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Abstract

For redistribution and operating bikes in a free-floating systems, two measures are of
highest priority. First, the information about the expected number of rentals on a day
is an important measure for service providers for management and service of their fleet.
The estimation of the expected number of bookings is carried out with a simple model
and a more complex model based on meterological information, as the number of loans
depends strongly on the current and forecasted weather. Secondly, the knowledge of a
service level violation in future on a fine spatial resolution is important for redistribution
of bikes. With this information, the service provider can set reward zones where service
level violations will occur in the near future. To forecast a service level violation on
a fine geographical resolution the current distribution of bikes as well as the time and
space information of past rentals has to be taken into account. A Markov Chain Model
is formulated to integrate this information.

We develop a management tool that describes in an explorative way important infor-
mation about past, present and predicted future counts on rentals in time and space. It
integrates all estimation procedures. The management tool is running in the browser and
continuously updates the information and predictions since the bike distribution over the
observed area is in continous flow as well as new data are generated continuously.

Keywords : free-floating bike systems, spatio-temporial data, prediction, generalized additive
models, markov chain, managment tool.

1. Introduction

For a service provider, redistribution costs represent a significant expense for operating a
free-floating vehicle fleet. Heitz, Etschmann, Stöckle, Bachmann, and Templ (2019) and
Lippoldt, Niels, and Bogenberger (2019) showed the effectiveness of incentivizing users via
reward zones in the urban area. The aim is that service operators minimize the redistribution
of bicycles (operator-based redistribution), by motivating users through a system of rewards
to distribute the bicycles in the urban area in such a way that the service level is maximized
(user-based redistribution). For setting such incentives, the current bike distribution as well
as the predicted changes by picking and dropping of bikes has to be known (see Heitz et al.
2019). An important input for any incentive system is the knowledge of the spatial-temporal
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distribution of future picks and drops, respectively. However, both Heitz et al. (2019) and
Lippoldt et al. (2019) didn’t show nor integrated forecasts in their model based on all available
information - the current bike distribution and historical booking data.

For the task of redistribution, not the physical distribution of bicycles in a service area is the
most important factor, but the availability of bikes in case of users requesting one. The goal
of redistribution is to maximize satisfied demand and to avoid and service level violations
due to unsatisfied demand. Therefore, the estimation of the future demand is of primary
importance for any redistribution activity.

A demand model based on booking data is difficult to set up in free-floating systems due to
different reaons:

a) even if months of historical booking data is available, these data are sparse because of
the many degrees of freedom of an spatial-temporal distribution.

b) the picking data does not directly reflect the user demand, because users typically have
to walk to pick up a bike. So, the real demand occurs somewhere else than where
the actual pick happens and is recorded. Studies have shown that a typical acceptable
walking distance is around 300-500 meters Singla, Santoni, Bartók, Mukerji, Meenen,
and Krause (2015).

c) unsatisfied demand is not measured.

For dropping, similar issues arise. For example, the dropping place does not directly reflect
the real destination of a trip, because bikes may only be parked in allowable areas (e.g. not
in buildings or on the road).

For our model, we do not attempt to estimate the real demand (c) and assume that unob-
served unsatisfied demand is spread homogeneus over the whole area. And we outline in the
conclusion that unobserved demand is part of future research. However, we fully consider (a)
and (b). We estimate a spatio-temporal picking rate and dropping rate, respectively. We as-
sume that picking of a parked bike at (x, y, t) is done according to an inhomogeneous Poisson
process the the estimated rate λ(x, y, t), and that a picked bike is returned at a place given
by the dropping distribution µ(x, y, t).

A simple demand model, as used, for example, in Reiss and Bogenberger (2016), only works
if the data is not sparse, i.e. if only a very rough partition of an area in zones is applied.
The authors claim that the demand is the average rentals in a time interval in a certain zone
divided by the stock reported in the corresponding area. However, their model has no fine
spatial and time resolution as we suggest and formulate in this contribution.

In the following sections we will see that for a service level violation estimate, the current
distribution of bicycles (Section 2 and particularly Section 2.3) as well as smoothed rental
statistics (Section 3 and especially Section 3.2) are important parts of the model. To improve
short-term estimates, weather conditions can also be included in a model (Section 3.1). In or-
der to show the important explorative statistics and model-based estimations in an explorative
manner, a dashboard was developed which summarizes these results and makes them visible
for the bicycle management (Section 5). Section 6 concludes and outlines further research.

