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This paper evaluated 3-dimensional radiomics features of breast magnetic resonance imaging (MRI) 
as prognostic factors for predicting systemic recurrence in triple-negative breast cancer (TNBC) and 
validated the results with a different MRI scanner. The Rad score was generated from 3-dimensional 
radiomic features of MRI for 231 TNBCs (training set (GE scanner), n = 182; validation set (Philips 
scanner), n = 49). The Clinical and Rad models to predict systemic recurrence were built up and the 
models were externally validated. In the training set, the Rad score was significantly higher in the 
group with systemic recurrence (median, −8.430) than the group without (median, −9.873, P < 0.001). 
The C-index of the Rad model to predict systemic recurrence in the training set was 0.97, which was 
significantly higher than in the Clinical model (0.879; P = 0.009). When the models were externally 
validated, the C-index of the Rad model was 0.848, lower than the 0.939 of the Clinical model, although 
the difference was not statistically significant (P = 0.100). The Rad model for predicting systemic 
recurrence in TNBC showed a significantly higher C-index than the Clinical model. However, external 
validation with a different MRI scanner did not show the Rad model to be superior over the Clinical 
model.

Triple-negative breast cancer (TNBC) is a tumor subtype that lacks expression of the hormonal and HER2 recep-
tors1, however, it is a genomically heterogeneous disease2. TNBC comprises 15% of all invasive breast cancers 
and tends to be detected when it is already large in size and high grade1,3. Systemic recurrence occurs more often 
in TNBC than non-TNBC and mostly within 5 years of the TNBC diagnosis, while non-TNBC shows constant 
recurrence risk during follow-up4. The overall 4-year survival rate of TNBC is 77.0%, which is lower than the 
overall survival rates of other subtypes which range from 82.7 to 92.5%5. Systemic recurrence of TNBC leads to 
poorer survival, and therefore, it is important to predict the systemic recurrence risk of TNBC to tailor treatment 
to the individual patient4. Tumor size, lymph node, androgen receptor, Ki-67, treatment options such as adjuvant 
chemotherapy, radiotherapy, and pathologic complete response (pCR) after neoadjuvant chemotherapy have been 
associated with TNBC prognosis3,6–10. Several studies have used breast magnetic resonance imaging (MRI) fea-
tures to predict the prognosis of invasive breast cancer including TNBC11–13, and in other studies, peritumoral 
enhancement and perfusion parameters on MRI have been used for TNBC only14,15.

Radiomics shows promise for predicting cancer prognosis because it provides a comprehensive quantifica-
tion of imaging phenotypes and allows an objective assessment of tumor phenotypes16,17. Tumors with higher 
heterogeneity are related with poorer survival, and because radiomics reflect tumor heterogeneity, radiomics of 
breast MRI have been reported as prognostic factors for invasive breast cancer18–21. To our knowledge, radiomics 
features using dynamic contrast-enhanced (DCE) MRI have not been evaluated to predict prognosis in TNBC, 
especially with 3-dimensional images from the whole tumor. One thing to note is that radiomics features of breast 
MRI are affected by the chosen imaging scanner22. Thus, radiomics features have to be validated with different 
scanners.
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Therefore, the purpose of our study was to evaluate 3-dimensional radiomics features of breast MRI as prog-
nostic factors for predicting systemic recurrence in TNBC. Furthermore, the results were externally validated 
with a different MRI scanner.

Methods
Study population. The Institutional Review Board approved this retrospective study and required neither 
patient approval nor informed consent for our review of patient images and medical records (Institutional review 
board, Severance Hospital Yonsei University College of Medicine, 4-2018-0520).

From January 2012 to December 2015, among 3,166 patients who underwent breast surgery due to breast can-
cer, 272 (8.6%) patients were confirmed with invasive TNBC. TNBC was defined when both estrogen receptors 
and progesterone receptors were <1% of tumor cell nuclei28 and also when HER2 staining scores were 1+ or 0, 
or 2+ with a fluorescence in situ hybridization amplification ratio of <2.029. Forty-one patients were excluded 
because they had undergone MRI with different vendors for the training and validation sets (n = 19), had not 
undergone MRI before treatment (n = 8), had undergone MRI at an outside hospital (n = 6), had experienced 
problems when downloading the Digital Imaging and Communications in Medicine (DICOM) files (n = 5), had 
undergone vacuum-assisted biopsy (n = 2), or was a recurred case (n = 1). Finally, 231 TNBCs in 231 patients 
were included. Mean age of the patients was 51.1 ± 12.0 years (range, 23 to 88). The mean follow-up period was 
43.2 ± 15.8 months.

