5.2.3)
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Next, using (5.2.3), we see that

π∗2(−2KS′
1
− 2F ′5) = C1 +

1

7
F1 +

2

7
F2 +

1

3
F3 +

2

3
F4 + F5. (5.2.4)

Now, let C ′ 6= F ′5 be a curve in S ′1. We want to show that the strict transform

of C ′ under π2, henceforth denoted C̃ ′, is positive against the divisor in (5.2.4).

Suppose further that C̃ ′ is not any of the Fi or C1; then it is non-negative along each

of these divisors. Suppose by contradiction that C̃ ′ is trivial along the Fi and C1.

By construction, C̃ ′ is not π1–exceptional, hence triviality against C1 means that the

scheme-theoretic intersection of the images of these two curves on Σ5 is supported

on the singular point of C0. However, triviality of C̃ ′ against the Fi implies that the

image of C̃ ′ on Σ5 is disjoint from C0. This is absurd, since C0 is an ample divisor.

We have shown that C̃ ′ is indeed positive against the divisor in (5.2.4).

It follows from this discussion that to verify ampleness of −KS′
1
−2F ′5, it is enough

to check that the divisor in (5.2.4) is positive against F5, which it is. Hence we can

divisorially contract S ′1 and we are left with a surface S ′′2 with the desired cyclic

quotient singularity.

Remark 5.2.4. Let φ2 : S ′2 → S ′′2 denote the minimal resolution of S ′′2 . By explicitly

blowing down (−1)-curves on S ′2, we obtain F2. Moreover, we see that S ′′2 is precisely

the surface constructed in the proof of Theorem 1.2 associated to marked smooth

trigonal curves of genus six and type (2; [4]).

We also note that the divisorial contraction of S ′1 in this proof is of relative Picard

number 5, and the total space of the output family is not Q-factorial.
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5.3 Marked trigonal curves of type (0; 1, 1, 1, 1)

: Consider a triple plane conic D. Blow up four points on the curve in general

position in P2 to recover Σ5 and consider the union of the strict transform D̃ with

the exceptional divisors Ei. The resulting reducible curve D′ has class −2KΣ5 .

Consider a family of smooth quadric sections of Σ5 degenerating to D′ as in the

prior examples. Blow up the resulting family of surfaces along D̃red. The exceptional

divisor of this blow-up is isomorphic to P1×P1. So the new central fiber is a reducible

surface S1 ∪ S2, where S1
∼= Σ5 and S2

∼= P1 × P1. These surfaces are attached along

one of the rulings of P1 × P1. Each of the Ei intersects the double curve at a single

point. The strict transform of the blown up curve lies in P1×P1 and meets the double

curve transversely in four points; these are precisely the intersection points of the Ei

with the double curve.

By adjunction applied to each Ei in S1, the reducible surface S1 ∪ S2 and its

marked curve do not form a stable pair. After flipping the Ei as in Proposition 5.1.3,

we obtain a reducible surface where one component is isomorphic to P2 and the other

component is isomorphic to P1 × P1 blown up at four points along a ruling. We

can divisorially contract the P2 component as in Proposition 5.1.3. This amounts to

contracting the (−4)-curve on this blow up of P1 × P1, and we obtain the expected

surface.

5.4 Bielliptic curves:

Consider a double plane cubic D. Blow up four points on the curve in general position

in P2 to recover Σ5, and consider the strict transform D̃, which has class −2KΣ5 .

Consider a family of smooth quadric sections of Σ5 degenerating to D̃ as in the prior

examples. Blow up this family of surfaces along D̃red. The exceptional divisor will
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be isomorphic to the minimal resolution of an elliptic cone of degree 5. So the new

central fiber consists of a reducible surface S1∪S2, where S1
∼= Σ5 and S2 is isomorphic

to the resolution of this cone. The strict transform of the blown up curve lies in the

exceptional divisor, disjoint from the double curve.

Let the double curve on Si be denoted by Bi as in Proposition 5.1.3. Since KS1+B1

is trivial, by taking the canonical model for the family, we can contract S1. We obtain

the expected elliptic cone of degree 5.
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