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ABSTRACT

Blockchain technology has redefined the way the software industry’s core mecha-

nisms operate. With recent generations of improvement observed in blockchain, the

industry is surging ahead towards replacing the existing computing paradigms with

consortium blockchain-enabled solutions. For this, there is much research observed

which aims to make blockchain technologys performance at par with existing systems.

Most of the research involves the optimization of the consensus algorithms that govern

the system. One of the major aspects of upcoming iterations in blockchain technol-

ogy is making individual consortium blockchains collaborate with other consortium

blockchains to validate operations on a common set of data shared among the sys-

tems. The traditional approach involves requiring all the organizations to run the

consensus and validate the change. This approach is computationally expensive and

reduces the modularity of the system. Also, the optimized consensus algorithms have

their specific requirements and assumptions which if extended to all the organizations

leads to a cluttered system with high magnitudes of dependencies.

This thesis proposes an architecture that leverages the use of state machine repli-

cation extended to all the nodes of different organizations with seamless updates over

a random graph network without involving all the nodes participating in the con-

sensus. This also enables organizations to run their respective consensus algorithms

depending on their requirements. This approach guarantees the finality of consistent

data updates with reduced computations with high magnitudes of scalability and

flexibility.
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CHAPTER 1

Introduction

1.1 State of Blockchain Technology

In the present years, Blockchain technology has gained strong attention in the tech

community and other industries where it seems to be a viable refinement, an addition

or a replacement of conventional computing paradigm in the technology stack [5].

The substantial reason behind this charisma is the three quintessential properties

that it adheres. First, an immutable ledger formed by hashing the transaction blocks

with each other forming a chain which is also responsible for the second property i.e.,

transparent audit trail which can help organizations to trace the operations and state

changes inside the blockchain and third, high availability of data which is attained by

replicating the data across every peer in the network making system tolerant to the

single point of failure.

Blockchain is a completely decentralized system that is governed by a set of in-

structions that makes sure that all the nodes in the system maintain a common state.

These instructions are preached in the form of consensus algorithms. A decentralized

system without a common consensus will disintegrate, regardless of the participants

in the system trust each other particularly or do not trust at all. Solid governance is

the key to a working decentralized system that is fulfilled by consensus algorithms.

There is no specific standard for consensus algorithms. It essentially depends on the

use-case scenario and requirements of the system.

Blockchain technology has seen three major iterations until now. First gener-

ation was originated with Bitcoin [30] which essentially laid foundations of a fully

1



1. INTRODUCTION

functional decentralized & trust-less technology. Bitcoin was an implementation of

blockchain technology which was based on the concept of cryptocurrency. First-

generation brought realizations regarding extending the technology to a higher spec-

trum of use-cases, which lead to the second generation of blockchains which in-

volved Smart Contracts & Tokenization which was brought in by Ethereum [10]. The

second-generation proposed a view to tokenize any physical and digital assets with-

out enforcing platform ownership. Finally, third generation is essentially industry-

ready design [1] of blockchains which are having a performance at par with present

systems and can be work as a valuable addition to the technology stack of the orga-

nizations. The third generation is the future and the present industry stands on the

transition phase, where the research is surging ahead making blockchain viable for

industry. Currently, blockchains have not been widely accepted despite wide spec-

trum of use-cases is because of the major problem that this technology faces, i.e.,

performance scaling which is resultant of various aspects starting from the computa-

tional complexity of the consensus algorithms, fault tolerance of system in terms of

Byzantine faults and expensive storage needs as the continuously growing ledger with

respective data entities needs to be replicated over entire network nodes [39].

1.2 Motivation Behind The Work

With the technology moving towards the third generation, trying to cover the advance

use-cases like digital identity management, supply chain management, audit trails,

large scale logging, automated governance, IoT, banking, health care systems, etc.

Blockchain is allowing people to secure digital relationships with regards to their

assets by harnessing the power of cryptography in the hands of people. To make the

blockchain use-case at par with the existing systems, scaling of blockchains has been

widely addressed as the most important research area in this field.

One can observe that in toady’s scenario multiple organizations tend to share data

and the same share of data is updated on both the ends and updates are collectively

shared among the organizations. This transformation and sharing of data are man-

2



1. INTRODUCTION

aged by a system design that is called Inter-Organization Data Management (IODM).

The decision tree shown in Figure 1.2.1 highlights the usability and adaptability un-

derstanding of IODMs in the industry [37].

Fig. 1.2.1: IODM Decision Tree

Figure 1.2.1 describes the road-map that leads the industry to consider IODM

systems as part of their day to day operations. The first criterion that is taken into

consideration is that, if there is any kind of data shared or retrieval of data from other

sources can be part of the computations. If yes, then it leads to second conditions that

3



1. INTRODUCTION

check if the fore stated condition is valid given there will be multiple parties involved

in the process. If yes, then it leads to an organization or group of organizations

consider the IODM system. Furthermore, to get decisions more convincing, the second

condition is branched into another question, which asserts that if multiple parties are

authorized to audit the operations performed on the shared data, in that case, IODM

is a sure thing.

IODMs have been used in many industries, such as supply-chain management,

fin-tech organizations, Health Record systems, loggers, and other Data Governance

systems. Current solutions that industries adhere to are centralized in nature because

the current state of computing systems is not decentralized. With these companies

trying to surge towards blockchain as their core computing stack, using centralized

IODMs is not possible.

Data is managed and operations are validated with help of consensus algorithms

on the blockchain which is computationally complex and expensive in some cases.

Consensus algorithms are not a generic entity. It is not a standard that can be the

same for all the organizations because consensus algorithms are designed based on the

organization’s requirement. So considering a supply chain management group where

3 organizations have 100 nodes each as part of their blockchain, each have their own

consensus mechanisms, in order to make sure that all 3 organizations stay in sync

with respect to the operations performed is only possible when all 300 nodes take part

into the consensus process and validate the change. Assuming, all 3 organizations are

aligned to change, even a slight change to the consensus algorithm will lead to a

feature update or patch in all the nodes. This makes design monolithic and cohesive

in nature which is not a good property for decentralized and distributed systems.

Also, this questions scalability of the system because adding more organizations to

the group will lead to higher degrees of cohesiveness. This thesis tries to solve this

problem for blockchain which is a big thorn on the pathway blocking the surge towards

fully functional and scalable third-generation blockchain technology.

The current state of consensus algorithms is continuous refinement by optimizing

various parts and tweaking parameters leading to faster executions, but the collab-

4



1. INTRODUCTION

orative blockchains have never been considered as part of future use-case scenarios.

Consensus algorithms in the current state mostly consider the local state of the sys-

tem than the global state which is extensive and quintessential to make centralized

technologies decentralized.

1.3 Problem Statement & Outlined Solution

As discussed in the section above, we can formalize the problem statement as follows:

Given a set of consortium blockchains, sharing a common set of data, validating the

transactions using their own specific consensus algorithms, device architecture which

helps the individual blockchains collaborate over a common medium helping achieving

a common state of data without making all the blockchains participate into consensus.

We tackle the problem with points stated below which we discuss comprehensively

in subsequent chapters of thesis.

• Keeping consensus execution to the validating organization’s blockchain.

• Extending the logic to interpret finality of consensus (f ∗) to rest of the network

which will serve as base for a consistent state using State Machine Replica-

tion.

