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Abstract 

This paper proposes an adaptive controller based on Reinforcement Learning (RL), which copes with HVAC-systems consisting 

of slow thermodynamics. Two different RL algorithms with Q-Networks (QNs) are investigated. The HVAC-system is in this 

study an underfloor heating system. Underfloor heating is of great interest because it is very common in Scandinavia, but this 

research can be applied to a wide range of HVAC-systems, industrial processes and other control applications that are dominated 

by very slow dynamics. The environments consist of one, two, and four zones within a house in a simulation environment 

meaning that agents will be exposed to gradually more complex environments separated into test levels. The novelty of this paper 

is the incorporation of two different RL algorithms for industrial process control; a QN and a QN + Eligibility Trace (QN+ET). 

The reason for using eligibility trace is that an underfloor heating environment is dominated by slow dynamics and by using 

eligibility trace the agent can find correlations between the reward and actions taken in earlier iterations 

 

© 2019 The Authors, Published by Elsevier B.V. 

Peer review under the responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019 

Keywords: Sustainable Manufacturing Engineering and Resource-Efficient Production; Artificial Intelligence in Manufacturing; 

Modelling and Simulation; HVAC-Systems. 

 

 
* Corresponding author. Tel.: +45 29320242 

E-mail address: Cblad@m-tech.aau.dk 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia Manufacturing 00 (2019) 000–000  

www.elsevier.com/locate/procedia 

 

2351-9789 © 2019 The Authors, Published by Elsevier B.V. 

Peer review under the responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019  

29th International Conference on Flexible Automation and Intelligent Manufacturing 
(FAIM2019), June 24-28, 2019, Limerick, Ireland. 

 

Control of HVAC-systems with Slow Thermodynamic Using 

Reinforcement Learning 

C. Bladb,d*, S. Kocha, S. Ganeswarathasa, C.S. Kallesøec,d, S. Bøgha,b 

aDept. of Materials and Production, Aalborg University, Fibigerstræde 16, Aalborg Øst, DK-9220, Denmark 
bRobotics & Automation Group, Dept. of Materials and Production, Aalborg University, Fibigerstræde 16, Aalborg Øst, DK-9220, Denmark 

cDept. of Electronic systems, Aalborg Unicersity, Fredrik Bajersvej 7, Aalborg Øst, DK-9220, Denmark 
dGrundfos A/S, Poul Due Jensens Vej 7, 8850 Bjerringbro 

Abstract 

This paper proposes an adaptive controller based on Reinforcement Learning (RL), which copes with HVAC-systems consisting 

of slow thermodynamics. Two different RL algorithms with Q-Networks (QNs) are investigated. The HVAC-system is in this 

study an underfloor heating system. Underfloor heating is of great interest because it is very common in Scandinavia, but this 

research can be applied to a wide range of HVAC-systems, industrial processes and other control applications that are dominated 

by very slow dynamics. The environments consist of one, two, and four zones within a house in a simulation environment 

meaning that agents will be exposed to gradually more complex environments separated into test levels. The novelty of this paper 

is the incorporation of two different RL algorithms for industrial process control; a QN and a QN + Eligibility Trace (QN+ET). 

The reason for using eligibility trace is that an underfloor heating environment is dominated by slow dynamics and by using 

eligibility trace the agent can find correlations between the reward and actions taken in earlier iterations 

 

© 2019 The Authors, Published by Elsevier B.V. 

Peer review under the responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019 

Keywords: Sustainable Manufacturing Engineering and Resource-Efficient Production; Artificial Intelligence in Manufacturing; 

Modelling and Simulation; HVAC-Systems. 

 

 
* Corresponding author. Tel.: +45 29320242 

E-mail address: Cblad@m-tech.aau.dk 

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019 (FAIM 2019)

2 C.Blad et al./ Procedia Manufacturing  00 (2019) 000–000 

1. Introduction 

    To cope with rising energy demands and an ambition to reduce the carbon footprint from heat and energy 

production, regulation regarding insulation of buildings has increased. Another way to reduce energy consumption 

of buildings is to use more advanced controllers, which reduce energy waste and increase comfort. For large  

buildings, Model Predictive Controllers (MPCs) have showed to be effective [1], but an MPC requires a full 

thermodynamic model of the building, which for normal households is not economically feasible to make.  

