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Changes in cancer detection and false-positive recall in 
mammography using artificial intelligence: a retrospective, 
multireader study
Hyo-Eun Kim*, Hak Hee Kim*, Boo-Kyung Han*, Ki Hwan Kim, Kyunghwa Han, Hyeonseob Nam, Eun Hye Lee, Eun-Kyung Kim

Summary
Background Mammography is the current standard for breast cancer screening. This study aimed to develop an 
artificial intelligence (AI) algorithm for diagnosis of breast cancer in mammography, and explore whether it could 
benefit radiologists by improving accuracy of diagnosis.

Methods In this retrospective study, an AI algorithm was developed and validated with 170 230 mammography 
examinations collected from five institutions in South Korea, the USA, and the UK, including 36 468 cancer positive 
confirmed by biopsy, 59 544 benign confirmed by biopsy (8827 mammograms) or follow-up imaging 
(50 717 mammograms), and 74 218 normal. For the multicentre, observer-blinded, reader study, 320 mammograms 
(160 cancer positive, 64 benign, 96 normal) were independently obtained from two institutions. 14 radiologists 
participated as readers and assessed each mammogram in terms of likelihood of malignancy (LOM), location of 
malignancy, and necessity to recall the patient, first without and then with assistance of the AI algorithm. The 
performance of AI and radiologists was evaluated in terms of LOM-based area under the receiver operating 
characteristic curve (AUROC) and recall-based sensitivity and specificity.

Findings The AI standalone performance was AUROC 0·959 (95% CI 0·952–0·966) overall, and 0·970 (0·963–0·978) 
in the South Korea dataset, 0·953 (0·938–0·968) in the USA dataset, and 0·938 (0·918–0·958) in the UK dataset. In 
the reader study, the performance level of AI was 0·940 (0·915–0·965), significantly higher than that of the 
radiologists without AI assistance (0·810, 95% CI 0·770–0·850; p<0·0001). With the assistance of AI, radiologists’ 
performance was improved to 0·881 (0·850–0·911; p<0·0001). AI was more sensitive to detect cancers with mass 
(53 [90%] vs 46 [78%] of 59 cancers detected; p=0·044) or distortion or asymmetry (18 [90%] vs ten [50%] of 20 cancers 
detected; p=0·023) than radiologists. AI was better in detection of T1 cancers (73 [91%] vs 59 [74%] of 80; p=0·0039) 
or node-negative cancers (104 [87%] vs 88 [74%] of 119; p=0·0025) than radiologists.

Interpretation The AI algorithm developed with large-scale mammography data showed better diagnostic performance 
in breast cancer detection compared with radiologists. The significant improvement in radiologists’ performance 
when aided by AI supports application of AI to mammograms as a diagnostic support tool.

Funding Lunit.

Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
Multiple randomised controlled studies have shown that 
mammographic screening significantly reduces breast 
cancer mortality.1,2 Despite such efforts, breast cancer is 
still the most common cancer and the leading cause of 
cancer-related deaths in women across the world.3 Other 
diagnostic methods such as tomosynthesis, ultrasound, or 
MRI have been proposed, but mammographic screening 
remains the most commonly used in the world; therefore, 
accurate reading of mammograms is important to 
maximise the effectiveness of mammographic screening.

In mammography, 10–30% of breast cancers can be 
missed, which is commonly attributed to dense paren
chyma obscuring lesions, poor positioning, perception 
error, and interpretation error, among other reasons.4 It 
should be noted that efforts to reduce false negatives 

can sometimes lead to excessive recalls. In the USA, 
41% of radiologists showed a higher recall rate than the 
recommendation, and only 28·6% of the patients who 
received biopsy were subsequently diagnosed as having 
cancer.5 Furthermore, inter-reader variability in breast 
cancer detection and recall rates is a substantial issue. 
This implies that interpretation of mammograms is 
difficult, and extensive experience is required to arrive at 
an adequate level of interpretive performance in reading 
mammograms.6

Two decades ago, computer-aided detection (CAD) 
for mammography was developed to assist mammogram 
interpretation.7 Early studies have shown that traditional 
CAD is somewhat beneficial in terms of cancer detection 
(ie, sensitivity),8,9 especially in cases of microcalcification.8 
However, its effectiveness has been heavily challenged by 
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recent large-scale clinical trials, in which CAD has failed 
to improve radiologists’ diagnostic performance.10–12 Due 
to its high false-positive rate, radiologists are required to 
review numerous false-positive marks of CAD, leading to 
exhaustion and an increase in unnecessary additional 
examinations.10

Radiologists have sought to characterise mammo
graphic differences between cancer and non-cancer by 
reviewing many images, and cancer-specific mammo
graphic characteristics have been reported and shared 
with radiologists using their morphological descriptors. 
Traditional CAD mimics this process. In traditional 
CAD, however, important information is prone to being 
lost when designing human-interpretable descriptors. 
In recent artificial intelligence (AI)-based CAD, the 
AI algorithm abstracts mammographic features as a 
descriptor. The difference between human-designed 
and self-learned descriptors is the main success factor of 
current deep learning algorithms. It has already been 
reported that AI can achieve similar performance to 
experts in medical image analysis.13,14

In this study, we developed and validated an AI 
algorithm to detect breast cancer on mammograms, and 
explored whether it could improve the performance of 
radiologists in breast cancer detection.