2. Analysis

2.1. Descriptive figures and intraday distribution

The data is from the Swiss free-floating e-bike rental Smide (now Bond Mobility), based in
Zurich. In the period between 2017-08-16 and 2018-03-22 a total of 63135 rentals from the
free- floating e-bike sharing company Bond Mobility were booked in Zurich. Bond Mobility
operates a fleet of speed pedelec (max. 45 km/h electrically-assisted pedal bicycles) which can
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be booked using a smartphone app. The company services the fleet through in situ battery
swaps and repairs/maintenance. The company does not re-position the vehicles manually.
The vehicles are geographically balanced by its customers through regular use or through
incentives provided in the form of free ride allowances. Incentives are awarded for positioning
at charging stations or at locations where higher demand is expected. These locations can be
determined algorithmically.

Especially the train stations in Zurich were most frequented, see Figure 3. As can be seen,
most of the bikes were parked around the main train station of Zurich, at the ETH and the
train station of Stadelhofen.

In the whole observational area, 385 bookings were made in average on a day (arithmetic mean,
median equals 397) with a standard deviation of 130 (robust standard deviation through the
median absolute deviation: 117). Guidon, Becker, Dediu, and Axhausen (2019), working
with the same data from Zurich, argued that the main reason of the observed high standard
deviation is because the system was growing during time. However, this effect is rather
negatable. In contrast, we find that one of the most important reasons of this high standard
deviation is in fact the weather condition. On days with bad weather condition, the number
of bookings are smaller than on a sunny beautiful day. Figure 1a shows this effect only
for precipitation intensity. Days with precipitation intensity below 0.1 result in an arithmetic
mean of bookings of 17.5 per hour, while on days with high precipitation intensity the number
of bookings was 13.9 (arithmetic mean), i.e. in average 26 % more bookings was made when
the precipitation intensity was below 0.1. This is the reason for developing also a weather
model (Section 3.1). Other effects are wind bearing and temperature, see Section 3.1.
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(b) Trip distance (top) and trip duration (bottom).

Figure 1: Descriptive statistics on the number of bookings depending on the precipitation
intensity, and the distribution of trip distance and trip duration.

Just to mention some interesting facts on mean trip distance and mean trip distance, even
they have no further relavance in this contribution: The mean trip distance between picking
and dropping of a bike was 1.198 km (95% confidence interval [1.192; 1.205], median = 1.08
[1070.475; 1091.532]). The mean duration of a trip was 8.94 minutes ([8.857; 9.041], median
= 7.13 [7.083; 7.167]).

Figure 2 shows the temporal structure of the average total amount of trips per hour and
weekday from 2017-08-16 to 2018-03-22. Figure 2 shows that a peak in the demand was
reached 7:30 and 8:30 a.m (because of commuting), at noon (people using a bike to go for
lunch) and between 5 and 6 p.m. (commuting home) during Monday till Friday. The supposed
reasons for these peaks are supported by the fact that the pickings occur nearby train and
other public transport stations (cf. Figure 3). The bookings on different weekdays behave very
similar to each other. However, the bookings at weekend differs substantially in comparison



56 Fleet Management in Free-Floating Bike Sharing Systems

to weekdays. Saturday and Sunday have similar frequencies.
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Figure 2: Counts on bookings per hour for each weekday in the whole observational area.

Figure 3 shows the spatial distribution of drops. The upper left graphics shows the exact
destinations of drops, the graphics in the upper right shows the summary on counts. This
graphics are integrated in the management tool and zooming is possible. Moreover one can
zoom until the location of drop of each individual bike is visible. The graphics in the lower left
shows a two-dimensional kernel density estimate. Thus the density on drops is better visible
using this map. The graphics to the lower right shows is zoomed to the area of Stadelhofen
and drops (red points) are visible as well as the two-dimensional kernel density estimates.
The drops mainly happen around the train station of Stadelhofen.

2.2. Dropping and picking rates

For controlling redistribution activities, it is essential to predict the spatial and time-dependent
demand for bikes over the next few hours. In addition, the dropping rate must also be esti-
mated as precisely as possible in order to forecast the change of the bike distribution. From
these two pieces of information it is possible to estimate how the bike fleet and service level at
a given location would change over the next few hours without external intervention. For our
modelling we assume that for each location (x, y) in an area B and each time (t) an unknown,
estimable dropping rate λdrop(x, y, t) and picking rate λpick(x, y, t) exists. We assume that
the actual process is an inhomogeneous Poisson process, i.e. that in every small time interval
dt the probability of average intensity for a drop/pick in the interval [t, t + dt] in area B is
given by m(t) =

∫
B λ(x, y, t)dt.