A traditional controller for an underfloor heating system in a household is a hysteresis control with the room 

temperature as input. This controller opens and closes for the control valve supplying heat to the floor dependent on 

the room temperature. The core issues with using hysteresis control with the room temperature as input for 

controlling the room temperature is the slow thermodynamic properties of the floor, which can result in time 

constants between 10 minutes to 3 hours depending on the floor type and material. Because of the delayed responses 

in the system a hysteresis controller is not able to keep the temperature constant because of its inability to predict the 

energy need for the room. 

This paper suggests an adaptive controller based on reinforcement learning with a neural network. Reinforcement 

learning is, like animal learning, based on learning by interacting with a given environment [2]. Because its learning 

capabilities, reinforcement learning-based control naturally adapts, to whatever environment it interacts with. 

Furthermore, the reinforcement learning algorithms suggested in this paper are also model-free, which, as stated 

earlier, is necessary for the controller to be economically feasible. In this paper two algorithms are tested in four 

simulation environments. Two conclusions will be derived from this; 1) by adding eligibility trace the algorithm will 

perform better in an environment dominated by slow dynamic, 2) by increasing the complexity of the state-action 

space the algorithm will become unstable and therefore limit the use to smaller state-action spaces. 

2. Use case  

To identify the initial problem a sketch of an underfloor heating system is shown in Fig. 1, illustrating heat fluxes 

in a room. In Fig. 1 the temperature of the water running through the pipes in the floor is controlled by a mixing 

unit. This mixing unit can be a thermostatic mixing unit or an electromechanically actuated mixing unit. A 

thermostatic mixing unit can be outdoor compensated, meaning it adjusts the temperature of the mixing water 

according to the outside temperature – high outside temperature, low mixing temperature and vice versa. An 

electromechanically actuated mixing unit is less common because it needs a control input, but it does allow for more 

control of the environment. In the work presented in this paper an electromechanical valve will be used due to its 

flexibility. The electromechanical valve is controlled by a step size controller. The control agent will still control the 

mixing temperature, but the incremental change in the temperature will be adjusted according to the distance to the 

given reference temperature. Meaning, if the distance between the room and reference temperature distance is high, 

the incremental change will be high and vice versa. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2020.01.159&domain=pdf
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Fig. 1. An underfloor heating system with one temperature zone consisting of four heat fluxes Φ. Heat fluxes are in the simulation calculated with 

a 1D heat differential equation, the free heat flux ΦFree is set to zero in all simulations. The hydraulic system of the underfloor floor heating is 

presented in the bottom of the figure, and it is assumed there is a local heat source, which also could have been a district heating source.  

By using a reinforcement learning based controller it is theoretically possible for an agent to adapt to the 

thermodynamic properties of a given thermal zone, by making an internal predictive model and using predictive 

external data such as weather forecasts to enhance performance. In this paper, it is demonstrated that it is possible 

for the agent to learn to control a four-zoned underfloor heating system in a simulation environment in Simulink 

within a tolerance of 1 °C. The simulation environments have the thermal dynamic properties of an underfloor 

heating system, but is only affected by the ambient temperature, so no sun, wind etc. and there is no thermal transfer 

between interior walls. 

3. Reinforcement Learning 

  This paper will use aspects of the deep reinforcement learning algorithm Deep Q-network (DQN), which was 

developed as a method to combine deep neural networks and reinforcement learning for learning directly from high-

dimensional sensory inputs [3]. An underfloor heating system can in contrast to Atari games, which the DQN was 

developed for, be described as systems with low-dimensional sensory inputs. Therefore, the proposed algorithm 

utilizes a neural network with one hidden layer. The neural network with weights θ is used as a function 

approximator to approximate the action value function Q(s, a) ≈ Q(s, a, θ). The reason for using a function 

approximator is because it is not computational efficient to store a large Q-table. As one might suspect using 

function approximators does also come with drawbacks [4]. Especially using nonlinear function approximators such 

as a neural network has proven hazards because of the risk of instability or divergence [5]. Using experience replay 

and fixed target Q in the DQN has proven that a neural network can be an efficient and stable function with 

improved convergence behavior [3]. 

