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Abstract—Electric vehicles (EVs) have rapidly developed in re-

cent years and their penetration has also significantly increased, 

which, however, brings new challenges to power systems. Due to 

their stochastic behaviors, the improper charging strategies for 

EVs may violate the voltage security region. To address this prob-

lem, an optimal EV charging strategy in a distribution network is 

proposed to maximize the profit of the distribution system opera-

tors while satisfying all the physical constraints. When dealing 

with the uncertainties from EVs, a Markov decision process (MDP) 

model is built to characterize the time series of the uncertainties 

and then the deep deterministic policy gradient based reinforce-

ment learning technique is utilized to analyze the impact of uncer-

tainties on the charging strategy. Finally, numerical results verify 

the effectiveness of the proposed method.  

 
Index Terms—Electric vehicle, Markov decision process, rein-

forcement learning, optimal charging strategy 

NOMENCLATURE 
Indices and Sets 

i,j,n,m Indices for buses 

t,δ Indices for time periods 

w Index for electric vehicle (EV) 

Wch Set of EVs 

Lnet Set of branches in a distribution network 

Bnet Set of buses in a distribution network 

ξ(i) Set of branches with the starting node being i  

Ψ(i) Set of branches with the end node being i  

Tch Set of time periods 

 Set of states 

 Set of actions 

R Set of rewards 

π Set of policy 

J Set of returns 

Parameters 

λ
cha

  EV charging price 

Tin,w /Tout,w Arriving/Leaving time of EV w 

Ecap,w Battery capacity of EV w 

λ𝑡
𝑠𝑒𝑙𝑙

 Retail electricity price for users at time t 

λ𝑡
𝑏𝑢𝑦

  Whole electricity price for the DSO at time t 

Pw
EV,max  Maximum charging and discharging power of EV w 

Pi,t
load  Normal load demand on the bus i at time t 

Kw,i,t 
Indicator describing whether the w-th EV is plugged in 

charging station at bus i at time t 

SOCw
ini  The initial SOC of EV w 

ri,j/ xi,j Resistance/ Reactance of branch (i, j) 

Ui
max/Ui

min Voltage bounds 

Ii,j
max  Maximum value of branch current (i, j) 

Psub
max/Psub

min Maximum/minimum of the substation power 

SOCw
min /

SOCw
max

 
Maximum/minimum SOC limits of EV w 

SOCw
exp  The expected SOC of EV w when leaving  

Hw,t Charing/discharging state of EV w at time t 

Si
 

Power capacity of charging station i  

Stationw EV w’s choice of charging station 

W Weather conditions at the past time period  

Γ  Traffic conditions 

q


f
 Prediction for the boundary condition q at time  

q Boundary conditions 

 Traffic information at the past time period  


in
T / 

out
T  Tin and Tout at the past time period  

D  
Load level of the charging stations at the past time pe-

riod  

Decision variables 

�̅�i,t
load  Integrated load demand with EVs on the bus i at time t 

Pw,t
cha/Pw,t

dis Charging/Discharging power of EV w at time t 

Pt,0 Power bought from the external grid at time t 

Pi,t
Ccha/Pi,t

Cdis 
Integrated charging/discharging power of EVs at bus i 

and time t 

Ii,j,t Current on branch (i, j) at time t 

Ui,t Voltage level at bus i at time t 

Pi,j,t/Qi,j,t Active/Reactive power flow on branch (i, j) at time t 

SOCw,t The state of charge (SOC) of EV w at time t 

x Decision variables 

st A state at time t 

at An action at time t 

ωt Randomness at time t 

rt A reward at time t 

t A policy at time t 

Jt A return at time t 

I. INTRODUCTION 

lectric vehicles (EVs) have been developed rapidly and are 

expected to offer much flexibility to future power systems 

and especially in the active distribution networks [1]-[3]. In 

some countries like the U.S., Germany, and China, EV’s pro-

duction has already been industrialized and the construction of 

infrastructure has been completed. In fact, EVs have many 

multifarious advantages and technological advances in various 

aspects. For example, fossil energy consumption in transporta-

tion electrification can be significantly reduced, and the green-

house gas (GHS) emission will be mitigated [4], [5]. From the 

power system side, the vehicle-to-grid (V2G) mode allows EV 
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to be served as mobile energy storage that could provide flexi-

bility to the power systems [6]. In a distribution network, the 

V2G mode could help stabilize the voltage level [7]-[9]. Thus, 

the EV is able to provide peak shaving services, reduce power 

system losses, and raise renewable energy penetration rate [10], 

[11]. The governments in many countries have laid out the blue-

print for augmenting the scale of EVs in the future. 