One task is to estimate this time- and location-changing rate from existing (historical) picking
and dropping data. The number of drops and picks of Bond Mobility ’s bicycles in temporally
and geographically finely resolved areas is sparse, i.e. the counts on drops and/or picks are
very small and mostly zero in each cell, even if several months of booking data is available (cf.
Figure 4 and discussions related to Figure 4 below). Even in relatively well frequented areas
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(a) Droppings in Zurich. (b) Count density of drops.
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Figure 3: Dropping of Bond mobility bikes.
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Figure 4: Intensity of drops. The average rate of bookings per hour of one station (the most
frequent one) is shown in the lower right.

one usually has to wait several hours until a pick or drop occurs. For the most frequent 100m×
100m area of Zurich, the average amount of bike picks per hour is shown in Figure 4. The sum
of all bookings in this cell over all observed days (see Section 3.1) is 658 bikes. About every 3-4
hours a bike is picked at this location. Note that this is the former place of the headquarter
of Bond Mobility. The resulting small mean intensity makes it difficult to apply standard
methods from the literature, e.g. modelling with a Cox model for inhomogeneous Poisson
processes (see e.g. Diggle, Rowlingson and Su, 2005) and also agent-based mico-simulations
(see, e.g., Ciari, Balac, and Axhausen 2016) or modelling using spatio-temporal point-process
patterns (González, Rodŕıguez-Cortés, Cronie, and Mateu 2016; Baddeley, Rubak, and Turner
2015) cannot be performed or can only be performed with great difficulty.

Our model is based on a division of the observation area B as well as time of the day in a
grid (see Section 3.2), predicting the rate in each (x,y,t)-cell. For the estimation, we allow
different observation periods for the individual components of the model described below.
Additional external factors/variables for the description of drops or picks as used in Müller,
de Almeida Correia, and Bogenberger (2017); Guidon et al. (2019), e.g. data on inhabitants
(age distribution, gender distribution, household composition) and areas (purchasing power,
number of firms, hotels, services, rents) can be used to explain spatially distributed picks or
drops. However, they are hardly useful for spatio-temporal forecasting, since these variables
usually do not change during the observation period. More interesting is the inclusion of
weather conditions, see Section 3.1. The size of the raster cells is chosen to be 100 × 100
metres. This represents a very fine grid and is in line with what was considered in Heitz et al.
(2019), but a fine grid also implies that many grid cells contain no observations or only very
few counts. These disadvantages can be eliminated with a well defined smoothing in time and
space. Doing so, the advantages of making statements on a very fine grid remain.

Smoothed averaged dropping and picking rates per hour are shown in Figure 5 (see also
Section 3.2). It can be seen that these rates are very small and that on most location it needs
more than 10 hours for the next booking. Around the main train stations and also at the
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ETH Zurich the rates are higher than in other areas. The graphics to the right of Figure 5
shows the total amount of bookings in the past during an hour at a given time of the day.
This area is already zoomed and shows the area around the main train station of Zuerich
down to the Zurich lake. At the ETH Zurich we see an intensity of 429 bookings.

Figure 5: Rate of drops (upper left) and picks (lower left) per hour and the average intensity
around the main train station in Zurich at a given time of the day.

2.3. Current bike distribution

The current bike distribution is read out of the Bond Mobility fleet operation system via
an API, the data is processed and integrated on-the-fly. A result can be seen in Figure 6,
which shows the current bike distribution that is queried from the server as soon as the app
is started. We can see that most of the bikes, namely 40, are located around the main train
station in Zurich. In this map, it is possible to zoom in, until all bikes can be seen individually
(like the blue dot in the upper third of the graphic, which represents the exact location of a
single bike).

The current bike locations are then needed in Section 4 to estimate the service level violation
time on fine spatial and temporal resolution.

3. Three-component model

For estimating the dropping or picking rate, we suggest a decomposition of the spatial-
temporal rate into three components:

λ(x, y, t) = αI(x, y)g(t|x, y) (1)

with x, y ∈ B and time t. In the following, we only discuss the case of droppings, but the
procedure is identical for the estimation of the picking rate.
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Figure 6: Current bike distribution of bikes from Bond Mobility in Zurich (accessed Feb 16,
2020, 17:12).