Methods
Study design
In this retrospective study, we used data from 
five institutions to develop and validate an AI algorithm 

to detect breast cancer on mammograms. We validated 
the AI algorithm with mammograms from three countries 
and compared results from the AI algorithm with 
assessments made by radiologists using separate cancer-
enriched mammography data from two institutions.

This study was approved by ethics review and insti
tutional review board from participating institutions, and 
the requirement for informed consent was waived. 
Under this approval, mammography examinations were 
de-identified and collected according to the Health 
Insurance Portability and Accountability Act Safe Harbor 
standard.

Development dataset
To develop the AI algorithm for our diagnostic support 
software, we obtained 170 230 four-view, full-field, digital 
mammograms (ie, left and right craniocaudal and 
mediolateral oblique) from five institutions: three in Seoul, 
South Korea (Yonsei University Severance Hospital, 
Asan Medical Center, Samsung Medical Center), one in 
the USA (Wake Radiology Diagnostic Imaging, covering 
North Carolina), and one in the UK (National Health 
Service OPTIMAM database; figure 1). The data collection 
periods were January, 2004–December, 2016, in South 
Korea; January, 2000–December, 2018, in the USA; and 
January, 2010–December, 2018, in the UK. The mean age 
of patients in the datasets was 50·3 years (SD 10·0). The 
mammograms were done using GE (69·9%), Hologic 
(28·0%), and Siemens (1·9%) systems, with 0·2% un
known. We included both screening and diagnostic 

Research in context

Evidence before this study
 We searched for studies that used artificial intelligence or 
deep learning technology, focusing on computer-aided 
diagnosis of breast cancer in mammography. We searched 
PubMed for articles published before Jan 2, 2020, with the 
terms “deep learning” OR “machine learning” OR “artificial 
intelligence” AND “mammography” AND “breast cancer”. 
We also reviewed a reference list of eligible texts and found 
several studies on development and validation of artificial 
intelligence (AI) algorithms. All of the algorithms were 
developed using mammography data of fewer than 
5000 patients with breast cancer. Additionally, most previous 
studies used data collected from one or two institutions for 
development of their AI algorithms, and there were no 
multinational and multicentre studies to cover various 
imaging devices, scanning conditions, and ethnic diversity. 
Thus, the previous studies could not verify robustness of the 
developed AI algorithms, which is the major concern in 
real-field applications. Regarding performance evaluation 
metrics, localisation of lesions needs to be assessed to 
confirm that AI has detected malignant lesions correctly, 
but most previous studies have only evaluated 
mammogram-level performance.

Added value of this study
We have developed an AI algorithm that uses the largest breast 
cancer dataset among known AI algorithms to detect breast 
cancer. Because the algorithm was trained with data from various 
institutions, it was able to show comparable performance in 
validation datasets from different countries. With the aid of the 
large-scale mammography data, the AI algorithm showed 
improved diagnostic performance compared with radiologists, 
especially in early-stage invasive breast cancers. For better 
understanding of AI behaviour, mammographic features of 
cancers detected by the AI algorithm were analysed through the 
comparison study with radiologists.

Implications of all the available evidence
This study shows that AI has the potential to improve early-stage 
breast cancer detection in mammography. Especially in dense 
breast areas on a mammogram which pose one of the major 
difficulties in screening, the performance of radiologists was 
significantly improved when aided with AI. Such improvements 
could result in an increase in screen-detected cancers and 
decrease in interval cancers, which would improve the efficacy of 
mammography screening. Real-world clinical benefit needs to be 
evaluated by future prospective studies.



Articles

www.thelancet.com/digital-health   Vol 2   March 2020	 e140

mammograms; ambiguity of the ground-truth label is a 
major methodological deficiency of previous medical 
AI studies,15,16 so we focused on collecting large-scale 
mammography data with accurate ground-truth label 
regardless of whether data were obtained for screening or 
diagnosis. Among 170 230 mammograms, 36 468 (21·4%) 
were cancer positive confirmed by biopsy, 59 544 (35·0%) 
were benign confirmed by biopsy (8827 [5·2%]) or at 
least 1 year of follow-up imaging (50 717 [29·8%]), and 
74 218 (43·6%) were normal confirmed by at least 1 year of 
follow-up imaging (figure 1). For cancer-positive and 
biopsy-proven benign mammograms, we restricted our 
data to one mammogram per woman. We allowed multiple 
mammograms per woman in normal or follow-up-proven 
benign mammograms in our dataset, but these would 
have been taken on different dates (ie, independent 
mammograms). The entire dataset was divided into three 
sets without patient-level overlap: a training set for training 
an AI model, a tuning set for selection of the training 
scenario, and a validation set for evaluation of the final 
model (figure 1). Once the training scenario was selected 
using the tuning set, both the training and tuning datasets 
were used to train a final model.

