
South Dakota State University South Dakota State University 

Open PRAIRIE: Open Public Research Access Institutional Open PRAIRIE: Open Public Research Access Institutional 

Repository and Information Exchange Repository and Information Exchange 

Electronic Theses and Dissertations 

2020 

Computational Intelligence Approaches for Energy Optimization in Computational Intelligence Approaches for Energy Optimization in 

Microgrids Microgrids 

Tamal Roy 
South Dakota State University 

Follow this and additional works at: https://openprairie.sdstate.edu/etd 

 Part of the Power and Energy Commons 

Recommended Citation Recommended Citation 
Roy, Tamal, "Computational Intelligence Approaches for Energy Optimization in Microgrids" (2020). 
Electronic Theses and Dissertations. 3751. 
https://openprairie.sdstate.edu/etd/3751 

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research 
Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses 
and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional 
Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Public Research Access Institutional Repository and Information Exchange

https://core.ac.uk/display/304642062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/etd
https://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F3751&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=openprairie.sdstate.edu%2Fetd%2F3751&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd/3751?utm_source=openprairie.sdstate.edu%2Fetd%2F3751&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu


BY

TAMAL ROY

A thesis submitted in partial fulfillment of the requirements for the

Master of Science

Major in Electrical Engineering

South Dakota State University

2020

COMPUTATIONAL INTELLIGENCE APPROACHES FOR ENERGY

OPTIMIZATION IN MICROGRIDS





iii

ACKNOWLEDGEMENTS

Foremost, I would like to express the deepest gratitude appreciation to my advisor,

Dr. Zhen Ni, for his esteemed guidance, constant encouragement, and continuous support

during my graduate studies at South Dakota State University. His deep academic

background, keen insights and constrictive suggestions have helped me achieve significant

improvement in my Masters research and to be well prepared for future professional

development, which will be invaluable assets for my future career. I am so lucky to have

him as my research advisor.

Furthermore, I would like to express my sincere gratitude to my committee member:
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ABSTRACT

COMPUTATIONAL INTELLIGENCE APPROACHES FOR ENERGY

OPTIMIZATION IN MICROGRIDS

TAMAL ROY

2020

The future electrical system termed as smart grid represents a significant paradigm

shift for power industry. Nowadays, microgrids are becoming smarter with the integration

of renewable energy resources (RESs) , diesel generators , energy storage systems (ESS),

and plug-in electric vehicles (PEV or EV) . However, these integration bring with new

challenges for intelligent management systems. The classical power generation

approaches can no longer be applied to a microgrid with unpredictable renewable energy

resources. To relive these problem, a proper power system optimization and a suitable

coordination strategy are needed to balance the supply and demand. This thesis presents

three projects to study the optimization and control for smart community and to investigate

the strategic impact and the energy trading techniques for interconnected microgrids.

The first goal of this thesis is to propose a new game-theoretic framework to study

the optimization and decision making of multi-players in the distributed power system.

The proposed game theoretic special concept-rational reaction set (RRS) is capable to

model the game of the distributed energy providers and the large residential consumers.

Meanwhile, the residential consumers are able to participate in the retail electricity market

to control the market price. Case studies are conducted to validate the system framework

using the proposed game theoretic method. The simulation results show the effectiveness



xiv

and the accuracy of the proposed strategic framework for obtaining the optimum profits

for players participating in this market. The second goal of the thesis is to study a

distributed convex optimization framework for energy trading of interconnected

microgrids to improve the reliability of system operation. In this work, a distributed

energy trading approach for interconnected operation of islanded microgrids is studied.

Specifically, the system includes several islanded microgrids that can trade energy in a

given topology. A distributed iterative deep cut ellipsoid (DCE) algorithm is implemented

with limited information exchange. This approach will address the scalability issue and

also secure local information on cost functions. During the iterative process, the

information exchange among interconnected microgrids is restricted to electricity prices

and expected trading energy. Numerical results are presented in terms of the convergent

rate of the algorithm for different topologies, and the performance of the DCE algorithm is

compared with sub-gradient algorithm. The third goal of this thesis is to use proper

optimization approaches to motivate the household consumers to either shift their loads

from peaking periods or reduce their consumption. Genetic algorithm (GA) and dynamic

programming (DP) based smart appliance scheduling schemes and time-of-use pricing are

investigated for comparative studies with demand response.
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CHAPTER 1 INTRODUCTION

1.1 Background

The generation of electricity is very essential to meet the consumer load demand. A

dependable and consistent supply is necessary to facilitate economic and industrial growth

and to advance the quality of life. The demand of electricity has been increasing day by

day and is expected to double in value between 2000 and 2030 [1]. By considering the

today’s consumer view and environmental changes, it is important for the utility company

to decrease the electricity buying cost of the consumers and to connect the distributed

energy resources (DERs) such as renewable energy sources (RESs) with the traditional

energy generation. The increasing load demand is overloading the traditional power grids

and conventional solution strategies are facing the complexity of exiting networks [2]. The

solution of these critical issues of the traditional power plant is the implementation of

some new power grids. The new power grids use RESs instead of fossil fuels to eliminate

the greenhouse gas emission. Additionally, the technologically developed new type of

power grids are able to adjust the real time power generation based on demand of users.

Smart grid is one of the technologically advanced power grid that uses two way

communication to gather information of the users so as to improve the efficiency

reliability, economics and stainability of the production and distribution of electricity

[3]–[7]. The SG can adjust power generation or electricity consumption by using the

smart meter installed in houses or buildings of the consumers so as to increase the energy

efficiency and power system stability[8]–[10].

A smart micro-grid (MG) is a small scale grid that use distributed energy storage
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Figure 1.1. A general schematic diagram of smart grid with possible solutions.

and the integration of renewable energy (RE) resources to generate electricity [11]–[13].

The micro-grid can operate as standalone or islanded mode or in conjunction with main

utility grid [14]–[16]. The micro-grid is intergraded near the end users. Therefore, the

electricity buying cost of the consumer from the micro-grid is less than buying cost from

the power whole seller (i.e., macro-station). The micro-grid can easily adjust the

electricity generation. It can produce power based on the power demand of the consumers.

Additionally, the micro-grid can be deployed or removed easily according to the load

demand of the users.

Motivated by the above advantages of smart micro-grid, several researches all over

the world have been conducted [17]–[21]. Although it will increase the green energy,

these resources cannot ensure the stability and reliability of power production. The

intermittent nature of renewable energy are introducing more uncertainties on the power

system. For instance, the photovoltaic (PV) panel can not work at night and the wind farm

can generate different power on different time. Also, the power consumption of
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consumers are different in different time of a whole day. The peak demand period is

considered the heaviest power consumption time while the remaining time is defined to as

the off-peak. Furthermore, the peak time differs in different seasons. For instance, during

summer, the peak time is usually observed in noon/ afternoon. On the other hand, during

winter, spring and autumn, the afternoon defines as off-peak time.

Nowadays, due to the increasing level of the competition in the energy market, game

theory has been recognized as one of the practically appealing solution approach to find

the market equilibrium [22]–[24]. In the deregulated market, the providers and consumers

are the active participants. Technological development of the power system leads to a

significant increase in the number of active players in the market. These active market

participants lead the market towards cost reduction and maximizing the profits of the

players, increasing market reliability. Active market participants commence a bid by using

and computing real market clearing price. Smart grid technologies have a great impact on

the strategic decisions of consumers’ behavior. The traditional electricity market has faced

complex problems such as unbalanced information, strategic interference and the

possibility of multi-phase equilibrium [25]–[27]. Smart competitive structures such as

retail market structure based on electricity market agents are an alluring item for

simulating such problems. Each market player is an autonomous agent with independent

pricing strategies that can behave to match the outcome of the electricity market. In the

classical electricity market, when the number of generators is higher than the number of

sellers, that makes the market less efficient. In the recent electricity market, electricity

buyers are no longer price takers since they are can influence the market by using different

bidding strategies, as well as cooperating with other buyers. Therefore, in recent years, it
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brings more attention to find a proper game theoretic approach to develop and investigate

the multi-player decision making strategies in the retail electricity market with high

penetration of renewable energy resources in the field of power system optimization.

In traditional power system, energy is generated by large generation plants in

centralized fashion. In centralized system, the energy needs to be transported over long

distance and through complex transportation meshes to the end users. Such complicated,

inflexible structure can certainly create burden to the whole power system and make

outages. The immense implications are responsible for recent grid failures in North

America that have caused monetary losses and people discomfort [28]. The technological

developed smart grid aims to develop traditional power grid by introducing the

interconnected micro-grids system in distributed way. The distributed microgrid system

allows the energy exchange with several micro-grids which are islanded from the utility

grid. By using IMS, it is easy to ensure the full utilization of local energy resources,

reduce the energy operation cost and achieve reliability of power delivery [29]–[31]. From

the aspect of Energy trading game, the MGs can act as players from cooperative

perspective. The MGs can be described as prosumers with both attributes of buyers and

sellers. During different time periods, MGs can act as seller and buyer based on their

respective load demand and aim at maximizing their individual benefits. Therefore, the

distributed energy trading is necessary to accomplish the global operation goal of

interconnected micro-grid system which preserves scalability and privacy issues.

Recently, the peak power consumption in household has caused adverse effects to

the stability and reliability of the conventional electricity system [32]. Reducing the peak

power consumption can reduce the instability of the power system [33]. The concept of
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demand side management strategy can encourage the consumers to reduce the cost of

electricity by reducing the peak demand by shifting the load from peak hour to off-peak

hours [34]–[38]. In the United States, many demand response strategy are largely

implemented by industrial and commercial consumers . These strategies are mainly direct

load control, real-time pricing and time-of-use [39]. On the contrary, very few DR

programs have been used for residential consumers. The traditional large scale based

demand management program is applicable for industrial and commercial sector, it is not

suitable for residential consumers to manage large number of residential houses without

communication and automation [40]. The smart grid equipped with micro-grids can

enable efficient and reliable bidirectional communication between utility operator and the

end users. So, the intelligent energy management algorithm need to be investigated to

balance the supply and demand.

1.2 Literature Review on Game Theoretic Approach for Distributed Electricity Providers

in Deregulated Power Market

In the past several years, the majority of research of multi-player energy trading

competition has been conducted on the supply side [36], [41]–[46] while demand side has

not been concentrated. In this market structure, the participants of both sides of supply

and consumption continuously adapt their strategies according to their objective function.

In [47], the authors concentrated on controlling the locational marginal price (LMP) of

buyers and by using different algorithms and strategic decisions based on game theory. In

the proposed market structure, the market participants of both the supply and consumption

sides conform their strategies according to their objective function. Moreover, power
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market researchers have concentrated on dividing the market players inside coalitions

such that the collaborative players’ payoff becomes maximum [47]. The future

distribution system, with high participation of renewable energy that has various

non-convex objective functions including generation, storage device, and controllable load

has been studied in past works of literature [48]–[51]. In [52], authors proposed a

non-cooperative game to develop a trade mechanism through electricity trading at an

electric vehicle to improve a decentralized market. However, existing works have been

mainly focused on the control and operation problem of individual energy district (ED)

with special attention to frequency stability and reliability improvement based on

producers and prosumers is still considered as an promising area of research. In the retail

electricity market which is inspired by the ”Energy Internet” concept, consumption player

play an active role in managing their load demands. This market allows to analyze

consumers’ reaction to price fluctuations. This is particularly essential in the demand side

management, where consumer should change their demand through financial incentives.

In the last decade, the urgent need for a more efficient and reliable electricity

market, which was triggered by environmental concern and estimations of high

penetration of Plug-in Electric Vehicles (PEVs) into the market, has necessitated an

intelligent construct within the electricity market. The future electricity markets is highly

dependent on renewable energies. Renewable energy integration, coupled with volatile

electricity prices,signify the importance of energy management in smart grids. The high

penetration of distributed production agents in the residential sector eliminates the

concerns regarding high load demand and sustainability issues. These production agents

supply their own electricity demand and sell the rest to consumption agents, who can
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manage their load demand in response to the spot market prices.

Therefore,to find market equilibrium, a state where all active market participants

have made the most optimal decision is an objective for market participants [53]. The

market equilibrium empowers all players to make an optimal decision, based on their

competitors’ choice. The multiple number of production agents and consumption agents

in the retail market facilitate a game theoretic approach to find the market clearing prices.