• Dissemination of the message from validating blockchain to rest of the blockchain

in a decentralized fashion is done in an optimized communication topology that

is resultant of informed gossip over the random graph.

1.4 Structure of Thesis

The subsequent chapters of the thesis are organized as follows. In Chapter 2, we

present the readers with succinct knowledge which lays a technical foundation for the

rest of the thesis. As for Chapter 3, we present the Literature Survey of related work

done in the area. Chapter 4 explains the implemented Methodology to solve the

problem. Chapter 5 includes the experiment results and analysis of the proposed

5



1. INTRODUCTION

solution and comparison with other methods. And lastly, In Chapter 6, we conclude

the thesis and address the work that can be possibly done future to refine the proposed

solution.

6



CHAPTER 2

Overview of Related Technologies

2.1 Blockchain Systems

Blockchain technology is a append-only data-structure that stores a continuously

growing list of operations performed on the data which is replicated over a set of

nodes governing the system. Blockchains are completely decentralized with no

intermediaries governing the state of the system. Data in blockchains is replicated

over the entire set of nodes governing the system, eradicating articulation points in

the system making system immune to a single point of failure. The changes stored

in the system are cryptographically secure such that, any manipulation will lead to a

completely disrupted chain of records making system immutable, promising integrity

and non-repudiability of data.

The fundamental unit of a blockchain is called a block. Every block is associated

with a transaction. A transaction is any kind of operation that updates data managed

by the blockchain system. Multiple transactions based on their occurrences and

processing time are chained in a linear pattern in a cryptographically secured manner

and hence the term blockchain. Figure 2.1.1 shows the content of the block in the

blockchain.

block id is a unique identifier for a block in the blockchain. merkle root is the

resultant root of the Merkle tree [35] formed by the subsequent hashing of the transac-

tions from the set of transactions. time stamp represents the block creation time.

meta data field is the general information about the blockchain like what kind of

standards it follows for consensus and cryptography algorithm standards etc.

7



2. OVERVIEW OF RELATED TECHNOLOGIES

Fig. 2.1.1: Contents of a Block

Based on how nodes participate in the system, there are essentially two types of

blockchains i.e. public blockchain and private/consortium blockchain. The system

design and overall considerations taken up in these two blockchains is the biggest

differentiating factor among them.

1. Public Blockchain

• Any node can essentially participate into in the consensus process, hence

the word public blockchain

• A node may join and may leave at any time. Consensus protocols and

other validation processes should align with the security requirements and

volatility of the size of the validation group.

• Because of security considerations and uncertainty of system, it is not

preferred in industries.

2. Consortium / Private Blockchain

• Private blockchains are governed by an organization or a group of orga-

nizations. Nodes specific to the organizations can only be part of the

blockchain.

• There are no strong security considerations as the system is not open to

public access and the volatility of the validation group is not severe as the

node’s state is under the organization’s control.

• A widely accepted variant of blockchain in industry.

8



2. OVERVIEW OF RELATED TECHNOLOGIES

2.2 Consensus Algorithm

In a distributed system, the nodes participating in the system are part of a common

set of a protocol that is to be followed to ensure that the system works in the desired

manner. In a decentralized and self-governed distributed system like blockchain, a

sense of orchestration between nodes is essential to maintain a consistent and valid

state. For this, consensus algorithm is used in the blockchains.

Regardless of the participants in the system trust each other particularly or do

not trust at all, a decentralized system without a common consensus will disintegrate.

Solid governance is key to a working decentralized system. The consensus algorithm

makes blockchain operations orchestrate in a defined set of rules in all the nodes.

The state of a blockchain is defined by the present values and blocks that the

distributed ledger holds. A consistent state is nothing but blocks and values generated

by the proper execution of the consensus algorithm. Therefore, we can say that the

consensus algorithm is the underlying core that passively governs this decentralized

system. Essentially, the consensus algorithm makes sure that every new block that is

added to the Blockchain is the one and the only version of the truth that is agreed

upon by all the nodes in the blockchain and a unified trust is established between the

nodes of the system. Presently, consensus algorithms can be classified into two major

categories:

2.2.1 Proof of Work

Proof of Work (PoW) [2] is one of the firstly adapted consensus algorithms in the early

stage of blockchain development. It was first introduced with the advent of Bitcoin.

Since then it is one of the most prominent algorithms for public blockchains. PoW

is based on an underlying fundamental i.e. to make a node accept and add a block

to the blockchain, it has to solve a tough (computationally expensive) puzzle which

is easily verifiable when provided the proof. Formally we can define the problem

statement and steps as follows:

Let, N be the set of the nodes participating in the network. Proof of work makes

9



2. OVERVIEW OF RELATED TECHNOLOGIES

sure that a honest node will only broadcast the block which will be validated and

verified by rest of the network. The proposing node broadcasts transaction tx to the

network and following steps takes place:

1. tx→ N (Broadcast)

2. Each node collects the transactions into set of non-conflicting transactions form-

ing a block (Forming Block)

3. Work on solving system set problem to provide proof pf (Proof-of-Work)

4. If a node n ∈ N formulates proof pf

(a) n(pf)→ N − {n} (Send pf to peers)

Nodes i.e. N − {n} accept the block only if all the transactions in the block are

valid and not already spent. On acceptance, the block is created and appended with

the previous hash of the chain and the system continues. This system works efficiently

with open environments and every node has its own local state of validation, i.e. no

node interacts with each other for proof validation. Hence if a majority i.e. ≥ 51%

has the same state, it’ll be carried ahead with subsequent transactions. Limitations

of PoW is that its throughput is very less. The throughput of the Bitcoin blockchain

is 7 tps. It’s computationally expensive as every node is working on solving a complex

problem that uses a lot of time and resources. PoW is aligned towards open systems,

not a good fit for consortium blockchains. Also, it’s prone to a 51% attack i.e. if the

majority of nodes are malign, then the system will be steered towards a fraudulent

and inconsistent state.

Since PoW’s development, there has been research observed in this area such as

Proof of Stake (PoS) [32], Proof of Activity (PoA) [3], Proof of Elapsed Time (PoET)

[8] and so on.

2.2.2 Practical Byzantine Fault Tolerance

With the strongly increasing needs of blockchain technology in industries, lead to

consortium blockchains and with the newest adaption in consensus algorithms came
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into picture i.e. using Practical Byzantine Fault Tolerance (PBFT). To understand

PBFT one must know what faults it’s trying to tolerate. For this, there is a conun-

drum called Byzantine Generals Problem.

2.2.2.1 Byzantine General’s Problem

In Figure 2.2.1 we can see that there’s a kingdom surrounded by an Army from all

4 sides. To capture the kingdom, the army needs to do a successful attack i.e. the

army attacks on the kingdom all at the same time, else they lose. Every army has its

general that gives orders to their men.

Fig. 2.2.1: Byzantine General’s Problem Setup

To make sure the attack is successful one has to make sure that all General’s

are coordinated at the proper time. To make sure all army troops are coordinated,

one general might send an army man to every troop with time noted with him,

which he can extend to other troops. In this case, if the messenger is caught by the

kingdom watchmen and killed, the message is not sent. There’s a chance that the

messenger is corrupt and updates other troops with wrong information and they lose.