Reader study dataset
The purpose of the reader study was to assess the 
applicability of the developed AI model on screening 
mammography data; as the development dataset con
tained both screening and diagnostic mammograms, 
we obtained a separate set of screening data for the 

reader study. 400 four-view digital mammograms were 
obtained from two institutions (institution A: Yonsei 
University Severance Hospital, Seoul, South Korea; 
institution B: Soonchunhyang University Hospital 
Bucheon, Bucheon, South Korea; appendix p 2). The 
reader study dataset was cancer enriched, with cancer 
prevalence of 50%, similar to a previous study.17 Readers 
were not informed of the enrichment levels in the data
set. Data were collected from patient samples between 
April, 2014, and January, 2018, for institution A and 
between March, 2009, and September, 2018, for insti
tution B. All the reader study data consist of screening 
mammograms using GE (50·0%) or Hologic (50·0%) 
systems. Cancer-positive mammograms in the reader 
study dataset were either mammography detected or 
mammography missed but ultrasound detected. Note 
that examining both mammography and ultrasound at 
the same time for breast cancer screening is common 
in South Korea. 80% of the data were randomly 
selected from each category to meet our sample size of 
320 mammograms (320 women; mean age 53·19 years 
[SD 10·01]) for the reader study (appendix p 2). 
A summary of the reader study population is shown in 
the appendix (p 3), including radiological lesion features 
(soft tissue only: mass, asymmetry, distortion; otherwise, 
calcification with or without soft tissue), pathological 
cancer subtypes, lesion size, and Breast Imaging 
Reporting and Data System (BI-RADS)18 breast com
position categories. The reader study data had a high 
prevalence of dense breast (categories C and D) 

Yonsei University Severance
Hospital (n=49 577)

Cancer    6218
    (5917 annotated)

Benign 18 591 
 (5548 annotated)

Normal 24 768

Asan Medical Center
(n=46 614)

Cancer 11 560
 (9497 annotated)

Benign 15 426 
 (5530 annotated)

Normal 19 628

South Korea dataset
(n=145 663)

 Training Tuning Validation

Cancer 26 976 3180 619

Benign 46 087 4258 620 

Normal 56 467 6837 619

USA dataset
(n=18 024)

 Training Validation

Cancer 2202 250

Benign 7047 250

Normal 8025 250

 Training Validation

Cancer 3023 218

Benign 1064 218

Normal 1802 218

UK dataset
(n=6543)

Samsung Medical Center
(n=49 472)

Cancer 12 997
 (11 122 annotated)

Benign 16 948
 (5054 annotated)

Normal 19 527

Development dataset
(n=170 230)

Cancer 36 468
 (31 604 annotated)

Benign 59 544
 (19 625 annotated)

Normal 74 218

Wake Radiology Diagnostic
Imaging (n=18 024)

Cancer 2452 
 (1827 annotated)

Benign 7297 
 (2211 annotated)

Normal 8275

NHS OPTIMAM
(n=6543)

Cancer 3241 
 (3241 annotated)

Benign 1282 
 (1282 annotated)

Normal 2020

Figure 1: Development dataset generation and partitioning
All mammograms are four-view paired (left and right craniocaudal and mediolateral oblique). There was no overlap between categories (cancer, benign, and normal). NHS=National Health Service.

See Online for appendix
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mammograms (216 [68%] of 320) and invasive cancers 
(123 [77%] of 160; appendix p 3).

Development of the AI algorithm
For the purpose of AI algorithm development, 
31 604 cancer-positive mammograms (86·7% of cancers) 
and 19 625 benign mammograms (33·0%) were annotated 
by one of 12 radiologists with breast subspecialty by 
referring to previous radiology and pathology reports. For 
each case included in the mammogram study, per-side 
information (ie, cancer, benign, or normal) was extracted 
from the radiology and pathology reports; therefore, all 
mammograms have image-level labels, and 86·7% of 
cancer-positive mammograms and 33·0% of benign 
mammograms have pixel-level labels that indicate the 
location of lesions.

An AI algorithm was developed on the basis of deep 
convolutional neural networks (CNNs). ResNet-34, one 
of the most popular CNN architectures, was used as a 
backbone network.19 The algorithm training consists of 
two stages: patch-level training from scratch for learning 
low-level features (stage 1), followed by image-level fine-
tuning from the stage-1 model for learning high-level 
context (stage 2). Only lesion-annotated mammograms 
were used in stage 1 (fully supervised), whereas all 
mammograms were used in stage 2 (semi-supervised). 
Batch-instance normalisation20 and a deconvolution 
module21 were additionally adopted to overcome variance 
of pixel-level characteristics (mainly due to the different 
imaging acquisition devices) and increase of false 
positives, respectively. For an input mammogram image 
(ie, one of the four views), the AI algorithm provides 
pixel-level abnormality scores as a heatmap (figure 2) 
and a representative abnormality score, which is the 
maximum of the pixel-level abnormality scores. The 
abnormality scores are floating-point values between 
0 and 1. Based on a per-image analysis of the algorithm, 
the resulting diagnostic support software (Lunit 

INSIGHT MMG) provides four-view heatmaps and 
an abnormality score per breast (ie, the maximum of 
the craniocaudal and mediolateral oblique abnormality 
scores) for each input mammogram (figure 2). Details of 
the algorithm are specified in the appendix (p 4).

Validation of AI-based diagnostic support software
We used the per-mammogram abnormality score—ie, the 
maximum of abnormality scores of each of the four-
views—to evaluate AI standalone performance, including 
area under the receiver operating characteristic (ROC) 
curve (AUROC), sensitivity, and specificity. The cutoff 
threshold between 0 and 1 for measuring sensitivity 
and specificity was set to 0·1 to achieve 90% sensitivity 
in the tuning dataset, and this threshold was also used for 
validation and the reader study. AI standalone performance 
was evaluated with three validation datasets from different 
countries: South Korea (619 cancer-positive, 620 benign, 
and 619 normal mammograms), the USA (250 cancer-
positive, 250 benign, and 250 normal mammograms), and 
the UK (218 cancer-positive, 218 benign, and 218 normal 
mammograms; figure 1). To explore how multinational, 
large-scale datasets affect the performance of AI, we also 
trained the same AI algorithm using just the South Korea 
dataset (ie, single nationality) and with subsets of the 
South Korea dataset (ie, a smaller scale in terms of cancer).

