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Abstract 

The goal of this paper is to investigate the application of adaptive learning algorithms, which enables industrial robots to cope 

with natural variations exhibited in a brine injection process related to the production of bacon. Due to the variations in bacon 

meat, the traditional needle-based brine injection process is not capable of injecting the correct amount of brine, leading to either 

ruined or unflavored bacon. In the presented work a Deep Deterministic Policy Gradient (DDPG) reinforcement learning 

algorithm is introduced in the injection process to improve process control. To accelerate training of the reinforcement learning 

algorithm, a simulation environment of the brine absorption is generated based on 64 conducted experiments. The simulation 

environment estimates the amount of absorbed brine given injection pressure and injection time. Tests are run in the simulation 

where the starting mass is generated from a normal distribution with mean 80.5g, and a standard deviation of 4.8 g and 20.0 g 

respectively. With a target of 15 % mass increase, the agent can produce an average mass increase of 14.9 % for the first test and 

14.6 % for the second test. This indicates that the model can successfully adapt to a high variety input, thereby showing potential 

for process control in brine injection, coping with natural variation in meat structure. 
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1. Introduction

In the meat industry, a brine mixture is added to bacon to mature, tenderize, and enhance the flavour of the meat.

Brine is a salt-mix mixture consisting of phosphate, nitrate, and sugar or flavouring. Two methods of curing bacon 

are 1) immersion curing and 2) needle-based injection. In immersion curing, the bacon is soaked for a specific time 

period, whereas the needle-based method relies on needles inserted in the bacon, which by pressure forces the brine 

into the bacon [1]. Immersion curing secures the most uniform distribution of the brine. However, this is a more 

time-consuming process. Therefore, the needle-based injection method is preferred despite the distribution of the 

brine being less uniform. Traditional needle-based injection is displayed on Fig. 1. 

Fig. 1. (1-3) The needles are inserted into the meat while injecting brine (4-5) While the needles are subtracted from the meat, the brine pressure 

is turned off. After the needles are fully subtracted, the process is finished 

The needle-based injection process is difficult to control due to high product variation e.g. amount of fat, meat, 

and skin. If too much brine is injected, there is risk of washing out the proteins as a result of a too high salt 

concentration [2]. To avoid this, less brine is injected as it is not possible to control the distribution of the brine, 

when using current needle-based injection technology as they are open-loop controlled with manual visual 

inspection by a worker. 

2. Related work

To control needle-based injection an adaptive model is needed due to the variation in meat. One domain of 

adaptable models is Reinforcement Learning. Reinforcement Learning has previously shown potential to be 

applicable on a wide range of different control applications. In an industrial context several implementations are 

known such as robot control [9], robot motion planning [10], scheduling, and predictive maintenance of industrial 

plants [11]. An application area of great potential is specially in tasks of technical process control [12].   

2.1. Background 

One of the issues with traditional supervised machine learning is, that once training data is collected, the model 

will no longer adapt to new inputs. This means, that if the state space drifts over time, the training data can become 

invalid. One way to get around this issue, is to apply reinforcement learning. The backbone of many reinforcement 

learning algorithms is the Markov decision problem (MDP) consisting of the tuple 

• 𝑆 is a finite set of states.

• 𝐴 is a finite set of actions.

• 𝑃𝑎(𝑠, 𝑠′) is the probability of transitioning from state 𝑠 to 𝑠′.
• 𝑅𝑎(𝑠, 𝑠′) is the reward of transitioning between state 𝑠 and 𝑠′.

• 𝛾 is a discount factor to limit importance of states far into the future.

Here an agent acts in an environment transitioning between states and is given a reward based on its performance.

The goal of an agent is to maximize the accumulated discounted reward by taking actions. With a finite number of 
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possible actions, the agent can estimate the accumulated discounted reward using a deep Q-network [7][8]. The 

agent can learn from new rewards by minimizing the temporal difference as shown in Eq. 1. [5] 

𝑚𝑖𝑛: 𝑟 + 𝛾 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′(𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎)  (1) 

When undertaking continuous action-spaces, policy-gradient-based actor-critic algorithms such as Deep 

Deterministic Policy Gradient (DDPG) has proven successful [6]. DDPG is a model-free off-policy deep 

reinforcement learning algorithm, which applies some techniques introduced with Deep Q-Networks (DQN), such 

as target networks and experience replay [7][8]. Target networks has proven useful for stabilizing the learning by 

making parts of Eq. (1) constant and thus the optimization becomes less sensitive to changes. When performing the 

optimization in Eq. (1), batch sampled uniformly from previous timesteps is used. This allows the agent to 

remember earlier episodes where it may have performed well. In order to represent the policy function (i.e. the 

actions to execute) independently of the value function approximating the accumulated future reward, an actor-critic 

learning algorithm is applied. DDPG uses two neural networks, one for the actor and one for the critic. A general 

actor-critic setup is displayed in Fig. 2. 