Since the DQN was developed improvements has been made to the experience replay method, these include 

prioritized experience replay[6] and hindsight experience replay[7]. These techniques have not been considered for 

this paper.  

Experience replay works by storing the experience from a given iteration at time t with the stats s, action a, 

reward r and the next state st+1, et = (st, at, rt, st+1). The experience is stored in a memory D[e1, . , . , et] and used 

to update the weights in the Q-network through a loss function and an optimizer. The purpose of experience replay 

is to reduce correlation between observation by randomly drawing experience from the matrix D, this also enables 

the agent to use rare experience more than ones[8]and thereby learn more efficiently from a limited amount of data. 

The loss function used to calculate the error between target Q and predicted Q is derived from the bellman equation 

and can be expressed by the following equation: 

4 C.Blad et al./ Procedia Manufacturing  00 (2019) 000–000 

 =  ,,,  −   (1) 

 =  ,,,  +    , ;  − , ;  (2) 

An optimizer is used to update the weights in the neural network. In the original DQN is stochastic gradient 

descent used, in this algorithm is the Adam optimizer is used. The Adam optimizer is a first order gradient-based 

optimizer like stochastic gradient descent, but it also uses estimations of lower-order moments, which makes it 

suitable for non-stationary objectives and noisy and/or sparse gradients like a neural network can have [9]. 

To ensure that the agent during training explores the state action space and exploits what it has already learned, a 

Softmax function is used as an action selector. The Softmax function works by setting the parameter τ which 

indicates the agent’s level of confident. τ =0 indicates full confident and to encourage more exploration τ is 

increased. The mathematical description of the Softmax function can be seen in the following equation: Qs, a
 

:    →  , 
∑,   ℎ  > 0  (3) 

As stated in the abstract it is of interest to test if an eligibility trace implementation can perform well in an 

environment dominated by slow dynamics such as underfloor heating systems. Eligibility trace is a method that 

makes it possible to make a trade-off between Monte Carlo and Temporal Difference, where Monte Carlo has high 

variance because Monte Carlo only updates at the end of the episode. This MDP is considered continues as it does 

not have episodes, so Monte Carlo cannot be used. Temporal Difference on the other hand updates for every 

iteration but uses its own estimation to update, which means it has bias [2]. Eligibility trace or n-step learning uses a 

parameter n, where n is the number of iterations that will pass before an update is made. This means if n is the same 

size as the number of iterations in an episode it is Monte Carlo. 

For experience replay to be compatible with eligibility trace, a few modifications has been made to way the data 

is drawn from the experience memory D. Instead of drawing random samples, the agent is drawing random batches 

of the same size as the eligibility trace 

4.  Experiment 

The structure of the used Q-network with input states, Q-values, and the action selector, is illustrated in Fig. 2. 

 

Fig. 2. Illustration of the neural network, with input states, Room temperature, orientation to reference temperature, differential of 
room temperature, valve position, and mixing temperature. And output Q values and the Softmax action selector. Two hidden layers is 
shown in the illustration, this is just to illustrate that it is possible to add more layers.  
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:    →  , 
∑,   ℎ  > 0  (3) 

As stated in the abstract it is of interest to test if an eligibility trace implementation can perform well in an 

environment dominated by slow dynamics such as underfloor heating systems. Eligibility trace is a method that 

makes it possible to make a trade-off between Monte Carlo and Temporal Difference, where Monte Carlo has high 
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of the same size as the eligibility trace 

4.  Experiment 

The structure of the used Q-network with input states, Q-values, and the action selector, is illustrated in Fig. 2. 

 

Fig. 2. Illustration of the neural network, with input states, Room temperature, orientation to reference temperature, differential of 
room temperature, valve position, and mixing temperature. And output Q values and the Softmax action selector. Two hidden layers is 
shown in the illustration, this is just to illustrate that it is possible to add more layers.  