Reader study
A multicentre, observer-blinded study was done with 
14 radiologists from four institutions in South Korea 
(Samsung Medical Center, Seoul; Asan Medical 
Center, Seoul; Uljin Medical Center, Gyeongsangbuk-do; 
and Chung-Ang University Hospital, Seoul) using the  
320 screening mammograms in the reader study dataset. 
There was no overlap between the readers’ institutions 
and the data collection institutions, nor between the 
14 radiologists in the reader study and the 12 radiologists 
who annotated the development dataset. The number of 

Figure 2: AI-based diagnostic support software
AI=artificial intelligence.

AI model (per-image analysis)
Input

Backbone
network
(ResNet-34 with
batch-instance
normalisation)

Output

Deconvolution
module

(false-positive
reduction)
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readers and mammograms required was calculated by 
the power estimation method (significance level set to 
5% and power to 80%)22 with an effect size of 0·03 from a 
similar previous study.17 The 14 radiologists consisted of 
seven breast specialists and seven general radiologists. 
Both groups were board-certified radiologists, but 
general radiologists had not been specifically trained in 
breast imaging whereas breast specialists had been 
trained in breast imaging for at least 6 months.

The overall procedure of the reader study is sum
marised in the appendix (p 5). All mammograms in the 
study were assessed by every reader, with an inspector 
who managed and controlled the process to avoid cross-
reader consultation. For each mammogram, AI-unaided 
(test 1) and AI-aided (test 2) readings were done 
sequentially by the same reader, which is the usual 
approach for second-reader style observer performance 
studies.23 In test 1, each radiologist reviewed a mammo
gram and made a binary decision of whether it should be 
recalled—ie, if there existed a suspicious lesion for breast 
cancer. If recalled, then the radiologist localised the most 
suspicious lesion for breast cancer by putting a point-
mark on the centre of the lesion and graded the 
mammogram with two scores: probability of malignancy 
(POM) and likelihood of malignancy (LOM). POM scores 
are given on a 0–100 scale (0 definite non-cancer, 
1–25 probably non-cancer, 26–50 possibly non-cancer, 
51–75 possibly cancer, 76–99 probably cancer, 100 definite 
cancer)17 and provide a confidence level of a radiologist’s 
reading that a malignant lesion is present in the 
mammogram. LOM scores are given on a 1–7 scale 
(1 definite normal, 2 benign, 3 probably benign, 4 low 
suspicion for malignancy, 5 moderate suspicion for 
malignancy, 6 high suspicion for malignancy, 7 highly 
suggestive of malignancy)24 and provide suspicion scales 
of malignancy. POM scores were used for evaluation of 
detection performance and LOM scores were used for 
evaluation of diagnostic performance. Since BI-RADS 
assessment categories do not constitute an ordinal scale, 
it is inappropriate for ROC analysis;25 hence, LOM, which 
is modified to be ordinal from the BI-RADS categories, is 
used in breast imaging.24 If a radiologist decided not to 
recall, localisation was not needed; in this case, POM was 
zero. In test 2, each radiologist modified their original 
decision in test 1 by referring to the output result of AI. 
For evaluation of the localisation, two experts (E-KK, 

EHL) with more than 20 years of experience in breast 
imaging annotated the location of malignant lesions with 
a free-form line of contour by referring to the radiology 
and pathology reports.

To assess the effectiveness of AI, mammogram-level 
LOM-based AUROC was used as a primary endpoint. 
Secondary endpoints were mammogram-level POM-
based area under the localisation ROC curve (AULROC) 
and recall-based sensitivity and specificity. Mammo
graphic and pathological characteristics of breast cancers 
detected by AI and radiologists were also compared. To 
effectively compare the performance of AI (single) with 
the readers (multiple), we used a reader representative 
score: a cancer-positive case was deemed correctly 
detected by readers if more than half of the readers 
identified it correctly, whereas it was deemed to be 
correctly detected by the AI algorithm if the AI prediction 
score was greater than or equal to 0·1.

Statistical analysis
ROC and localisation ROC curve analyses were done to 
evaluate the performance of the AI algorithm and 
radiologists. In the reader study, multireader, multicase 
ROC curve analysis was used to account for reader 
variability and the correlation among ratings before and 
after AI assistance.22 Readers and cases were treated as 
random effects, and the non-parametric trapezoidal 
method was used to estimate AUROC. AULROC was 
measured with the non-parametric trapezoidal method 
from the localisation ROC curve—a plot of the x-axis 
representing a false-positive fraction against the y-axis 
representing a true-positive localisation fraction.26 In the 
AI standalone assessment, localisation was regarded as 
correct if the location of the maximum of pixel-level 
abnormality scores was inside the closed free-form line 
of the reference standard drawn by radiologists. In the 
reader study, correctness of localisation was determined 
on the basis of whether reader’s point-mark was inside 
the reference standard. For analysis of sensitivity and 
specificity, the Clopper-Pearson method was used 
for estimating 95% CIs, and logistic regression with 
generalised estimating equation (GEE) method was used 
for significance testing and for estimating 95% CIs for 
the difference. Logistic regression with GEE method was 
also used for comparison between cancers detected 
by the AI algorithm and radiologists. We did several 