Troops cannot do flare shots and update the other troops as it’ll be noted by kingdom

watchmen and they’ll be alerted about the attack. So the fundamental question lies

is that, ”Given the state of the system, How can individual parties find a

way in guaranteeing full consensus?”
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Transferring this problem to actual computer science realm, we map characters

from this conundrum as, army as node inside the system, attack on kingdom as a task

or problem statement, messengers as system messages which are distributed within the

system and failure situations as arbitrary failures such as bottle-necked system delays,

hardware breakdowns, change in internal state, etc. Therefore, given a distributed

system, which is decentralized and trying to achieve a common, consistent and valid

state, we can prevent the system to be prone to arbitrary failures using PBFT.

2.2.2.2 Working of PBFT

PBFT [7] works in 4 stages, i.e. Pre-Prepare, Prepare, Commit and Reply.

Let N be the set of nodes i.e. where there’s always one Primary Node (P ) and rest

all acts as replicas (r1, r2, · · · rn−1). For every PBFT iteration, P is changed which

makes process more democratic.

Fig. 2.2.2: PBFT Communication Flow

Whenever a client submits a transaction, P accepts the request and forwards it

to all the replicas which is Pre-Prepare stage. Replicas make sure that everyone

has the same stage and every replica broadcasts this to all other nodes which ensure

that the majority of all of the replicas have a consistent state. This is Prepare stage.

After this, replicas and P processes the transactions and shared the results with each

other by broadcasting the results which is the Commit Stage. On validating the

12
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reply received from other nodes, all the nodes of the system reply to Client node

and if Client receives the majority of executions with the same result, we say that

consensus has been reached which sums up the Reply stage and ends one iteration

of PBFT. For the given N nodes in the system, let f be the number of faulty nodes

in the system. In order to make sure that PBFT tolerates f faults in the system,

N = 3f + 1 number of nodes should participate in the consensus.

PBFT is one of the biggest breakthroughs for distributed systems and especially

for consortium blockchains. But when comparing this solution and incorporating

consortium blockchains, it works well when the size of N is small. As the size of N

increases, the communication complexity increases exponentially i.e. O(N2) therefore,

using PBFT over big sized quorums is expensive and slow. In Related Work section

we discuss the scalability part of BFTs in much greater detail.

2.3 Random Graph Theory

2.3.1 Understanding Graph Theory Basics

A graph (G) in graph theory and computer science is and ordered pair G(V,E) where

V is the set of vertices or nodes of the graph and E is a set of edges connecting the

nodes belonging to V . Let u and v be nodes belonging to a graph G. If G is a directed

graph then then edge between u and v will be an ordered pair (u, v) and in case of an

undirected graph it will be an unordered pair {u, v}. Example of a graph is shown in

the Figure 2.3.1.

Fig. 2.3.1: A Sample Graph
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For the graph shown in Figure 2.3.1,

• V = {a, b, c, d, e}

• E = {{a, c}, {a, b}, {a, d}, {c, d}, {d, e}, {c, e}}

A graph has several properties associated with it which can provide some inter-

esting features which helps in understanding the node relationships and their roles.

A node can be classified based on the way it is connected with the other nodes in

the network. The parameter that defines the connectivity of the node is called degree

of a node. A degree of a node in a graph is essentially number of edges incident on

that node. Degree of a node is a number parameter presented as D(x) where x is the

node. In the sample graph, D(a) = 3. The neighbour set of a node is set of nodes

that are directly connected to the given node. For example, neighbour set of node

a is N(a) = {b, d, c}. One of the major property when relating graphs to network

node connections is the articulation point. An articulation point is a vertex in the

graph, when removed, leads to increase in number of connected components or leads

to disconnected graph, then we say that that vertex is called articulation point. In

our sample graph (Fig. 2.3.1) vertex a is an articulation point because on removal of

a and its associated edges leads to two graphs (two components).

One can say that a Graph is the mathematical modeling of networks of entities

connected with a certain relation. The relation between entities can be presented in

the form of an edge and entities can be presented as nodes. In Computer Science,

a graph is a data structure that has successfully mapped many real case problems

into graph theory problems. Using results and algorithms associated with the graphs

many real-world problems have been tackled and resolved.

2.3.2 Random Graph

Random Graph [6] theory is an extension to the graph theory with the addition of

probability theory. Essentially, a random graph can be stated as a resultant network

of events over a given probability distribution. Because of this, random graphs have
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been heavily used in modeling complex networks where multiple agents are interacting

with each other under a stochastic process. A complex network is a graph, which has

non-trivial topological characteristics, i.e. those features are not observed in the

lattice and simple graphs but are vividly observed when modeling real-time systems,

such as social-networks, computer-networks (Internet), biological networks, etc. and

in this case blockchain.

A random graph always starts with isolated nodes and edges are formed in between

the nodes in a random way which is resultant of some process or computations which

cannot be determined with a full assurance. Every edge in the random graph has some

probability associated with it. Satisfying the probability constraint in the process

leads to an edge creation between the nodes.

When considering modeling a complex network mathematically to generate a ran-

dom graph and derive it’s hidden properties, it looks simple because it is just nodes

and edges, but the prime idea that can help one model a complex network if one knows

where to keep the edges i.e. node relationships and how many of them we want to

have a sufficient relationships to model the complex network. This complexities are

addressed by two very famous Random graph models, i.e. G(N,L) & G(N, p) model,

both defined by Erdos and Renyi [15].

1. G(N, p) model

This model states that each pair of N nodes in the network are connected with

each other with probability p.

2. G(N,L) model

In this model, N nodes in the network are connected by L number of randomly

selected edges.

Every iteration of a G(N, p) graph will give a different resultant graph with

changed adjacency and number of links/edges L. So it is quintessential to get an

estimate how many links can we expect from a given G(N, p) graph. The probability

that a Random network has L links is product of following terms:
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Fig. 2.3.2: G(N,L): G(5, 4) graph

pL = (pL)(1− p)
N(N−1)

2

(N(N−1)
2

L

)
(1)

where the terms are explained in the respective order below

1. Probability that L number of the attempts to connect the N(N−1)
2

pairs have

resulted into an edge i.e. pL

2. Probability that remaining links other than L have not resulted into an edge in

the random network is (1− p)
N(N−1)

2

3. The combinational term,
(N(N−1)

2
L

)
Networks are very simple to model because it is just a matter of fact of taking

nodes and edges and connecting them. The crucial part is how the links are placed

which can entertain the working of an actual system. We take G(N, p) model at the

base for the blockchain topology design because, firstly, the probabilistic paradigm

can help model the byzantine faults happening in blockchain consensus process and

on the other hand with the mathematical properties of random graph we assert that

communication in the consortium blockchains can be optimized to a point where a

majority consensus can be reached with high probability.
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2.4 State Machine Replication

In the present state of computing systems, there is a high need that the computing

infrastructure is scalable and resilient. The scalability of a computing system is de-

fined based on the performance and execution time taken by the system to execute the

compute query. On top of that, resiliency is an important factor to keep system fault-

tolerant and prone to failures. Existing large-scale systems needs to accommodate

these requirements.

State Machine Replication (SMR) [33] paradigm in client-server architecture in-

volves creating a robust, fault-tolerant service by replicating servers and orchestrat-

ing client requests with those server replicas. In distributed systems, where multiple

servers are working with each other serving different client requests at once needs to

make sure that they have the same system state i.e. data to serve. SMR plays an

important role to make sure that all the nodes in the system maintain a consistent

and valid state.