The parameter α denotes the total traffic intensity, I(x, y) is the time-averaged spatial dis-
tribution of drops, and g(t|x, y) is the intra-day pattern of a given location.

We assume that I(x, y) and g(t|x, y) do not depend on weather conditions, and that differences
of the usage pattern due to external factors only influence the total traffic intensity α. This
reduces the degrees of freedom substantially and leads to more stable estimators.

Meaning of α (number of picks or drops of bikes): α is the total number of drops during a
full day. This parameter may vary from day to day, depending, e.g., on the weather conditions.

Meaning of I(x, y) : I(x, y) indicates the relative proportion of drops that happen in cell
(x, y). For example, I(x, y) = 0.001 means that 0.1% of all drops happen in cell (x, y). I(x, y)
is a dimensionless quantity which is normalized, so that

∑
x,y∈B I(x, y) = 1. Due to the

normalization, I(x, y) can also be interpreted as the probability that a drop will land in cell
(x, y). Note that both α and I(x, y) are quantities that correspond to aggregated numbers of
drops: α corresponds to the number of drops for a full day, and α · I(x, y) to the number of
drops per day in cell (x, y).

Meaning of g(t|x, y) : g(t|x, y) is the continuous temporal distribution of drops over the day
at the point (x, y). Its dimension is the reciprocal of a time unit, e.g. h−1, and it is normalized

by
∫ 24h
0 g(t|x, y)dt = 1, ∀(x, y) ∈ B. g(t|x, y)dt can be interpreted as the probability that a

drop in cell (x, y) will occur in the time interval [t, t + dt]. The intraday distribution may
depend on the location.

This results in the following important partial rates: Total number N(x, y) of drops at the

location over a full day N(x, y) =
∫ 24h
0 λ(x, y, t)dt = αI(x, y)

The total rate of drops at time of day t on a day is λ(t) =
∑

B λ(x, y, t)

Remarks: Any time- and location-dependent density can be represented in this way. The
decomposition is therefore complete. The dropping rate λ(x, y, t) at a given location (x, y) is
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obtained by multiplying all three terms in equation above, in the correct units. Its dimension
is “number of drops per time unit”, where g(t|x, y) is the term defining for the time unit.

Our decomposition is motivated by the possibility of using different time scales for the different
components. For example, the spatial distribution I(x, y) can be estimated with aggregated
data of many days, ignoring the intraday structure and the traffic variability due to exter-
nal conditions such as weather and temperature. Similarly, g(t|x, y) can be estimated from
aggregations of drops in a specific cell over many days.

In contrast, the total traffic intensity α (see Equation 1) can be estimated with a shorter
observation period by aggregating over the whole region B. This allows the maximum in-
formation to be taken into account in the data, trends in the progressions to be depicted
realistically and the sample to be kept as large as possible, depending on what is estimated.

3.1. Predicted intensity of the current day.

Three models are outlined to estimate the total amount of bookings (α) on a given day. The
first two models do not need meterological information and they are thus easily applicable in
practice. A better but more complex model (the weather model) integrate the meteorological
information for prediction.

Except for days with different weather conditions, we can state that the normalized intensity
of use for consecutive days is strongly correlated. This means that the previous day should
be a good predictor of the current intensity of use (corrected with the weekday effect).

The first estimator for the number of picks of a given day d at time t0 is given by

α̂d; t>t0 = αd; t<t0 + w · s · ct0
ct0 + 1

+ (1− w) · αd; t<t0 · ct0 , (2)

with 0 < w < 1 a weight specified below. s is the average number of picks of the weekday
estimated from historical data. For example, for the estimation of α on a day d, the mean of
the drops on all previous days of the same weekday is used (d−7, d−14, d−21, ...). ct0 defines
a scaling factor between the average number of picks before time t0 and after t0 estimated
from historical data on the given weekday (d − 7, d − 14, d − 21, ...). αd; t<t0 represents the
observed number of picks from midnight until t0 on the given day d. Thus, the prediction of
the total traffic intensity is done on the basis of the drops already observed at day d until t0,
combined with the average intensity of similar day in the past.

It follows that the later in the day, the worse is the use of the average daily rate. The weighting
constant w has thus to be selected. w is fixed to some constants. Before 8 a.m. the average
of the historical data for the daily rate is used, thus w would be 1 in this case. From 9 o’clock
on a mixture of the historical data and the extrapolated picks is used, whereby the historical
data receives a weight of 0.4. For this choice, forecast error of 20-25% for the future picking
rate can be achieved. The results of this approach is shown in the app (see Figure 6, lower
left, method 2).