MRI acquisition. Breast MRI examinations were performed before any treatment using two 3-T MRI scan-
ners (Discovery MR750w; GE Medical Systems, Milwaukee, Wisconsin, USA/Philips Achieva; Philips Medical 
Systems, Best, The Netherlands), and patients were imaged with the scanner used being decided arbitrarily 
according to the hospital’s daily schedule (182 for the GE scanner, 49 for the Philips scanner). Scans were per-
formed with an 8-channel breast receiver coil with the patient in the prone position. Breast MRI consisted of 
T2-weighted axial images, fat-suppressed T2-weighted axial images, diffusion-weighted images, T1-weighted 
non-fat-suppressed pre-contrast images, 6 sets of 3D fat-suppressed DCE axial images, and T1-weighted 
fat-suppressed contrast-enhanced sagittal images. DCE-MRI was performed after injecting 20 mL of gadopen-
tetate dimeglumine (Magnevist, Bayer HealthCare) over 15 seconds. Acquisition time of each DCE axial image 
was 79 seconds for the GE scanner (repetition time (TR)/echo time (TE), 6.2/1.3 ms; section thickness (ST), 
3 mm; field-of-view (FOV), 32 cm) and 65 seconds for the Phillips scanner (TR/TE, 3.9/1.4 ms; ST, 1.5 mm; FOV, 
32 cm). For each set of DCE axial images, subtraction images were generated.

Radiomics analysis. The DICOM files of the second phase of fat-suppressed DCE-MRI for the GE scanner 
and second subtracted DCE-MRI images for the Philips scanner were downloaded to draw regions-of-interest 
(ROIs). One radiologist (H.J.M.) drew a ROI on every slice of MRI that demonstrated the index tumor along 
the tumor border while excluding normal breast parenchyma with the semi-automated process provided by the 
Medical Image Processing, Analysis, and Visualization (MIPAV) application (http://mipav.cit.nih.gov/index.
php), and captured images within the new frame were saved. Radiomics analysis was performed on the ROI by 
one of the authors (E. L.). In order to reduce data redundancy and inconsistency, once a ROI was located, a box 
enclosing the ROI was extracted from the 3D image and the voxel values in the box were scaled to normalize 
the intensity so that the data read the same way across all images. Then, information on the exact position of 
the ROI boundary was gathered and applied to the same image without ROI segmentation to extract the ROI 
only image (Supplementary Fig. S1). This process was necessary to remove interference from drawing the ROI 
boundary with a colored marker when analyzing features. To normalize the images, we used min-max scaling so 
that the voxel values of each image were within a range from 0 to 255. As a pre-processing step, all images were 
normalized to have similar data distribution. The histogram analysis consisted of 14 features (Supplementary 
Fig. S2). Shape- and size-based features were made up of 8 features. Textural features were calculated from the 
gray-level co-occurrence matrix (GLCM) and gray-level run-length matrix (GLRLM). The 3-dimensional GLCM 
and GLRLM were calculated in 13 directions. GLCM features were analyzed for 22 parameters and GLRLM fea-
tures were analyzed for 11 parameters. The 3-dimensional wavelet transform was then applied with 8 decomposi-
tions, by directional low-pass and high-pass filtering (XLLL, XLHL, XLLH, XHLL, XLHH, XHLH, XHHL and XHHH). Matlab 
R2018a was used to generate the corresponding values of each parameter (The MathWorks, Inc. Natick, MA, US).

Establishing the Rad score. The total number of radiomic features was 3995. We used the least absolute 
shrinkage and selection operator (LASSO) with 10-fold cross-validation to identify the optimal number of fea-
tures to predict systemic recurrence in the training set. Cross-validation was repeated 100 times to minimize bias 
from random partition and coefficients of the features were calculated. Relative standard deviation (standard 
deviation/mean) was calculated from the coefficients to select features that predicted systemic recurrence. The 
equation for the Rad score is as follows.

Rad score = M1X1 + M2X2 + .. + MnXn (Mn: coefficients of regression, Xn: selected features)

Data analysis. Clinical and pathologic data were reviewed. Patient age, neoadjuvant chemotherapy, sur-
gery type, adjuvant chemotherapy, and radiotherapy were recorded. On the pathologic report, presence of pCR 
after neoadjuvant chemotherapy, pathologic invasive tumor size, nuclear grade, histologic grade, lymphovascular 
invasion, and the number of metastatic axillary lymph nodes after surgery were recorded. Interval from initial 
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diagnosis to systemic recurrence or the date of the last follow-up was recorded. Patients were assigned to the 
training and validation sets according to the MRI scanner used. Patients who underwent MRI examinations with 
the GE scanner were classified as the training set (n = 182) and those who underwent MRI with the Philips scan-
ner were classified as the validation set (n = 49), respectively.