1.3 Literature Review on Distributed Energy Trading for interconnected Micro-grids

Recent studies focus on the energy optimization strategy of IMS and proposed

method can be divided into two types: centralized optimization and distributed

optimization. Normally, if all the MGs share information on their respective load,

generation and grid condition, the system could be easily implemented based on classical

optimization such as optimal power flow (OPF) . For instance, in [54] the authors consider

a method of joint and distributed control of IMS. Alternatively, a method of Newton-like

descend is proposed in this work [55] to solve the three-phase optimal power flow

problems. For the security facts, these centralized solution may undergo from privacy

issues [55], [56] which encouraged the authors [57], [58] to deploy distributed optimal

power flow in the power system and most recently in [59]–[61]. However, the OPF

problem is non-convex and the solution is too complicated to compute. In this work,

conversely to the existing works, we will focus on trading mechanism of interconnected

micro-grids rather than electrical operation of the utility grid. In the context of energy

trading, distributed energy resources can make the current oligopolistic market to a

flexible one [62]. For instance, the authors in [63] proposed a game theoretic approach to
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trade the stored energy with other elements of the grid. In terms of demand response, the

authors in [64] studied a generalized Nash equilibrium problem considering demand

response where aggregators and micro-grids are formulated as non-cooperative game.

However, majority of existing works [65]–[67] focus on energy trading mechanism based

on architectural framework. [68], [69]

1.4 Literature Review on Optimization in Load Scheduling of a Residential Community

Using Dynamic Pricing

Majority of studies investigated domestic energy management from theoretic

perspective [70]–[77]. In [70], day-ahead scheduling and real-time regulation were

connected to solve the uncertainties of the electricity price and hot water usage. In [71],

the Monte Carlo simulation was enforced to solve RTP-based home energy management,

and association with financial risks, modeled by the conditional value-at-risk. In [72], the

scheduling of the household power consumption was taken as a Markov decision process,

which directed to find decision thresholds for both controllable and uncontrollable

appliances only with current prices and statistic knowledge about future prices. In [73],

the uncertainty of the RTP was done through the robust optimization approach, which

assumed that the unknown prices within the scheduling boundary had minimum and

maximum limits. In [74], the day-ahead scheduling for the air conditioning (AC) was

investigated in association to the uncertainties within the day-ahead electricity price and

outdoor temperature forecasting, which were formed by fuzzy sets. In [75], the Lyapunov

optimization approach was employed to reduce the long-term desired electricity cost for

the household energy consumption, which comprised with renewable energy, controllable
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loads, and uncontrollable loads. In [76], the demand response (DR) control strategy is

proposed to control the total power consumption under the specified power limit during

DR period. Appliances load demands are met according to priority of the load. In [77], a

single objective optimization problem is performed to minimize the power consumption as

well as the electricity cost. In this work, two optimization algorithms are compared with

four appliances using external solver CPLEX.

In [78], optimization has been done for single house using particle swarm

optimization to schedule the loads according to the priority placed by the customer. The

authors estimate the schedule for hourly charging or discharging of the battery of electric

vehicle, hours for turning on the heater for heating and hourly power of the pool pump and

the water heater. In [73], the authors presented an optimization algorithm that ensures a

residential consumer to adjust his or her cumulative hourly load level by varying hourly

electricity prices. In [79], the authors proposed a multi-objective optimization model

based on dynamic pricing, controllable load and a heuristic for household microgrids. The

authors develop an evolution algorithm using hybrid differential coding to optimize the

residential appliances and resource management. In paper [80], the authors proposed a

hierarchical control scheme for distribution grids using the principles of organic

computing to evaluate the results of simulations that handle variable tariffs and building

energy management systems to facilitate demand response. However, the cost

minimization considering different tariffs schemes, comfort of users, priority of loads of

multiple houses have not been well-documented in the literature.
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1.5 Motivations and Contributions

Motivated by the existing literature, we develop a game theoretic approach based on

[48] to engage distributed electricity users and control the market price through load

management. The objective is to maximize the production agents profit and minimize the

consumption agents cost at Nash equilibrium point. Compared to prior works (e.g., [48],

[49], [50], [52]), the main contributions of this work are:(i) A game theoretic approach is

proposed based on ( [48], [49], [50]) to analyze the behavior of production agents and

consumption agents in the proposed market structure. Different from other prior works,

the proposed model considers the control operation of market price through load

management. The retail market electricity price is cleared at Nash equilibrium point. And

(ii) the rational reaction sets (RRS) are used to model the game between production agents

and consumption agents, and the economic operations of distributed electricity consumers

are investigated of the future residential distributed system.

Motivated by aforementioned works, we have studied the energy trading mechanism

between the islanded MGs without the need of a central coordinator. Each MGs buy/sell

energy from/to adjacent MGs without sharing the local cost information. The objective of

this work is to minimize the global operation cost (generation plus transmission costs) by

preserving the local information. Compared with the previous works (e.g., [68], [69],

[81]), the main contribution of this work include: (i) A distributed iterative algorithm

based on deep cut ellipsoid method is proposed for energy trading between isolated MGs.

Different from prior works, this work analyzes the comparative study between two

distributed energy trading approaches using different topologies (Full, Line, Ring, Star).
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(ii) the performance of two distributed algorithms are validated with different case studies.

In recent years, literature exhibits the cost minimization considering different tariff

schemes, comfort of users, priority of loads of a single house. In this paper, considering

the insufficient information of existing literature on community based energy management

system, an optimization model is developed for a community. Genetic algorithm (GA) and

dynamic programming (DP) are used as the optimization schemes to solve the load

scheduling problems. The impact of priority of using residential appliances is also

considered. The main objective is to comparative study of three optimization approaches

as genetic algorithm (GA), aggressive dynamic programming (DPmax), conservative

dynamic programming (DPmin) in terms of cost minimization of the utility. The DPmax

(aggressive) and DPmin (conservative) are designed in terms of comfort of user and energy

cost saving, respectively. Contribution of this work include: (a) A small community

energy management system is developed with three houses considering the comfort level;

(b) three types of houses with real-world appliances are implemented for a small

community according to physical characteristics; (c) the three control approaches is

evaluated on three case studies (fixed priority, with priority and without priority). The

fixed priority is defined that the appliances will optimize the system according to their

fixed priority order. With priority is specified that one appliance will work all the time and

other appliances will be scheduled based on optimization approaches. For without

priority, no priority order of using the appliances is set up for optimizing the energy

consumption. d) The robustness of three different control approaches is validated for a

residential community load scheduling problem.
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1.6 The Structure of Thesis

The rest of the thesis is organized as follows. Chapter 2 discusses a game-theoretic

optimization scheme to analyze the behavior of power production agents and consumption

agents as well as to find the market clearing price at Nash equilibrium. A distributed

iterative algorithm based on deep cut ellipsoid method for multiple micro-grids is

demonstrated in Chapter 3. In Chapter 4, the power system optimization in a residential

community for multiple houses considering comfort of users is discussed. A detailed

description of the appliances model and performance comparison of the two optimization

approaches are provided.The algorithm is discussed and applied to various topologies.

Finally, conclusions of the thesis and possible future works are presented in Chapter 5.
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Residential Community
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Figure 1.2. The structure of thesis.
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CHAPTER 2 GAME THEORETIC ENERGY OPTIMIZATION APPROACH OF

POWER GENERATION AND CONSUMPTION AGENTS

2.1 Introduction

Recently, electricity market has changed largely due to environmental and economic

situations. In the deregulated market, the providers and consumers are the active

participants. Technological development of the power system leads to a significant

increase in the number of active players in the market. These active market participants

lead the market towards cost reduction and maximizing the profits of the players,

increasing market reliability [82]-[83]. Active market participants commence a bid by

using and computing real market clearing price.

Smart grid technologies have a great impact on the strategic decisions of consumers’

behavior. The traditional electricity market has faced complex problems such as

unbalanced information, strategic interference and the possibility of multi-phase

equilibrium [25]–[27]. Smart competitive structures such as retail market structure based

on electricity market agents are an alluring item for simulating such problems. Each

market player is an autonomous agent with independent pricing strategies that can behave

to match the outcome of the electricity market. In the classical electricity market, when

the number of generators is higher than the number of sellers, that makes the market less

efficient. In the past several years, the majority of research has been on the supply side. In

[84]-[85], the market players are played individually and cooperatively, and their

cooperation resulted in a great profit, although the free-rider issue may also have

appeared. In the comprehensive market, electricity purchasers are no longer price takers,
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since they can leverage the market by introducing different bidding strategies as well as

cooperating with other purchasers. Hence, it is important to investigate and advance the

individual and cooperative strategies of electricity purchasers. In this chapter, the control

operation of electricity market price through load management is investigated on the retail

electricity market which allows high integration of small renewable production agents in a

competitive manner instead of market price set by regulations. Compared to prior works

(e.g.,[48],[49],[52]), the main contributions of this work are:

• A energy optimization problem for retail electricity market is formulated for each

distributed production agent, where the wind energy, the solar energy, the energy

storage (ES), and the diesel generator models are taken into consideration. A proper

game theoretic approach is proposed to analyze the behavior of production agents

and consumption agents in the proposed market structure. Different from other prior

works, the proposed model considers the control operation of market price through

load management. The retail market electricity price is cleared at Nash equilibrium

point.

• The rational reaction sets (RRS) are used to model the game between production

agents and consumption agents, and the economic operations of distributed

electricity consumers are investigated of the future residential distributed system.

2.2 Proposed Model Description

The proposed benchmark for electricity market is represented based on [48] in

Figure 4.1. In this proposed energy market, small production agents which are equipped

with various generation and storage units, like photovoltaic systems, wind turbine, diesel
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generators and distributed energy storage devices. The DER’s agents can communicate

and share information with each other. This communication results in maximizing profits

and improves market stability and reliability. The smart grid enable bidirectional

communication for the consumers to easily access the grid and the production agents and

collects information regarding storage units, generating units and loads [86]. In the

proposed framework, the small production agents are autonomous entities than traditional

suppliers. This market structure facilitates large integration of renewable resources, which

is important to ensure more sustainable future electricity market.

Production 

agent 1

Production 

agent 2 Community 1 Community 2

Clearing Control Center

Operational View

Clear the market price

Provide guidance to the price

Utility Grid

                

Non-cooperative game Cooperative game 

Non-cooperative game 

Figure 2.1. Proposed smart grid hierarchy model including DER’s production agents, mul-
tiple communities, utility grid and bi-directional communications [48]

The developed retail market model enables the active participation of the household

consumers with exploitation and management of distributed energy resources (DER). The

small production agents can cooperate each other to obtain more profit. On the other hand,

customers are participating in the market by managing their shift-able load demand to

reduce final electricity price. The consumers are regularly involved in setting the market
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prices. In this work, DER’s production agents have no control in setting the market price.

The role of the grid is different than in conventional electricity market model. In such

retail electricity market, the utility grid no longer occupies power plant. The utility grid is

considered an independent unit to meet the shortage of power from small production

agents. It also provides ancillary services to the consumption agents and small DER’s

production agents. In this work, the utility grid is not considered as the active player in the

game model. The game exists among a large number of production agents and

consumption agents.

2.3 Objective Functions and Constraints

This section represents the mathematical formulation of the key concept of the

highly competitive retail electricity market. This proposed framework allows a high

penetration of distributed generators (DG) and energy storage. The participants of the

market can be categorized into three groups: small production agents, consumption

agents, and the utility grid. But, the utility grid has not participated in the market.

2.3.1 Objective functions

For the ith (e.g.i=1,2) production agent, the objective function can be defined as the

summation of differences between revenue and cost over 24 hours in the one-hour

interval. The profit function of production agent 1:

P1 =
t=24

∑
t=1

= (R1,t−C1,t). (2.1)
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The profit function of production agent 2:

P2 =
t=24

∑
t=1

= (R2,t−C2,t). (2.2)

The production agents objective function:

arg maxJproductionagents = P1×P2 (2.3)

where R1,t ,C1,t and R2,t ,C2,t are the revenue function of tth hour of production agents 1

and 2 respectively.

The retail electricity price is a function of aggregated load demand. This price

function is considered to be identical for all the players following a singular distribution

system [87].

λ (Pdtotal) = (−α×Pdtotal)+β ,α ≥ 0 (2.4)

where λ is the electricity price in $/kWh, Pdtotal is the total load demand and α and β are

the load demand coefficients.