A SMR system consists of following elements:

• Set of Nodes N

A set of nodes is essentially a set of entities participating in the system where

over a series of processes, the state of the entity might get changed. It can be

a file, a compute node, database, etc.

• Set of States S

A state is a collection of internal parameters that determines the condition of

a node. A global set of all such possibilities of given parameters for a given

process is called a set of the set of states.

• Set of Inputs I

A global set of instructions specific for a process which can be passed to a node

for processing is called the set of Inputs.
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• A Transition Function T (s, i)

A transition function is essentially the underlying logic, running on a node to

validate the input on a given state of the node. A transition function is passed

with two parameters i.e. s and i where where s ∈ S and i ∈ I. Based on the

parameters passed to a node, a node may change a state its state or retain it.

Every node in the system has a state s associated with itself related to an opera-

tion. A state s is a set of parameters defining properties of a node that are relevant

for the operations that it performs. A node may receive an input i which is evaluated

over the node’s state s by a transition function T leading to a new state s
′

or can

simply just lead to an output which involves no state update. This can be formally

represented as:

Let N be the set of nodes and I be set of inputs. A node n ∈ N receives input

i ∈ I and state update function can be defined as follows:

T
(
n(s), i

)
⇒
(
n(s

′
) ∨ n(s)

)
∧Output (2)

where n(s) represents a state s associated with a node n
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CHAPTER 3

Related Works

3.1 Approaches to Scale Blockchain System

With the realization of the potential that blockchain technology can bring into the

industry, there has been avid research observed in this area to make the technology

efficient, secure and effective with regards to replacement for the existing technol-

ogy stack. Out of all the areas, scalability of blockchain systems is a pivotal task

because the scalability of the system is directly proportional to efficiency and adapt-

ability. [39][25] Scaling Byzantine consensus is a modular approach where different

aspects of the consensus mechanism are taken into consideration and optimized based

on the need. Our recent survey shows that while architecting a blockchain, Quorum

Election, Communication Topology, Cryptography techniques and Trusted Execution

Environments (Specialized Hardware Technologies) are prime factors leading to scal-

ing of Byzantine consensus when applied in various phases of consensus. The current

research uses an amalgamation of these techniques to formulate new solutions that

are efficient and industry ready for adaptation.

3.1.1 Quorum Formation

Scalability gets hindered in state of the art Byzantine consensus algorithms where the

entire network participates in processing and validating a single transaction. Making

the whole network to verify the transactions not only increases the complexity in

achieving the consensus but also leads to a high amount of communication overhead.

So the notion behind the quorum formation is to use a subset of nodes to validate
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Fig. 3.1.1: Approach to Scalable BFT Design [4]

the transaction and the rest of the nodes in the network learn from them. This can

be formally represented as follows.

Let N be the complete set of nodes in the blockchain network. N
′

number of

nodes out of N forms the consensus committee which is responsible for running con-

sensus among them and remaining nodes, the learner nodes learn from the consensus

committee. Here the learner nodes have no interaction with the consensus committee

which makes learner nodes a part of passive replication schemes as they accept the

results computed by N
′
. This essentially reduces the resource foot-print and com-

munication complexity of the system as only a subset of nodes have to communicate

with each other.

This approach was first used in CheapBFT [20] and ReBFT [12] where a secure

Field Programmable Array (FPGA) based subsystem of nodes was responsible for

validating transactions and rest of the nodes were part of passive replication. Instead

of 3f+1, these approaches used 2f+1 active replicas and the remaining f are passive,

but there are assumptions. The system will only rely on 2f+1 replicas during normal

state (no byzantine faults or arbitrary failures). In case of failures, fall back protocols

are activated which again uses 3f + 1 nodes.
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3.1.2 Communication Topology

Communication topology governs the way nodes interact with each other in the sys-

tem. It can be static or dynamic depending on the implementation of the system.

State of the art PBFT does not scale well due to heavy communication overhead

it takes (Figure 2.2.2). In PBFT at every phase of the process, every node in the

network exchanges message which makes it more complex.

The most optimal and least complex communication topology observed in the lit-

erature is FastBFT [26]. FastBFT uses a balanced tree formation within the network,

where the leader is at the root of the tree and then based on the desired branching

factor (b), other nodes are aligned. Messages are propagated from top to bottom

and leaf nodes reply and intermediate root nodes collect and aggregate messages to

the top. The use of a tree as communication topology reduces the communication

complexity but it compromises with the liveliness of the system. In the case of arbi-

trary node failure in a tree, the entire subsystem connected with that node will be

unavailable. Bigger the height of the node more adverse the failure becomes. The

communication complexity of this system is O(b).

Fig. 3.1.2: FastBFT Communication Flow with b = 2

LinBFT [38] presents a paradigm to cut short O(n2) communication complexity

of PBFT to O(n) by aggregating all the results from the network in every phase.

Instead of nodes interacting with each other, the node sends cryptographically signed
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messages to the leader and the leader validates the messages. This approach bottle-

necks as a leader has to aggregate, verify and disseminate the messages to the rest of

the network.

Fig. 3.1.3: LinBFT Communication Flow

A similar but more optimistic rather speculative approach is used in Zyzzyva

[22] where once the leader submits the transaction to the nodes in the network, all

the nodes speculatively validate and execute the transaction and return the result

back to the client instead of the leader. Client on finding inconsistencies in execution

among the nodes corrects nodes converging to a common state of the system, reducing

replication cost to theoretically null (in absence of byzantine nodes). But instead of

having multiple phases, the gracious execution of Zyzzyva only takes 2 phases.

3.1.3 Cryptographic Techniques

Cryptographic primitives have played an essential role in reducing computational

and communication overheads in achieving the consensus. Cryptography and re-

duced computation might sound oxymoronic, but it has substantially helped in many

different ways. Algorand [16] in its cryptographic sortition makes use of Verifiable

Random Functions [28] (VRFs), where every node in the network runs the function

to know his role in the consensus. Not only does this eliminate the communication

overhead between the nodes with regards to the selection of a committee to initiate

22



3. RELATED WORKS

consensus but also makes leader and committee election free from any malign activ-

ities adaptive adversaries can possibly do to disrupt the process. Gosig [24] uses a

similar cryptographic leader election scheme like algorand with a multi-round voting

mechanism. The method also tries to optimize the communication by frequent dis-

semination using a gossip-based methodology but is not optimal with regards to the

regards to dissemination scheme.

Advanced signature schemes have also played an essential role in reducing au-

thentication payload by trimming signatures of multiple nodes form of a committee

to a single signature. One of the prominent use-cases is in FastBFT where Collective

Signing [34] (CoSi) method is used to construct Schnorr multi-signature [27] . CoSi

is used in FastBFT’s message aggregation phase where the quorum forms a balanced

tree having leader node at the root and messages start aggregated from leaf nodes

and at the end root has a single message signed by all the nodes of the quorum.

3.1.4 Trusted Hardware Components and Trusted Execution

Environments

Recent research shows the use of trusted hardware components and secure comput-

ing schemes to reduce the computational resources used in validating the operations

within the peers. One of the earlier use-cases was observed in the ReBFT and Cheap-

BFT. In these protocols, a smaller subsystem of nodes essentially decided the state

of the system as the rest of the nodes simply replicated the results formulated by

the consensus committee, to make sure the subsystem is not malicious, FPGA based

trusted system is incorporated to authenticate and verify the protocol messages.

