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Abstract. This work presents the form that the special theory of relativity takes when only the 

first postulate and the properties of homogeneity and isotropy of space and time are considered 

valid. The transformations of Lorentz coordinates are obtained in terms of a universal constant 

parameter k, developing from these the relativistic kinematics, dynamics and electrodynamics 

and their respective invariances before these transformations. 

1.  Introduction 

Over time, relativity work has been developed from two postulates of special relativity enunciated by 

Einstein [1]. In our case the electrodynamic formulation is developed only taking into account the first 

postulate of special relativity [2], where the basic equations of electrodynamics are found. 

Some researchers on the subject, such as N. David Mermin, in an article from 1983 [3], find the 

theorem of velocity addition, only counting on the principle of relativity and the properties of 

homogeneity and isotropy of space-time, arriving at a result that suggests a more general way of 

describing special relativity. In 1994 J. P. Hsu and L. Hsu [4], used the first postulate of special 

relativity to develop a theory called Taiji relativity, which is physically different from special relativity 

where it presents a simpler contextualization. Subsequently U. Molina and collaborators [2], who find 

the law of adding velocities from the first postulate and properties of homogeneity and isotropy, 

remaining in terms of a universal constant that depends on the velocity of the inertial frame 𝑆′ 
respecting to 𝑆. Similarly in 2006 Ingrid Steffanel [5], as a continuation of the 2005 work by Molina, 

focuses on studying relativistic dynamics without the second postulate of relativity where are found 

expressions for energy, force and relativistic momentum. 

In 2009 H.O. Di Rocco [6], was able to deduce equations for time dilation, length contraction, 

Doppler effect among other important aspects of the Special Theory of Relativity, TRE, in which it 

was not necessary to use Lorentz transformations or space-time diagrams. In 2008 M. J. Feigenbaum 

[7], obtains the relativistic kinematics and dynamics by making an extension of the Galilean theory 

without using the second postulate. Similarly in 2012 Peng Cheng Zou and colleagues [8], show that 

the invariance and constancy of the speed of light were originated from the principle of special 

relativity, but not from the arbitrary implementation of the second postulate. Also in 2009, A. Sfarti, 

[9], makes a special simplified theory with the first postulate. 

On the other hand, in 2015 Alón Drory [10] speaks of the need for the second postulate in 

relativistic physics and that the principle of relativity together with the homogeneity and isotropy of 
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space restrict the form of transformations from one inertial system to another, thus maintaining the 

discussion whether or not the second postulate is necessary. 

In this work it is proposed that the equations that make up the theory of special relativity depend on 

a constant parameter k, so it is enough to work on special relativity with only one postulate. A 

development is made on relativistic electrodynamics and the form taken by the basic equations of 

electromagnetism is analyzed. 

2.  Special relativity 

This section deals with the fundamental concepts of the special theory of relativity. 

2.1.  Coordinated transformations of Lorentz 

Given a S′ system moving at constant speed v respecting to S, in the direction of the X e X′ axes, see 

Figure 1. The Lorentz coordinate transformations in the axes the X and X ,, when only the properties of 

homogeneity and isotropy in space and time are taken into account are [11,12], 

 
𝑥′ = 𝛾(𝑥 − 𝑣𝑡)

𝑥 = 𝛾(𝑥′ + 𝑣𝑡)
}     (1) 

 

The Equations (1) represent the transformations of the coordinates x and x′ in the direction in 

which system S′ moves respecting to S, when the second postulate has not been used yet. 

When the second postulate of Einstein's Special Relativity is used, the Lorentz transformations are 

obtained, Equations (2), as they are known in the literature [12], 

 

 

𝑡′ = 𝛾 (𝑡 −
𝑣𝑥

𝑐2
)

𝑥′ = 𝛾(𝑥 − 𝑣𝑡)

𝑦′ = 𝑦

𝑧′ = 𝑧 }
 
 

 
 

 𝑆 → 𝑆′    (2) 

 

where γ =
1

√1−
v2

c2

, is the relativistic factor of Lorentz and 𝑐 is the speed of light according to the 

second postulate. 

 

 

Figure 1. Movement of the system S′ with 

constant speed v with regard to the system 

S, in the direction of the axes X e X′ 
 

Under these transformations of coordinates a whole theory is developed on the fundamental 

concepts of physics in general. 

2.2.  Transformations Lorentz velocities 

According to the literature [12], the equations of the transformations of velocity, Equation (3), are 

expressed in the following form: 
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ux
′ =

ux−v

t−
vux
c2

uy
′ =

uy

γ(t−
vux
c2
)

uz
′ =

uz

γ(t−
vux
c2
)}
 
 

 
 

 S → S′    (3) 

 

Which are found using the transformations of Lorentz (Equation (2)) and elemental algebra. 