Statistical analysis. Continuous variables of the training and validation sets were compared with the 
Mann-Whitney U test or independent two-sample t-test, and categorical variables were compared with Fisher’s 
exact test or the chi-square test, respectively. The Rad score was compared according to systemic recurrence 
with the Mann-Whitney U test. Univariable Cox proportional hazard regression was performed for the features 
predicting recurrence. Multivariable Cox proportional hazard regression was performed with the best subset 
selection method over 6 models to select the appropriate combination of features for external validation because 
the number of variables was larger than the number of events (Supplementary Table S3). For all 6 models, the 
Rad score was compared one-on-one with six variables which were significantly associated with systemic recur-
rence on univariable analysis. The concordance-index (C-index) for predicting systemic recurrence was calcu-
lated in the training set to evaluate the discriminative ability of each model30. From the six examined models, 
features that showed a high C-index for predicting systemic recurrence in the training set were selected to create 
the Clinical and Rad models. The Rad score consistently remained significant for the 6 models examined. We 
excluded pCR and histologic grade, because the data was completely separable and also showed low C-indexes. 
Moreover, pCR could be replaced by invasive tumor size on pathology and histologic grade was only significant 
between grade 1 and not available categories which were derived from pCR cases on the univariable analysis. 
The Clinical model was built up with only clinicopathologic variables. The Rad model was composed with the 
Rad score added to the Clinical model. External validation was performed with the features selected through 
multivariable analysis, and the C-index was calculated. We compared the C-indexes of the Clinical and Rad 
models. Statistical analyses were performed by R Statistical Software (version 3.5.1.; R Foundation for Statistical 
Computing, Vienna, Austria).

Results
Patients’ characteristics and recurrence events. The clinical and pathologic characteristics were com-
pared between the training and validation sets and the results are presented in Table 1. Interval from initial diag-
nosis to systemic recurrence or the date of the last follow-up was significantly different between the two groups 
(P < 0.001). All other characteristics were not significantly different. Systemic recurrence was observed in 22 
(9.5%) cases (training set, n = 19; validation set, n = 3). The median time to recurrence was 18.8 months (mean, 
22.9 months; range, 7.0 to 61.6 months). The organs with tumor recurrence were the lungs (n = 14), liver (n = 10), 
bones (n = 8), distant lymph nodes (n = 8), brain (n = 7), peritoneum (n = 1), and adrenal gland (n = 1) with 19 
cases showed multiple sites of recurrence.

Radiomic features and Rad score. The mean number of features selected from 100 repeats of the 10-fold 
cross-validation for LASSO was 32.23 (range 3 to 54). We chose mean number of 32 features to generate the Rad 
score (Table 2). Among them, 7 were selected from GLCM-related features, 24 from GLRLM-related features, 
and 1 from histogram analysis. The most frequently selected feature was difference entropy (n = 6). Twenty-five 
selected features were from wavelet decomposition. In the training set, the Rad score was significantly higher 
in the group with systemic recurrence (median, −8.430; interquartile range (IQR), −8.800 to −8.259) than the 
group without (median, −9.873; IQR, −10.226 to −9.468, P < 0.001) (Fig. 1).