A much more enhanced approach is observed in FastBFT which uses Intel SGX [9]

service provisioned by CPU for creating a secure Trusted Execution Environment [31]

(TEE) which is immune to sybil attacks and tamper-resistant from any other system

calls happening inside the node. FastBFT leverages an optimized lightweight secret

sharing scheme over TEE with efficient message aggregation protocol making it one

of the most scaled byzantine consensus protocols in the literature. However, using
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specialized hardware schemes in the Byzantine consensus is also a constraint in terms

of acceptance and incorporation in the existing system as a ready to go functionality.

3.1.5 Off-Chain Paradigm

Off-chaining has been a new area of research observed in blockchains which has the

potential to enhance scalability and privacy of the system. Off-chaining focuses on

outsourcing the data storage (not the ledger) and computations to a third party

trusted subsystem without sacrificing the fundamental essence of blockchains i.e. im-

mutability and availability of data. This research is especially relevant to public

blockchains as every transaction processed in the system is evaluated and executed

on every node in the network, leading to less throughput. And as far as user-specific

data is concerned, keep data available on all the nodes of the system does not guaran-

tee the privacy of the data. Off-chaining has capabilities to extirpate the limitations

expressed above.

3.1.5.1 Off-Chain Storage

It has been pointed out that with increasing use-cases of the blockchain technology,

storing data on-chain becomes expensive. The data includes essentially assets and

tokens representing the data directly related to users. To validate the transactions,

not only the ledger but also this user-specific data needs to replicate over the entire

network. In public blockchains, this leads towards reduced privacy over the personal

data and the chance of data leaks is high.

The way to address this issue is to export the user-specific data to a highly

available secure off-chain storage system capable of handling failures. Whenever

blockchain has to execute a transaction that involves state change in the data, first

the blockchain network retrieves data from the highly available storage ensuring the

integrity of the data. After retrieval, the transaction is processed and state update

on data is performed and finally, third party storage writes changes on the data and

updates the state. Here system relies on the third party to update the data on the
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storage system. To make sure that changes are made properly and there is no malice

in the third party system, a content-addressable storage system [14] can be taken into

consideration. This can by following steps shown below while accessing the data:

1. Each data-file (d) is stored in the content-addressable storage and mapped with

its hash-value (hx(d)).

2. User stores reference address of d i.e. ref(d) = hx(d), and keeps ref(d) privately

mapped in it’s smart-contract

3. While querying the data, user can use ref(d) to access d. On retrieving d it

can calculate the hash again and verify the integrity of data.

This approach solves secure out-sourcing data to a third party storage system

but the problem prevailing with the liveliness of the system still prevails. In case of

data loss, blockchain cannot do anything to retrieve the data back. Hence, for now,

the off-chaining approach for exporting data seems an active research area needing

substantial and strong improvements encompassing the liveliness of the blockchain

system.

3.1.5.2 Off-Chain Computing

Off-chain computing is a paradigm in which the execution part of blockchain gets

outsourced to an off-chain network and verification part is performed on-chain [13].

Suppose time taken to perform an on-chain computation be ton and off-chain be

toff . And let time taken to verify the computation be tver. Off-chain computation

guarantees that toff <<< ton. But the complete notion is useful when, toff+tver < ton

Off-chaining introduces trust issues because consensus computation is dependent

on the untrusted third-party. The crucial part is the verification phase because

the resultant computation of the off-chain network determines the next state of the

blockchain. So if the off-chain network successfully supplies false verification proofs,

the chain state gets corrupted. This approach reduces the computational overhead

but maximizes trust issues.
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To solve this quest, verifiable computation schemes can be used which use cryp-

tography in its base which can improve the trust in the verification phase with high

magnitudes. The verification algorithm used in this approach should be cheap making

tver less and algorithm should be non-interactive, i.e. the prover should prove its com-

putation in a single message or with very few message exchange leading to reduced

communication overhead. Zcash [19] [40] uses verifiable computations to validate the

transaction in their blockchain. They use Zero-Knowledge Succinct Non-Interactive

Argument of Knowledge (ZkSNARKs) [36], which is a special kind of zero-knowledge

proof [17] which lets a prover prove its computation within a fraction of seconds, and

the proof size is also minimal. However, the initial setup phase, which is a one-time

setup is computationally expensive than the actual execution of the computation.

3.2 Gossiping in Distributed Systems

Gossip based algorithms also known as epidemic algorithms were initially developed

to reliably propagate a set of data over a group of nodes forming a distributed system,

where the data shared essentially defines the operations or state update messages. The

simplicity, robustness, and effectiveness have made gossiping algorithms an integral

part of large scale distributed system design [18]. Systems that use gossip have the

same underlying design with some tweaks and differences in algorithmic details based

on the use-cases that divert the working of these systems.

Gossip in a distributed system means disseminating information inside the net-

work by selecting nodes at random and passing the information to them which will

eventually populate the entire network with the same information. The initial stage

of information dissemination is slow, but after a couple of iterations, the spread of in-

formation is at an exponential rate. The first instance of usage of gossip in distributed

systems was used to keep the database consistent in replicated database designs [11].

Since then, technology has come a long way and in recent developments, gossip/epi-

demic algorithms have been widely used in Wireless Sensor Networks, Ad-Hoc Sys-

tems, large scale distributed systems which has a strong requirement of fault-tolerant
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computations and rapid information exchange. A general organization of gossiping

protocol is as shown in the figure below.

Fig. 3.2.1: General Structure of Gossiping Algorithm [21]

A node/peer P selects a node at random (Q) from available list of nodes in the

network. Based on the state of current data P selects what data needs to be shared

(bufs). P sends bufs is sent to Q. All the nodes in the network are continuously

accepting messages and in mean time Q receives message from P . In meantime if Q

has any new data to share it shares it’s data with P . Regardless of previous step, Q

checks the state of received data with its cache and retains the new data and updates

the cache, which also happens at the other end in P . A node can contact one more

more nodes at a time, which determines the span of a node in the system. This

parameter is called fan-out parameter (m). A node can also be controlled how many

times it can disseminate the messages for a single process. This two parameters define

the connectivity and relationship between different types of nodes in the network.
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CHAPTER 4

Methodology

To tackle the problem statement, we keep the consensus execution restricted to the

validating blockchain quorum and extend the logic to interpret the finality if consensus

to the rest of the quorums who are associated with the shared data which is being

validated by the quorum who is running the consensus which will serve as a base

for a consistent state of data over the network with state machine replication.

Dissemination of the message from validating blockchain to rest of the blockchain

in a decentralized fashion is done in an optimized communication topology that is

resultant of informed gossip over the random graph. To elaborately explain the

approach we divide the entire process into two phases.

1. Consensus Phase

In this first part of the process, the blockchain client assigns transaction block to

one of the organization as per the request transactions have made. Blockchain

client decides who will be the leader to initiate the consensus. The organization

that got selected runs the consensus mechanism C and this phase comes to end.