2.3.  Relativistic dynamics 

The relativistic linear momentum is defined for a particle of resting mass 𝑚0 and velocity u⃗  as: 

 

p⃗ = mu⃗ = γ(u)m0u⃗     (4) 

 

In Equation (4), m = γ(u)m0 is represented the moving mass of the particle. While the relativistic 

factor γ(u), see Equation (5), specifies the form in which the velocity of the event is transformed 

according to the observer in the S system, 

 

γ(u) =
1

√1−
u2

c2

     (5) 

 

On the other hand, considering the definition of mechanical work, and using the theorem of work 

and kinetic energy, we arrive at Equation (6) on relativistic energy, 

 

E = E0 + Ec     (6) 

 

where: E0 = m0c
2 is the energy at rest, E = mc2 = γ(u)m0c

2 is the total energy of the particle. 

While the relation momentum-energy, is expressed in Equation (7), in the form, 

 

E2 = E0
2 + p2c2     (7) 

2.4.  Four-position 

A simple way of approaching physical concepts is by means of Four-vector notation. Given the S′ 
system that moves at constant speed v respecting to the S reference system. The four-position for an 

observer located in the S system is defined by Equation (8), as, 

 

X∝ = (ct, r ) = (x0, x1, x2, x3)    (8) 

2.5.  Four-speed 

For an event with u⃗  speed, an observer in the S system, the four-velocity is defined in Equation (9), as 

that derived from the four-position respecting to one's own time, that is, 

 

U∝ =
dX∝

dτ
= γ(u)(c, u⃗ )     (9) 

2.6.  Four-acceleration 

It is defined, according to Equation (10), as the derivative of the four-velocity respecting to the own 

time, that is, 

 

A∝ =
dU∝

dτ
= γ2(u) [

u⃗⃗ .a⃗ 

c
γ(u), u⃗  

u⃗⃗ .a⃗ 

c2
γ(u) + a⃗ ]   (10) 
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2.7.  Linear four-moment 

The linear four-moment, as observed in Equation (11), is defined by the form, 

 

P∝ = m0U
∝ = m0γ(u)(c, u⃗ ) = (

E

c
, p⃗ )   (11) 

2.8.  Electromagnetic field tensor 

Given the E⃗⃗ = (Ex, Ey, Ez ) electric fields and B⃗⃗ = (Bx, By, Bz ) magnetic fields, the electromagnetic 

field tensor is defined, according to Equation (12), as, 

 

(F∝β) = (

0
−Ex
−Ey
−Ez

 Ex
 0

 −cBz
 cBy

 Ey
 cBz
 0

 −cBx

 Ez
 −cBy
 cBx
 0

)    (12) 

2.9.  Four-vector electrical current density 

For an observer in the S system, a particle of charge density ρ and electric current J , the four-density of 

current, see Equation (13), is defined, 

 

J∝ = (cρ, j )     (13) 

 

The transformation equations of these quantities maintain their invariance respecting to the Lorentz 

transformations, Equations (2). Any four-vector A∝ for an observer in S is transformed for an observer 

in S′, according to Equation (14) in the form, 

 

M′∝ = Λβ
∝Mβ, ∝, β = 0,1,2,3     (14) 

 

where Λβ
∝ are the elements of the Lorentz transformation matrix, which are defined according to 

Equation (15) as; 

 

 Λ0
0 = Λ1

1 = γ,  Λ1
0 = Λ0

1 = −γβ,  Λ2
2 = Λ3

3 = 1,  Λβ
∝ = 0, en caso   (15) 

 

In special relativity independently of the referential inertial observer, the equations maintain their 

invariance respecting to the Lorentz transformations. 

3.  Special relativity of the first postulate 

This section will deal with the fundamental concepts of special relativity, using only the first postulate, 

this arrive at the quantities of electromagnetism. 

3.1.  Lorentz coordinate transformations 

Taking into account the two Equation (1), when the second postulate has not been used yet, 

introducing x′ of the first equation into the second and clearing t′, and then using it to find the velocity 

according to an observer in S′. Developing, is found a constant amount with inverse units to the square 

of velocity, which from now on we will call k. When the postulate of the constancy of the speed of 

light is still not taken into account, the Lorentz transformations are replaced by Equation (16), 

 
t′ = γ(k, v)(t − kvx)

x′ = γ(k, v)(x − vt)

y′ = y

z′ = z

}  S → S′    (16) 
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Now the relativistic factor of Lorentz is defined in Equation (17), as, 

 

γ(k, v) =  
1

√1−kv2
      (17) 

 

From the factor represented in Equation (17), it can be inferred that when k = 0, from which it 

follows that γ = 1, which is reduced to the transformations of Galileo, and when k =
1

c2
 , then the 

Lorentz factor are obtained for the special relativity of Einstein, treated in the previous section. 