Clinical and Rad model for predicting systemic recurrence. On univariable analysis, pCR status, 
pathologic invasive cancer size, histologic grade, lymphovascular invasion, surgery type, number of metastatic 
axillary lymph nodes after surgery, and the Rad score were significantly associated with systemic recurrence 
(Table 3). Through the best subset methods, the Clinical model was built with pathologic invasive cancer size, 
lymphovascular invasion, surgery type, and number of metastatic axillary lymph nodes after surgery. The Clinical 
model for predicting systemic recurrence showed that lymphovascular invasion (hazard ratio (HR), 7.875; 95% 
confidence interval (CI), 2.679, 23.153; P < 0.001), surgery type (HR, 0.231; 95% CI, 0.078, 0.679; P = 0.008), and 
the number of metastatic axillary lymph nodes after surgery (HR, 1.06; 95% CI, 1.002, 1.121; P = 0.043) were 
statistically significant on multivariable analysis (Table 4). The C-index of the Rad score for predicting systemic 
recurrence in the training set was 0.964 (95% CI, 0.829, 1), which was significantly different from that of the 
Clinical model (0.879; 95% CI, 0.744, 1; P = 0.009). When the models were externally validated in the validation 
set, the C-index was 0.939 (95% CI, 0.604, 1) for the Clinical model and 0.765 (95% CI, 0.430, 1) for the Rad score. 
The C-index of the Rad score was significantly lower than that of the Clinical model (P = 0.001). The Rad model 
was composed with the Rad score added to the Clinical model. In the Rad model, lymphovascular invasion (HR, 
4.414; 95% CI, 1.331, 14.637; P = 0.015) and the Rad score (HR, 39.302; 95% CI, 11.351, 136.078; P < 0.001) 
remained statistically significant. The C-index of the Rad model for predicting systemic recurrence in the training 
set was 0.97 (95% CI, 0.835, 1), which was significantly higher than the C-index of the Clinical model (0.879; 95% 
CI, 0.744, 1; P = 0.009).

External validation. When the models were externally validated in the validation set, the C-index was 0.939 
(95% CI, 0.604, 1) for the Clinical model and 0.848 (95% CI, 0.513, 1) for the Rad model (Table 4). The C-index 
of the Rad model was lower than the Clinical model, even though there was no statistical difference (P = 0.100).

https://doi.org/10.1038/s41598-020-59923-2


4Scientific RepoRtS |         (2020) 10:2976  | https://doi.org/10.1038/s41598-020-59923-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussion
We tried to build up a model to predict systemic recurrence in TNBCs using the 3-dimensional radiomics fea-
tures of pretreatment breast MRI. When the Rad score was combined with clinicopathologic variables (the Rad 
model), the new model was able to predict systemic recurrence better than the model comprised only with clin-
icopathologic variables (the Clinical model). However, the Rad model was not superior over the Clinical model 
in an external validation which used another MRI scanner with a different protocol.

The Rad score was extracted from a massive volume of radiomics features on MRI and was significantly higher 
in patients with systemic recurrence. Most features were selected from the GLCM and GLRLM, and the most fre-
quently selected feature was the difference entropy of GLCM which was selected 6 times with different angles and 
wavelet combinations. Difference entropy is the measure of randomness and variability in neighborhood intensity 
value differences23. GLCM and GLRLM are calculated from the interaction between image pixels; thus, tumor 
heterogeneity can be better reflected with these parameters than histogram analysis or shape- and size-based fea-
tures. Park et al. also found that GLCM had more valuable features for predicting the prognosis of invasive breast 
cancer although their study population was not TNBC-specific18.

Systemic recurrence occurred in 9.5% of our study population, which was within the range of a previous 
study3,24,25. The median interval to recurrence was 18.8 months and this finding was also seen in TNBC patients 
who relapsed and died within 5 years of diagnosis4. We created the Clinical model which was comprised of the 
pathologic invasive cancer size, lymphovascular invasion, surgery type, and number of metastatic axillary lymph 

Variables
Training set 
(n = 182)

Validation set 
(n = 49) P value

Age, mean ± standard deviation 50.84 ± 12.35 51.88 ± 10.53 0.556

Neoadjuvant chemotherapy, n (%) >0.999

  Yes 70 (38.46) 19 (38.78)

  No 112 (61.54) 30 (61.22)

pCR, n (%) 0.913

  Not applicable 112 (61.54) 30 (61.22)

  Yes 33 (18.13) 10 (20.41)

  No 37 (20.33) 9 (18.37)

Pathologic invasive cancer size, median (IQR) 14 (5.25, 20) 15 (7, 21) 0.503

Nuclear grade, n (%) 0.794

  2 44 (24.18) 11 (22.45)

  3 125 (68.68) 36 (73.47)

  Not available 13 (7.14) 2 (4.08)

Histologic grade, n (%) 0.896

  1 2 (1.1) 0 (0)

  2 49 (26.92) 14 (28.57)

  3 118 (64.84) 33 (67.35)

  Not available 13 (7.14) 2 (4.08)

Lymphovascular invasion, n (%) 0.071

  Yes 11 (6.04) 7 (14.29)

  No 171 (93.96) 42 (85.71)

  Surgery type, n (%) 0.092

  Brest conserving surgery 126 (69.23) 27 (55.1)

Total mastectomy 56 (30.77) 22 (44.9)

Number of metastatic axillary lymph nodes 
after surgery, median (IQR) 0 (0, 0) 0 (0, 0) 0.396