1312	 C. Blad  et al. / Procedia Manufacturing 38 (2019) 1308–1315 C. Blad et al/ Procedia Manufacturing 00 (2019) 000–000  5 

 
The experiments have been divided into four different test levels (TL’s) to sort out which RL algorithm that is 

suited for the task. Both algorithms will start in the environment of TL1 and then continue to TL4 increasing the 

complexity where they need to satisfy the requirement (R): Room temperature(s) is allowed a standard deviation of 

1 ℃ from the room reference temperature 22 ℃. The TL1 environment consist of one temperature zone, but with no 

thermo-properties of an underfloor heating system. The only task of the agent is to control the mixing temperature. 

The environment of the TL2 is still one temperature zone but with the thermo-properties of an underfloor heating 

system has been added in this test level. By doing this it will be possible to investigate the effect of eligibility trace 

in a dynamic environment. TL3 and TL4 consist of multiple zones meaning the agent can control valves and the 

mixing temperature. TL3 has two zones and TL4 has four zones. The ambient temperature in the simulation 

environment is set to be constant in the beginning of the simulation and then a 1-day and a 14-days sine cycle is 

added to represent day and night changes and longer changes over 14 days. Hyperparameters and settings of the 

algorithms are shown in Appendix A. The following results from the test levels will consist of response temperature 

plot of the environment from 232 days’ time per test in TL1 and TL2 and 926 days’ time in TL3 and TL4. 

4.1. Test Level 1 Results 

Two tests were performed in TL1, one test of the QN and one test of the QN+ET, the results can be seen in Fig. 

3. 

 

Fig. 3. Results of Test Level 1 with no thermo-properties of an underfloor heating system has been introduced. The mixing temperature Tmix is 

blue, room temperature T1room is red and ambient temperature Tamb is yellow. 

It can be seen from the results of the two tests in Fig. 3 that the QN algorithm without eligibility trace does 

perform equally good or better than the algorithm with eligibility trace. The reason for this is that there are no slow 

responses in this system, because there is no reason that eligibility trace should improve performance.  

4.2. Test Level 2 Results 

Two tests are performed in TL2, where Test 1 is the QN algorithm and test 2 is the QN algorithm with eligibility 

trace, the results of the two tests are shown in Fig. 4.  

 

  

Fig. 4. Results of Test Level 2 with thermo-properties of an underfloor heating system has been introduced. The mixing temperature Tmix is green, 

ambient temperature Tamb is purple, return temperature Treturn is blue, floor temperature Tfloor is red and room temperature T1room is yellow.  
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Table 1. Satisfaction of requirement R from the period 1.8 ⋅ 10  to 2 ⋅ 10 seconds 

in Test Level 2 are grey scaled elements with tests where R is satisfied. 

Test Model type x, σ 

1 QN 21.52,0.54 

2 QN 22.44,0.54 

3 QN+ET 22.04,0.11 

4 QN+ET                  22.09,0.47 

 

From the results in Table 1 and Fig. 4 it can be seen QN+ET performs best, and that the QN algorithm does not 

meet the requirements in the first test but manages to do so in second test. A comparison to TL1 without slow 

dynamics reveals that the QN algorithm performed slightly better than QN+ET. This comparison leads to the 

conclusion that ET does improved performance when the system is dominated by slow dynamics.  

4.3. Test Level 3 Results 

TL3 consists of four tests; two with the QN algorithm and two with the QN+ET algorithm. The results of two 

successful tests are shown in Fig. 5.  

 

 

Fig. 5. Results of Test Level 3 with thermo-properties of an underfloor heating system has been introduced. On the left Test 1 

and Test 3. Where Troom 1 is blue, Troom 2 is red, Tmix is purple and the ambient temperature Tamb is yellow 

From Table 4 it is seen that the QN+ET algorithm satisfies the requirement two times in both rooms, where the 

QN algorithm only satisfied the requirements for one of the two tests and it did not perform as well in this test 

regarding standard deviation or mean value. Note that Test 2 with QN+ET also manages to have the lowest energy 

usage due to average lowest mixing temperature Tmix. 

Table 2. Satisfaction of requirement R from the period 7⋅10  to 

8⋅10 seconds in Test Level 3 with QN and QN+ET where grey scaled 

elements are tests where R is satisfied. 

