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Abstract

We report the first discovery of a thick-disk planet, LHS 1815b (TOI-704b, TIC 260004324), detected in the
Transiting Exoplanet Survey Satellite (TESS) survey. LHS 1815b transits a bright (V=12.19 mag, K=7.99 mag)
and quiet M dwarf located 29.87±0.02 pc away with a mass of 0.502±0.015Me and a radius of
0.501±0.030 Re. We validate the planet by combining space- and ground-based photometry, spectroscopy, and
imaging. The planet has a radius of 1.088±0.064 R⊕ with a 3σ mass upper limit of 8.7M⊕. We analyze the
galactic kinematics and orbit of the host star LHS 1815 and find that it has a large probability (Pthick/Pthin=6482)
to be in the thick disk with a much higher expected maximal height (Zmax=1.8 kpc) above the Galactic plane
compared with other TESS planet host stars. Future studies of the interior structure and atmospheric properties of
planets in such systems using, for example, the upcoming James Webb Space Telescope, can investigate the
differences in formation efficiency and evolution for planetary systems between different Galactic components
(thick disks, thin disks, and halo).

Unified Astronomy Thesaurus concepts: Astrometric exoplanet detection (2130); Astrometry (80); Stellar
kinematics (1608); Transit photometry (1709); Radial velocity (1332)

1. Introduction

Since Gilmore & Reid (1983) first proposed subdivision
between the thick disk and thin disk after studying the stellar
luminosity function and Galactic stellar number density gradient,
the study of the origin of Galactic disks has been a hot topic over
the past few decades. Current theories postulate that the Milky

Way (MW) is made up of several components: a thin disk, a thick
disk, a halo and a bulge. Further studies indicate that solar
neighborhood stars are mostly members of the Galactic disk, with
a small fraction belonging to the halo (Buser et al. 1999; Jurić
et al. 2008; Bensby et al. 2014). In general, compared with thin-
disk stars, stars in the thick disk are older (Bensby et al. 2005;
Fuhrmann 2008; Adibekyan et al. 2011), and have enhanced
α-elements abundance and lower metallicity (Prochaska et al. 2000;
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Reddy et al. 2006; Adibekyan et al. 2013) as well as hotter
kinematic features (Adibekyan et al. 2013; Bensby et al. 2014),
which could affect the planet formation efficiency (Gonza-
lez 1997; Neves et al. 2009).

To date, more than 4000 exoplanets31 have been detected,
thanks to successful surveys such as HATNet (Bakos et al.
2004), SuperWASP (Pollacco et al. 2006), and space-based
missions including CoRoT (Baglin et al. 2006), Kepler
(Borucki et al. 2010), and K2 (Howell et al. 2014). However,
few of the known exoplanets have been claimed to show thick-
disk features (Reid et al. 2007; Fuhrmann & Bernkopf 2008;
Neves et al. 2009; Bouchy et al. 2010; Campante et al. 2015).
The difference in planet formation and evolution between the
thick and thin disks of the MW is still a mystery. Interestingly,
a recent work from McTier & Kipping (2019) implies that
planets in the solar neighborhood are just as likely to form
around fast-moving stars (thick-disk) as they are around slow-
moving stars (thin-disk). Because a common way to separate
different components of the MW relies on the spatial motion of
stars, potential large biases may arise from radial velocity (RV)
measurement limits as the RV survey of Gaia DR2 focuses on
relatively bright stars (G16.2 mag). Only ∼150 million stars
have RV measurements (Sartoretti et al. 2018), so kinematic
information of most faint stars is still lacking.

The successful launch of the Transiting Exoplanet Survey
Satellite (TESS; Ricker et al. 2014) opened a new era in this
area, aiming at detecting small exoplanets around bright stars,
and capable of discovering about ∼104 planets during its
primary mission (Sullivan et al. 2015; Huang et al. 2018b). The
TESS survey can provide a large sample of solar neighborhood
transiting planets across the whole sky. All planet host stars are
bright enough to have their RV measured by the Gaia survey. It
will be an excellent opportunity to study the difference in the
planet evolution between the thin and thick disks.

Here, we present the discovery of LHS 1815b, an Earth-size
planet on a short 3.1843 day orbit, transiting a nearby M1-type
dwarf. It is the first planetary system detected in the Galactic
thick disk during the two-year survey of TESS.

This paper is organized as follows: In Section 2, we
describe the space and ground-based observations. Section 3
presents the analysis about the stellar characterization of
LHS 1815 along with results of the joint fit. We focus on
the tidal evolution in Section 4. In Section 5, we discuss the
thick-disk features of LHS 1815. We conclude our findings in
Section 6.