2. Dissemination Phase

Here once consensus in the phase one is reached, dissemination phase happens

on the residual network. Residual network is network consisting the leader

node of consensus achieved organization and all the nodes belonging to the rest

organizations sharing the same data. The residual network can be formally

represented as follows:
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Let there be n number of organizations over a global set O = {O1, O2, O3, ...On}

and Oi was the one to initiate the transaction in consensus phase. Let l be the

leader node from Oi. Therefore residual network N
′
= (O −Oi) ∪ l

4.1 Node State Parameters

Every node in the system is part of state machine replication and has a state associated

with itself. The state of node is defined by following parameters:

• db: The data which is being handled by the node

• tx index: Indexed list of the transaction already processed and updated in the

ledger of the node

• dis counter: This defines the number of times a node has disseminated a par-

ticular transaction over the random graph

This parameters are updated by the transition function called updates(tx, f ∗)

where tx is the transaction which needs to be processed on node and f ∗ is the proof

of consensus validation from validating blockchain w.r.t tx. This is outlined in the

Algorithm 4.1.1

Algorithm 4.1.1 updates(tx, f ∗)

Input: tx which is transaction ; f ∗ is finality of consensus associated with tx
Output: State update of the node

if tx validates f ∗ then
update db
update tx index
create block for tx

else
reject tx

end if
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4.2 Informed Gossip

Informed gossip [23] is the integral part responsible for reducing the overall communi-

cation overhead of the system and responsible for generating the random graph with

the nodes from the residual network. In this process every node holds an index of

a set of nodes who has process a particular message and when they gossip, with the

message they also share the set of nodes from the index for that particular message.

When a node receives the message, it compares it with it’s local set and updates it

with the new entries. A logical view of a node index is as shown in Table 4.2.1.

Message Informed Node Set

m1 {d, a, c}

m2 {b, e, c}

Table 4.2.1: Logical View of Node Index

To illustrate this process let’s take an example of a 5 node system i.e. {a, b, c, d, e}

shown below for a single message m1 where a is the originator of the gossip. For this

example we set the fan-out parameter of gossip to be 2 i.e. every node can send

message to 2 nodes in an iteration.

Fig. 4.2.1: Informed Gossip Example

As shown in the Figure 4.2.1, all nodes start with an empty node index. Node

30



4. METHODOLOGY

a receives the message and based on the defined fan-out parameter, it chose b and e

at random. Now b and e know that a already has m1, so for m1 the node index of

b and e becomes {a} and first iteration comes to end. In second iteration, b and e

gossips m1 with their node indexes. At the end of second iteration we can see that

d has it’s state updated to {a, e, b} based on the node indexes received from e and b

and node c has its node index updated to {a, b} based on node index of b. And this

is how informed gossip works. One can note that one can optimize the process by

adjusting the fan-out parameters and terminating conditions of when gossip should

end. The fan-out parameter will define the reach of a node and terminating condition

will determine how many times at most a node will disseminate the message in the

network.

In the formal outlined solution we achieve the informed gossip with the function

disseminate(tx,f ∗, cache[tx]) where the cache[tx] is the node index of tx. We restrict

to a node to trigger disseminate(tx,f ∗, cache[tx]) for itr times and for the gossip we

have fan-out parameter set to ln(N) where N is the global set of nodes from residual

network. The outlined function is shown in the Algorithm 4.2.1.

Algorithm 4.2.1 disseminate(tx, f ∗, cache[tx])

Input: transaction tx, f ∗ finality of consensus for tx and local cache of node that
consists of all the other nodes that processed tx i.e. cache[tx]
Output: disseminates the transaction to other nodes in the system

if dis counter[tx] < itr then
N
′

= select ln(N) nodes at random from N
(tx , f ∗, cache[tx]) → N

′

dis counter[tx] += 1
else

continue
end if

The reason behind using ln(N) as the fan-out parameter can be derived from a

fairly simple random graph results and proofs. If we take a look at equation (1) in

chapter 2 in subsection 2.3.2 of section 2.3, the probability that a given G(N, p) graph

has L links is provided. Equation (1) is essentially a binomial distribution and hence

the first moment of this equation will give us the mean value for L i.e. L which is an
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estimate of number of links in the graph i.e.

L =

N(N−1)
2∑

L=0

L · pL = p · N(N − 1)

2
(1)

For a given graph G, average degree of a graph (k) can be given by following

equation:

k =
2E(G)

v(G)
(2)

Extending this equation to random graph will give us:

k =
2L

N
= p(N − 1) (3)

In the normal case operation for N nodes in a G(N, p) model, for a high value of

p as the system progresses all the isolated nodes converges into a giant component.

With a justifiable high value of p we want to make sure that the giant component

at the end of the process has all N nodes in it. For that we need an estimate that

what should be the value of k because for given value of p, k defines the span and

connectivity of the nodes in the graph. So the condition that we want is that number

of nodes in the giant component (NG) to be approximately N i.e. NG ' N .

Therefore, probability that a randomly selected node is not linked with the giant

component is

(1− p)NG ≈ (1− p)N (4)

Hence, expected number of such isolated nodes (IN) are

IN = N(1− p)N = N(1− N.p

N
)N (5)

The fraction term in the equation (5) can be approximated in terms of e i.e.

(1− x

n
)n = e−x (6)
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Using equation (6) in (5) we get,

IN = Ne−Np (7)

Assuming there is one isolated node in the network deprived from any connectivity

to NG, i.e. IN = 1, we get

Ne−Np = 1 (8)

ln(N)−Np = 0 (9)

Finally for any value of N , we get,

p =
ln(N)

N
≈ 0 (10)

Using result from equation (3) we can rewrite equation (9) as

k = pN = ln(N) (11)

And hence, for NG ' N to be closely equal over respectable high value of p we

need k = ln(N). Therefore, for any random graph to be a giant component with all

nodes covered as part of it’s stochastic process, the average degree of a graph needs

to be ln(N). This is called critical point in the random graph building process, a

point of convergence [29].

4.3 Proposed Solution

For the system process, we have nodes continuously listening for the messages in

the network. Accept the incoming message and validate it. Nodes follow a set of

instructions based on the events that take place in the process. In this case, we

have two kinds of events one is when a timeout occurs for a message and second is

when a node’s active cache (a cache) of message for a particular transaction is full.
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The active cache is a memory allocation, where a node accepts a certain number of

messages of transaction messages in the period and if in the period the cache gets

full, node disseminates else for that transaction it will disseminate on the timeout.

Based on this an outlined process is shown in Algorithm 4.3.1.

Algorithm 4.3.1 SMR with Information Dissemination

Input:Node is listening for a tuple (tx,f ∗,cache[tx]) over the network which is input
to the system
Output: Event triggers

while True do
e← Event()
if e is TIMEOUT then

if tx not in tx index then
updates(tx, f ∗)
disseminate(tx,f ∗, cache[tx])

else
disseminate(tx,f ∗, cache[tx])

end if
else

continue
end if
if e is ACTIVE CACHE FULL then
cache[tx] = cache[tx] ∪ a cache[tx]
N = N − a cache[tx]
a cache = ϕ
if tx not in tx index then

updates(tx, f ∗)
disseminate(tx,f ∗, cache[tx])

else
disseminate(tx,f ∗, cache[tx])

end if
else

continue
end if

end while

As shown in the procedure we use the disseminate and updates function which is

responsible for message passing efficiently and state update of node respectively. This

procedure runs continuously at the background in the node listening to the messages

in the network and based on the events triggered, node functions in that procedure.
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CHAPTER 5

Experimental Results & Analysis

Based on the methodology discussed we develop the system and test it various sce-

narios and derive the analysis of the results. This chapter is divided into complexity

analysis, empirical analysis, system analysis and comparison with other methods.