The revenue function of every single production agent at tth hour can be expressed

as:

Ri,t = λ (Pdtotal)× [Pwind,i(t)+Psolar,i(t)+PDG,i(t)+PES,i(t)] (2.5)

where Pwind,i is the output power of the ith supplier, Psolar,i is the solar output power

of the ith production agent, PDG,i is the diesel generator output power of the ith production

agent and PES,i is the battery output power of the ith production agent.PES,i can be positive
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and negative based on discharging and charging mode respectively. The cost function of

ith production agent at tth hour can be defined as:

Ci,t = [ψwindPwind(i, t)+ψsolarPsolar(i, t)+ψDGPDG(i, t)+ψESPES(i, t)], (2.6)

where ψ is production cost of energy generation units. Wind and solar power

generators are considered as non-manageable units, and their power output depends on

uncertain and variable energy resources. In this work, the production cost of renewable

energy resources (i.e, wind and solar) is assumed to be negligible in long term such that

ψsolar = 0 and ψwind = 0. The degradation cost of the storage device is beyond the scope of

this paper. so, the cost of energy storage units, ψES = 0. Since the small-scale DGs have

negligible startup and shutdown time, the startup and shutdown cost is assumed as a

constant for each DG units. The cost of DG unit (ψDG) can be formulated a strictly

convex quadratic function as:

Ci,t = ψDG = aiP2
DG(t)+biPDG(t)+ ci. (2.7)

For the residential community, the objective function is to minimize the operating cost by

managing their own displaceable loads. For ith community at tth hour, the objective

function is defined as:

arg minJcommunity =
t=24

∑
t=1

λ (Ptotal)×Pdi,t (2.8)
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2.3.2 Local and global constraints

Each player can make decisions on their own subject to local as well as global

constraints.

The local constraints include the following relation:

2.3.2.1 Local regulation of wind generation

The wind output power can be determined from power function based on wind

speed according to following relation:

Pwind(i, t) =



0 v < vci or v > vco

Pr(v−vci)
(vr−vci)

vci ≤ v≤ vr

Pr vr ≤ v≤ vco

The wind turbine need to maintain the power output (Pwind(i, t)) within the specified range

[Pwind,i,min,Pwind,i,max] for the ith player at tth hour.

Pwind,i,min ≤ Pwind(i, t)≤ Pwind,i,max (2.9)

where Pwind(i, t) is the power output and Pwind,i,min and Pwind,i,max are the minimum

and maximum power output of wind energy resources for the ith player at tth hour.
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2.3.2.2 Local regulation of solar generation

Solar energy system power distribution can be calculated using solar Irradiation.

The solar energy system output power is determined as follows:

Psolar(i, t) = Ac×η× It (2.10)

The power generation (Psolar(i, t)) of solar panel should control within the specified range

[Psolar,i,min,Psolar,i,max] for the ith player at tth hour.

Psolar,i,min ≤ Psolar(i, t)≤ Psolar,i,max (2.11)

where Psolar(i, t) is the power generation and Psolar,i,min and Psolar,i,max are the minimum

and maximum power output of solar energy system for the ith player at tth hour.

2.3.2.3 Diesel generator technical limits

The DG of ith player at any given tth hour must operates with the expected power

output within the specified boundary [PDG,i,min,PDG,i,max].

PDG,i,min ≤ PDG(i, t)≤ PDG,i,max (2.12)

where PDG,i,min and PDG,i,max are the minimum and maximum output power of ith player

diesel generator. The high operating cost of diesel generator bound the suppliers to turn on

the generator at any given output. Especially, the expected power output must be greater

than minimum power output (PDG,i,min) of diesel generator.



21

2.3.2.4 Energy storage technical limits

Every energy storage power output (PES(i, t)) must be satisfied within the specified

range [PES,i,maxd,PES,i,maxc] for the discharge and charging mode respectively, at tth hour

for the ith player.

PES,i,maxd ≤ PES(i, t)≤ PES,i,maxc (2.13)

where PES,i,maxd and PES,i,maxc are the maximum energy storage power in kW of discharge

and charge mode respectively. For restricting over-discharging and over-charging, the

state of charge of each battery must maintain safe range otherwise the energy storage unit

will switch to a standby mode.

The SOC in the energy storage at tth for ith player should remain within ceratin

range [SOCES,i,min,SOCES,i,max] to avoid damaging the energy storage lifespan.

The SOC at the next hour can be determined using the capacity of the energy

storage [Ecapacity,i] in the (∆t = 1 hr) interval and battery power output (PES(i, t)). PES(i, t)

might be negative or positive depending on charging and discharging modes respectively.

SOCES,i,min ≤ SOCES(i, t)≤ SOCES,i,max (2.14)

SOCES,i(t +1) = SOCES(i, t)−PES(i, t)×
∆t

Ecapacity,i
(2.15)

where SOCES,i,min and SOCES,i,max are the minimum and maximum state of charge

(SOC) of ES , Ecapacity,i is the battery capacity in kWh and ∆t is considered to be 1 hour.

PES(i, t) might be negative or positive depending on charging and discharging modes
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respectively. To ensure certain amount of electricity store in ES at the beginning of the

next day (24th hour), the minimum SOC at 24th hour is defined as:

SOCES,24 ≥ SOCES,end (2.16)

2.3.2.5 Upstream utility grid constraints

The considered market structure allows the production agents to buy and sell

electricity from the utility grid. Every player must satisfy the following relation when try

to sell electricity:

PGrid(i, t)≤ η× (Pwind(i, t)+Psolar(i, t)+PDG(i, t)+PES(i, t)) (2.17)

where PGrid(i, t) is the power sold to the utility grid by ith production agent at tth

hour. The negative PGrid(i, t) implies the selling electricity to the grid. On the other hand,

positive PGrid(i, t) indicates the buying electricity from the grid in extreme cases.

2.3.2.6 Residential community load constraints

The consumers of each residential community have the ability to control and

manage their responsive loads (RLD) at tth hour within the certain range.

ζ1PRL(i, t)≤ Pd(i, t)≤ ζ2PRL(i, t) (2.18)

where PBase(i, t) is the base load demand of the ith player at tth hour. ζ1 and ζ2 are the

minimum and maximum percentage of responsive load (RL) respectively.
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2.3.2.7 Global constraints of the system

According to the concept of conservation of energy, the power generated by

production agents must be equivalent to the consumptions agents.

∑
iεN

[Pwind(i, t)+Psolar(i, t)+PDG(i, t)+PES(i, t)+PGrid(i, t)] = ∑
jεN

Pd( j, t) (2.19)

where the left-hand side indicates the produced power in the market. PGrid(i, t) is the

buying or selling electricity from the grid. The total consumption by residential

community reflects on the right-hand side.

2.4 Proposed game theoretic solution

In the proposed electricity market model, all the players strategically interact with

each other by setting their power and load demand. Power production agents and

residential consumers choose strategies to achieve the maximum payoff. The power

production agents can maximize the profit by reducing the cost associated with power

generation. The consumers of the residential community can minimize the cost by

managing their load demand. The nature of the considered electricity market fit into the

n-person game. The production agents can communicate and share their knowledge with

each other to from a coalition. This collaboration can increase the market efficiency and

stability. This work considers non-cooperative game among the residential communities.

The game between production agents and residential communities can be iteratively

solved using special game-theoretic methodologies (e.g. Rational reaction set and Deign

of experiment- Response Surface method (DOE-RSM) ) to find the Nash equilibrium. The
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n-person game is defined by three components as N, Xi, ϕi, iεN . Each ith player belongs

to a set N= 1,2,3,....,n players. Xi is the strategy space of player ith player. The set of

collective strategies is defined as:

X = X1×X2×Xn (2.20)

where, ϕi is the ith player payoff function who calculates thew benefit by setting its

own strategy base on the strategy space of others. The term (yi|x) denotes the element

(x1, ......,xi−1,yi,xi+1, ....,xn). It states that the (x1, ......,xi−1,xi+1, ....,xn) player are

playing the game while the other ith player takes the action yi. The Nash equilibrium for

each ith player is defined as:

x∗= (x∗1, .....,x
∗
n) (2.21)

In other words, a Nash equilibrium solution is existed if x∗ is at least as good as for player

i as the action profile (xi,x∗−i); where every other player chooses x∗j while other player

chooses xi.

ϕi(x∗i |x∗)≥ ϕi(xi|x∗−i) (2.22)

This defines that if all players choose the equilibrium profile, no strategy profile

generates a preferable outcome for the ith player than the Nash equilibrium. The game

theoretic-rational reaction set is used to find Nash equilibrium of each player. In this work,

factorial design method in DOE is used to find the sensitivity of each generating units to

total load demand. Using the factorial design method, the rational reaction set of each
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residential community load demand by taking the consideration of other community load

demand.

2.4.1 Rational reaction set and Nash equilibrium

In the non-cooperative game, player 1 and player 2 are considered. The player 1 and

player 2 select strategies x and y where xεX and yεY . X and Y are the set of all possible

strategies each player can select. The objective function f1(x,y) and f2(x,y) represents the

cost function for player 1 and 2, respectively.

The Nash equilibrium exists where each player calculates its set of optimal solutions

based on the choices made by other players. This feasible set of solution for each player is

called rational reaction set (RRS) ([88],[48]). The RRS for player 1 and 2 can be

structured as:

f1(xN ,y) = min f1(x,y)→ xN(y) (2.23)

f2(x,yN) = min f2(x,y)→ yN(x) (2.24)

xN is the optimal solution of player 1 that varies depending on the strategy y chosen

by player 2. The function xN(y) is the RRS for player 1. Similarly, yN(x) is the RRS of

player 2. If, the intersection of these two sets exists, then that point would be the Nash

equilibrium solution for the non-cooperative game. Therefore, if the parametric equations

xN(y) and yN(x) are solved simultaneously, the resulting equilibrium solution is the Nash

equilibrium solution.
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2.4.2 Consumption agents game

The 30 levels of load demand value of residential community 1 and 2 are generated

which satisfy consumption agents’ load demand constraints. The residential community 1

solves its own problem for every level of other community load demand. Similarly, the

solution residential community 2 can be found. Then, each community load demand can

be modeled as through machine learning model (linear regression) as a linear equation:

Pd1,t = A×Pd2,t +B (2.25)

Pd2,t =C×Pd1,t +D (2.26)

where, Pd1,t and Pd2,t define the load demand of community 1 and community 2 at

tth hour respectively. A,B,C and D are the coefficients of linear equations. Finally, the

intersection of two linear equation sets of community 1 and 2 provides the Nash

equilibrium solution.

2.4.3 Production agents game

Due to the cooperative game, suppliers made a coalition. That’s why there is one

combined objective function of production agents. The factorial design method had also

applied here. The problem is solved for the production agents with each and every set of

data from consumption agents. The optimized values for Pwind(i), Psolar(i), PDG(i), PES(i),

PGrid(i) were gained for each set of consumption data. Then, a linear regression model can

be applied through the following formula:
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Pprod(n, t) = A×Ptotal +B (2.27)

where the above equation represents the RRS of the nth production agent as a

function of the total load demand at tth hour.

Finally, the optimal demand value (Ptotal) of residential communities at Nash

equilibrium were substituted into the production agents problem to find the Nash

equilibrium from the production agents.

Consumption agents solve the problem non-cooperatively 
and find the Nash equilibrium

Load demand information from consumption agents at 
Nash equilibrium

The production agents solve the optimization problem 
cooperatively at Nash equilibrium point

Initialize, ╟◌░▪▀, ╟╟╥, ╟╓╖, ╟╔╢ ἮἷἺ Ἥ Ἣἰ Ἰἴ ὁἭἺ, ░ ∈ ╘,

╟■▫╪▀,  ◄ ≤ ╣ −   ╪▪▀ ▪ ≤ ╝

Iteration, n =1

For
time, t≤ ╣ −

For
iteration, n≤ ╝

Stopping criteria met ?

The optimum profit of the players at Nash equilibrium

t=t+1

n=n+1

Yes

NO

Figure 2.2. Proposed game theoretic algorithm flowchart
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2.5 Result and Discussion

The benchmark under study includes a collection of production resources (WT, PV,

DG, and ES) and consumers as the shift-able load. The system consists of 100 consumers.

That is equally divided into two community. The consumer’s load demand has been taken

from [89]. The cost coefficients (a,b and c) and (α,β ), are summarized in Table 3.1. The

σ1 = 20(%) and σ2 = 80(%) are minimum and maximum percentage of manageable

load demand respectively.

Table 2.1. Cost and Price coefficient

Coefficients α β a b c
Units $/kWh $/h $/kW 2h $/kWh $/h
Production agent 1 0.001 1.3 6×10−6 0.010 0
Production agent 2 0.001 1.3 7×10−6 0.015 0

For investigating the performance of the retail energy market (REM) based on

design of experiment-rational reaction set approach, three cases have been implemented in

the considered framework: case 1: Normal operating condition, case 2: Abundant

renewable energy resources (RES) and case 3: Shortage of renewable energy resources.

All the production agents have renewable energy resources and generator units that

summaries in Table 2.2.