2. Observations

2.1. TESS

LHS 1815 (TIC 260004324) falls in TESS’s continuous
viewing zone and it was observed with the two-minute cadence
mode, spanning from 2018 July 25th to 2019 July 17th. Data
ranges from Sector 1 to Sector 13 while excluding Sector 6,
and it consists of a total of 229,712 exposures.
Once images were transmitted to Earth, they were reduced

by using the Science Processing Operations Center (SPOC)
pipeline (Jenkins et al. 2016), which was developed at NASA
Ames Research Center based on Kepler mission’s science
pipeline. Transit planet search (Jenkins 2002; Jenkins et al.
2017) was performed to look for transit signals and finally LHS
1815 was alerted on the MIT TESS Alerts portal32 as a planet
candidate, designated TESS object of interest (TOI) 704.01,
with a period of 3.814 days, a transit depth of ∼400 ppm, and a
transit duration of ∼1.4 hr.
We downloaded photometric data from the Mikulski Archive

for Space Telescopes (MAST33) and used the two-minute
Presearch Data Conditioning Simple Aperture Photometry light
curve from the SPOC pipeline for our transit analyses (Smith
et al. 2012; Stumpe et al. 2012, 2014), which has been
corrected for instrumental and systematic effects. To improve
the precision of the light curve, we ignored data where the
SPOC quality flag was nonzero. We performed the detrending
by fitting a spline model to the raw light curve after masking
out all transits (knots spaced every 0.5 days). We divided the
light curve by the best-fit spline for normalization.
To independently confirm the 3.814 day signal using all

available TESS data (12 Sectors), we used the transit least-
squares algorithm (TLS; Hippke & Heller 2019) to search the
light curve for transits. TLS uses a physically realistic model
accounting for limb-darkening and nonzero ingress/egress
duration, enabling it to detect shallower transits than box-fitting
least squares (BLS). We recovered the 3.814 day transits with a
signal detection efficiency (SDE) of ∼75, and subtracted the
TLS model from the data to search for additional planets (see
Figure 1); several peaks with SDE moderately higher than 15
can be seen in the TLS power spectrum of the residuals, but
they all appeared to be caused by noise. We concluded that no
other significant transit signals exist in the TESS data besides
the 3.814 day signal.

Figure 1. Left: TLS power spectrum of the TESS photometry of LHS 1815, with the detected orbital period indicated by a blue shaded region, as well as harmonics
and subharmonics indicated by blue dotted lines. Right: TESS photometry phase-folded on the detected orbital period, with the TLS transit model in blue; this model
was subtracted from the data to search for additional transit signals, but none were found.

31 https://exoplanetarchive.ipac.caltech.edu/

32 https://tess.mit.edu/alerts/
33 http://archive.stsci.edu/tess/

2

The Astronomical Journal, 159:160 (12pp), 2020 April Gan et al.

https://exoplanetarchive.ipac.caltech.edu/
https://exoplanetarchive.ipac.caltech.edu/
https://exoplanetarchive.ipac.caltech.edu/
https://tess.mit.edu/alerts/
http://archive.stsci.edu/tess/


2.2. Ground-based Photometry

Though TESS has high photometric precision, due to its
large pixel scale (21″ per pixel, Ricker et al. 2014), light from
nearby stars is blended with the target. Nearby eclipsing binary
(NEB) are a common source of false positives in TESS
(Brown 2003; Sullivan et al. 2015) as they can cause transit-
like signals on the target. Ground-based observations have two
main goals: one is to reproduce the transit signal, the other is to
look for nearby eclipsing binaries and check whether the signal
is on the target (Deeg et al. 2009).

In addition to TESS photometry, we also acquired two
ground-based follow-up observations through 1 m telescopes of
the Las Cumbres Observatory Global Telescope Network
(LCO)34 (Brown et al. 2013), summarized in Table 1. We used
the Sinistro cameras, which deliver a field of view (FoV) of
26′×26′ with a plate scale of 0 389 per pixel. Data
calibration was done by LCO’s automatic BANZAI pipeline.
Aperture photometry is performed by using AstroImageJ
(Collins et al. 2017).

A full transit of LHS 1815b was observed in the Sloan r′
band on 2019 August 24th at Siding Spring Observatory
(SSO), Australia. The observation was obtained with 130 s
exposure time, aiming to rule out all potential faint nearby
eclipsing binaries that may result in the TESS detection. We
initially aimed at ruling out nearby EBs since the shallow
transit depth (400 ppm) is challenging for ground telescopes to
detect. Another similar egress observation in r′ but with 70 s
exposure time was done two orbital periods later at Cerro Tololo
Inter-American Observatory (CTIO), Chile. In these observa-
tions, we have examined all nearby stars within 2 5 from the
target with brightness difference down to ΔT∼8.7 mag
identified by Gaia35 (See Figure 2). None of them showed
variability (an eclipse) at an amplitude that could have led to
the transit seen in TESS data when their light is blended with
the target on TESS CCD.

2.3. High-resolution Spectroscopy

Twenty-two spectra of LHS 1815 were collected with the
High Accuracy Radial velocity Planet Searcher (HARPS;
Mayor et al. 2003) on the ESO 3.6 m telescope at La Silla
Observatory in Chile. The spectrograph has a resolving power
of R≈115,000 and covers the spectral range from 380 to
690 nm. These spectra were taken between UT 2003 December
15 and UT 2010 December 18 and are publicly available on the
ESO Science Archive Facility.36 We note that some of the RVs
from those spectra were derived using the K5 template and the
others with the M2 template.