5.1 Complexity Analysis

If we observe the procedure established in Algorithm 4.3.1, every node in the system

will disseminate for at most itr times. The fan-out parameter we have for the nodes

for every iteration stays constant i.e. ln(N) for a given value of p. So essentially for

each node communication overhead is of the order O(itr · ln(N)). Therefore, for the

overall N nodes in the system, the total cost over communication is in the order of

O(N · itr · ln(N)).

Fig. 5.1.1: Logical View of Node Dissemination
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5.2 Empirical Analysis

The empirical analysis is quintessential for this model because it essentially helps

to determine the properties and traits that the system would generate when it is

functioning regularly. Using empirical analysis we target the random graph which

is generated when nodes interact with each other. This will essentially also help in

determining how changes in the parameter affect the overall working of the system.

We consider the connectivity of nodes and effects of p and itr as the primary motive

to achieve the analysis.

5.2.1 Scalability Aspect of Model - Number of Connections

vs Number of Nodes

Here, we check how the model works with the growing size of N and what is the

growth of the network when more number of nodes participate in the process. For

this, we run the model over the same p and itr value but keep on increasing value of

N at a fixed interval and observe the number of connections in the system. For this

experiment, we default itr = ln(N) and p = 0.8. Figure 5.2.1 represents the relative

change w.r.t. N .

Fig. 5.2.1: Growth of Edges with increasing number of nodes
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We compare the scalability with the State of Art PBFT and to have a baseline

we assume an ideal mark as the linear growth function i.e f(x) = y form of the line.

And we see that our method works sub-optimally when compared with the ideal state

and is highly scalable when compared with the communication overhead and costs

associated with PBFT. This analysis states that our proposed model can scale very

well when an increase in the number of nodes is observed.

5.2.2 Effects of itr and p on Model

In this analysis, we observe the changes made by itr and p and how it affects the

model. p is essentially a probability measure that determines how responsive the

nodes in the model are. Higher the value of p essentially should mean that there is

less number of failures in the process. We check the model for N = 100 nodes over

itr = ln(N) for p value set {0.5, 0.6, 0.7, 0.8} and results are presented in Figure 5.2.2

- Figure 5.2.4.

Fig. 5.2.2: G(100, 0.5) with itr = ln(N)

As shown in figure 5.2.2, for the low p value like 0.5, we have 3 isolated nodes

and one node with literally one incoming edge. Even in such detrimental effects on

the system, we still attain to achieve 94% connectivity. With the increasing value
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Fig. 5.2.3: G(100, 0.6) with itr = ln(N)

Fig. 5.2.4: G(100, 0.7) with itr = ln(N)

Fig. 5.2.5: G(100, 0.8) with itr = ln(N)
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of p we see less isolated nodes in the system and at p = 0.8 we have one giant

component where NG = N . So we can say that even when a decentralized system

at 20% arbitrary failure rate, our model makes sure that every node receives enough

number of messages to have a strongly connected network. With this analysis, we

conclude the effects of p.

To understand the effects of itr we will consider a G(100, 0.5) with itr = ln(N).

The initial result that we observe is shown in Figure 5.2.6. We can see that with

default itr value for low values of p we see NG < N .

Fig. 5.2.6: G(100, 0.5) with itr = ln(N)

For the same values p and N , with increasing itr by a unit starts making a

difference in how node interacts and leads to a reduction in isolated components to

no isolated components. This is shown in Figure 5.2.6 - 5.2.8. With the increasing

value of itr, we observe nodes have the freedom to span to multiple nodes. With this,

assuming a distributed system suffering from arbitrary failures can cope up with the

increase in the reachability of nodes. Table 5.2.1. presents the numerical details of

this model experiment.

Additionally, to check how the model performs over a series of experiments without

changing the parameters, we run the model and test how much model varies over

time. For this we run G(N, p) for fixed itr = a cache = ln(N) and simply vary p to

determine the changes. For this, we iterate the model over 100 experiments and we

record the attributes and mean and standard deviations for the same. A sample time
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Fig. 5.2.7: G(100, 0.5) with itr = ln(N) + 1

Fig. 5.2.8: G(100, 0.5) with itr = ln(N) + 2

series plot is shown in Figure 5.2.9 which highlights a G(100, 0.6) graph tested over

100 experiments with regards to changes in the number of links (L). For this test, we

get the mean (L) as 593.54 and standard deviation (σ) as 61.67.

Extending this experiment over other values p for 10 experiments with pre-set

itr = 2, we evaluate L, σ, min and max in of L, max(N − NG) representing maxi-

mum number of isolated nodes in experiments, and NG 6= N situation to determine

how many times isolated nodes were observed in the experiments. The details are

illustrated in Table 5.2.2.
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Fig. 5.2.9: G(100, 0.6) over 100 experiments

G(N, p) itr L |N −NG|

G(100, 0.5) ln(N) 369 3

G(100, 0.5) ln(N) + 1 432 1

G(100, 0.5) ln(N) + 2 539 0

Table 5.2.1: itr experiment details

p L σ min max NG 6= N max(|N −NG|)

0.9 899.1 9.11 882 918 0 0

0.8 799.95 11.01 779 829 1 1

0.7 696.34 17.3 653 732 7 2

0.6 590.54 61.67 515 621 12 4

Table 5.2.2: Overall Results of Variation Test

Based on the values presented in the Table 5.2.2., we can say that over series of

100 transaction executions, only 12% of time, nodes were deprived of the updates,

and that too only for maximum of 4 nodes, were not in NG which can be easily
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remediated by tweaking itr which we saw in itr and p analysis. Also as we expected,

with increasing p value isolated nodes have been reduced. This sums up the empirical

analysis of our model.

5.2.3 Degree Distribution and Connectivity of Graph

In this section, we discuss the degree distribution of the generated network and an-

alyze its thresholds against the ideal cases. For this we have a G(100, 0.8) with

itr = ln(N). For the generated graph we get 1038 links and detailed plots are shown

in Figure 5.2.10, 5.2.11 and 5.2.12. The generated graph is presented in Figure 5.2.13.

In the given plots, a solid line is presented which represents Ideal mean of degrees

for distribution to satisfy a fully connected network i.e. ln(N) and the dashed line

represents the average degree distribution of generated graphs. In all the cases we

can see that the generated graphs exceed the baseline by almost twice as the ideal

baseline for fully completely network. Also, the majority of nodes are skewed on the

right-hand side (growing region) of the ideal adding a promising factor in terms of

clustering of network i.e. none of the nodes during gracious executions are loosely

connected.

Fig. 5.2.10: Degree Distribution - In Degree
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Fig. 5.2.11: Degree Distribution - Out Degree

Fig. 5.2.12: Degree Distribution - Total Degree

Fig. 5.2.13: Degree Distribution - Generated Graph
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5.3 Implementation

In this section, we discuss the implementation details, and tools & technologies that

backs the proposed method. This section gives a brief overview of how each aspect

was implemented and tested. At the end of the section, we also compare our results

with related methods to show where our proposed method stands.

5.3.1 Platform Technology

The code and the blockchain logic runs on the industry-standard containerization

platform called docker. Docker is an open-source Platform As A Service (PAAS)

technology that enables base-OS independent deployment bundles into isolated sub-

systems called containers. In this case, every node in our blockchain network is a

container. Because of the high level of abstraction provided by docker, this makes it

an ideal candidate as the manageability of the system gets straight forward.