The second estimator for the number of picks of a given day is given by

α̂d; t>t0 = w1αd∗−1 + w2 · ᾱ(d−1,d−2,...,d−20)
αd; t<t0

α(d−1,d−2,...,d−20);t<t0

, (3)

with w1 = 1 − t0/t and w2 = 1 − w1, meaning a linear weight depending on the time of the
day (with t indicating a whole day). Therefore the second choice (see Figure 6, lower left,
method 1) gives linear weights depending on the time of the day. The first term in Equation
3 represents the weighted number of drops from the previous day. The star in d∗ symbolizes
that the previous day of Monday is the last Friday (must be a weekday) and the previous day
of Sunday is the Saturday (because both are weekend days). It ensures that the previous day
is thus the previous day with restriction to be again a weekday or weekend day respectively.
The right side of Equation 3 expresses the average of previous 20 working (weekend) days
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multiplied by the observed number of drops on day d until time t0 divided by the average of
the previous 20 working (weekend) days until time t0 on a day. For example, on 18:20 most
of the day is already passed, thus weight w2 is much larger than w1 in this case. The results
of this approach is shown in the app as well (see Figure 6, lower left, method 1).

Estimation of α using meterological information: As all redistribution activities de-
pend on short-term (typically with the next few hours) predictions of picking and dropping,
the prediction model has to take into account the strong effects of external conditions such as
temperature or precipitation. We assume that these factors influence the total traffic intensity
α, while I(x, y) and g(t|x, y) do not strongly depend on them.

The following model is used to predict α, the total number of bookings of a day (e.g. 12.
February 2020) at any time of the day (e.g. on 10:28).

A prior attempt to predict this quantity, using the same data set, was published by Guidon
et al. (2019). The authors used a negative binomial least squares regression model without
interaction effects resulting in an R2 of 0.1 with the meterological information as predictors.
It is not hard to see that all model assumptions must be violated using this model. The reason
is that the intraday distribution of rentals is highly non-linear and may not be modelled using
a linear model.

We formulated a generalized linear model (gam) on log counts and smoothing temperature,
hour of the day, wind bearing and precipitation intensity with a thin plate b-splines smoother
(Wood 2003, 2017) and integrating the weekday and seasonality (by month) in the model.
This resulted in a R2 of 0.7 and all diagnostic plots shows that the model assumptions are
fulfilled.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 0.8471 0.2257 3.7532 0.0002
weekdayTRUE 0.3694 0.0321 11.4941 < 0.0001
month 0.1420 0.0239 5.9314 < 0.0001

B. smooth terms edf Ref.df F-value p-value
s(apparentTemperature) 8.3235 8.8739 9.8792 < 0.0001
s(hour) 8.9722 8.9997 252.4318 < 0.0001
s(windBearing) 6.9263 7.9983 2.3689 0.0153
s(precipIntensity) 8.2474 8.8250 3.4265 0.0003

Table 1: Results from the generalized additive model descripting log counts on drops on all
100 times 100 raster cells in a hourly time resolution. These model coefficients are used for
predicting the expected daily counts. The weather data for the Zurich area was obtained from
DarkSky (https://darksky.net/).

Temperature, hour of the day, wind bearing and precipitation intensity had a highly significant
effect, but also the weekend and seasonality (by month), see Table 1.

We use this model not only to describe and interprete the number of bookings as in Guidon
et al. (2019), but also to predict the expected number of remaining bookings on a given day
at a given time t0 (i.e. the number of picks /drops that are expected for t > t0, i.e. for the
rest of the day), based on (1) the number of already observed total bookings until time t0 of
the current day and (2) predicted hourly bookings for the rest of the day using the weather
forecast data and other predictors like hour, seasonality and weekday/weekend. The forumula
can be summarized as

α̂d; t>t0 = αd; t<t0 +
∑

i∈{1,2,...,24};i>t0

α̂d; i , (4)

with α̂d; i the predicted total hourly number of drops on hour i to i + 1 on day d using the
model given in Table 1.

https://darksky.net/
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The weather model is thus a more elaborate model as the previous ones (Equations 2 and
3), but the drawbacks are that it needs a paid service from a meteorological service to fetch
predicted hourly weather data. An advantage of this model using weather data is also that
prediction intervals and not only point estimates can be reported. Naturally the prediction
intervals become smaller as the time of the day increases (since more real observations on
bookings are available).