Here, we used the Template Enhanced Radial velocity Re-
analysis Application (TERRA; Anglada-Escudé & Butler 2012)
software to homogeneously extract the Doppler measurements

from the archival HARPS spectra. TERRA is considered to be
more precise for M-dwarfs relative to the HARPS Data
Reduction Software (DRS; Perger et al. 2017) whose results
are on the HARPS archive. Table 2 lists the HARPS-TERRA
RVs and their uncertainties. Time stamps are given in
barycentric Julian Date in the barycentric dynamical time
(BJD TDB).
We searched the HARPS-TERRA RVs for the Doppler reflex

motion induced by the transiting planet. Figure 3 displays the
generalized Lomb–Scargle periodogram (Zechmeister & Kürster
2009) of the HARPS-TERRA RVs within the frequency range
0.0–0.5 day−1. The periodogram has its highest peak at the orbital
frequency of the transiting planet ( forb=0.262 day−1). We
assessed its false-alarm probability (FAP) following the bootstrap
method described in Murdoch et al. (1993). Briefly, we defined
the FAP as the probability that the periodogram of fake data sets
—obtained by randomly shuffling the Doppler measurements,
while keeping their time-stamps fixed—has a peak higher than
the peak observed in the periodogram of the HARPS-TERRA
RVs. With a false alarm probability of FAP≈30%, the signal
at forb=0.262 day

−1 is found not to be significant within the
frequency range 0.0–0.5 day−1.
However, the TESS light curve provides prior knowledge of the

possible presence of a Doppler signal at the transiting frequency.
We therefore computed the FAP at the orbital frequency of the
transiting planet, i.e., the probability that random data sets can
produce a peak exactly at forb=0.262 day−1 and whose power is
higher than the power of the peak found in the periodogram of the
HAPRS-TERRA RVs. To this aim, we first computed the FAP of
105 fake data sets in 11 different spectral ranges centered around
forb=0.262 day−1 and with arbitrary chosen widths37 of 0.001,
0.041, 0.081, 0.121, 0.161, 0.201, 0.241, 0.281, 0.321,
0.361, and 0.401 day−1. We finally extrapolated the FAP
in an infinitesimally narrow window centered around forb=
0.262 day−1 by fitting a quadratic trend to the 11 data points.
We found a small false alarm probability of FAP=0.02%,
providing evidence for the existence of a significant Doppler
signal at the transiting frequency of the planet.

2.4. High Angular Resolution Imaging

High angular resolution imaging is needed to search for
nearby sources that can contaminate the TESS photometry,
resulting in an underestimated planetary radius, or be the
source of astrophysical false positives, such as background
eclipsing binaries.

2.4.1. SOAR

We searched for stellar companions to LHS 1815 with
speckle imaging on the 4.1 m Southern Astrophysical Research
(SOAR) telescope (Tokovinin 2018) on UT 2019 October 16,

Table 1
Summary of Photometric Observations for LHS 1815

Facility Date Exposure time(s) Total exposures Filter Summary

LCO 1 m SSO Sinistro 2019 Aug 24 130 46 r′ Full
LCO 1 m CTIO Sinistro 2019 Sep 1 70 92 r′ Ingress

34 https://lco.global/
35 https://www.astro.louisville.edu/gaia_to_aij/
36 http://archive.eso.org/wdb/wdb/adp/phase3_spectral/form

37 We note that the time resolution of the HARPS time-series—defined as the
inverse of the time baseline—is 0.0004 day−1, which is 2.5 times lower then
the smallest width used in our analysis.
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observing in a visible bandpass similar to that of TESS. The 5σ
detection sensitivity and speckle autocorrelation function
(ACF) from the observation are shown in Figure 4. No nearby
stars were detected in the SOAR observations down to five

magnitudes fainter than the target and as close as 0 2 to
LHS 1815.

2.4.2. Gemini-South

LHS 1815 was also observed on UT 2019 October 8 using the
Zorro speckle instrument on Gemini-South.38 Zorro provides
simultaneously high-resolution speckle imaging in two bands,
562 and 832 nm, with output data products including a
reconstructed image, and robust limits on companion detec-
tions (Howell et al. 2011). Figure 5 shows our results with
corresponding reconstructed speckle images from which we
find that LHS 1815 is a single star with no companions
detected down to a magnitude difference of 5 to 8 mag from the
diffraction limit (0.5 au) to 1 75 (54 au).

3. Analysis

3.1. Stellar Characterization

3.1.1. Empirical Relation

We used Two Micron All Sky Survey (2MASS) mKS (Cutri
et al. 2003; Skrutskie et al. 2006) and the parallax from Gaia
DR2 (Gaia Collaboration et al. 2018) to calculate the KS band
absolute magnitude = M 5.62 0.02KS mag. We estimated the
bolometric correction to be 2.61±0.06 mag through the
empirical polynomial relation in Mann et al. (2015). We
obtained a bolometric magnitude Mbol=8.23±0.06 mag,
leading to a luminosity of Lå=0.040±0.002 Le.
To compute the effective temperature Teff of the host star, we

applied two different methods. Following the polynomial relation
between Teff and V−J in Pecaut & Mamajek (2013), we obtained

Figure 2. POSS2 blue image of LHS 1815 obtained in 1978. Red point is the
location of LHS 1815 in POSS2 while the red cross represents its current
position. Red circle indicates a region with a radius of 1′ around LHS 1815.
Red arrow indicates the direction of proper motion. Cyan points are stars within
2 5 retrieved from Gaia DR2 that can potentially cause the TESS detection, all
of which have been cleared by ground-based LCO photometry.