2.5.1 Real time optimization

In the case of abundant renewable energy resources, the wind speed and solar

radiation are in good condition. Due to the large availability of renewable energy provides

the production agents higher profit than normal condition. Because the production cost of

renewable energy is assumed to be negligible. During the less available renewable energy
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Table 2.2. Production agents resources

Production agents Generation Type Quantity Capacity

Production agent 1

WT 30 kW 18 540 kW
PV 180 W 1840 350 kW
ES 24 V/84 Ah 631 1262 kW
DG 100 kW 7 700 kW

Production agent 2
WT 30 kW 8 240 kW
PV 180 W 1667 330 kW
ES 24 V/84 Ah 631 1262 kW
DG 260 kW 2 520 kW

hours, the production agents make a strategic decision not to turn on diesel generator

because of high operating cost at any given output and relies on utility grid to secure the

load demand. In other words, the expected power output of diesel generator should be

greater than the PDG,i,min. In those hours, the utility grid sells more electricity and the

production agents get less profit. In the case of shortage of RES, the solar radiation and

wind energy are in weak condition, the pursuit of maximizing the renewable energy

utilization can push the energy storage and diesel generator to operate all day. Also due to

the limitation of the capacity of energy storage and diesel generator, the shortage of

generated power can be given by utility grid. That’s why the profit is less than the normal

condition. Figure 4.2 shows the convergence of the payoff function values for the

production agents under different conditions. By iteratively solving the considered

problem, the payoff function values of production agents are gradually converging to an

equilibrium point in all scenarios. The payoff function values of production agents are

converged to a high value in case of abundant RES. On the other hand, the payoff function

values are converged to lower values because of buying electricity from the utility grid.

Therefore, the equilibrium payoffs of considered cases are found to be [2.06×106,
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2.74×106 and 1.46×106] respectively at 2nd hour and [2.25×106, 3.26×106 and

1.41×106] respectively at 10th hour.
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Figure 2.3. Pay-off function values of production agents at 2nd hour (left) and 10th hour
(right).

In case of the non-cooperative game, the residential communities solve their own

problem individually. Similarly, the production agents problem, both of the residential

communities pay-off functions are converged to a lower cost [Figure 4.14 and 4.15] for the

large availability of renewable energy hours. In the off-peak hours, the payoff function is

converged to the higher cost because of expensive electricity buying from the utility grid.

Using the equilibrium solution, the electricity market price can be cleared for the

future residential distribution system with multiple residential communities satisfying

local and global constraints. The clearing price of restructured electricity market can be

found at Nash equilibrium in Table 2.3.

2.5.2 Day ahead optimization

The day-ahead optimization is also completed in the proposed framework. Figure

4.16 and 2.7 show the convergence of the payoff function values for the players on the
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Figure 2.4. Pay-off function values of community 1

Table 2.3. Hourly electricity prices at Nash equilibrium

t Price ($/kWh) t Price ($/kWh) t Price ($/kWh)
1 0.9564 9 0.7513 17 0.5423
2 0.9641 10 0.9293 18 0.3369
3 0.9699 11 0.8530 19 0.1654
4 0.9446 12 0.8680 20 0.0889
5 0.9397 13 0.8845 21 0.1645
6 0.7831 14 0.9234 22 0.4099
7 0.7558 15 0.9243 23 0.4766
8 0.7695 16 0.7895 24 0.8519

production side and the consumption side with considered case studies. The payoff

function values iteratively achieved by production agents using the cooperative game.

While, consumption agents’ pay-offs can be obtained through non-cooperative game. The

payoff function values for all players gradually converged to an equilibrium point. The

equilibrium pay-offs for the consumption players are found to be [3352, 3456].

The optimum pay-offs at Nash equilibrium of the day ahead optimization of the

production agents for three considered cases are resulted to be [9.0422×105,

9.0830×105 and 8.8135×105].
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Figure 2.5. Pay-off function values of community 2
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Figure 2.6. Pay-off function values of production agents

2.6 Concluding Remarks

In this chapter, a game-theoretic method is proposed based on [48] to analyze the

behavior of the power generation and consumption players in the power system. The

proposed framework enables the distributed operators and residential consumers to

efficiently integrate a wide range of renewable energy resources. The residential

consumption agents play an important role in the market to control the electricity price.
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Figure 2.7. Pay-off function values of consumption agents

The consumption agents are not only able to find market clearing price at Nash

equilibrium point but also reduce the electricity cost individually (non-cooperatively).

Simulation case studies are conducted to validate the proposed game theoretic approach.

The proposed approach can be effectively used as a tool for investigating the retail

electricity market.

2.7 Acknowledgment

In this chapter, the work is developed and implemented based on the model of [48].
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CHAPTER 3 DISTRIBUTED CONVEX ENERGY EXCHANGE FRAMEWORKS

FOR INTERCONNECTED MICROGRIDS

3.1 Introduction

Distributed energy management with direct energy exchange among microgrids is

promising approach to improve the economy, reliability and efficiency of system

operation. In the interconnected microgrids system, each microgrid not only schedules its

local power supply and demand, but also trades energy with other microgrids.

Specifically, microgrids with excessive DERs generations can trade with other microgrids

which has deficit of power for mutual benefits. This cooperation of multiple microgrids

(MGs) can reduce the mismatch problem between distributed generation and demand,

improve the system performance, decrease the total cost of the power system. However,

existing strategies on microgrid energy trading only concentrate on simulation studies and

modeling issues.

This chapter tries to provide a extensive analytical solution for energy managemnt

problem among microgrids, can be implemented distributely without need of central

agent. More clearly, our distributed system model consists of N microgrids in which (a)

Each microgrids has own energy generation cost, (b) The distribution network operator

imposes the cost for transferring energy between adjacent microgrids, (c) each microgrid

owns power demand that must be fulfilled. Considering all of these issues, we have to find

the optimal amount of energy to be traded by the microgrids in order to minimize the total

operating cost of the considered system. In this work, a distributed iterative algorithm

based on dual decomposition is proposed that solve the problem distrbutely. For ensuring
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the safeguard, the information exchange among microgrids is limited to Lagrange

multiplier and expected buying energy. First, each microgrids individually enumerates the

amount of energy it should produce, sell and buy to minimize the local cost in terms of

current energy prices. Then, a energy prices are adjusted according to law of demand after

the energy bids netween microgrids. This two-step proceeds until global agreement is met

about prices and transferred energy. The performance of the proposed algorithm is

compared with existing approaches in [68] and [90] in terms of computational time and

iteration with different topologies.

3.2 System Model

A system composed of N = 4 interconnected MGs through a power interconnection

infrastructure and a communication network is considered which represents in Figure 3.1 .

MG-3

MG-1 MG-2

MG-4

Islanded Microgrids

Energy 
Exchange 
Network MG-3

MG-1 MG-2

MG-4

Islanded Microgrids

Energy 
Exchange 
Network

Figure 3.1. A energy exchange network composed of multiple interconnected MGs, distri-
bution power line and communication network

During each scheduling time, E(g)
i and E(c)

i are the generation and consumption of

MG i respectively. Moreover, MG i is allowed to sell energy Ei, j to MG j, j 6= i, and to
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buy energy Ek,i from MG k, k 6= i. Then, The power balance within the MG requires

E(g)
i + eT

i AT E(b)
i = E(c)

i + eT
i AE(s)

i (3.1)

where the two N-dimensional column vectors

E(b)
i =



E1,i

.

.

.

EN,i


and

E(s)
i =



E1,i

.

.

.

EN,i


In order to introduce the connection between MGs, an adjacency matrix A = [ai, j]N×N is

defined. If there exists a connection between MG i to MG j, element ai, j is set as 1 and

zero otherwise. Note that A mat be non-symmetric, meaning that at least two MGs are

allowed to share energy in one direction only. Moreover, we fix ai, j = 0, and if ai, j = 0→

Ei, j = 0 for all i, j = 1..., ..N.

The objective of this problem is to minimize the total operating cost of
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interconnected microgrid system, consisting of power generation and transmission cost.

So, the energy exchanged by interconnected MGs form the equilibrium point of the

following minimization problem:

minimize
Ei, j

N=4

∑
i=1

Ci(E
(g)
i )+∑

i=1
eT

i AT
β (E(b)

i )

subject to Ei, j ≥ 0,∀i, j

E(c)
i + eT

i (AE(s)
i −AT E(b)

i )≥ 0,∀i

(3.2)

where Ci(E
(g)
i ) is defined the cost of generating E(g)

i units of energy at MG i;

β (E(b)
i ) is the cost of transferring Ei, j units of energy between MG i and MG j; ei is the

ith column of the N×N identity matrix; E(b)
i is the vector composed of the energy bought

from other MGs by MG i;

β (E(b)
i ) = [β (E1,i).....β (EN,i)]

T (3.3)

The multiple MGs in one interconnected microgrid system, which have their set of

strategies, should be coordinated in order to achieve the global objective of the system and

meet power demands.

3.2.1 The cost functions

In the system model mentioned above, two cost functions have been introduced,

namely cost function Ci(E
(g)
i ) is the price MG i spend to generate the energy E(g)

i , and the

cost function β (E(b)
i ) is the cost of transferring energy between MG i to MG j. Both cost

functions are positive valued, monotonically increasing, convex and twice differentiable.
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The cost function Ci(Ei(g)) of a diesel generator (DG) is modeled as a quadratic

polynomial. So, the fuel cost is represented as follows:

Cdgi = ai +b(i)Pdgi + ciP2
dgi (3.4)

where ai, bi and ci are the fuel cost coefficients of DG; and Pdgi is the output power of DG

i.

The total operation cost Ci(E
(g)
i ) includes the cost of all DG units of MG i,

Ci(E
(g)
i ) = ∑

N=4
N=1Cdgi.

For the transportation cost, many factors may have influence on the model, i.e, the

investment and construction cost of the network, etc. For simplicity, we imagine that the

cost of all connection topologies of the system is same. The transmission cost also is

quadratic; β (x) = px+qx+ rx2.

However, it is needed to comment on the cost functions, we need to describe how

they can be used to introduce a upper bound constraint on the energy generated by the

MGs or supported by the transfer connections. Indeed, one can design the cost function by

introducing so f t constraints with a sharp rise at nominal maximum value. The benefit of

doing this design is twofold: first, we can make flexible system by avoiding further

complexity to the minimization problem and the resulting constraint on the maximum

energy is so f t. By introducing soft upper bound, a MG of the system can generate more

energy than the nominal maximum power, but the MG needs to pay an (significant) extra

cost. This circumstance arises in the actual systems when backup generator activated.
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3.3 Distributed model and algorithm

3.3.1 Distributed optimal scheduling model

When considering the minimization problem (3.2), one can readily identify that the

objective function is strictly convex. Moreover, a centralized unit needs a control unit that

is aware of all system informations. This fact implies a considerable amount of data traffic

to gather all the information and can miss some annoying privacy issues. In this regard,

we propose a distributed iterative approach by decomposing the problem N local

subproblems, which can be implemented by the MGs in an autonomous and cooperative

manner.

By utilizing Lagrangian method and duality theorem, a multiplier strategy is

introduced as the exchanged information between MGs to solve the subproblem for each

MG. Thus, the distributed iterative solution (3.2) can be rewritten as:

C∗ = minimize
ε
(s)
i ,Ei, j

N=4

∑
i=1

Ci(E
(g)
i )+∑

i=1
eT

i AT
β (E(b)

i )

subject to Ei, j ≥ 0,∀i, j

E(g)
i + eT

i AT E(b)
i = E(c)

i + eT
i AE(s)

i ,∀i

ε
(s)
i = eT

i AE(s)
i ,∀i

(3.5)

The only difference with respect to (3.2) is the introduction of new variable ε
(s)
i to

represent the energy sold by MG i and later it will be equal to all the energy bought by

other MGs from MG i. The coupling constraint can be represented as ε
(s)
i = eT

i AE(s)
i .

Due to the convexity of primal dual problem (3.2), Lagrange multipliers are

introduced to relax the coupling constraints and solving the dual problem.
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C∗ = max
λ

C(λ ) (3.6)

where, C(λ ) = ∑
N
i=1Cl

i (λ )

Cl
i (λ ) = min

ε
(s)
i ,E(b)

i

Ci(ε
(s)
i ,E(b)

i ,λ )

subject to Ei, j ≥ 0,εs
i ≥ 0,∀ j

E(g)
i + eT

i AT E(b)
i = E(c)

i + eT
i AE(s)

i

(3.7)

For each MG, we have:

Ci(ε
(s)
i ,E(b)

i ,λ ) =Ci(E
g
i )+ eT

i AT
β (E(b)

i )+ eT
i AT diagλE(b)

i −λiε
(s)
i (3.8)

that is the contribution of MG i to the Lagrangian function relative to (3.2). The

parameter λ gathers all the Lagrange multipliers λi corresponding to coupling constraints

ε
(s)
i = eT

i AE(s)
i , respectively and for all i = 1, ....,N. Based on above analysis, each

Lagrange multiplier λi can be defined as the marginal cost of MG i, namely the selling

price of a unit of power to neighboring MGs. Thus, Lagrange function can be seen as net

expenditure. The net expenditure of each MG has four parts: (i) Ci(E
(g)
i ) is the generation

unit cost function; (ii) eT
i AT

β (E(b)
i ) is the transmission network cost resulted from

transferring energy bought from other MGs; (iii) eT
i AT diagλE(b)

i is the cost due to buying

energy; and (iv) λiε
(s)
i is the income by selling energy.
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3.3.2 Distributed algorithm

The problem can be transformed to maximum dual problem. To this end, the

optimal Lagrangian multiplier converge to the optimal point of dual problem (3.5),

λ ∗ = argmaxλC(λ ). More specifically, at each point λ [k], each MG minimizes its

corresponding contribution to the Lagrange function by solving the local subproblem (3.7)

and determining the minimum point (ε(s)i [k],E(b)
i [k]) = (ε

(s)
i (λ [k]),E(b)

i )(λ [k]).