Adjuvant chemotherapy, n (%) 0.845

  Yes 110 (60.44) 31 (63.27)

  No 72 (39.56) 18 (36.73)

Radiotherapy, n (%) 0.135

  Yes 156 (85.71) 37 (75.51)

  No 26 (14.29) 12 (24.49)

Systemic recurrence event, n (%) 0.583

  Yes 19 (10.44) 3 (6.12)

  No 163 (89.56) 46 (93.88)

Interval from initial diagnosis to systemic 
recurrence, median (IQR)

47.39 (36.73, 
59.73)

33.03 (28, 
36.87) <0.001

Table 1. Comparison of clinical and pathologic characteristics between the training and validation sets. 
pCR = pathologic complete response, IQR = interquartile range.
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Figure 1. Distribution of the Rad score according to systemic recurrence. The Rad score was significantly 
higher in the group with systemic recurrence (Label 1, median, −8.430; interquartile range (IQR), −8.800 to 
−8.259) than the group without (Label 0, median, −9.873; IQR, −10.226 to −9.468, P < 0.001).

Features Angle Wavelet *Coefficient
IMC2 2 LLH −12.727
DE 2 LHH −1.37
SRLGLE 2 LLL 5.547
LRLGLE 12 HLL 6.093
LRLGLE 12 5.375
LRHGLE 1 0.002
LRHGLE 4 0.002
SRHGLE 4 LLH −0.012
LRLGLE 13 4.556
LRE 4 LLL 0.043
LRLGLE 6 HLH −7.015
LGLRE 6 HLL 6.238
SKEW 1 −0.204
RLN 11 HLL −0.008
HGLRE 8 LHH 0.011
DE 2 HHH 0.371
HGLRE 7 HHH 0.007
DE 3 −0.354
DE 2 HLH 0.317
SRLGLE 6 LHL 4.157
DE 8 HLL 0.344
SRHGLE 5 HHH 0.008
RLN 7 HLL 0.004
GLN 13 HHH 0.021
DE 11 LLH −0.203
SRLGLE 1 LLL 2.055
RP 9 0.878
SRLGLE 7 HLL 3.368
SRHGLE 7 HHL −0.01
LRHGLE 7 LLL −0.002
LRLGLE 12 LLL −0.081
GLN 11 HLL −0.017

Table 2. Selected 32 radiomics features of the Rad score. IMC = informational measure of correlation, 
DE = difference entropy, SRLGLE = short run low gray-level emphasis, LRLGLE = long run low gray-level 
emphasis, LRHGLE = long run high gray-level emphasis, SRHGLE = short run high gray-level emphasis, 
LRE = long run emphasis, LGLRE = low gray-level run emphasis, SKEW = skewness, RLN = run-length non-
uniformity, HGLRE = high gray-level run emphasis, GLN = gray-level non-uniformity, RP = run percentage, 
*Average of Coefficient was calculated from cross-validation.
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nodes after surgery to predict systemic recurrence. The Clinical model in the training set showed a high C-index 
of 0.879 to predict systemic recurrence and the C-index of the Rad score itself was 0.964 (95% CI, 0.829, 1), which 
was significantly higher than the C-index of the Clinical model. The Rad model consisted of the Clinical model 
plus the Rad score. In the training set, the Rad model showed a significantly higher C-index of 0.97 than the 
Clinical model (P = 0.009) for predicting systemic recurrence in TNBC. While there have been several radiomics 
studies on invasive breast cancers and prognosis, they have not been TNBC-specific. Kim and colleagues evalu-
ated entropy and uniformity only and they associated higher entropy on T2-weighted images and lower entropy 
on contrast-enhanced T1-weighted subtraction images with poorer recurrence-free survival in invasive ductal 
carcinoma20. Yamamoto and colleagues investigated only eight radiomics features and an enhancing rim frac-
tion was related with metastasis-free survival19. Li and colleagues showed that there was a relationship between 
radiomics and multigene assays, but their study did not evaluate recurrence nor survival21. Park and colleagues 
studied four radiomics features and reported that the combination of radiomics and clinicopathologic features 
could predict disease-free survival18. The strength of our study is that we analyzed 3-dimensional images from 
the whole tumor with 3995 derived radiomics features, and thereby took full advantage of the massive volume of 
radiomic features. The Rad model which added the Rad score to the Clinical model showed better performance 
than the Clinical model to predict systemic recurrence in TNBC patients.