Table 2
HARPS RV Measurements of LHS 1815

BJDTDB RV (m s−1) σRV (m s−1)

2452,988.75308 1.30 1.80
2452,998.71510 2.28 2.42
2453,007.72615 0.38 0.81
2453,295.87376 0.94 1.95
2453,834.51235 −4.99 1.43
2454,430.82565 −5.25 1.91
2454,431.76826 0.84 1.62
2454,751.87135 0.00 5.35
2454,803.72204 4.98 4.86
2454,814.73847 −4.50 1.77
2454,833.76771 −6.42 1.73
2454,841.69264 −2.28 1.52
2454,931.50924 3.50 1.53
2455,218.75761 −0.27 1.44
2455,538.64177 5.24 2.22
2455,539.64365 −3.78 1.94
2455,540.66332 −3.39 1.70
2455,542.70589 −0.79 2.28
2455,544.72265 0.36 1.76
2455,546.63073 3.07 2.10
2455,547.74183 −0.79 2.00
2455,548.64140 −1.84 2.29

Note. Time stamps are are given in barycentric Julian Date in the barycentric
dynamical time.

Figure 3. Top: generalized Lomb–Scargle periodogram of the HARPS RVs. Red
arrow marks the orbital frequency of the transiting planet ( forb=0.262 day

−1).
Bottom: false-alarm probability computed in 11 different spectral ranges centered
around the orbital frequency of the transiting planet ( forb=0.262 day−1) and with
a width of 0.001, 0.041, 0.081, 0.121, 0.161, 0.201, 0.241, 0.281, 0.321, 0.361,
and 0.401 day−1. Red line marks the best fitting parabolic trend.

38 https://www.gemini.edu/sciops/instruments/alopeke-zorro/
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Teff =3658±103K. We also determined Teff based on the
Stefan–Boltzmann law. First, we estimated the radius of the host
star 0.50±0.03Re using the Rå−MKS relation in Mann et al.
(2015). Next, we derived Teff=3630±98 K, which agrees well
with the result from the first method.

We evaluated the mass of the host star Må=0.502±
0.015Me using Equation(2) in Mann et al. (2019) based on
the Må−MKS polynomial relation.

3.1.2. Spectroscopic Parameters

Following Hirano et al. (2018), we also used the coadded
HARPS spectra signal-to-noise ratio (S/N=115 at 6000Å) as
input to SpecMatch-Emp (Yee et al. 2017) to derive the stellar
effective temperature Teff , radius Rå, and iron abundance [Fe/H].
By matching the input spectrum to a high-resolution spectral
library of 404 stars, this method yields Teff=3553±70K,
Rå=0.454±0.100Re, and [Fe/H]=−0.12±0.09.

3.1.3. SED Analysis

As an independent check on the derived stellar parameters,
we performed an analysis of the broadband spectral energy

distribution (SED) together with the Gaia DR2 parallax in
order to determine an empirical measurement of the stellar
radius, following the procedures described in Stassun & Torres
(2016) and Stassun et al. (2017, 2018a). We gathered the U, B,
V magnitudes from Mermilliod (2006), the J, H,KS magnitudes
from 2MASS Point Source Catalog (Cutri et al. 2003; Skrutskie
et al. 2006), four Wide-field Infrared Survey Explorer (WISE)
magnitudes (Wright et al. 2010) and three Gaia magnitudes G,
GBP, GRP. Together, the available photometry spans the full
stellar SED over the wavelength range 0.3–22μm.
We performed a fit using the NextGen stellar atmosphere

models, with priors on effective temperature Teff and metallicity
([Fe/H]) from the empirical relations and spectroscopy
described above. We set the extinctionAV to zero, due to the
proximity of the star. The best-fit SED is shown in Figure 6
with a reduced χ2=2.5, adopting Teff =3650±160 K and
[Fe/H]=−0.12±0.09. Integrating the model SED gives an
observed bolometric flux of Fbol=(1.478±0.070)×10−9

ergs−1cm−2. Taking the Fbol and Teff together with the Gaia
parallax, adjusted by +0.08 mas to account for the systematic
offset reported by Stassun & Torres (2018), we found a stellar
radius of R=0.502±0.044 Re, which is consistent with our
result based on empirical relations in Section 3.1.1.
Combining all the results above, we adopted the mean values

for effective temperature Teff and stellar radius Rå. Together
with the expected stellar mass, we found the mean stellar
density ρå=5.6±2.7 gcm−3. We list all stellar parameter
values in Table 3.

3.2. Joint Fit

To simultaneously model the transits and RV orbit, we used
the EXOplanet traNsits and rAdIaL velocity fittER (EXONA-
IER; Espinoza et al. 2016). The transit model is created by
batman (Kreidberg 2015) while the RV orbit is modeled using
radvel (Fulton et al. 2018).
Before we carried out the joint fit, we first created individual

fits for TESS photometry-only and HARPS RV-only data sets
with uniform priors, of which the posteriors are taken into
consideration for further joint analysis. For the joint fit, we

Figure 4. Speckle ACF obtained in the I band using SOAR. The 5σ contrast
curve for LHS 1815 is shown by the black points. Black solid line corresponds
to the linear fit of the data, at separations smaller and larger than ∼0 2.

Figure 5. Zorro speckle imaging and 5σ contrast curves of LHS 1815 at 562
and 832 nm. The data reveal that no companion star is detected from the
diffraction limit (17 mas) out to 1 75 within a Δm of 5 to 8.