In the previous work [68], the Sub−GradientAlgorithmis used to solve the

optimization problem. In this algorithm, the Lagrange multiplier are updated according to

λi[k+1] = λi[k]+α[k]



eT
1 AE(s)

1 [k]− ε
(s)
1 [k]

.

.

.

eT
NAE(s)

N [k]− ε
(s)
N [k]


(3.9)

where, α[k] is a positive step factor. However, the Sub-Gradient (SG) Algorithm needs the

initial assumption of price (λ ) and step size (α). Initial assumption is restrictive in the

Sub-Gradient Algorithm to find a optimal solution set. This initial assumption often

makes the algorithm slower. Moreover, without the initial assumption, Sub-Gradient

Algorithm fails to find a feasible solution. So, there is a need to find a faster algorithm to

improve the system performance.

The approach proposed in this work is based on the Deep Cut Ellipsoid (DCE)

Algorithm. According to [91], the DCE is used to determine the feasibility of a system of
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linear inequalities. The DCE Algorithm generates a ”decreasing” sequence of ellipsoids

that contain a minimizing point. The update of the dual variables may also be done in this

algorithm. The idea of choosing initial ellipsoid is to localize the set of candidate λ ’s

within a closed and bounded set. Therefore, This algorithm releases the users to initialize

the price values (λ ) at the first iteration and from choosing the step size (α).

The size and shape of the ellipsoid can be represented as λ and matrix P

respectively. The sub-gradient of C(λ ) in λ = λ [k] need to be computed from k− th can

be described as

ς [k] = [eT
NAE(s)

N [k]− ε
(s)
N [k]]N×1,∀λ (3.10)

Then we have, C(λ )≤C(λ [k])+ ςT (λ −λ [k]),∀λ , Then, the sub-gradient needs to be

normalized as,

(3.11)υ [k] =
ς [k]√

ςT × P[k]× ς [k]

First, The Lagrange multiplier (λ ) can be represented as,

(3.12)λi[k + 1] = λi[k] +
1 + N × α

N + 1
× P[k]× υ [k]

Second, the shape (matrix P) of the ellipsoid can be updated as:

P[k+1] =
N2

N2−1
× (1−α

2)× (P[k]− 2(1+Nα)

(N +1)(1+α)
×P[k]×υ [k]× (υ [k])T ×P[k])

(3.13)

where, α is a positive step factor, P[k] is the shape of solution space; and k is the iteration

number.

Next, the updated Lagrange multiplier (λ ) will check the original bounds. If it is

within the bound, then it is converged else it will take next iteration according to (3.10),
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(3.11), (3.12), (3.13).

Algorithm 1 summarizes are the steps of the proposed distributed iterative

algorithm. For solving the (3.7), each MG should aware of ε
(s)
i [k] and E(b)

i [K] , namely the

Algorithm 1 Distributed optimal scheduling algorithm
1: Initialize λmin, λmax, λi[0], P[0], M = 4, α = 0, k=0
2: At kth iteration
3: At any MG i
4: Compute the sub-gradient ς [k] = [eT

NAE(s)
N [k]− ε

(s)
N [k]]N×1,∀λ

5: Normalize the sub-gradient υ [k] = ς [k]√
ςT×P[k]×ς [k]

6: MGs exchange λi[k] with neighboring MG
7: MG i computes ε

(s)
i [k] and E(b)

i [K] using (3.5) with λ [k].
8: MG i informs MG j( j 6= i) the energy it expects to buy namely E j,i[k], at the given

price λ j[k].
9: According to the expected purchasing energy E j,i[k] from other MGs, MG i obtains

10: E(s)
i [k]⇒ [Ei1[k]........EiN [k]]T

11: MG i updates according to step 12 and 13
12: λi[k+1] = λi[k]+ 1+N×α

N+1 ×P[k]×υ [k]

13: P[k+1] = N2

N2−1 × (1−α2)× (P[k]− 2(1+Nα)
(N+1)(1+α) ×P[k]×υ [k]× (υ [k])T ×P[k])

14: At any MG i
15: If λi < λmin

16: ς [k] =−1, υ [k] = ς [k]√
P[k]

,α = (λmin−λi)√
P[k]

17: Then, MG i updates according to step 18 and 19
18: λi[k+1] = λi[k]+ 1+N×α

N+1 ×P[k]×υ [k]

19: P[k+1] = N2

N2−1 × (1−α2)× (P[k]− 2(1+Nα)
(N+1)(1+α) ×P[k]×υ [k]× (υ [k])T ×P[k])

20: k = k+1
21: Until stopping criteria is met.

total energy it sold and the vector composed of energy bought from other MGs. Moreover,

we can compute E(s)
i from E(b)

i . Combined with Algorithm 1, the Lagrangian multipliers

can be updated. Therefore, all necessary data can be computed by each MG without a

centralized controller. Also, the information traded between MGs is bounded to Lagrange

multipliers λi and the expected buying energy E j,i, which is interacted to the
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corresponding MG j . Hence, the privacy of MGs can be secured. According to Algorithm

1, each Lagrange multiplier λi can be interpreted as the price per energy unit requested by

MG i to sell energy to its neighboring MGs. Using the Lagrangian function (3.8), each

MG pays for generating energy, for purchasing energy and for transferring the energy it

purchases. On the other hand, the MG is paid for the energy it sells. By solving the

problem (3.7), MG is maximizing its profit for some given selling (λi[k]) and buying

(λ j, j 6= i) prices per unit energy. Based on the Algorithm 1, the price λi would be

modified constantly until the energy demand matches energy offer. As reported by (3.12),

if the energy offered by MG i is less than the requested energy from other MGs, the price

must be increased as the demand exceeds the supply. Conversely, when the demand by

MG i is less than the supply, the price will be decreased. However, the price does not

changed when the supply and demand are equilibrium.

3.3.3 Solution of The Local Subproblem

In this section, the solution of local subproblem is reported to support the global

minimization problem of the system. The minimization subproblem (3.7) at MG i behaves

according to six possible cases. Table (3.1) expresses these six different cases to support

the local subproblem as the intention of MG i to minimize local cost or equivalently, to

maximize net profits, when λis are interpreted as exchanging prices per energy unit. In the

first case, the MG i is generating all and only the energy it consumes, that is ε
(s)
i =0 and

E(g)
i = E(c)

i . So, the MG i is not interested to sell energy since the selling price is lower

than marginal generation cost. Indeed, the income will be lower than the extra production

cost. In addition, purchasing is not beneficial either since the purchasing price is higher
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Table 3.1. Possible Cases of Local Subproblem of MGi

Cases Generation Buy Sell
1 X − −
2 − X −
3 X X −
4 X − X
5 − X X
6 X X X

than the marginal production cost. Therefore, as for case 1, the MG i should remain self

constrained.

However, MG i is always willing to trade energy since their local cost

(Ci(E
(c)
i )+β (0)) is higher than the net payment. This case holds only in case 6. Similar

considerations hold for other cases.

3.4 Result and Discussion

Several case studies have been considered based on proposed energy trading

mechanism. A interconnected test system consisting of four different MGs, including DG

units only. The interconnection topology of interconnected microgrid system is

represented in Figure 1. The fuel coefficients of DG are a = 86.3852 $, b = 56.5640

$/MW and c =0.328412 $/(MW )2. The coefficients of transfer cost function are p = 0, q

= 0, r = 3.6828. The cable capacity assumes 100 MW. We have introduced a soft upper

bound Emax = 5MW as motivated by Section 3.2.1. The transfer cost function is set

without the upper bound.

3.4.1 Trading prices

Figure 3.2 represents the iterative process of electricity price of each MG. The

curves refer to a fully connected system, where microgrid loads are E(c) = [1,6,6,6] and
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each MG generation capacity is Pmax = 5MW . The result shows that the DCE algorithm

converges after 58 iterations. The prices of MG1, MG2, MG3 and MG4 are 59.3530

$/MWh, 67.3156 $/MWh, 67.3156 $/MWh and 67.3156 $/MWh, respectively. However,

the electricity prices of MGs converge to different values with same initial prices. Besides,

Figure 3.2 depicts the final selling prices of MGs which have direct relationship of their

own loads, that means, the MG that consumes more electricity has a higher selling price

after the convergence is achieved. For example, MG1 earns more money by selling energy

to the other MGs with a lower price, because it has lower power demand. In fact, the MG1
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Figure 3.2. Iterative process of the electricity price of each MG.

only generates and sells energy, whose local cost function is :

C1 =CDG1(PDG1)−λ1ε
(s)
1 (3.14)

The optimal λ1 = λ ∗1 can be give in the form of marginal cost:

λ
∗
1 =C

′
(PDG1) (3.15)
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On the other hand, the MG2, MG3 and MG4 only generate and buy energy from MG1.

They are all buying same amount of energy from MG1 and their local cost functions can

be represented as:

C2 =CDG2(PDG2)+β (E1,2)+λ2E1,2 (3.16)

C3 =CDG3(PDG3)+β (E1,3)+λ3E1,3 (3.17)

C4 =CDG4(PDG4)+β (E1,4)+λ4E1,4 (3.18)

Moreover, from the perspective of MG2, MG3 and MG4, λ ∗2 , λ ∗3 and λ ∗4 can be expressed

as:

λ
∗
2 =C

′
(PDG2)−β

′
(E1,2) (3.19)

λ
∗
3 =C

′
(PDG3)−β

′
(E1,3) (3.20)

λ
∗
4 =C

′
(PDG4)−β

′
(E1,4) (3.21)

Therefore, MG2, MG3 and MG4 should reduce its net expenditure by purchasing energy

from MG1. The price of MG1 after convergence can be calculated according to (3.15),

(3.19), (3.20) and (3.21), which is consistent with the result of Algorithm 1.

3.4.2 Trading energy

The iterative process of the energy trading between MGs is shown in Figure (3.3),

(3.4), (3.5) and (3.6). The energy trading after convergence at current time slot can be

explained as follows: MG2, MG3 and MG4 buy 1.07994 MWh energy from MG1

respectively. And the MG1 offer 3.25039 MWh energy to sell to other MGs. As we can

see, the total energy sold is eqal to total energy purchased in the system. The coupling
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constraints ε
(s)
i = eT

i AE(s)
i is fulfilled after convergence, which justifies that the algorithm

works well. During the optimization, the cost by power transmission between MGs is
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Figure 3.3. Iterative process of the trading energy of MG1.
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Figure 3.4. Iterative process of the trading energy of MG2.

covered by the electricity buyer. In the current time slot, MG2 buys energy from MG1 to

meet its load demand, as marginal cost of its own generating unit is higher than the sum of

selling price and the transmission cost of MG1.

Similarly, the marginal cost of MG3 and MG4 is not economical. So, it is beneficial

to work on lower generation limit.
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Figure 3.5. Iterative process of the trading energy of MG3.

0 20 40 60 80 100

Iteration number

0

0.5

1

1.5

2

2.5

E
n
er

g
y
 (

M
W

h
)

E
1,4

E
2,4

E
3,4 4

Figure 3.6. Iterative process of the trading energy of MG4.

3.4.3 Iterative process of variables

All optimal variables including the buying energy, selling energy, generation can be

solved by Algorithm 1. For instance, Figure (3.7) shows the iterative process of variables

of MG3. After convergence, MG3 buys 1.07995 MWh energy from MG1. The generation

of DG3 is 4.9184 MWh . According to power balance constraint, supplied power is equal

to net load demand. Moreover, supplied energy is 6 MWh, which is equal to the load

demand of MG3. Similarly, the supplied power can be satisfied in MG1, MG2 and MG4.

Having gained more insight into the iterative process, the decision of MG3 is affected by

the trading prices with MG2, MG4 and MG1. Initially, MG3 intends to buy a large
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Figure 3.7. Iterative process of the variables of MG3.

quantity of energy. However, selling prices of MG1 is increased with iterations, the

expected buying energy of MG3 has also been reduced, whereas the generation of DG is

increased. Finally, all the variables of MG3 converged to stable values. From this result,

we can find that each MG can decide to adjust generation of DG, or trade with other MGs

with a extensive consideration of the generation cost, trading price and load

characteristics, which ultimately reduces the total operation costs and makes power usages

flexible and interactive.