AUROC AULROC Sensitivity* Specificity*

All (n=3262) 0·959 (0·952–0·966) 0·796 (0·776–0·814) 0·914 (0·897–0·930) 0·860 (0·845–0·875)

South Korea (n=1858) 0·970 (0·963–0·978) 0·775 (0·746–0·804) 0·903 (0·880–0·926) 0·917 (0·901–0·932)

USA (n=750) 0·953 (0·938–0·968) 0·812 (0·774–0·849) 0·936 (0·906–0·966) 0·802 (0·767–0·837)

UK (n=654) 0·938 (0·918–0·958) 0·829 (0·788–0·867) 0·917 (0·881–0·954) 0·768 (0·729–0·808)

95% CIs are given in parentheses. AI=artificial intelligence. AUROC=area under the receiver operating characteristic curve. AULROC=area under the localisation receiver 
operating characteristic curve. *Sensitivity and specificity were calculated with the cutoff threshold of 0·1 (ie, if the abnormality score is ≥0·1, then positive; otherwise, 
negative).

Table 1: Performance of the AI algorithm on three validation datasets
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subgroup analyses: reading panel (general radiologist vs 
breast specialist), age (<50 years vs ≥50 years), BI-RADS 
composition categories (fatty [class A or B] vs dense 
[class C or D]), lesion feature (soft tissue vs calcification), 
and pathological subtype (invasive vs non-invasive). 
Interaction effects between each subgroup and the 
assistance of AI were additionally tested on the logistic 
regression model. SAS (version 9·4) was used for 
analysis of sensitivity and specificity, PyTorch (version 0.4) 
was used for deep learning model development and 
validation, and R (version 3.6.1) was used for the rest of 
analyses.

Role of the funding source
The funder of the study was involved in collection, 
management, and analysis of the dataset used in the AI 
algorithm development; and preparation and review of 
the manuscript. The corresponding author had full 
access to most datasets and all summary estimates from 
each dataset, and had final responsibility for the decision 
to submit for publication.

Results
When considering AI standalone performance, overall 
AUROC in the three validation datasets was 0·959 
(95% CI 0·952–0·966), whereas the individual per
formance was 0·970 (0·963–0·978) in the South Korea 
dataset, 0·953 (0·938–0·968) in the USA dataset, and 
0·938 (0·918–0·958) in the UK dataset (table 1).

To explore how patient nationality and data scale affect 
performance, we trained and validated the algorithm 
on the South Korean data alone (training: 30 156 cancer, 
50 345 benign, 63 304 normal; figure 1). When increasing 

the number of cancer-positive mammograms included in 
the training dataset, while maintaining the full set of 
50 345 benign and 63 304 normal mammograms, we 
found that performance continued to improve as the scale 
of cancer-positive mammograms increased (AUROC 
of validation set 0·919 [95% CI 0·904–0·935] with a 
tenth [n=3000] of cancer-positive mammograms; 0·951 
[0·940–0·962] with a sixth [n=5000]; 0·962 [0·953–0·972] 
with a third [n=10 000]; and 0·974 [0·966–0·981] with the 
full set [n=30 156]). However, when validating the algorithm 
trained on the full South Korea dataset on the USA and UK 
datasets, we observed a decrease in performance, with an 
AUROC of 0·909 (0·887–0·931) for the USA and 0·871 
(0·841–0·901) for the UK (table 1).

In the reader study, overall diagnostic performance of 
radiologists was AUROC 0·810 (95% CI 0·770–0·850), 
compared with the AI standalone performance of 0·940 
(0·915–0·965; p<0·0001; table 2). All of the readers’ ROC 
curves were inside the AI standalone ROC curve (figure 3). 
When aided by AI (ie, test 2), radiologists’ performance 
was significantly improved to 0·881 (0·850–0·911; 
p<0·0001; table 2; figure 3; appendix pp 6–7).

In the reading panel subgroup analysis, the AUROC of 
general radiologists improved from 0·772 (95% CI 
0·729–0·816) to 0·869 (0·834–0·903; p=0·0001) when 
aided by AI, achieving comparable performance to the 
breast specialist group (table 2). The improvement in 
AUROC between AI-unaided and AI-aided radiologists 
was more noticeable in dense breasts, with a difference 
of 0·083 (0·054–0·113; p<0·0001), whereas it was 0·044 
(0·015–0·073; p=0·0041) in fatty breasts (table 2). When 
considering lesion features, the AUROC difference 
between standalone AI and AI-unaided radiologists was 

AI unaided (test 1)

0 0·2 0·4 0·6 0·8 1·0
1 – specificity

AI only
Breast specialist (individual)
Breast specialist (average)
General radiologist (individual)
General radiologist (average)

0

0·6

0·4

0·2

0·8

AI aided (test 2)

0 0·2 0·4 0·6 0·8 1·0
1 – specificity

1·0

Se
ns

iti
vi

ty

Figure 3: ROC analysis for AI-unaided and AI-aided diagnosis
Sensitivity and specificity of each individual (including AI standalone) are marked on each curve. AI=artificial intelligence. ROC=receiver operating characteristic.
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AI* Test 1† Test 2† Difference

AI vs test 1 p value Test 2 vs test 1 p value

Sensitivity

Overall (n=160) 88·75% 
(82·80 to 93·19)