Figure 6. Best SED fit for LHS 1815. Red symbols show the observed
photometric measurements, where the horizontal bars represent the effective
width of the passband. Blue points are the predicted integrated fluxes at the
corresponding bandpass. Black line represents the best-fit NextGen atmosphere
model.
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applied uniform priors for planet-to-star radius ratio (RP/Rå),
orbital inclination (i), two quadratic limb-darkening coefficients
(q1 and q2) with an initial guess taken from Claret (2018),
systemic velocityγ, RV semiamplitude (K ), and a normal prior
for period (P), middle transit time (T0), and the separation
between the host star and the planet in units of the stellar radius
(a/Rå) based on the stellar radius and mass (Sozzetti et al.
2007). We applied the Markov chain Monte Carlo (MCMC)
analysis to determine the posterior probability distribution of
the system parameters using the package emcee (Foreman-
Mackey et al. 2013). We first fitted a Keplerian orbit, which
gave an eccentricity of 0.4±0.2, indicating the RV data set is
insufficient to detect an eccentric orbit. Hence, we assumed a
circular orbit and fixed the orbital eccentricity to zero, which is
expected given the short orbital period (see Section 4). The
posterior of the semiamplitude K is -

+2.7 1.0
0.9 m s−1, indicating

that the companion of LHS 1815 has a mass 4.2±1.5M⊕ with
a 3σ upper-limit 8.7 M⊕. The best-fit transit and RV models are

shown in Figure 7. We list the resulting fitted parameters in
Table 5 along with several derived physical parameters.

3.3. Stellar Rotation and Activity

TESS PDC SAP photometry is not always suitable for stellar
variability studies, as the stellar variability can be removed by the
PDC analysis. To search for rotational spot modulation in the
TESS photometry, we used the lightkurve package (Barentsen
et al. 2019) to produce systematics-corrected light curves from the
TESS pixel data. The lightkurve package implements a flavor of
pixel-level decorrelation (PLD; Deming et al. 2015) to account for
the correlated noise induced by the coupling of pointing jitter and
intrapixel gain inhomogeneities in the detector. We rejected
outliers and normalized the PLD-corrected light curve from each
TESS Sector to its median flux value, then further binned the data
to a one-day cadence for computational efficiency. We elected to
analyze Sectors 1–5 and 7–13 independently because of the
absence of data from Sector 6, which yielded two nearly evenly
sampled data sets. We computed the GLS periodogram
(Zechmeister & Kürster 2009) for each of the two data subsets,
and found a clear peak in power at ∼24 days in both; less
significant peaks can be seen at ∼40 and 55–60 days. Following
Livingston et al. (2018), we also computed the ACF of each data
subset, after linearly extrapolating the data to a uniformly spaced
grid. For both data subsets, the ACF exhibits a higher peak at∼48
days, which suggests that the ∼24 day signal is the first harmonic
of the rotation period (see Figure 8); we concluded that the true
stellar rotation period is∼48 days. To estimate the uncertainty, we
also modeled the full binned TESS time series as a Gaussian
Process (Rasmussen & Williams 2005) with a quasi-periodic
kernel, which enabled us to sample the posterior distribution via
MCMC; we found the rotation period to be 47.8±0.7 days.
LHS 1815 was also observed by WASP-South over the

period of 2008–2012 for a typical duration of 150 days in each
year. WASP-South is an array of eight cameras combining
200 mm f/1.8 lenses with 2k×2k CCDs and observing with a
broadband filter giving a 400–700 nm bandpass (Pollacco et al.
2006). Each visible field was monitored with a cadence of ∼15
minutes on every clear night, accumulating 50,000 data points
on LHS 1815. The light curves from each observing season
were searched for rotational modulations using the methods
described in Maxted et al. (2011). For LHS 1815, we found a
persistent modulation with a period of 24.9±1.1 days with an
amplitude of 2–8 mmag (Figure 9) and an FAP below 1%. This
is consistent with the signal found in the TESS data, and
confirms that the signal is likely caused by rotation as it is
persistent for multiple years. Future TESS data to be obtained
during the TESS Extended Mission will allow better identifica-
tion of the correct rotation period of this target.
To assess stellar activity levels spectroscopically, we also

extracted the chromatic index (CRX) and differential line width
(dLW) indicators from the HARPS spectra using the publicly
available SpEctrum Radial Velocity AnaLyser pipeline (SER-
VAL; Zechmeister et al. 2018). CRX summarizes the
wavelength dependence of the RVs, and dLW is an alternative
to the commonly used FWHM. The apparent lack of a
significant correlation between the activity indicators and the
RVs suggests that the RVs are not dominated by stellar activity
(see Figure 10). The observed RV scatter is therefore likely
caused primarily by the Doppler signal induced by the planet,
consistent with the detection of a peak in the GLS periodogram
at the frequency of the orbital period (Figure 3).