3.2. Spatio-temporal smoothing

In this section, we describe the estimation of the remaining components of the three-component
model, i.e. I(x, y) and g(t|x, y). It is important to determine how the drops/picks are dis-
tributed throughout the day. However, as already mentioned the data are sparse and smooth-
ing is thus necessary.

For the following considerations, the observation area B is discretized in a grid of the size
n× p in cells of equal size (e.g. 100m × 100m).

Our assumption is that the counts are spatially and temporally smooth. Small violations
due to parking space (not everywhere it is allowed and possitble to drop a bike) does not
play much of a role, because we smooth the drops (and picks) anyhow on ±300m due to the
walking of customers. We assume that the intraday change of counts does not change too
much if we smooth over one or two hours. We also assume that the intraday variation does
not change too much if we smooth over a range of ±300m in all directions.

Another assumption is that the intraday variation is the same over all days of the week.
Saturday/Sunday differs in daily variations (see also Figure 2). So we calculate two different
intra-day cycles for each location (x, y).

Three-dimensional kernel smoothing The estimation method for weekday (Mon-Fri) is
as follows, exemplarily noted here for dropping. We note that this procedure works the same
for picking.

- Take all drop events on the weekdays Mon-Fri and assign them to the corresponding
cell (x, y).

- Use only the time of day of the drops (e.g. 8:23)

- Divide the time within one day (24 h) into constant time intervals j of 5 min, thus
j = 1, ..., 288. Note that also other lengths of time intervals can be chosen.

- Assign each drop to the corresponding time interval j.

- Result: Number of drops in each element (x, y, j). Note that often we rather work
with relative number of drops, i.e. dividing with the number of drops in a day. This is
also the case when estimating I(x, y)g(t|x, y). For various graphics we show smoothed
absolute numbers, e.g. in Figure 4.

- For each time interval j, perform a spatial kernel density estimate with a Gauss kernel
of width 2 (i.e. spatial smoothing in the range of about 300m).

- Then, for each position (x, y), perform a temporal kernel density estimation with a
Gauss kernel of width 8 (i.e. temporal smoothing in the range of about ±8 · 5min).

Except in peripheral areas, where the drops were very sporadic, this estimate provides a
reasonable intraday variation, especially at the hotspots this works very well.

4. Time to service level violation
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The most useful estimator is the time to service level violation for any location in the obser-
vational area B. Knowing this time to violation of the service at each place, the bike fleet
can be efficiently redistributed, either by operator redistribution activities, or by proper user
incentivation (Heitz et al. 2019; Heitz, Blume, Scherrer, Stöckle, and Bachmann 2020).

The time to a service level violation is based on the last state of the imported data and the
estimated (smoothed) dropping and picking rates (see Section 3.2) from the last important
state of the data import, as well as the current bike distribution (see Section 2.3).

For all control approaches for bike redistribution it is essential to know the local and time-
resolved demand for bikes and to be able to predict it over the next few hours. Smoothed
dropping and picking rates (per hour) are therefore determined and displayed based on a
three-dimensional kernel density estimate (time, latitude, longitude) of the drops and picks
with normal distribution kernel (see Section 3.2).

Given the booking rates per hour over d days and the current bike distribution, the expectation
value for the time to the next service violation is estimated using a Markov chain model.

First the current bike distribution is fetched (see Section 2.3). Here, the exact position of
n ∈ {1, ..., N} bikes are imported, with N the total number of bikes from the service level
provider. n is typically slightly smaller than N , because not all bikes are always in the field.
We divided the whole service area in a raster of 100m, which results in 71× 101 = 7171 cells.
In addition, we divide the day in 5 minutes intervals leading to 288 time intervals for one day
and do a prediction of service level violation for a future period of d days, for example d = 5.

We assume that a user would walk 300 metres for a bike at maximum, thus an available bike
in one location (cell) will be available for a range of ± 300 metres. This is considered in the
whole analysis.

For each of the 7171 cells (locations), we estimate the probabilities of picks given no bikes are
available in the cell and neighboring cells (overbooking, service level violation), the probabil-
ities of having no bike available (and no overbooking), the probabilities of having one bike
in a cell or neighboring cell (within 300 metres), the probabilities of having two bikes in a
cell in a location, etc., until the probabilities of having n bikes in a cell in a location. This
information is stored in a matrix of probabilities P(7171×(n+2) = (p1,p2, ...,pn+2)

T .