5.3.2 Blockchain Specifications & System Design

We design our blockchain that does simple currency transfer from one account to

another. The block size is of 1KB and for every iteration, 4 non-conflicting transac-

tions will be taken up from the pool and will be run over consensus. As part of the

system data or actual database, to keep things lightweight, instead of using a heavy

SQL schema DB engines, we use document store, were every registered user account

will have an associated document which stores user information, like name, account

number, and balance. A sample snapshot is as shown in Figure 5.3.1.

Fig. 5.3.1: User Account
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The file for AC3456 is a JSON document has the same file name as Ac no. For

this example, the name of the file will be AC3456.json.When a leader pickups the

transaction from the transaction pool, it validates the existence of the account and

then validates the balance of entities that has to be manipulated. As for the blockchain

ledger that is generated as part of the blockchain, it is also a JSON file. The ledger

and the data of the system are stored on the host machine and are mounted on the

container in form of mount volumes. Ledger is a JSON file. The screenshot of the

JSON file is shown in Figure 5.3.2.

Fig. 5.3.2: Blockchain Ledger

Implementation was done over the docker and as for the technology stack, we

used python for the entire implementation. The docker containers ran lightweight

Alpine Linux for the underlying specifications. And data was mounted on containers

as the persistent volume which was stored at the host level. System specifications

and deployment specifications are shown in table 5.3.1 and 5.3.2.
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Host Operating System Debian 7

Memory 24 GB (Buffered)

CPU Intel Xeon W3250 @ 2.8GHz

Core and Threads 8 cores, 16 threads

Storage 512 GB

Number of Compute Nodes 3

Table 5.3.1: System Configuration - Test Bed

Container Image Apline Linux

Installations Python 3.7, grpc python, gnupg, protocol buffers v3

Node Storage Persistent Named Volumes

Table 5.3.2: Node Configuration - Container Specification

Communication between the nodes in the system is carried by the gRPC protocol

paradigm. Message passing in gRPC is backed by protocol buffers v3 which is a

serialized data structure which is platform, and stack independent. Using this, we

define our data and compile it using the gRPC compiler and use it for the variety

of data streams. We use gRPC because it is a universal high-performance RPC

framework that scales well with massively distributed systems and has a bidirectional

secure streamed message passing interface

5.3.3 Results

In the given literature all the methods that we discussed, uses a variety of ways to

tackle the problem of scalability. Due to this, there is a need for a common benchmark

that brings the core of different systems at the same level and units. For comparing

our methods, we use the methodology given by IBM in their whitepaper where they

have specified performance metrics to compare the system design and working of
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different blockchain systems. We use the following metrics for the whitepaper to

evaluate our model for comparisons:

1. Transaction Throughput (T )

Transaction throughput is the rate at which transaction are processed, vali-

dated and committed by the blockchain system. In transaction throughput

only valid blocks are taken into consideration. This parameter is measured in

unit transactions per second (tps).

2. Transaction Latency (l)

Transaction Latency can be defined as the time interval between time trans-

action was submitted and time it was committed over the network is called

transaction latency in the blockchain. This helps to quantify the readiness of

data over the network after a valid transaction is submitted.

We compare our method with others for Transaction Latency & Throughput and

Computational Complexity on Node. We choose Zyzzyva, FastBFT, and Gosig from

advance byzantine fault tolerant systems because those are some of the optimal de-

signs with regards to consensus design. In terms of algorithmic, we compare our

method with the majority of BFTs and evaluate the standings.

We evaluate our throughput and latency up to the network size of 140 as the given

literature compares their processes with the same size. We only compare latency for

100 nodes as most of the literature has the same default setting at 100 nodes. The

experiment results are shown in Table 5.3.3 and Table 5.3.4. The values shown in the

table are the average of 150 experiments. The throughput results are rounded to the

nearest integer.

From Table 5.3.3, we can see that FastBFT outperforms all the other protocols

because of the tree-based communication topology. Also when N increases, FastBFT

does not show higher intervals of degradation in throughput. The proposed methodol-

ogy holds the sub-optimal position in standings and also has similar low depredations

levels when the network size increases. PBFT i.e. state of art methodology stands
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last because of high communication complexity, essentially reducing the throughput

of the system. Comparing the latency of transactions in Table 5.3.4 we observe similar

trends as we saw in throughput and out method turns out to be sub-optimal in the

list. Furthermore, we also evaluate the single node per block proposal complexity of

the methods in Table 5.3.5. The proposed method turns out to be sub-optimal when

compared with other methods. Where FastBFT and Zyzzyva have overly optimized

communication topology which can easily break over arbitrary failures, over method

guarantees a strongly connected network with a single node simply O(itr·ln(N)) com-

plexity. For Table 5.3.5, please note that N is used as the same standard notation

i.e. the number of nodes in the network.

Methods N = 50 N = 100 N = 140

FastBFT 980 971 953

Zyzzyva 992 856 813

Proposed Method 781 764 747

Gosig 653 607 547

PBFT 517 469 413

Table 5.3.3: Transaction Throughput Results (tps)

Methods Latency

FastBFT 112.6

Zyzzyva 236.4

Proposed Method 267.7

Gosig 392.6

PBFT 646.8

Table 5.3.4: Transaction Latency Results (ms)
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Methods Communication Complexity

FastBFT O(b); where b is branching factor of node

Zyzzyva O(1) ; under speculative gracious execution

Proposed Method O(itr · ln(N))

Gosig O(N ·m); where m is a fan-out parameter

PBFT O(N2)

Table 5.3.5: Computational Complexity of Methods
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CHAPTER 6

Conclusion & Future Work

6.1 Conclusion

In this thesis, we address the scaling problem that is prevailing in the blockchain

systems. To constraint the domain, we only consider the consortium blockchain as

our area as it has direct and useful applications and is a potential candidate to

replace the existing computing and audit systems. In the initial chapters, we define

the utility of blockchain and also discuss methods used in literature to scale systems.

From this, we pick up a novel problem of collaborating multiple blockchains that

share data and validate with each other into one system with a significant reduced

communication overheads and a instead of existing monolithic design we propose a

framework backed by state machine replication to extend finality to update states

of the nodes without participating into actual consensus process. Also, we propose

a new novel communication topology to the stack which cut downs communication

overhead drastically and optimizes the overall system.

In the later sections, we do an in-depth analysis of our model by checking overall

complexity, empirical analysis, effects on the system by tweaking core parameters

and with the developed proof of concept, we also benchmark our model with existing

approaches. Finally, we can say that our model stands at a respectable position

as compared to other models we have in literature without overcompensating any

underlying assumptions.
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6.2 Future Work

We restrict our model in a consortium environment. This model can be further

tested with public blockchains where overall system components are different from

private blockchains. For our experiment test-bed, all the experiments were executed

on local systems so the model can be further extended to cloud deployment and can

be evaluated for other test metrics such as geographical latency, off-chained database

repositories and many more. Another interesting area to go through can be testing

random graph network topology over other BFT protocols and compare it with default

topology they adhere to. Furthermore, because of domain restriction, we only consider

our model against arbitrary failures. There is a future scope in incorporating adaptive

adversaries scenarios as well.
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