Table 3
Basic Stellar Parameters for LHS 1815

Parameter Value

Star ID
2MASS J06042035-5518468
Gaia DR2 5500061456275483776
TIC 260004324
TOI 704
LHS 1815
Equatorial Coordinates
α (J2000) 06:04:20.359
δ (J2000) −55:18:46.84
Photometric properties
TESS (mag) 10.142±0.007 TIC V8a

Gaia (mag) 11.236±0.0007 Gaia DR2
Gaia BP (mag) 12.407±0.0017 Gaia DR2
Gaia RP (mag) 10.180±0.0014 Gaia DR2
BT (mag) 14.027±0.502 Tycho-2
VT (mag) 12.166±0.202 Tycho-2
B (mag) 13.595±0.011 APASS
V (mag) 12.189±0.03 APASS
J (mag) 8.801±0.024 2MASS
H (mag) 8.209±0.047 2MASS
KS (mag) 7.993±0.020 2MASS
WISE1 (mag) 7.820±0.023 WISE
WISE2 (mag) 7.736±0.020 WISE
WISE3 (mag) 7.661±0.016 WISE
WISE4 (mag) 7.555±0.088 WISE
Astrometric properties
Parallax (mas) 33.48±0.03 Gaia DR2
μα (mas yr−1) 681.73±0.05 Gaia DR2
μδ (mas yr−1) 342.13±0.06 Gaia DR2
RV (km s−1) 42.22±0.25 Gaia DR2
Derived parameters
Distance (pc) 29.87±0.02 This work
Må (Me) 0.502±0.015 This work
Rå (Re) 0.501±0.030 This work
ρå (g cm−3) 5.6±2.7 This work
log gå (cgs) 4.77±0.03 This work
Lå (Le) 0.041±0.004 This work
Teff (K) 3643±142 This work
[ ]Fe H −0.12±0.09 This work
Prot (day) 47.8±0.7 This work

Note.
a Stassun et al. (2018b, 2019).
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3.4. False Positive Analysis

As we previously discussed in Section 2.2, there are several
scenarios which can cause a false positive—a transit-like signal
in the TESS data that does not originate from a transiting star–
planet system. We considered all data we have obtained and
carefully ruled out the false-positive scenarios below following
Vanderspek et al. (2019), Crossfield et al. (2019), and Shporer
et al. (2020).

1. Detection is caused by instrumental artifact:
We excluded this possibility because periodic transit signals

were found in all 12 TESS sectors in which this target was
observed, and in each sector the target was located at different
CCD position.

2. LHS 1815 is a stellar eclipsing binary:
Our HARPS RV data did not show a significant RV

variability at the few ms−1 level. The 3σ mass upper limit has
also ruled out this scenario (Section 3.2).

3. Light from an NEB is blended with LHS 1815:
Our two ground-based observations from LCO have cleared

all nearby Gaia stars (ΔT∼8.7 mag) within 2 5 through the
NEB analysis (Section 2.2). We did not find any obvious
variation of those stars, which indicates this cannot be the case.
We have also made sure that the scatter in light curves of
nearby stars is smaller than the expected eclipse depth given the
brightness difference between the nearby star and the target.

4. Light from an unassociated distant eclipsing binary or a
transiting planet system fully blended with LHS 1815:

Thanks to the high proper motion of LHS 1815
(∼760 mas yr−1), we can easily reject this scenario by checking
images from other surveys decades ago. We did not see any
other stars that are bright enough to cause the transit seen in

Figure 7. Left: phase-folded and normalized TESS photometric data. Binned light curves with different bin size are plotted with gray and blue points, respectively.
Best-fit transit model is shown as a red solid line. Residuals are plotted below. Right: phase-folded RV curve of LHS 1815. Blue points represent RVs extracted from
the HARPS spectra with the TERRA pipeline. Error bars are the quadrature sum of the instrument jitter term and the measurement uncertainties for all RVs. Best-fit
model is shown as a red solid line. Residuals are shown below.

Figure 8. GLS power spectrum (left) and ACF (right) of the PLD-corrected
TESS photometry from Sectors 1–5 (blue) and 7–13 (red), with the peaks
indicated by gray vertical shading. Mean values of the period from each data
subset are annotated in the upper right.

Figure 9. Periodograms of the WASP-South data in each observing season,
along with (right) folds of the data on the 24.9 days modulation (marked by
orange ticks).
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TESS data at the current position of LHS 1815, as shown in
Figure 2, and thus this possibility is excluded.

5. LHS 1815 has a stellar binary companion on a wide orbit
and that binary companion is the origin of the transit signal:

Photometric data from multiple sectors of TESS offered us an
opportunity to deliver precise duration of transit ingress/egress
and the time from first-to-third contact during the transit event.
Assuming a symmetric light curve, we have
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where tT and tF are the total and in-transit duration (second to
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Given the 3σ lower limit on the exact transit depth from global
modeling, the blended star has to contribute at least 50% of the
total flux in the TESS aperture:

( )D
+

F

f f
0.03%; 4

s b

( )
+


f

f f
50%, 5b

s b

where fs and fb are the source flux and blending flux. We
excluded this scenario mainly based on the following reasons:

(1) According to this scenario, the blending star is expected
to have >50% contribution to the TESS flux, but Gaia
and high resolution images show a nondetection of a
nearby star at a few arcsec from the target.

(2) A star that is comparable in brightness to the target
would make the spectrum appear double-lined, but we
do not see this phenomenon in the spectrum from
HARPS.

(3) A star that is comparable in brightness to the target would
cause the target to appear brighter for its distance. Since
the distance is given by the Gaia DR2 parallax and Teff is
constrained by the SED, a blended star with comparable
brightness will make the target appear too bright given its
distance for a main-sequence star, which is not the case.