The algorithm starts at time t1 and ends in time td∗288 and updates another matrix holding
the estimations on service level violation in every state of the process. Thus, in our calculation
procedure we estimate these probabilities for every five minutes from the present time up to
d days. For d = 5 days, this results in 288 · 5 = 1440 columns of M = (m1,m2, ...,m288·d)T .
In other words, the first column of M holds the probabilities of service level violation in the
first five minutes, the second column of M the probabilities of service level violation within
the first 10 minutes, etc.

More precisely, the probabilities of a service level violation is calculated iteratively for all
times t2, ..., td·288 by updating P with

P = P(1− dropratet−1 − pickratet−1)
+ P(∗2)pickratet−1

+ P(∗p)dropratet−1

p1 = p1 + p2pickratet−1

p2 = p2(1− dropratet−1 − pickratei−1) + p3 · pickratet−1
pp = pp(1− pickratet−1 + pp−1dropratet−1)

mt = p2pickratet−1

(5)

whereby P(∗2) is the reordered variables of matrix P with column order (2, 3, ..., d ·288, 1) and
P(∗d·288) the reordered variables with column order (d ·288, 1, 2, 3, ..., d ·288−1). The first line
of Equation 5 represents the probability at time t of having zero bikes reachable (within 300
metres of a location) under the contraint that in the last 5 minutes a bike has been dropped
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or picked. The second line represents the probability that two bikes was reachable (within
300 metres) and one was picked. The third line adds the probability of having zero bikes
available but one is dropped. For the situations of having already an overbooking (p1) we
overwrite the estimated probabilities, because in this special case, overbooking is expressed as
the probability of having an overbooking plus the probability of having a pick but no bikes.
Also the case p1 (no bikes available) must be treated differently as the rest. Here it is the
probability of having no bike available times the probability of the complementary event of
a bike being dropped or picked plus the probability that exactly one bike is available and a
pick is happening. Note that the drop and pickrates are estimated with the three-dimensional
kernel estimation procedure decribed in Section 3.2.

In theory, the algorithm can iterate over infinite days. However, at one point for sure a service
level violation happens and, in addition, the most interesting case for a service provider is to
know the service level violations in the next 6 to 48 hours. This is usually enough time to
redistribute bikes.

Results (accessed on Feb 16, 2020, 17:12) are shown in Figure 7. Since the current bike
distribution (Figure 2.3) shows a number of bikes in the area of the main train station and
ETH Zurich, there is no service level violation in the next hours in these regions. Left to
Riesbach, for example, there were no bikes available (Figure 2.3) and given the past smoothed
booking rates, we expect a service level violation soon. As another example, there was only
four bikes available between in the area of Zurichberg (Figure 2.3), but given our Markov
model using smoothed the historical booking rates, we do not expect any service violations
in the next 60 hours.

Figure 7: Service level violation in the next 0 to 60 hours estimated by the Markov model
given the current bike distribution and smoothed historical picking and dropping rates. The
darker the colour the longer it needs for a service level violation.

5. Monitoring
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For supporting the operator in planning its redistribution activities as as well as setting reward
zones for user incentivization, we developed a novel interactive map, displaying the following
information:

• The graphics in this article represents static screenshots of interactive graphics obtained
from the app and are used to capture what can be viewed in the app. The app can be
operated interactively in the browser and all graphics are highly interactive.

• All maps can be zoomed and moved in all directions.

• All maps are reactive. By mouse clicks on points shown on the map, additional infor-
mation showing some estimates and current figures pops up.

• The drops and picks of the past as well as the current bike distribution are processed
internally.

Output are therefore different reactive graphics which change partially when the user input
changes and where pop-up info is displayed when pointing with the mouse on the map.

We partioned the information in different tabs.

5.1. Service level violation

This tab shows the expected values of the time to the next service level violation per cell, see
a screenshot in Figure 7. These expectation values indicate how long it will take on average
until a demand cannot be satisfied in this cell. The lower this value is, the more urgent a bike
is needed in this area. Therefore, reward zones can be placed in cells that have a very low
expected value in order to incentivize users to drop their bike in this region. Alternatively,
the operator might become active and position a bike in this region.

For the calculation of the expected values, the current bike distribution (regarding the last
update of the database, see Section 2.3) and the estimated dropping and picking rates (see
Section 3.2) are used. With the rates over 5 days and the bike distribution the mean values are
calculated using the Markov chain. In the browser, one can zoom and mouse pop-ups show
additional information (exact estimated time to service level violation, droping and picking
rates, name of the area, etc.).