3.4.4 Benefits of interconnection

Given the same setting, each MG can also be operated autonomously. Table 3.2

represents the cost comparison of each MG between autonomous and interconnected

operation.

Table 3.2. Cost comparison of each MG between autonomous and interconnected operation

Microgrid ID
Cost ($)

MG1 MG2 MG3 MG4 Total
Autonomous operation 143.278 4610.83 4610.83 4610.83 13975.78
Interconnected operation 332.114 377.017 376.998 376.998 1463.11

The results show that energy trading not only deceases the global operation cost, but
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also decreases the the local expenditure of individual MG which has less generation.

Therefore, MG1 gains revenue by selling energy where as MG2, MG3 and MG4 reduce

their cost by purchasing energy.

3.4.5 Performance comparison with existing work

In order to interpret the benefits and advantages of the distributed model and deep

cut ellipsoid (DCE) algorithm, the results are compared with the existing work [68] in

terms of exchanged information, the number of MGs, solution algorithm and

performance. The results show that the DCE algorithm features advantages in several

aspects, especially in algorithm performance. The DCE algorithm has shown a better

convergence performance as compared with the algorithm proposed in [68].
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Figure 3.8. Iterative process comparison of price in MG3 between this work and that in
[68]

Finally, the optimal operation cost achieved by Algorithm 1 is almost equal to

centralized optimization, which is shown in (3.3).

As for the exchanged information, the centralized optimization requires all

measured data of sources and load to be transferred to the system central coordinator,

which results in more requirements on the overall communication cost. However, sharing
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Table 3.3. Comparison between centralized optimization and Distributed optimization

MG
Cost ($)

Centralized optimization Distributed optimization
MG 1 332.112 332.114
MG 2 377.08 377.017
MG 3 376.984 376.998
MG 4 376.971 376.988
Total 1463.147 1463.120

information of load and sources can lead to serious privacy and business issues, since

MGs may belong to different business owners. In this work, the DCE algorithm is

developed based on the distributed optimization framework of [68], the information

shared among MGs is limited to Lagrange multipliers and the expected buying energy

quantities, which are only communicated with trading MGs.

As for the convergence performance of algorithms, the simulation results show that

the DCE algorithm has an improved performance compared to the distributed sub-gradient

algorithm of [68]. In order to show the detail iterative process comparison of price in

MG3 between this work and [68] based on same test cases, as shown in Figure (3.8). The

DCE algorithm release the system to make restrictive assumption which makes the system

performance better. Because, the initial assumption makes the system slower. The deep

cut ellipsoid (DCE) algorithm has the faster iteration speed due to faster shrinking. First,

the initial assumption of price is made based on total cost function. Then , the price needs

to be maintained within the bounded limit which makes the solution space even smaller

that speeds up the system faster. Finally, the prices of MG3 in this work and [68] converge

to the same value. For energy exchange network, four different topologies (e.g. Full,

Ring, Line and Star) are considered as in Figure 3.9.
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Figure 3.9. Considered four topologies

The performance comparison for sub-gradient algorithm and DCE algorithm has

also been done for four topologies as in Figure 3.10. The four topologies are compared in

terms of iteration and time to show the performance improvement of DCE algorithm.
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Figure 3.10. Comparison between Sub-gradient algorithm and DCE Algorithm with differ-
ent topology in terms of iteration and time

According to Figure 3.10, it is clear that, the fully connected topology, topology (a)

give the best performance. While for other three topologies, topology (d) has advantages

over other two, since it improves the income for MG1, which achieve the highest cost

reduction, although it has worst cost reduction performance for MG2, MG3 and MG4.
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Based on above all the topologies, the DCE algorithm performs better than the slow

sub-gradient algorithm in terms of iteration and time. Therefore, the MGs should be

operated in distributed manner which lower the interaction time with less data exchanges.

Having achieved some more insight into the result, the search routine of

sub-gradient algorithm seems zigzag shaped. Besides, the sub-gradient algorithm is the

fastest direction for the increasing of objective function value. Therefore, it could be a

good choice to search on sub-gradient direction in the local space. However, this

algorithm’s convergence speed is slowed down in global space due to its zigzag shaped

search direction. For this drawback, the deepest cut ellipsoid algorithm with a sequence of

shrinking ellipsoids that is polynomial in time is studied in this work. During each

iteration, the sequence of each ellipsoid is more smaller in volume than its predecessor

due to its deepest cut; after that it is easy to find feasible point within this smallest global

space. So, the DCE algorithm has addressed the problem by the zigzag typed searching

direction and eventually quicken the convergence.

3.5 Concluding Remarks

In this section, a distributed energy trading algorithm is studied based on deep cut

ellipsoid method to minimize the global cost of the interconnected MG system. This

algorithm is not only efficient in distributed energy trading but also speeds up the system

performance quite well. The performance of DCE algorithm was validated using different

case studies for a system consisting of 4 MGs. Compared to existing work [69], the

deep-cut ellipsoid approach shows the advantageous features of modeling and

performance.
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CHAPTER 4 ENERGY OPTIMIZATION APPROACHES OF A RESIDENTIAL

COMMUNITY USING DYNAMIC PRICING

4.1 Introduction

Household electric power consumption in peak time has caused adverse effects to

the stability and reliability of the conventional electricity system. Reducing the peak

power consumption can decrease the risk of distribution and transmission network

outages. In searching for viable solutions, Demand side management strategy has been

recognized as one of the practically appealing solution to reduce the cost of electricity by

reducing the peak demand by shifting the load from peak hour to off peak hours. It is also

prevent network overloading because it provides the flexibility required to time shift the

loads. In this chapter, an optimization model is studied for a smart residential community

with the presence of smart residential appliances where the impact of priority of using

residential appliances is also taken under consideration. Contribution of this chapter

include:

• A small community energy management system is developed with three houses

considering the comfort level;

• Three types of houses with real-world appliances are implemented for a small

community according to physical characteristics;

• The three control approaches are evaluated on three case studies (fixed priority, with

priority and without priority). The fixed priority is defined that the appliances will

optimize the system according to their fixed priority order. With priority is specified
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that one appliance will work all the time and other appliances will be scheduled

based on optimization approaches. For without priority, no priority order of using

the appliances is set up for optimizing the energy consumption.

4.2 Model Description

4.2.1 Residential Load Categorization

Electricity is used in residential houses in several ways. According to the residential

energy consumption survey by USEIA (US Energy Information Administration) , 2009,

Space cooling/ heating is the main household electricity consumer. Electric water heater is

the second largest household electricity consumer. Other household appliances such as

lighting, freezers, refrigerators, cloth dryer and entertainment devices consume rest of the

electricity consumption. A typical survey of electricity consumption in residential

households in U.S.A is displayed in Figure 4.1. According to figure, space heating

accounts 41% of household electricity consumption and water heater accounts for 18%.

Other appliances electronics (e.g. cloth dryer, electric vehicles) and lighting accounts for

6%.

4.2.2 Energy Management System of a Community

The benchmark model is represented in Figure 4.2. It exhibits the hand in hand

gesture of information technology and electrical scenario in the present technological

generation. In the model, the household loads are divided into two categories, non-critical

or controllable loads and critical loads. Loads which are vital for the day to day activities

of the consumers such as cooking, refrigeration and lighting etc. fall under critical loads.

Controllable or non-critical power intensive loads can be interfered without noticeable
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Figure 4.1. A typical residential energy usages survey

effect to the consumer’s lifestyle.

Three types of houses including critical loads and controllable loads are considered

in a small community. Since these power intensive loads account for a significant

percentage of the total household demand, controlling these loads during peak hours will

help to reduce the peak demand in the community.

4.3 Constraints For Individual Appliances

Residential controllable appliances such as air conditioning unit, water heater,

clothes dryer, dishwasher and electric vehicle are modelled according to physical

characteristics. The controllable appliances have high potential in the demand response

events and to reduce cost. The manageable appliances are controlled by the central energy

management system (CEMS). The energy management system unit is responsible to

change the status of the non-critical loads in response to the demand limit specified by the
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Figure 4.2. Community Based Energy Management System Model

utility.

4.3.1 Space Cooling Load Model

Space cooling unit load model is developed to adjust the power to fit preset

temperature range. In this work, to simplify the constraints, the space cooling operates

with ”on-off” status W t
AC and keeps the rated power equal to PAC(kW) when turned on. For

each time step t, the demand for electricity of space cooling unit is calculated as,

Pt
AC = PAC×W t

AC (4.1)

Also, there is a room temperature range [T min
room, T max

room]:

T min
room ≤ T t

room ≤ T max
room. (4.2)
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The room temperature for time instance t is expressed as,

T t+∆t
room = T t

room +∆t× Gt

∆c
+∆t×CAC

∆c
×wAC,t (4.3)

where, T t
room is the room temperature, ∆t is the length(minute) ,Gt is the heat gain rate of

the house, CAC is the cooling capacity (Btu/h), ∆c is the energy needed to change the

temperature of the air in the room by 1◦F (Btu/◦F).

4.3.2 Electric Heater Load Model

The Electric Water Heater (WH) has turn on-off mode (W t
WH). When it’s turned on,

it operates with rated power PWH(kW). The water temperature in the water heater has

upper and lower bound [T min
outlet , T max

outlet], so the operation of the electric water heater should

maintain the temperature constraint:

T min
outlet ≤ T t

outlet ≤ T max
outlet . (4.4)

where, T t
outlet is the mixed water temperature (◦F) in the water tank at time t. For each

time step t, the demand for electricity of the water heater unit (PWH) is expressed as,

Pt
WH = PWH×ηWH×W t

WH (4.5)

The outlet water temperature of the tank is calculated as,

(4.6)
T t+∆t

outlet =
T t

outlet × (Vtank − f rt × ∆t)
Vtank

+
Tinlet × f rt × ∆t

Vtank
+

1gal
8.34lb

× [Pt
WH ×

3412Btu
kwh

−
Atank × (T t

outlet − T t
room)

Rtank
]× ∆t

60min
hr
× 1

Vtank
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where, Vtank is the volume of the water tank (gallons), f rt is the hot water consumption

rate (gallons per minute), Tinlet is the temperature of the inlet water (◦F), Pt
WH is the power

of the WH (kWH), Atank is the surface area of the tank ( f t2), T t
room is the room

temperature (◦F), and Rtank is the heat resistance of the tank (◦F . f t2.h/Btu).

4.3.3 Cloth Dryer Load Model

The typical cloth dryer (CD) load is task-based appliance. In the cloth dryer, the

user set up work period [T start
CD , T f inish

CD ] with the required working time T required
CD . When the

user turns on the cloth dryer, the cloth dryer works with rated power Pt
CD(kW). The power

consumption of the cloth dryer is divided into two parts. Ones is as power consumption of

the motor and another one is as the power consumption of the heating coil. Therefore, the

cloth dryer should ensure the following constraints:

Pt
CD = k×Phc×W t

CD +Pm×wt
CD (4.7)

W t
CD and wt

CD = 0; (i f t < T start
CD or t > T f inish

CD )

T f inish
CD

∑
t=T start

CD

W t
CD = T required

CD (4.8)

where, Phc is the rated power of the cloth-dryer heating coil (kW), k is the drying level (k

= 1/M ,2/M,....,M/M), M is the total number of drying levels, Pm is the power consumption

of the motor (kW), W t
CD is the on/off status of the cloth-dryer heating coil and wt

CD is the

on/off status of the motor of the cloth-dryer where the status wt
CD should on whenever the

customer wants to turn on the cloth-dryer; however the on/off status of the W t
CD depends

on the signal from the optimization approaches.
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4.3.4 Electric Vehicle Load Model

The user of electric vehicle (EV) sets up the time range of charging period [T start
EV ,

T f inish
EV ] and the required charging time is T required

EV :

T f inish
EV

∑
t=T start

EV

W t
EV = T required

EV (4.9)

Wt =


0, SOCt ≥ SOCmax

1, SOCt ≤ SOCmax

(4.10)

The electric vehicle charges with its rated power PEV (kW):

Pt
EV = PEV ×W t

EV (4.11)

Battery charge state at any time slot t depends upon the charge state of the battery in the

previous time slot. Initial charge state depends on the energy used for driving. The initial

charge state is assumed as 37.5% and the battery charge state at any time slot t can be

calculated in the following equation:

(4.12)SOCt = SOCt−1 + PEV ×
∆t

Cbattery

4.3.5 Dishwasher Load Model

Dishwasher (DW) is also task-based appliance like cloth dryer and electric vehicle;

householders set up work period [T start
DW , T f inish

DW ] and required working time T required
DW .