75·27% 
(73·43 to 77·04)

84·78% 
(83·22 to 86·24)

13·48 
(8·65 to 18·32)

<0·0001 9·51 
(6·86 to 12·16)

<0·0001

Reading panel‡

General (n=160) 88·75% 
(82·80 to 93·19)

70·54% 
(67·77 to 73·19)

83·21% 
(80·89 to 85·36)

18·21 
(12·97 to 23·46)

<0·0001 12·68 
(9·24 to 16·12)

<0·0001

Specialist (n=160) 88·75% 
(82·80 to 93·19)

80·00% 
(77·54 to 82·31)

86·34% 
(84·19 to 88·30)

8·75 
(3·80 to 13·70)

0·0005 6·34 
(3·99 to 8·68)

<0·0001

Age

<50 years (n=52) 90·38% 
(78·97 to 96·80)

74·31% 
(70·98 to 77·45)

85·71% 
(82·96 to 88·18)

16·07 
(7·41 to 24·74)

0·0003 11·40 
(6·35 to 16·46)

<0·0001

≥50 years (n=108) 87·96% 
(80·30 to 93·43)

75·73% 
(73·48 to 77·87)

84·33% 
(82·39 to 86·12)

12·24 
(6·43 to 18·04)

<0·0001 8·60 
(5·54 to 11·66)

<0·0001

BI-RADS composition categories

Fatty (A or B; n=44) 86·36% 
(72·65 to 94·83)

79·22% 
(75·80 to 82·36)

84·09% 
(80·96 to 86·89)

7·14 
(0·09 to 14·20)

0·047 4·87 
(1·89 to 7·85)

0·0013

Dense (C or D; n=116) 89·66% 
(82·63 to 94·54)

73·77% 
(71·56 to 75·89)

85·04% 
(83·21 to 86·74)

15·89 
(9·84 to 21·94)

<0·0001 11·27 
(7·85 to 14·69)

<0·0001

Lesion feature§

Soft tissue (n=79) 89·87% 
(81·02 to 95·53)

71·43% 
(68·67 to 74·08)

83·09% 
(80·75 to 85·26)

18·44 
(11·08 to 25·81)

<0·0001 11·68 
(7·45 to 15·87)

<0·0001

Calcification (n=81) 87·65% 
(78·47 to 93·92)

79·01% 
(76·52 to 81·35)

86·42% 
(84·29 to 88·36)

8·64 
(2·53 to 14·76)

0·0056 7·41 
(4·24 to 10·58)

<0·0001

Pathology

Invasive (n=123) 90·24% 
(83·58 to 94·86)

75·55% 
(73·45 to 77·57)

86·59% 
(84·88 to 88·16)

14·69 
(9·11 to 20·27)

<0·0001 11·03 
(7·80 to 14·27)

<0·0001

Non-invasive (n=37) 83·78% 
(67·99 to 93·81)

74·32% 
(70·33 to 78·03)

78·76% 
(74·99 to 82·21)

9·46 
(-0·05 to 18·97)

0·051 4·44 
(0·96 to 7·92)

0·013

Specificity

Overall (n=160) 81·87% 
(75.02 to 87·51)

71·96% 
(70·05 to 73·82)

74·64% 
(72·79 to 76·43)

9·91 
(3·69 to 16·13)

0·0018 2·68 
(1·33 to 4·03)

<0·0001

Reading panel‡

General (n=160) 81·87% 
(75·02 to 87·51)

71·61% 
(68·87 to 74·23)

75·54% 
(72·91 to 78·03)

10·27 
(3·73 to 16·81)

0·0021 3·93 
(1·92 to 5·94)

0·0001

Specialist (n=160) 81·87% 
(75·02 to 87·51)

72·32% 
(69·60 to 74·92)

73·75% 
(71·07 to 76·31)

9·55 
(3·32 to 15·79)

0·0027 1·43 
(0·05 to 2·81)

0·043

Age

<50 years (n=63) 77·78% 
(65·54 to 87·28)

61·68% 
(58·38 to 64·90)

64·17% 
(60·91 to 67·34)

16·10 
(5·69 to 26·51)

0·0024 2·49 
(-0·21 to 5·20)

0·071

≥50 years (n=97) 84·54% 
(75·78 to 91·08)

78·65% 
(76·37 to 80·80)

81·44% 
(79·27 to 83·48)

5·89 
(-1·72 to 13·50)

0·13 2·80 
(1·44 to 4·16)

<0·0001

BI-RADS composition categories

Fatty (A or B; n=60) 93·33% 
(83·80 to 98·15)

79·52% 
(76·63 to 82·20)

83·21% 
(80·51 to 85·68)

13·81 
(4·74 to 22·88)

0·0028 3·69 
(2·20 to 5·18)

<0·0001

Dense (C or D; n=100) 75·00% 
(65·34 to 83·12)

67·43% 
(64·90 to 69·88)

69·50% 
(67·01 to 71·90)

7·57 
(-0·73 to 15·87)

0·074 2·07 
(-0·12 to 4·02)

0·038

Lesion feature§

Soft tissue; benign (n=36) 83·33% 
(67·19 to 93·63)

44·25% 
(39·86 to 48·70)

49·21% 
(44·76 to 53·66)

39·09 
(24·11 to 54·06)

<0·0001 4·96 
(1·96 to 7·96)