4. Constraints from Tidal Evolution

We estimated the timescales for circularization and tidal
decay using the equilibrium tide model from Hut (1981). We
integrated the secularly averaged equations for the eccentricity
and semimajor axis of the planet—namely, Equations(9) and
(10) from Hut (1981)—using the midpoint method. We
neglected the evolution of the planetary spin, since the spin
angular momentum of the planet is too small with respect to the
orbital angular momentum to affect the orbit significantly.
Given the upper limit estimate for the mass MP of LHS 1815b
and the intrinsic uncertainty of tidal efficiency parameters (the
time-lag τ or the tidal quality factor Q′), we have explored
different tidal evolution models in the range 10 s<τ<1000 s
and 1M⊕<MP<6M⊕. This range of time lag is appropriate
for planets with rocky composition (Socrates et al. 2012). For
low tidal efficiency (τ=10 s), circularization takes longer than
10 Gyr regardless of the mass of the planet, while for high tidal
efficiency (τ=1000 s), the planetary orbit is always comple-
tely circularized within 10 Gyr, with small planetary masses
(MP<3M⊕) circularizing within 1 Gyr. On the other hand, at
moderate tidal efficiency (τ=100 s), the circularization time-
scale is sensible to the planetary mass. For τ=100 s and
MP<3M⊕, the planetary orbit reaches e0.05 within
10 Gyr, while it retains some eccentricity for higher planetary
masses (MP>3M⊕).
Figure 11 shows the evolution of orbital period and

eccentricity of the planet, assuming MP=4.5M⊕, a constant
time lag of τ=300 s, and an apsidal constant of kA=0.3,
corresponding to a tidal quality factor of Q′=5×102. In the
top panel of Figure 11, the planet has an initial period equal to
the currently observed one, and different initial eccentricities.
Initial eccentricities lower than 0.5 will be dissipated within
about 5 Gyr, the lower the eccentricity, the longer the
circularization time. However, as the eccentricity is dissipated,
the orbital period decays so that the final period does not match
the observed one. Specifically, the orbital period would
mismatch the observed one within 100–200Myr for all
eccentricities e0.05.
In the bottom panel of Figure 11, we show the evolution

for different initial periods so that the final period after
circularization matches the present one. By 5 Gyr, all the

Figure 10. CRX and dLW as a function of RV extracted from the HARPS
spectra by the SERVAL pipeline.
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periods have reached the final value of 3.81433 days with
e0.05. If the system was younger than 5 Gyr, it would not
have time to circularize unless the initial eccentricity was
e0.1. Alternatively, it might be argued that the planet has
not circularized yet. However, as shown by the top panel of
Figure 11, any residual eccentricity higher than 0.05 at 3.81433
days would make the planet decay within 100Myr.

Ultimately, constraints on the age of the system would help
to narrow down the possible range of eccentricities of the
planet. If the system is very young (∼100Myr), the eccentricity
is largely uncertain because the planet must be currently
undergoing tidal circularization. Conversely, if the system is
old (>5 Gyr), tidal circularization is mostly over and the
eccentricity at present day is likely less than 0.05. Note also
that the eccentricity could be excited by another undetected
planet, a possibility that we have neglected in our analysis.

5. Thick-disk Characteristics

We confirmed the thick-disk nature of LHS 1815 mainly on
the basis of its kinematic information. In general, thick-disk
stars are kinematically hotter (larger velocity dispersions) than
stars that belong to the thin disk. We converted radial velocities

and proper motions from Gaia DR2 to 3D velocities U, V, and
W39 using the distance of d=29.87±0.02 pc from our SED
fit based on the method described in Johnson & Soderblom
(1987). To relate the space velocities to the local standard of
rest (LSR), we adopted solar velocity components relative to
the LSR (Ue, Ve, We)=(9.58, 10.52, 7.01) kms−1 obtained
by the Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST; Tian et al. 2015). We determined the three-
dimensional Galactic space motion of (ULSR, VLSR, WLSR)=
(−34.34± 0.04, −71.47± 0.22, 76.26± 0.14) kms−1.
To judge which stellar component LHS 1815 belongs to, we

employed the kinematical criteria first mentioned in Bensby
et al. (2003) by assuming the Galactic space velocities ULSR,
VLSR, and WLSR of the stellar populations have Gaussian
distributions:
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is a normalization constant, σU, σV, and σW represent velocity
dispersion for 3D velocity components while Vasym is the
asymmetric drift. We applied related parameters from Bensby
et al. (2014) for solar-neighborhood stars and calculated relative
probability Pthick/Pthin for LHS 1815 and other TESS planet host
stars to be in the thick (TD) and thin disks (D). Figure 12 shows
the corresponding Toomre plot. We considered stars with
Pthick/Pthin>10 to be in the thick disk while stars in between
(0.1<Pthick/Pthin<10) are ambiguous to judge. Up to now,
TESS has detected five planet host stars located in the in-between
region: TOI 118 (Esposito et al. 2019), TOI 144 (Huang et al.
2018a), TOI 172 (Rodriguez et al. 2019), TOI 186 (Dragomir
et al. 2019; Trifonov et al. 2019), and TOI 197 (Huber et al.
2019). Table 4 lists their relative probabilities and none of them
show clear-cut thick-disk probability. However, we obtained a
large relative probability (Pthick/Pthin=6482) for LHS 1815,
indicating it is very likely a thick-disk star. Soubiran et al. (2003)
showed that thick-disk stars tend to have much lower metallicity
than thin-disk stars. Therefore, our metallicity measurement
[Fe/H]=−0.12±0.09, based on the HARPS spectra, is
consistent with a thick-disk origin.
In order to gain insight into further dynamical information,

we used galpy (Bovy 2015) to simulate the orbit of LHS 1815.
We initialized the orbit using R.A., decl., star distance, proper
motions in two directions and heliocentric line-of-sight
velocity. We integrated the orbit from t = 0 to t = 10 Gyr in
a general potential: MWPotential2014, saving the orbit for
10,000 steps. The orbital result of LHS 1815 is shown in
Figure 13. The maximal height Zmax of LHS 1815 above the
plane of the orbit is 1.8kpc, consistent with our thick disk
conclusion before. For comparison, we plot Zmax and the
relative probability of all TESS planet host stars in Figure 14,
which are listed in Table 4. It is clear that the five TOI stars
located in the region between the thin and thick disks are more
likely to belong to the Galactic thin disk given their small Zmax.