Fig. 2. Actor critic setup. 

3. Experimental Setup

In order to train a reinforcement learning algorithm, a physical experimental setup is needed. The setup consists

of a combination of off-the-shelf and custom designed components. A 3D CAD rendering of the experimental setup 

at Aalborg University can be seen on Fig 3.  

Fig. 3. Experimental setup. A KUKA lightweight robot equipped with an injection needle above a high precision scale. 

When doing brine injection, two parameters are used to control the process; injection pressure and injection time. 

Together these two parameters make up the action a reinforcement learning algorithm will take. To control these 
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actions, a fluid system is developed. The reinforcement learning algorithm also needs some information about the 

current state of the test objects, these are defined by a mass measurement of the specific test object. In order to 

obtain the current states of the test objects, a high-precision scale is included for mass. Tab. 1 displays the different 

components divided into categories. 

Table 1. Components used for experimental setup. 

Category Component (Manufacturer, Comment) 

Fluid system Injection Needle Fixture (Custom Design) 

Pneumatic Valve (MetalWorks "Regtronic") 

Magnet Valve (RS, servo-assisted)  

Relay (Danbit) 

KUKA LWR 4 (KUKA, needle manipulator) 

Mass detection KERN KB 10K0.5N (KERN, 0.05 g precision) 

Water drain Plate (Custom Design) 

3.1. Bacon Imitation Compound 

Due to the relatively large amount of testing needed to train an algorithm, it has been necessary to find an 

alternative to bacon. For this, inspiration has been taken from forensic ballistic science. In this branch of science, a 

gelatin solution, mixed from animal-based gelatin, is often used to imitate ballistic impact with humans, which is 

equivalent to pork and its tissue [4]. The bacon processed in the industrial case is dead tissue. It is anticipated that 

there is a difference between living and dead tissue, however, it shows that imitating dead tissue is not a well 

explored field of study. Therefore, gelatin, as used to simulate ballistic impact, will also be applied in this research. 

Furthermore, the application of gelatin based test objects, allows for the use of smaller test objects, in this case cubes 

measuring 50x50x50 mm. Initial experiments show, that a compound consisting of only gelatin does not meet the 

demands of the industrial case, why an additive to increase the water absorption is introduced in the form of Sodium 

Polyacrylate, categorized as a Superabsorbant Polymers (SAP). 

3.2. Experimental Procedures and Results 

32 different compounds are tested in order to determine a suitable composition for the target of 15 % mass 

increase post injection. The object is weighed prior to the injection, using the high precision scale. The needle is 

then inserted so that the outlet nozzles are approximately in the center of the test object. The injection is carried out 

with a water pressure of two bars and a duration of approximately one and a half second. The object is once again 

weighted immediately after injection. The results of the test indicated, that a composition consisting of 14.0 % 

gelatin powder and 1.2 % SAP powder, relative to water, can absorb up to a mass increase of 28.9 %. Thus, a 

suitable compound for brine injection experiments has been found, as both under- and over-absorption is possible. 

3.3. Implementation of the DDPG Algorithm 

Since the DDPG method is based on the concept of Neural Networks (NN), the number of hidden layers and 

activation function is of great importance, these are known as hyperparameters. A basic principle of a NN can be 

found on Fig. 4, and the parameters used for the NN in the algorithm can be found in Tab. 2. 
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Fig. 4. General setup of a Neural Network, consisting of nodes (blue circles) connected through weights (lines between circles) as well as an 

input layer with observations of the state and an output layer estimating the value of each possible actions. 

Table 2. The parameters used for the DDPG algorithm. 