0·0012

Calcification; benign 
(n=28)

42·86% 
(24·46 to 62·82)

52·30% 
(47·22 to 57·33)

49·74% 
(44·69 to 54·81)

−9·44 
(−26·96 to 8·08)

0·29 −2·55 
(−7·41 to 2·31)

0·30

Data are n or n (95% CI). AI=artificial intelligence. BI-RADS=Breast Imaging Reporting and Data System. *Sensitivity and specificity of AI were calculated using the cutoff 
threshold of 0·1 (ie, if the abnormality score of AI is greater than or equal to 0·1, then positive; otherwise, negative). †Test 1 was AI-unaided radiologist readings and test 2 
was subsequent AI-aided radiologist readings. ‡Reading panel subgroup analysis compared general radiologists with breast specialists. §Normal mammograms were 
excluded in this subgroup analysis.

Table 3: Sensitivity and specificity of AI and radiologists and comparisons between AI, AI-aided radiologists, and AI-unaided radiologists
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0·251 (0·177–0·324; p<0·0001) in soft tissue and 0·086 
(0·024–0·148; p=0·0066) in calcification, suggesting that 
AI can be effective for discriminating soft tissue lesions 
from breast parenchyma. The overall trend of AULROC 
was similar to AUROC (table 2).

Overall, when aided by AI, sensitivity and specificity of 
the radiologists was increased (table 3). AI-unaided radio
logists showed higher sensitivity in fatty breasts, but 
performance improvement when aided by AI was greater 
in dense breasts (p=0·0082 in interaction test), with 
sensitivities becoming comparable (table 3). When aided 
by AI, specificity was increased in fatty breasts, but the 
increase was non-significant in dense breasts (table 3). 
When analysing by lesion features, AI assistance 
improved sensitivity in calcification and in soft tissue 
(table 3). However, specificity in calcification was 
decreased, although the decrease was not significant 
(table 3). Specificity of standalone AI in soft tissue was 
39·09 percentage points (95% CI 24·11–54·06) higher 
than AI-unaided radiologists; additionally, the specificity 
of radiologists in soft tissue was increased with the 
assistance of AI (table 3).

Of the 160 cancers, 142 (89%) were detected by AI with 
an abnormality score of at least 0·1 and 122 (76%) were 
detected by more than half of the reader group (table 4). 
With these thresholds, AI was significantly better than 
readers at detecting cancers with mass or distortion 
mammographic features (table 4). AI detected 73 (91%) 
of 80 T1 cancers and 104 (87%) of 119 node-negative 
cancers with an abnormality score of at least 0·1 whereas 
59 (74%) T1 cancers and 88 (74%) node-negative cancers 
were detected by more than half of readers (table 4).

Discussion
In this study, we have shown that an AI algorithm 
for detecting breast cancer can be used as an effective 
diagnostic support tool for radiologists in mammography 
interpretation. It showed 0·938–0·970 of AUROC on 
multiple validation datasets collected from five insti
tutions in South Korea, the USA, and the UK. It also 
showed significantly better performance than 14 radio
logists in 320 independent mammograms, resulting in a 
significant improvement in radiologists’ AI-aided diag
nostic performance.

Breast cancer has heterogeneous appearances, ranging 
from obvious masses with spiculated margins to subtle 
asymmetry or faint microcalcification, leading to diffi
culties in accurate diagnosis and consistent interpretation 
of mammography. Deep learning is known to be superior 
to traditional machine learning algorithms for various 
recognition tasks. Rich feature representations directly 
learned from large-scale data are not limited by human-
designed features, which could allow recognition of 
various cancer-specific radiological appearances accurately. 
Inter-reader performance variation is another problem in 
screening mammography.5,6,27 For example, sensitivity in 
breast cancer detection has been shown to vary from 

74·5% to 92·3%.27 Software is robust to human variation, 
so deep learning might contribute to reducing the variability 
in radiologists’ diagnostic performance. Although feasi
bility has to be shown in prospective clinical trials, AI is 
expected to help breast cancer screening in mammography 
by increasing cancer detection and decreasing false-
positive recalls.

In this study, more than 30 000 pathologically proven 
cancer-positive mammograms—the largest scale of cancer 
data among mammography-related AI studies28–31—were 
collected from various institutions in different countries. 
Our experiments showed that multinational large-scale 
data—and especially the scale of the cancer data—are 
important for robustness of AI. In terms of data quality, 
87% of cancer and 33% of benign mammograms were 
annotated at pixel level by radiologists. All of the cancer 
data and a portion of benign data were pathologically 
proven cases, so the algorithm could be trained to dis
criminate the subtle difference between benign tumours 
and malignancy. We restricted our cancer data to one 
mammogram per each patient with cancer, meaning 
36 468 cancer-positive mammograms were obtained from 
36 468 patients. Thanks to the high-quality multinational 
large-scale data, our AI algorithm consistently showed 
excellent performance in various validation datasets.