5.2. Daily forecast and current bike distribution

Figure 8 shows the forecast of the number of drops or picks over the service area.

The user may manually chose between whether he expects high activity, medium activity
or high activity, and can toggle the display between picking and dropping. For low or high
activity the 20% and 80% quantiles of the distribution of daily picks or drops are used.

To get a picture focused on higher values, small values can be truncated in the graph. This
has the advantage to focus on high values in the map.

In the displayed summary simple statistics regarding the drops or picks are shown. For
example, it is reported for a particular day that until 18:20 the number of drops are 273.
Also the number of drops from the day before are shown as well as the estimated number
of drops using only the extrapolation until the end of the day. Also the average number of
drops (or picks) of the last 260 days are shown. Method 1 corresponds to a weighted estimate
with automatic linear weighting - the later the time of the day, the higher the weighting to
today. Since it is already 18:20, the weighting is higher (0.9) for the 273 bikes until 18:20
and less weight (0.1) is given to the weight corresponding to the previous day (302 bookings)
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Figure 8: Number of drops (or picks) per day in each grid cell (right graphics) and daily
forecasts for the absolute number of drops (or picks) in a day (upper left).

for the estimation of the daily bookings. Method 2 contains the method after fixed weighting
according to the the 3-component model from Section 3.1. Method 2 expects for this given
day 369.2 bookings. In case meterological data from a from a paid service are available for
each hour of all days in the past and predictions from the meterological service for the next
hours, a third method pops up showing the estimated number of bookings from the weather
model.

Again, one can zoom in and out and get popup information (browser only).

The current distribution of the bikes can be retrieved in the tab Distribution of Bikes, see
also Figure 6. The displayed numbers are broken down more finely (up to the exact location
of each individual Bicycle) when zooming in.

5.3. Daily forecast

The dropping and picking rates (per hour) are determined and displayed based on a three-
dimensional kernel density estimate (time, latitude, longitude) of the drops and picks with
normal distribution core, see Section 3.2. A screenshot of the corresponding results are shown
in Figure 5. Note that the right graphics shows the estimates on a given time of the day, and
the time of the day can be changed with a slider with stepsize of 5 minutes. The rates shown
in this figure are also input for the service level violation estimation in the first tab of the
app.

It can again be zoomed as desired and popup info is available in the browser. The time of
day can be changed interactively.

In the graphic on the right you can also see information about the intensity of past total drops
and total picks including popup information, already shown here as an example.

The intensity is also indicated in further interactive graphics, see the screenshots represented
in Figure 3.
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6. Conclusion

The existing literature on spatial-temporal usage patterns of bike sharing systems mainly
focuses on the analysis of historical bookings using descriptive statistics or models. For
controlling and optimizing any redistribution activities, the more essential question is where
a service violation is expected in the near future given the current distribution of bicycles and
given the temporal and spatial foecast of both demand and bike distribution.

In other words, for redistribution and operating a bike fleet in a free-floating system, one must
be aware of short term forecasts on daily bookings and of forecasts of spatial and time-resolved
service level violations that are expected to occur if no redistribution activities are triggered.
In addition, a fleet manager also needs a management tool (dashboard), which makes these
predictions visible in maps and easy-to-fetch figures. Based on this information, the most
appropriate redistribution activities can be set either automatically or by expert rating.

We described a management tool (dashboard) which is running in a browser, continuously
updating the information and predictions. This tool thus provides a decision tool for the fleet
managers that allows them to optimally redistribute bicycles in orderto avoid service level
violations.

Further research may be addressed due to unobserved demand issues. A likelihood-based
approach can be used to model such unobserved demand, e.g. to specify the likelihood of
having an unobserved demand given there is no bike available in a 300 metres range. The
parameters of the likelihood functions must then be estimated accordingly based on observed
picking rates.

Note that the described Markov chain model (see Section 4) is currently used by the com-
pany roll2go (https://www.roll2go.ch) for automatically setting reward zones based on the
presented service level violation estimation procedure. The R package mobi2 (Templ 2019)
(available upon request) includes all estimation procedures presented in this article and it
also includes the introduced shiny app (the dashboard, managament tool).

Acknowledgement: Thanks to Raoul Stöckle, the CEO of Bond Mobility for his support,
data set and his openness to agree to publish this article. Thanks to Roman Etschmann
(ZHAW) for helpful discussions about the method of service level violation.
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