Exploration Ornstein-Uhlenbeck 

Activation Function ReLU 

Actor Number of layers 

Nodes in layer 

3 

128 

Critic Number of layers 

Nodes in layer 

3 

128 

The DDPG algorithm is implemented on the industrial case. The reward function is shown in Eq. 2. It has a target 

mass increase of 15 % as well as two terms penalizing actions the further away from 1.5 bar and 1 s they are, i.e. the 

middle of the action space. The constants were derived by an iterative process and 0.1 was found to be suitable 

values that produced good results. 

𝑟 = − ((𝑝 − 15)2 + 0.1 (𝑎1 −
3

2
)

2

+ 0.1(𝑎2 − 1)2)  (2) 

For simulation purposes, the environment the agent traverses, has been modelled from experiments with the 

aforementioned gelatin compound. The environment is a four-dimensional second order polynomial function that 

returns the mass increase as a function of injection pressure (𝑥1), injection time (𝑥2) and starting mass (𝑥3). The

environment is obtained through application of multivariate polynomial regression and can be found in Eq. 3.  

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑐1𝑥1
2 + 𝑐2𝑥2

2 + 𝑐3𝑥3
2 + 𝑐4𝑥1𝑥2 + 𝑐5𝑥1𝑥3 + 𝑐6𝑥2𝑥3 + 𝑐6𝑥2𝑥3 + 𝑐7𝑥1 + 𝑐8𝑥2 + 𝑐9𝑥3 + 𝑐10  (3)

Since some solutions exist where a mass increase is non-zero when the injection time is 0 s, the polynomial only 

partly represents the actual environment. 
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4. Experimental results

Running the agent in the simulation environment, yields the results seen in Fig. 5.

Fig. 5. (left) The surface represents the target mass increase, and the spheres are the achieved mass increases. (center) The reward the agent 

obtained during learning from Eq. 2. (right) The mass increase for each episode. 

A mass increase with a mean of 14.9 % and standard deviation of 2.6 % was obtained, using starting masses 

drawn from a normal distribution of N(80.5 g, 4.8 g). The plot of the mass increase in Fig. 5 shows that even though 

the agent can produce a mean mass increase close to the target 15 %, the agent is not able to minimize the standard. 

The same behavior is seen in the reward plot with a noisy reward even after convergence. Fig. 5 (left) shows that 

even though the results are noisy, the agent is able to follow the curvature of the target mass increase, indicating that 

some learning has occurred. Tuning the hyper parameters of the DDPG may increase the convergence, however, this 

was not tested. The agent was run a second time using starting masses drawn from a normal distribution of N(80.5 g, 

20.0g), showing the same standard deviation and a mean of 14.6 g, indicating that the variance in starting mass does 

not have an impact on the agents ability to adapt a model to the environment. 

5. Conclusion

One of the challenges in brine injection is large variety, thus requiring an adaptive model to control. An 

experimental setup was developed using hardware measuring states defined as mass. Injection pressure and injection 

time was possible to control by an adaptable DDPG reinforcement learning model. Since it was not realistic to use 

bacon, a compound of SAP, gelatin and water was used. The compound was able to absorb water equal to a 28.9 % 

mass increase. The compound was then further used to create an approximation model decrease training time. 

The DDPG model could adapt a model to a simulated environment with different parameters. With a target mass 

increase of 15 % was it capable of producing a mean of 14.9 % mass increase with a standard deviation of 2.6 %. 

This result was achieved with starting masses drawn from a normal distributions of N(80.5 g, 4.8 g). In combination, 

this means that an DDPG model was applied to the process control of brine injection in the simulation environment, 

and a mass increase was achieved. However, the distribution of the injected brine was not measured. 

6. Future work

The presented solution is only carried out with small test objects. This was enough for the purpose of this project;

however, objects of the bacon imitation should be developed to fit the size and shape of the actual bacon one to one. 

For future work, it should be investigated how a potential replacement for the KUKA LWR 4 robot could be 

designed.  

The simulation is based on an environment created through experimental work. Improving the model for this 

environment, especially in the low injection time area, will help increase the accuracy of the model. A way to 
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implement this improvement of the environment would be to include more experimental data in the model. This 

could also potentially allow the usage of a polynomial of higher order. One point where the model for the 

environment suffered, was due to high variance in the initial mass of the test objects. This calls for a tuning of the 

parameters, where e.g. other explorations methods could be tested. Finally, the subsystem integration should be 

tested in the real experimental setup in order to verify that the DDPG is able to adapt a model on physical test 

objects as well.  
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