The Lorentz transformation matrix, Equation (18), only using the first postulate of special 

relativity, is as follows, 

 

(Λβ
∝) = (

γ

−√kvγ(k, v)
0
0

−√kvγ(k, v)
 γ
 0
 0

 0
 0
 1
 0

 0
 0
 0
 1

)   (18) 

3.2.  Four-position 

The four-position is defined by Equation (19), for an observer it is the S system, such as, 

 

X∝ = (
1

√k
t, r ) = (x0, x1, x2, x3)    (19) 

3.3.  Four-speed 

For a particle moving at u⃗  speed, according to an observer in S, it is defined by Equation (20), the 

four-velocity as, 

 

U∝ = γ(k, u) (
1

√k
, u⃗ )    (20) 

 

Being in this case and henceforth the relativistic factor for the particle, represented in Equation 

(21), 

 

γ(k, u) =  
1

√1−ku2
     (21) 

3.4.  Four-acceleration 

Given the a⃗  acceleration of a particle in the S system, the four-acceleration is defined according to 

Equation (22), 

 

A∝ =
dU∝

dτ
= γ2(k, u)[√k(u⃗ . a⃗ )γ(k, u), u⃗ (√k u⃗ . u⃗ )γ(k, u) + a⃗ ]  (22) 

 

3.5.  Relativistic four-moment 

For a relativistic moment particle p⃗ , the linear four-moment is defined by Equation (23), 

 

P∝ = m0γ(k, u) (
1

√k
, u⃗ ) = (√kE, p⃗ )    (23) 

 

Being E =
m

k
, the total energy of the particle and p⃗ = m0γ(k, u)u⃗ , the relativistic linear momentum. 

3.6.  Relativistic momentum-energy relationship. 

In this case the energy relations, Equation (24), are as follows, 
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E = Ec + E0     (24) 

 

Being: Ec kinetic energy, E =
m

k
=

m0γ(k,u)

k
 total energy and, E0 =

m0

k
 resting energy. While the 

momentum-energy relation is expressed by Equation (25), in the form, 

 

E2 =
p2

k
+ E0

2     (25) 

4.  Relativistic electrodynamics 

Now are found the equations of the electromagnetic field, which maintain the same form as those 

known in the literature. 

4.1.  Electromagnetic field tensor 

Following the Lorentz transformations, Equations (18) and in analogous form to Equation (12), the 

electromagnetic field tensor can be defined as shown in Equation (26), 

 

(F∝β) =

(

 
 
0
−Ex
−Ey
−Ez

 Ex
 0

 −
1

√k
Bz

 
1

√k
By

 Ey

 
1

√k
Bz

 0

 −
1

√k
Bx

 Ez

 −
1

√k
By

 
1

√k
Bx

 0 )

 
 

   (26) 

 

According to the Lorentz transformation matrix found only with the first postulate of the theory of 

relativity, Equations (17), the transformations of the electromagnetic field F′∝β = Λμ
∝Λϑ

β
Fμϑ, are 

invariant respecting to them. 

4.2.  Current four-vector 

In this case the four-density of current would be expressed by Equation (27), in the form, 

 

J∝ = (
ρ

√k
, j )     (27) 

 

Being ρ: the charge density and current density by Equation (28) as, 

 

j = ρ0γ(k, u)u⃗ = ρu⃗     (28) 

4.3.  Four-gradient 

The four-gradient is defined by Equation (29) as, 

 

∇μ=
∂

∂xμ
= (√k 

∂

∂t
, ∇)    (29) 

 

The four-gradient and the four-vector current density are chords to preserve or maintain the 

condition of continuity. 

4.4.  Four-divergence 

Given any four-vector ε∝ = (ε0, ε ) when applying the four-gradient of the Equation (29), it is obtained 

according to the Equation (30), the four-divergence, that is, 

 

∇μεμ =
∂εμ

∂xμ
= √k 

∂ε0

∂t
− ∇ε      (30) 
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4.5.  Four-vector electric potential 

Let 𝜑 be the electrical potential, A⃗⃗  the magnetic vector potential, defined in Equations (31) as: 

 

B⃗⃗ = ∇xA⃗⃗ 

E⃗⃗ = −∇φ −
∂A⃗⃗ 

∂t

}     (31) 

 

The potential electromagnetic four-vector is defined by Equation (32) as, 

 

A∝ = (φ,
A⃗⃗ 

√k
)     (32) 

 

With which they are transformed with the matrix elements (18) and would maintain invariant the 

transformations of the electromagnetic field. 

5.  Conclusions 

In this paper is studied Einstein's Special Theory of Relativity taking into account his two postulates 

and the properties of homogeneity and isotropy of space and time. An analysis is made of some works 

like those of N. D. Mermin, U. Molina and collaborators where they carry out a comparison of the 

theorem of addition of velocities obtained from the first postulate and the Lorentz transformations 

finding that these are expressed in terms of a universal constant that depends on the velocity of the 

inertial frame S′ respecting to S. 

In the proposed work it is shown that the equations that conform the theory of special relativity 

depend on a free parameter k, which value is only a theoretical result, as has been corroborated by 

other authors such as U. Molina, Peng Cheng Zou, H.O. Di Rocco, Ingrid Steffanel, J.P. Hsu and 

Leonard Hsu and A. Sfarti, who propose that it is enough to work on special relativity with a single 

postulate. Subsequently the relativistic dynamics is developed and basically expressions for work, 

energy, four-velocity among others. 

Finally, Relativistic Electrodynamics is studied, defining some concepts such as current density 

four-vector, electromagnetic field tensor, four-gradient, four-divergence and relativistic potential four-

vector, considering the first postulate and the introduction of the constant k, which has velocity units 

squared, and which is adopted as a universal constant. 
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