Our AI algorithm was observed to have the following 
characteristics. First, AI showed superior performance in 

Detected by AI 
(abnormality 
score ≥0·1)

Detected by 
more than half 
of readers

Detected by 
both

Missed by 
both

p value (AI 
vs readers)

All (n=160) 142 (89%) 122 (76%) 117 (73%) 13 (8%) 0·0002

Dominant imaging feature

Mass (n=59) 53 (90%) 46 (78%) 45 (76%) 5 (8%) 0·044

Calcifications (n=81) 71 (88%) 66 (81%) 63 (78%) 7 (9%) 0·14

Distortion or 
asymmetry (n=20)

18 (90%) 10 (50%) 9 (45%) 1 (5%) 0·023

T stage (size)

T0 (in-situ; n=37) 31 (84%) 28 (76%) 26 (70%) 4 (11%) 0·27

T1 (≤20 mm; n=80) 73 (91%) 59 (74%) 57 (71%) 5 (6%) 0·0039

T2 (tumour >20 mm 
but ≤50 mm; n=27)

25 (93%) 23 (85%) 22 (81%) 1 (4%) 0·34

Unknown (n=16) 13 (81%) 12 (75%) 12 (75%) 3 (19%) 0·30

N stage (lymph node)

Negative (n=119) 104 (87%) 88 (74%) 84 (71%) 11 (9%) 0·0025

Positive (n=24) 23 (96%) 20 (83%) 20 (83%) 1 (4%) 0·064

Unknown (n=17) 15 (88%) 14 (82%) 13 (76%) 1 (6%) 0·57

Cancer subtype

Luminal A (n=35) 31 (89%) 30 (86%) 29 (83%) 3 (9%) 0·57

Luminal B (n=76) 67 (88%) 53 (70%) 51 (67%) 7 (9%) 0·0038

HER2 positive (n=10) 8 (80%) 7 (70%) 7 (70%) 2 (20%) 0·29

Triple negative (n=24) 23 (96%) 18 (75%) 18 (75%) 1 (4%) 0·012

Unknown (n=15) 13 (87%) 13 (87%) 12 (80%) 0 0·56

Data are n (%). Table shows cancers detected or missed by more than half of readers (>7) and in which the abnormality 
score of AI is greater than or equal to the predefined threshold of 0·1. AI=artificial intelligence.

Table 4: Mammographic and pathologic features of breast cancer detected or missed by AI and radiologists
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breast cancer detection. The reader study showed that AI 
detects more cancers with mammographic features of 
mass, architectural distortion, and asymmetry than 
radiologists. Traditional CAD is known to have poor 
performance in detection of cancers with distortion or 
asymmetry,32 which suggests that AI can lead to significant 
improvement in diagnostic performance of radiologists 
by overcoming the problems of traditional CAD. Second, 
AI showed better performance than radiologists in 
detection of early-stage invasive cancers. Of 21 T1 cancers 
and 31 node-negative cancers missed by the reader group, 
16 and 20, respectively, were detected by AI. Although the 
real clinical value needs to be confirmed by prospective 
studies, these results suggest that early detection of breast 
cancers by AI might contribute to a reduction of interval 
cancer and improvement of outcomes for patients with 
breast cancer. Lastly, the diagnostic performance of AI 
was less affected by breast density than was the 
performance of radiologists. Radiologists’ performance 
can decrease with dense breasts, since dense parenchymal 
tissue is more likely to mask cancer lesions in 
mammograms.33 The sensitivity difference of AI between 
fatty and dense breasts was much smaller than that of 
radiologists, leading to a significant improvement of 
radiologists’ AI-aided performance in dense breasts.

A similar study on AI for breast cancer screening has 
recently been published,34 in which an AI algorithm was 
shown to be superior to radiologists in terms of interpretive 
performance. However, the reader study employed in that 
study was limited in terms of clinical implication, as the 
effect of the AI algorithm on radiologists’ interpretive 
performance was not directly evaluated. The relative 
strength of the AI algorithm investigated in our study 
includes higher calibre data used for training, both in 
terms of quantity (ie, 30 000 cancer cases with 87% 
annotated by breast specialists) and quality (ie, data from 
five institutions across both white and Asian populations 
compared with data from two institutions representing 
only white participants).

This study has several limitations. First, the reader study 
was done with a cancer-enriched dataset, which has 
different cancer prevalence to real-field data (50% in the 
reader study dataset vs <1% in real-field data). Medical AI 
has been increasingly studied as deep learning technology 
becomes mainstream, but most studies have metho
dological deficiencies15,16—eg, in a systematic review of 
deep learning performance in medical imaging, only four 
of 82 studies considered diagnostic performance in an 
algorithm-plus-clinician scenario.15 Although our study 
compared the diagnostic performance of humans, 
AI-aided humans, and standalone AI using an independent 
set of external data in a strict reader study format, the 
real clinical value needs to be investigated further via 
prospective clinical studies with the same prevalence of the 
real-world clinical setting. Second, our AI algorithm does 
not take into account clinical factors such as family history 
or symptoms, which might limit comprehensive analysis. 

Third, the reading environment of this study was different 
from that of daily practice, especially in terms of the 
proportion of cancer cases. There was no restriction on 
reading time, but it was noted that reading volume affects 
diagnostic performance.35 These factors might cause 
performance difference between clinical and experimental 
setting.36 Although a radiologist’s cancer detection rate is 
expected to be lower in daily practice than in the 
experimental setting, these factors should be controlled in 
future studies.

In conclusion, the AI algorithm we developed with 
large-scale high-quality data showed better diagnostic 
performance than radiologists in breast cancer detection 
from mammograms. More importantly, the diagnostic 
performance of radiologists was significantly improved 
with the assistance of AI. This result shows that AI can 
be used as an effective diagnostic support tool for breast 
cancer detection, which is worth evaluating in prospective 
clinical trials.
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