Once the user turns on the dishwasher, the dishwasher works with rated power PDW (kW).
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Therefore, the dishwasher should follow the constraints:

W t
DW = 0 (t < T start

DW or t > T f inish
DW )

T f inish
DW

∑
t=T start

DW

W t
DW = T required

DW (4.13)

4.3.6 Critical Loads

The critical loads may include freezing, cooking and refrigeration and other

non-controllable electric appliances. The load profile is obtained from [76], where the

maximum value and minimum values are considered as 2 kW and 1 kW, respectively in

the simulation. A typical load profile variation with time for the critical loads considered

in this work is represented in Figure 4.3.
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Figure 4.3. A load profile for critical loads during a day

4.4 Electricity Pricing Mechanism

The wholesale electricity prices differ notably from hour to hour. However the cost

to produce electricity is different for each power plant, the cost of producing one

kilowatt-hour (kWh) of electricity differs constantly, relying on the cost effective power



63

plants [92]. In the power system operation, the power plants are operated according to an

economic dispatch i.e. in the time of low demand periods, the lowest operational cost

effective power plants will operate. At the time of high peak periods, the costly fossil fuel

based power plants have to be operated to balance demand and supply. Despite, almost all

residential users nowadays are charged some flat-rate retail price [93], [94]. Hence, the

electricity consumer use more electricity during peak hours. The domestic residential

consumers also use higher amount of electricity during late afternoon where the demand

of the electricity is high. The high peak-hour demand period induces high cost to the

electricity retailers due to the high whole sale prices. It also has a negative impact on the

reliability of the power grid [95].

In the literature, there are different electricity pricing mechanism which reflect the

actual electricity market prices, such as Time of Use (TOU) and Real Time Pricing (RTP)

. These pricing methods encourage the users to schedule the loads to off peak hours. In the

TOU pricing, the electricity price vary with the time of the day, the day of the week and

season of the year. Normally, the high electricity price is used for peak demand periods

and lower price is used for off-peak demand periods. The price which is between the

lower and higher price is used for moderate demand periods. Using the TOU pricing, the

electricity consumers know the electricity prices in the day-ahead basis, they can shift

some of their loads to off peak periods which has a less electricity price. Controllable

appliances such as water heater, air conditioners, dishwashers, cloth dryers and electric

vehicles can be shifted to off peak periods and they will be able to reduce their electricity

bill.

A typical TOU pricing mechanism [96] is considered in this work. In the considered
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TOU pricing mechanism, the whole day is divided into three time periods and three

different energy prices are used for these three time periods. The energy prices during

each time periods are represented in Figure 4.4.
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Figure 4.4. Variation of electricity prices using Time of Use pricing mechanism

Table 4.1. Time of Use energy prices [97]

Period Time interval Energy Price (cents per kWh)
On-peak period 2 p.m. - 7 p.m. 20.3217
Off-peak period 7 a.m. - 2 p.m. and 7 p.m.- 11 p.m. 6.1132
Super off-peak period 11 p.m.-7 a.m. 1.3063

4.5 Objective Function

In this paper, the energy management system (EMS) of the community is

formulated as a power system optimization problem. All the controllable appliances are

participated into the optimization where the power consumption of the house for a certain

period of time is limited by the utility. For any time instance t, the total power

consumption of a house at time t can be expressed as,

Pnt = [A1nt ,A2nt , ...,Aint ][x1nt ,x2nt , ...,xint ]T (4.14)
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where, A, x, n and i represent the rated power consumption of the appliances, the status,

the number of houses and the number of appliances, respectively. For an example, the

power consumption of house 1 can be written as,

(4.15)P1t = [PAC,PWH ,PCD,PEV ,PCri]

[W 1t
AC,W

1t
WH ,W

1t
CD,W

1t
EV ,W

1t
Cri]

T

where, the rated power of the each appliances are multiplied with the status of the

appliances at time t. The value of the status W t
i can be 0 (off) or 1 (on) which is depended

on the optimization signal. In the optimization method, the power consumption is

constrained by the inequality and equality constraints where the inequality constraint is

used to keep the power consumption in a certain demand limit as,

N=3

∑
n=1

Pnt ≤ Dt (4.16)

And the equality constraint is used to set-up priority of the controllable appliances based

on customer’s priority. For an example, if the customer of house 1 wants to give priority to

the air conditioner to keep the room temperature in a certain range, then the equality

constraint can be expressed as,

[PAC,0,0,0,0][W 1t
AC,0,0,0,0]

T = P1t
AC (4.17)

In this paper, the objective is to maximize the power consumption considering the

specified demand limit to keep the customer comfort level as good as possible as,
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Pt = max
W t

N=3

∑
n=1

Pnt (4.18)

V =
T=1440

∑
t=1

PtCt (4.19)

where, Pt is the total power consumption of all the appliances at time t, W t is the on-off

status (0 = Off / 1 = On) set of the appliances at time t and Ct is the power consumption

cost in $/kWh at time t. The proposed optimization techniques can be solved with the

equation (4.18) through binary decision variables W it as there is a need for 5×1440

binary variables for each houses to describe the scheduling of the five appliances by taking

the time resolution as minute.

4.6 Proposed Approaches

4.6.1 Genetic Algorithm

Solving the optimization problems optimally, genetic algorithm is a technique

inspired by the principle of evolution. Genetic algorithm uses a ”Chromosomal”

representation that requires the optimal solution to be coded as a finite length string. In

this work, the genetic algorithm optimization technique can be formulated using the

fitness function FTt as it is marked as the objective function to maximize the power

consumption (Pnt) ignoring the discomfort of the user as,

FTt = max
W t

N=3

∑
n=1

(Pnt) (4.20)
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where, W t is the status set. Five decision variables are introduced since there are five loads

(four are controllable and one is critical). Inequality constraint is determined to ensure the

maximum use of power of the five appliances of each houses. Equality constraint is

specified the priority of the loads. Genetic algorithm toolbox [98] is used in MATLAB

environment to get the maximum optimal power consumption of each house in a small

community to shift the loads from peak hour off-peak hour to ensure the minimization of

energy cost of each houses in a community.

4.6.2 Dynamic Programming

The DP is a widely-used mathematical technique for solving optimization problems

that can be divided into sub-problems and where decisions are required in each stage [99].

In this paper, the optimization problem is formulated as a discrete decision problem using

the traditional DP where the goal is to find a set of status (W nt) for each houses so that the

objective function can be maximized (DPmax) or minimized (DPmin) based on the

customer’s choice as,

W nt = argmax/min(Pnt) (4.21)

Since, the status W t
i is 0 (off) or 1 (on) for each appliances, the possible combination of

five-dimensional decision vectors are found as 25 = 32 for each time instances and for

each houses. Then, the system is trained by the equality and inequality constraints. After

training the constraints, the system selects ’k’ number of decision vectors that obeys the

constraints. For the DPmax, the system selects a decision vector that maximizes the power

consumption which is suitable for customer’s comfortability and in terms of the DPmin, the

system selects a decision vector that minimizes the power consumption which is suitable
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for minimizing the electricity bills.

The proposed optimization algorithm flowchart is illustrated in Figure 4.5.

According to control strategy, at each time, the system sends the household load profiles

and user priorities to the energy management system. When the total power consumption

of the community exceeds the generation (Dt) by utility grid, then it will go to the

optimization stage of each houses and assign the demand limit (Dt) to the residents

equally. According to the assignment of demand limit (Dt), the appliances are turned off

based on their preferences and scheduled the appliances of each house to off-peak period.

Then, the system calculates the total power consumption for each resident, and sends the

information to the utility. Afterwards, the system check the next time period and if it is

less than T, then the system follows the same procedure again.

4.7 Simulation and Results

In this section, the operations of controllable loads without and with demand limits

for Time of use (TOU) pricing schemes are taken into consideration. First, the operation

of power intensive non-critical loads are explored with and without energy management

system. Second, three case studies are investigated to validate a demand response

algorithm adopted from [76] and three optimization approaches (GA, DPmax, DPmin) for

the three houses in a community. The numerical results are shown to evaluate the

performance of the optimization techniques. The power need of the community is met by

power from the grid. Twenty four (24) hours time horizon is assumed, starting from 6 AM

to next day 6 AM. The power intensive controllable load models are modeled in

MATLAB environment. All codes were run on an Intel Core i-7 2.7-GHz computer. All
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Figure 4.5. Proposed optimization algorithm for optimizing residential load demands.

the essential parameters of each house appliances are adopted from [100].

To validate the performance of genetic algorithm and dynamic programming, three

cases are investigated under same environment. In the optimization period, the cloth dryer

and dishwasher have started at 6 P.M. as specified by the user but due to demand limit, the

operation of motor coil has started. The heating coil has started when the household

power consumption is less than the demand limit. The Critical loads are the

noncontrollable loads does not participate in the optimization event.

The Electric Vehicle (EV) should take 4 hours 10 minutes between 5:00 P.M. to

9:10 P.M. to fully charge the electric with 37.5% initial state of charge, the CD operates
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Table 4.2. The Parameters of the appliances

Parameters Values Units Parameters Values Units
∆t 1

60 minute Pm 0.3 kW
CAC -33000 Btu/h Phc 3.7 kW
∆c 0.0195 Btu/0F PDW

hc 2.7 kW
T min

room 64.4 0F T start
CD 6 pm

T max
room 71.6 0F T required

CD 90 minutes
T min

outlet 107.6 0F T start
DW 6 pm

T max
outlet 118.4 0F T required

DW 30 minutes
Tset 68 0F T required

DW 20 minutes
PAC 2.352 kW T start

DW 6 pm
Vtank 80 gallons PEV 3.6 kW
Tinlet 68 0F Cbattery 24 kWh
PWH 4 kW SOCmax 100 %
Atank 14 f t2 SOC0 37.5 %
Rtank 16 0F. f t2.

h/Btu

for 1.5 hours between 7:00 P.M. to 8:30 P.M. and the dishwasher (DW) works 30 minutes

(for house 2) and 20 minutes (for house 3).

The operation results between 6 AM to next day 6 AM of the three cases are shown

in Figure [4.14, 4.15, 4.16]. The purpose of the three cases is to evaluate the performance

of the proposed approaches (genetic algorithm, dynamic programming) for three houses in

a community. The cost savings are also analyzed and compared among these three

approaches of the three houses.

4.7.1 Operation of power intensive controllable loads with and without EMS

4.7.1.1 Electric water heater

The operation of the electric water heater with and without EMS is described in this

section. In this model, if the water temperature falls below the lower limit of the expected

temperature value, then heating coils of water heater are turned on. If the water
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temperature increases above the upper limit of expected temperature, then the water heater

are switched off. If the temperature of the water maintains preset comfort range, the status

of the water heater will keep as previous. To illustrate the model according to this work,

the hot water draw event occur at around 7 A.M., 8 P.M., around 9 P.M. and around 11

P.M.- see the water temperature drops. Due to large water draw event occur at 8 P.M.,

around 9 P.M. and around 11 P.M. makes the outlet water temperature drops dramatically

below the lower limit of desired water temperature in the tank. After finishing the large

water draw event, the water heater controller operates to bring the water temperature

within the preset comport range (107.6-118.4 ◦F).
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Figure 4.6. Operation of electric water heater unit without EMS

During the EMS control operation at peak period, the electric heater should operate

first as the priority is high. For the period of 8-11 p.m., the water heater is operated along

with the critical load consumption. However, the EMS controller deferred the other

appliances according to their priority.
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Figure 4.7. Operation of electric water heater unit with EMS

4.7.1.2 Air conditioning unit

The model of AC is presented in Section 4.3.1. For the AC unit, the preset comfort

range is set between 66 ◦F to 70 ◦F . From the Figure 4.8, it can be seen that if the room

temperature is above the desired upper temperature limit of the comfort zone, the AC unit

is turned on. As soon as, the temperature of the room drops down below the desired lower

temperature limit, the space cooling unit is switched off. The AC unit’s ON and OFF

cycles repeated throughout the day to maintain room temperature within preset

comfortable range.