Figure 11. Period and eccentricity as a function of time for different initial
eccentricities. Blue dashed line indicates the 5σ error on the inferred period,
which is smaller than the thickness of the line. Top panel: starting period equal
to the observed one. Bottom panel: initial period chosen so that the final period
after circularization matches the observed one.

39 U, V, and W are positive in the directions of Galactic center, Galactic
rotation, and the North Galactic Pole.
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LHS 1815 is currently moving upward; an additional orbital
integration analysis shows that LHS 1815 will spend ∼14Myr
to first reach 1kpc above the Galactic plane. Before LHS 1815
reaches the plane again, we have a probability of about 33% to
see it (Z<1 kpc).

6. Discussion and Conclusion

LHS 1815b is the first thick-disk planet detected by TESS.
It has a radius of RP=1.088±0.064 R⊕ and a mass of
MP=4.2±1.5M⊕. The proximity of LHS 1815 and its
interesting kinematic features make it a system worthy of
further characterization.

6.1. Prospects on Future Follow-up Observations

Given the brightness of LHS 1815, it is an attractive target for
precise RV measurements with high-resolution spectroscopy
facilities. Those will lead to precise mass measurement of the
transiting planet and will be used to search for other planets in the
system. A precise planet mass will give an improved estimate of
the suitability of LHS 1815b for atmospheric characterization. The
rotation period of LHS 1815 is well-separated from the orbital
period of the planet, making it possible to smooth out the effect
from stellar activity.

Figure 12. Toomre plot for all TESS host stars with planets. Different color
represent different ranges of relative probability. Our target is shown as a
red star.

Table 4
Relative Probability for TESS Stars with Ambiguous Separation Between Thick

and Thin Components

Star Pthick/Pthin

TOI-118 4.825
TOI-144 0.127
TOI-172 1.430
TOI-186 0.125
TOI-197 0.292

LHS 1815 6482
Figure 13. Top panel: orbit of LHS 1815 in the Galactic potential
MWPotential2014 obtained using galpy (Bovy 2015) in the top-down view.
Bottom panel: same orbit but viewed edge-on. Red dots represent the present
position of the star.

Figure 14. The Zmax vs. relative probability Pthick/Pthin for all TESS planet host
stars with Gaia RV. Here, Zmax is the expected maximal height of stars above
the Galactic plane. Different colors represent different metallicities. Red
vertical dashed lines mean relative probability = 0.1 and 10. LHS 1815 is
marked as a black star at the top right.
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In addition, because LHS 1815 is nearby (29.87± 0.02 pc),
future release of Gaia time series astrometry can be used to
look for massive objects (massive planets and brown dwarfs) at
wide orbits, with potential partial overlap with objects on orbits
that radial velocities will be sensitive to.

To evaluate the feasibility of high-quality atmospheric
characterization by JWST(Gardner et al. 2006), we first use
the Transmission Spectroscopy Metric (TSM) formulated by
Kempton et al. (2018) and we find TSM∼ -

+2.5 1.3
3.8 for LHS 1815.

Kempton et al. (2018) posits that planets with TSM>10 for
Rp<1.5R⊕ are high-quality atmospheric characterization targets.
The relatively large TSM uncertainty due to the weak constraint
on the planet mass results in unclear determination on whether
LHS 1815 is a good (although unlikely the best) target for
transmission spectroscopy studies. In addition, we compute the
Emission Spectroscopy Metric (ESM) for LHS 1815 and we find

~ -
+ESM 1.9 0.8

1.0. Given the recommended threshold ESM=7.5
from Kempton et al. (2018), LHS 1815 is not an ideal target for
emission spectroscopy researches, either.

6.2. Planet Formation Efficiency in Thin and Thick Disks?

Follow-up statistical work about planet formation efficiency
in the thin and thick disk is ongoing (T. Gan et al. 2020, in
preparation), based on all TESS planet candidates detected in
the Southern Hemisphere. The current TESS survey for the
Northern Hemisphere will be an excellent opportunity to
further examine this subject. First, TESS focuses on finding
exoplanets around nearby bright stars. Most TOIs have precise
astrometry and RV measurement from Gaia DR2, which can
determine their thin, thick, and halo origin. Second, LAMOST
(Cui et al. 2012) can provide chemical element abundance

measurements to check the classification for a large number of
stars.
We emphasize that here we only consider the formation

efficiency for nearby bright stars. Faint stars (G>13 mag) at
relatively large distances may not have RV measurement from
Gaia DR2, leading to a poor separation between thin and thick
disks. Future surveys such as DESI (DESI Collaboration et al.
2016) and spectroscopic observations from SPIRou (Challita
et al. 2018) shall remedy this situation.
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