We validated the Rad model with a different MRI scanner and different protocol. The Rad model of the val-
idation set also showed a high C-index of 0.848. However, the value of 0.848 was lower than the 0.939 of the 
Clinical model even though there was no statistical difference. In a study on prediction of local tumor control 
after radio-chemotherapy for head and neck cancer, computed tomography (CT) radiomics were investigated and 
the results were validated with a different CT model and protocols. A past study experienced lower performance 
with the clinical plus radiomics models in the validation set than the training set, and they assumed that different 
CT protocols or parameters would not affect the results26. Another prior study used positron emission tomog-
raphy–computed tomography radiomics with different scanners to predict the recurrence of cervix cancer and a 
higher C-index was observed in the training set than in the validation set27. We also used different MRI scanners 
with the GE scanner being used for the training set and the Philips scanner being used for the validation set, and 
different protocols were used for the fat-suppressed enhanced images of the training set and subtracted images 
of the validation set. The Rad model showed lower performance in the validation set. We could not find studies 
on MRI radiomics that had validated their findings with a different scanner; however, according to an exper-
imental study, the type of MRI machine used and slice thickness can affect the radiomics data22. We assumed 
that a difference between the two scanners might have caused inconsistent results in the training set. The time of 
acquisition for the second phase of DCE-MRI was different between the two scanners. ROIs were drawn on the 

Variables Hazard ratio (95% CI) P value

Age 0.978 (0.94, 1.017) 0.267

Neoadjuvant chemotherapy
Yes 1.656 (0.665, 4.121) 0.278

No

Adjuvant chemotherapy
Yes 0.617 (0.248, 1.53) 0.297

No

Radiotherapy
Yes 0.824 (0.239, 2.84) 0.76

No

*pCR

Yes 0.048 (0.003, 0.926) <0.001

Not applicable 0.244 (0.097, 0.613) 0.002

No

Pathologic invasive cancer size 1.049 (1.021, 1.078) <0.001

*Nuclear grade

3 0.934 (0.337, 2.59) 0.892

Not available 0.288 (0.014, 5.843) 0.317

2

*Histologic grade

3 0.113 (0.018, 0.694) 0.055

2 0.188 (0.029, 1.221) 0.124

Not available 0.042 (0.001, 1.244) 0.036

1

Lymphovascular invasion
Yes 13.2 (5.155, 33.804) <0.001

No

Surgery type
Brest conserving surgery 0.167 (0.063, 0.443) <0.001

Total mastectomy

Number of metastatic axillary lymph nodes after surgery 1.139 (1.084, 1.196) <0.001

Rad score 23.322 (10.346, 52.575) <0.001

Table 3. Univariable analysis of variables to predict systemic recurrence in TNBC. TNBC = triple-negative 
breast cancer, CI = confidence interval, *Unbiased hazard ratio was estimated with Firth’s penalized maximum 
likelihood estimation method because the data was completely separable.
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fat-suppressed native images for the training set, but were drawn on the subtracted images for the validation set. 
Therefore, we had inconsistent results between the training and validation sets.

We acknowledge that there were several limitations in this study. First, the number of included patients was 
relatively small and the study was performed retrospectively. However, TNBC only comprises a small portion 
of invasive breast cancer. Second, this study was performed in a single institution. External validation at other 
institutions is necessary although we validated our results with a different MRI scanner and protocol to minimize 
overfitting. Third, we only analyzed the second phase of the DCE T1-weighted images. While it would be ideal to 
include all sequences of the dynamic images for evaluation, we chose one sequence from the DCE-MRI to sim-
plify the methods and results, as the second phase is the most important phase in breast cancer evaluation. Early 
enhancement is a representative character of breast cancer which is why we chose this sequence. T2-weighted 
images were valuable in a previous radiomics study18,20 and, therefore, this study should be followed with fur-
ther studies that include the delayed phase of DCE T1-weighted images or T2-weighted images. Fourth, ROIs 
were drawn by one radiologist, and inter- and intra-observer variabilities were not evaluated when drawing ROs 
for the radiomics analysis. However, we used the MIPAV application which drew ROIs along the tumor border 
that excluded the normal breast parenchyma with a semi-automated process. Thus, this would not have a great 
effect on the results. In addition, according to Park et al., drawing ROIs between the two observers showed good 
agreement18.

In conclusion, the Rad model for predicting systemic recurrence in TNBC showed a significantly higher 
C-index than the Clinical model. However, external validation with a different MRI scanner did not show the Rad 
model to be superior over the Clinical model.
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