Test Model type 1x, σ 2x, σ ̅ 

1  QN 20.12,2.11 21.81,1.67 [40.47] 
2  QN 22.38,0.62 22.35,0.63 [38.74] 

3 QN+ET 21.91,0.34 21.87,036 36.61 

4  QN+ET 22.03,0.58 22.19,0.55 42.73 
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4.4. Test Level 4 Results 

TL4 consists of three tests with the QN+ET algorithm due to it satisfied the requirement in TL3 and it was not 

possible to perform a satisfied test of the QN algorithm. The result of TL4 is shown in Fig. 6. 

 

Fig. 6. Results from three tests from Test Level 3 of QN+ET. 

From Table 4 it is observed that Test 3 is successful, it did however require three tests, which shows that the 

algorithm has become unstable due to the complexity of the state-action space. 

Table 3. Satisfaction of requirement R from the period 7⋅10  to 8⋅10 seconds in 

Test Level 4 with QN+ET where grey scaled elements are tests where R is satisfied. 

Test Model type 1 

x, σ 
2 

x, σ 
3 

x, σ 
4 

x, σ 
 

̅ 

1  QN+ET 21.89,0.36 21.77,1.13 21.99,0.37 21.99,0.38 32.13 
2  QN+ET 19.69,0.85 22.07,0.27 22.2,0.25 22.63,0.6 34.73 
3  QN+ET 22.08,0.26 21.95,0.61 22.2,0.28 22.35,0.34 39.05 

5. Conclusion 

By reviewing the results of the 9 tests it can be concluded that it is possible for a reinforcement learning based 

controller to control the designed simulation environment of an underfloor heating system. In this study two 

different algorithms have been tested; 1) QN and 2) QN +ET. By comparing the performance of the two algorithms 

it can be concluded that the eligibility trace addition to the Q-network does increase performance slightly, but only 

when there are slow dynamics included in the simulation. Furthermore, it is concluded that the function 

approximator does become unstable when increasing the complexity of the state-action space. This means that one 

should be aware of the size of the state-action space when using this technique and additional research is needed to 

make the proposed reinforcement learning approach more robust. 

6. Future Work 

As stated in the introduction, the simulation environment is simplified i.e. it does not include interior wall 

transfer, windows, sun, wind etc. A more detailed simulation environment would make it possible to take all these 

parameters into account. To utilize the full potential of reinforcement learning it would be ideal to use forecasted 

weather data. This way the agent would not only depend on its internal model of the dynamic behavior, especially in 

an environment dominated by long delayed response this would be desirable. In this study the simulation 

environment has been defined as one single MDP, which can include 1, 2 and 4 temperature zones. It has been 

observed that by increasing the number of zones in the MDP the training time becomes longer and the agent does 

perform less desirable. This, of cause, makes sense, because the complexity of the state-action space is increased 

with the number of zones. It would be interesting to explore the possibility to design an agent with multiple MDPs, 
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or a multi-agent controller, to control the temperature zones independently. All the above observations are subjects 

for future works. 

The proposed reinforcement learning control is not robust enough to use in commercial applications yet. 

Additional research must be made into increasing the robustness of the controller. Multiple improvements have been 

made to the DQN algorithm, the latest is the Rainbow algorithm [10]. These improvements might also be better 

suited for the current and future tasks at hand. 
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Appendix A. Settings of Algorithms for Test Levels 

Table A1. Standardization of input variables.    Table A2. Setup for Q-networks for test levels. 

Input variables Standardisation Equations 

T 
T

35 

T | (T-T)⋅10) | 

T 
0.5    ≥   

0.5    <   
 

T 
1   >   0
0   =   0 

T T 

Table A3. Hyperparameters for algorithms in test levels.  

Hyperparameters Algorithm 

QN  QN+ET 

Learning rate T 0.001  0.001 

Discount factor γ 0.9  0.9 

Softmax temperature τ 100  100 

Experience replay batch size 50  50 

Experience replay capacity 100000  100000 

Eligibility trace steps n -  30 

 

Q-network Setup Test Level 

1 2 3 4 

Input variables 4 4 9 17 

Hidden layers 1 1 1 1 

Hidden neurons per layer 30 30 30 30 

Output variables 3 3 7 19 
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