At the peak demand period, the demand limit is fixed at 4 kW. Due to the 4 kW

demand limit from 6-7 P.M., the room temperature rise up to 91.8 ◦F and violets the

comfort range. The EMS controller tries to maintain the requested demand limit by

prolonging loads according to their priority (EWH >AC > CD > EV). The EMS

controller shut down the space cooling unit during the period (6-7 P.M.) by maintaining

the total household load consumption within requested demand limit.
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Figure 4.8. Operation of air conditioning unit without EMS
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Figure 4.9. Operation air conditioning unit with EMS

4.7.1.3 Cloth dryer and dishwasher

The cloth dryer and dishwasher are the task based appliances that described in

Section 4.3.3 and 4.3.5. These task based appliances models consists of two power

consumption parts, motor and heating coils. The appliances (e.g. cloth dryer) should

operated at specified time (90 minutes). Due to the demand limit at peak period, the motor

of cloth dryer are started. However, the EMS controller can control the heating coils of
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cloth dryer by considering load priorities and demand limit.
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Figure 4.10. Operation of cloth dryer without EMS

The Figure 4.11 presented operation period during EMS control. The EMS

controller turn on the heating coils at 7 P.M. for a short time as the total household load

consumption is less than the demand limit at that time. Then, for next few minutes heating

coils of cloth dryer are paused allowing the electric water heater to operate. The cloth

dryer should operated in next two hours, when the water heater is not in operation and

complete work at 9 P.M.
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Figure 4.11. Operation of cloth dryer with EMS
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4.7.1.4 Electric vehicle

The operation of electric vehicle model is described in Section 4.3.4. Without EMS,

the electric vehicle started the charging at 5 P.M. and finished at 9:10 P.M. (Figure 4.12).

Due to the restricted demand limit in the peak period and the preferences of the

appliances, the EMS controller deferred the EV’s charging period at 9 P.M. In Figure 4.13,

it is noticed that the EV started charging after the cloth dryer operation time. Then for few

minutes, the charging of electric vehicle is paused as the high priority water heater are

turned on. After finishing the water heater job, the charging of EV again started and

completed it’s charging at 1:30 A.M.
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Figure 4.12. Operation of electric vehicle with EMS
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Figure 4.13. Operation of electric vehicle with EMS
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4.7.2 Case Study 1: Fixed Priority

Considering case study 1, the total power consumption of the house 1 for

unscheduled scenario is 5194.3 kW bought from grid owing to the additional power

demand from cloth dryer, dishwasher and electric vehicle. When the optimization

approaches and DR-Algorithm are in process, the power taken from grid does not exceed

the demand limit. The power consumption for DR-algorithm, GA, DPmax and DPmin are

given the identical values (5217.7 kW) since the priority of all appliances are fixed. The

personal priorities of the resident are summarized in Table 4.3.

Table 4.3. Controllable load priorities

Controllable Loads Priority
Water heater 4
Air conditioning unit 3
Cloth dryer 2
Electric vehicle 1

The results are summarized in Table 4.4. In this case, inequality constraints are not

considered where the house 1 power consumption of P1t at time t is specified by utility

demand limit Dt . Equality constraints set up the priority of the appliances based on the

consumer preferences to ensure that all the appliances are turned on at time t. In the

optimization period, if the required power consumption of the house is greater than

demand limit Dt , the certain appliances need to be turned off based on the optimization

signal according to the priority order.

Figure 4.14 shows that while minimizing the cost of energy, the scheduling of

appliances have moved in the time range where time of use tariff is low.

All the methods are given the same electricity consumption minimization results in
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Figure 4.14. Household energy consumption for House 1 since the fixed priority is taken.

Table 4.4. Case A: Fixed priority for House 1

Appliances
Power Consumption (kW)

Unscheduled DR DP˙max DP˙min GA
Air 1768.7 1768.7 1768.7 1768.7 1768.7

conditioner
Water 328 328 328 328 328
heater
Cloth 360 383.4 383.4 383.4 383.4
dryer

Electric 903.6 903.6 903.6 903.6 903.6
vehicle
Critical 1834 1834 1834 1834 1834
loads
Total 5194.3 5217.7 5217.7 5217.7 5217.7

Cost ($) 8.0482 6.0764 6.0764 6.0764 6.0764
Time (s) 0 10 5 5.5 298

this case. As for computational time DPmax and DPmin are the fastest, and only takes 5s

and 5.5s respectively. Required computational time for GA is ∼ 60 × of DPmax and 55 ×

of DPmin. The cost of electricity for unscheduled case is $8.0482. When minimizing the

energy cost, the cost of energy is $6.0764 showing the energy savings of 24.5% in all the

approaches.
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4.7.3 Case Study 2: With Priority

As for case study 2, the power consumption and the energy cost are shown in Table

4.5 for genetic algorithm, DPmax and DPmin. In this case, the water heater is fixed as

priority and other appliances set up their priority based on the optimization signal. The

inequality constraints are considered to make the total power consumption Pt of the

community within demand limit Dt . The equality constraint only sets up the priority of the

water heater as constant at time t. The cloth dryer (house 1 and 3) and dishwasher (house

2 and house 3) work similarly as before. In this event, the cost reduction for three

approaches are 18% ,17.82% and 33.45% than unscheduled case.
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Figure 4.15. Total Household energy consumption for a small community since the priority
is considered.

Figure 4.15 shows the power of the residential community in different approaches.

In the peak period (2 p.m.-7 p.m.), the users of the community use less energy since the

electricity price is high. During the off peak period (7 p.m.-11 p.m.) and the super off

peak period (12 a.m.-6 a.m.), the electricity price is relatively low and the consumers

should use more energy, contributing to bill reduction.

According to the Table 4.5, the DPmin reduces the significant amount of cost since it
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Table 4.5. Case B: With priority for a community

Houses
Power Consumption (kW)

Unscheduled GA DP˙max DP˙min
House1 5194.3 5284.3 5217.7 4903.3
House2 4909.3 4927.3 4888.1 4618.3
House3 4350.7 4398.1 4355.3 4217.9
Total 14454.3 14609.7 14535.9 13739.5

Cost($) 21.8061 17.85 17.92 14.51

curtails the loads in the peak hour as customer comfort level is violated. The other two

approaches shift the loads from peak hour to off-peak hour by consuming the power as

much as possible by maintaining the demand limit Dt .

4.7.4 Case Study 3: Without Priority

Results for case study 3 are shown in Table 4.6. In this case, there are no priority of

the appliances as there are no equality constraints have been set up. The inequality

constraints work similarly as case study 2. The total cost savings for three approaches are

18.64%, 20.34% and 36.16%, respectively in the community.
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Figure 4.16. Total Household energy consumption for a small community since no priority
is taken.

In this case, there are little higher cost savings in all the approaches in the residential

community than in case studies 1 and 2.
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Table 4.6. Case C: Without priority for a community

Houses
Power Consumption (kW)

Unscheduled GA DP˙max DP˙min
House1 5194.3 5136.3 5200.3 4755.3
House2 4909.3 4779.3 4888.1 4470.3
House3 4350.7 4380.7 4169.4 4069.99
Total 14454.3 14296 14257.8 13295.59

Cost($) 21.8061 17.74 17.37 13.92

4.8 Concluding Remarks

In this section, a small residential community energy management system is

proposed to schedule load from peak period to off-peak period without affecting

consumers’ life style. A residential community of three houses are considered with

different electric appliances. Two heuristic approaches named Genetic algorithm (GA)

and dynamic programming (DP) based smart appliance scheduling schemes and

time-of-use pricing are proposed for comparative studies with demand response. Three

case studies are demonstrated that all three control approaches can optimize energy

consumption according to demand limit. The DPmin generally showed the smallest energy

cost since it curtails the loads in the peak hour. Genetic algorithm can optimize the energy

consumption hence reduce the cost but require higher computational time. The DPmax

reduces the computational complexity as well as decreases the energy cost. The DPmax is

suggested to be the best choice for real life application, due to good performance in cost

optimization.
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK

In this chapter, the research reported an overview of the contributions of this thesis

towards the aim of energy management of residential communities and interconnected

micro-grids. The objective of the thesis is to investigate demand side management in

residential communities, deregulated electricity market and energy trading among

interconnected microgrids. We have considered the several challenging issues for

improving the existing power system and provided intelligent solutions by using smart

grid technologies and integrating and employing household appliances,

plug-in-electric-vehicles (PEV), energy storage and distributed energy systems.

Throughout the thesis, a couple of optimization schemes were developed to accomplish

the objectives the smart grid. In each proposed approach, the numerical analysis was

performed to show the effectiveness of the proposed model. Various simulation programs

have been developed and displayed the results to evaluate the performance of proposed

mechanisms.

5.1 Summary of the Thesis

This thesis was presented in four chapters. Chapter 1 presented a brief introduction

to smart grid, demand side management, electricity market and transactive energy among

microgrids. In this chapter, the literatures of energy management schemes and electricity

markets are also analyzed. The motivation of the work was discussed while citing the

main objectives of the thesis. We summarized the problem based on the limitation existing

works.

Chapter 2 presented a new game-theoretic scheme to study the optimization and
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decision making of multi-players in the distributed power system. The proposed game

theoretic special concept-rational reaction set (RRS) is capable to model the game of the

distributed energy providers and the large residential consumers. This scheme helps the

residential consumers to participate in the retail electricity market by controlling the

market price. The proposed approach also enables the distributed operators and residential

consumers to efficiently integrate a wide range of renewable energy resources. The

consumption agents are not only able to find market clearing price at Nash equilibrium

point but also reduce the electricity cost individually (non-cooperatively). The proposed

game theoretic approach were evaluated through simulation in MATLAB by various case

studies. The simulation results have shown that the proposed approach can be effectively

used as a tool for investigating the retail electricity market.

Chapter 3 presented a distributed energy trading approach based on deep-cut

ellipsoid method under a distribution network. The problem is formulated as energy

management problem to minimize the total system cost. An hour-ahead optimization

model is constructed and the objective function includes the operation of DGS and

network tariff. A distributed iterative algorithm is studied based on deep cut ellipsoid

method considering descent search direction. The convergence of DCE algorithm was

proved and verified with numerical results. Moreover, the results have been shown that

each MG can adjust generation of DGs or trade with other MGs with a extensive

consideration of generation cost and trading price and load characteristics. The distributed

energy trading based on DCE algorithm has also been applied to four topologies and

found that certain topologies were more beneficial than others. Compared with the

existing work [69], the DCE algorithm has been shown the advantageous features on
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modeling and performance.

Chapter 4 presented the optimization schemes for the residential community with

multiple houses based on smart appliances scheduling- genetic algorithm (GA) and

dynamic programming (DP) . In the proposed schemes, the time of use (TOU) pricing

mechanism is used to identify the electricity cost. The optimization control approaches are

capable of solving load scheduling problem of a small community. Three different house

with real-world non critical appliances, with different power consumption are compared

under energy management benchmark problem. Three case studies are demonstrated that

all three control approaches can optimize energy consumption according to demand limit.

The DPmin generally showed the smallest energy cost since it curtails the loads in the peak

hour. On the other hand, genetic algorithm and aggressive dynamic programming (DPmax)

are capable to reduce energy cost but differs the computational complexity. Genetic

algorithm takes higher computational time than DPmax to solve this problem. The

simulation results have shown that the aggressive dynamic programming (DPmax) is

suggested to be the best choice for real life application, due to good performance in cost

optimization.

5.2 Original Contribution of the Work

In this thesis, community energy management approaches and strategic electricity

market architecture were proposed for smart grid retarded by various challenges. The

proposed strategies were designed to cope with main issues- price control facilities at

customer end and load scheduling schemes of distributed operator. We have listed the

following major contributions of this thesis.
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5.2.1 Distributed Game Theoretic Scheme of Electricity Market

We proposed a game theoretic framework to study the optimization and decision

making of multilayer in the distributed power system. We apply the game theoretic special

concept- rational reaction set (RRS), which is capable to model the game of distributed

energy provider and the large residential consumers. In this scheme, the consumption

agents are not only able to find market price at Nash equilibrium but also reduce the

electricity cost non-cooperatively.

5.2.2 Distributed Energy Trading Approach for Interconnected Micro-grids

We studied a distributed energy trading framework to minimize the global cost of

the interconnected MG system. The convex optimization technique called deep cut

ellipsoid method, which is capable to model the distributed energy trading approach for

islanded MGs. The DCE algorithm was validated using different case studies for a system

consisting of 4 MGs. The performance of DCE algorithm is compared with sub-gradient

approach, which provides the faster performance in DCE approach.

5.2.3 Intelligent Energy Management Approaches of Residential Community

We proposed a optimization model for a residential community with real world

appliances. The two computational intelligence schemes- genetic algorithm and dynamic

programming are used to solve the optimization problem. Using those schemes, each

consumer can achieve the highest reduced electricity cost and good performance for

energy scheduling.
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5.3 Future Scope of the Work

• Future extension of the problem, includes understanding the incentive based energy

trading mechanism can be applied between small energy providers and buyers to

encourage proactive energy trading and fair benefit sharing. Another interesting

direction of game theoretic trading approach to find the computationally efficient

solution of large-scale distributed power systems.

• Future extension of of the energy trading problem, includes considering the

indeterminacy of renewable energy generation, demand response and load demand,

for which current deterministic approach would be no longer applicable.

• Future extension of the proposed work, includes understanding how the energy

scheduling can be improved by introducing distributed renewable resources at the

customer-end and the distributed system operator can be offered fair reimbursement

to the customers by participating efficient demand response program, thereby

improving the system efficiency and reliability.
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