However, the integration of EVs in a charging station may 

lead to a significant voltage violation in a distribution system, 

especially when the fast charging techniques are performed 

[12]-[14]. Various studies have been conducted to examine this 

impact. References 错误!未找到引用源。 and [15] provided a 

detailed analytical framework to evaluate the impact of plug-in 

hybrid electric vehicles (PHEV) on distribution systems. It con-

ducted a deterministic analysis to examine distribution system 

component impact sensitivities, along with the probability 

based stochastic analysis to depict EV users’ behavior. It was 

revealed that PHEVs could lead to sudden increase on the tem-

perature of electrical components, significant voltage drops, se-

vere unbalance among the three phases, and the increasing 

power transmission losses. In [17] and [18], simulated scenarios 

suggested that the voltage drop was related to the penetration 

and location of EVs in the power network. At certain buses, the 

voltage level may vary significantly. Moreover, it was con-

cluded that for an uncontrolled charging station, even at rela-

tively modest levels, both the voltage and thermal loading lev-

els may exceed safe operating region. In [19] and [20], the au-

thors studied the impact of different PHEV penetration levels 

on distribution systems. It pointed out that there were two main 

factors limiting the EV penetration: one was the sudden in-

crease on the peak of residential load profile, and the other was 

the temperature of the distribution feeders. Furthermore, it was 

mentioned that proper charging strategies were necessary to im-

prove the penetration of the EVs. What’s more, [21] and [22] 

found that the distribution transformers may limit the quantity 

and penetration of the PHEVs.  

There are many viable solutions to the above problems and 

challenges, one of which is to adopt an optimal charging strat-

egy. In [23], a linear programming model for EVs was built to 

minimize the variance of energy delivered to all the EVs, in 

which the EVs did not need to provide any service to the net-

work. To alleviate the impacts of EVs on the distribution net-

work, a set of different smart charging scheduling methods 

were proposed in [24] to flatten sudden peak demands and solve 

overloading problems by means of the binary particle swarm 

optimization (BPSO) algorithm. In [25], an optimal charging 

model and a two-stage margin-based algorithm were discussed 

to address the high EV penetration considering the additional 

electricity infrastructure while minimizing the investment ex-

penses. Reference [26] proposed an optimal charging strategy 

with the network constraints to optimally manage the EVs, so 

as to provide ancillary services and flexibilities to power sys-

tems. Additionally, [27] presented an optimal charging strategy 

for PHEVs in a DC distribution network considering the battery 

charging and discharging characteristic. Moreover, an online 

constrained optimization model was set up to strictly satisfy the 

under- and over-voltage problems as well as the reverse power 

flow issues.  

It is desired to note that the EV users’ uncertain behaviors 

may significantly affect the optimal charging model for EVs. In 

order to address this problem, it is necessary to predict EV 

user’s behaviors based on real-time information. Reference [28] 

used a survey of resident mobility in Spain to find a realistic EV 

user behavior pattern. However, in practice, such a pattern may 

vary with time, space, weather, traffic, and other factors. It was 

then described in [29] that the different EV charging behaviors 

might affect the load demand as well as the EV charging strat-

egy. Reference [30] further pointed out that difference parking 

locations would affect the load curve, and in turn changing the 

optimal charging strategy of EVs. Definitely, many studies fo-

cused on this problem and used several different offline meth-

ods to describe the uncertain behavior of EV users. The stochas-

tic programming method was used to achieve the optimal man-

agement considering the stochastic behavior of the EVs in [31]. 

Robust optimization can also be used to solve the problem un-

der the uncertain behaviors of EVs. For example, reference [32] 

gave an optimal charging strategy of EVs in an electricity mar-

ket by using robust optimization. Reference [33] studied the un-

certain behavior of EVs by using hierarchical stochastic predic-

tive control scheme to build a management system for an island 

microgrid. A hybrid centralized-decentralized charging control 

scheme was designed to tackle the problem from the massive 

number of EVs integrated into the power grid [34]. Moreover, 

in order to deal with the uncertain behavior in an EV routing 

optimization, a model predictive control-based adaptive sched-

uling strategy was been proposed in [35]. Besides, a few litera-

tures have proposed various online charging strategies [36]-[39]. 

The model predictive control (MPC) method was used to de-

scribe the uncertainty of EV behaviors, and optimal charging 

strategies for EVs were proposed accordingly [40]-[42]. 

However, the EV optimal charging strategy problem is a 

multi-stage decision making process which can be regarded as 

a Markov Decision Process (MDP), where the current state is 

independent of all previous states and actions. Generally, to 

solve MDP models, an effective solution is the reinforcement 

learning (RL). Many reinforcement learning algorithms have 

been proposed and been used in power system [43]. For in-

stance, the Q-learning was developed in 1992 [44], which was 

a widely used reinforcement learning algorithm. However, the 

direct Q-learning method was unable to solve large-scale and 

non-linear problems due to the over-sized problem in the Q Ta-

ble. To overcome this and enable RL algorithms to be more use-

ful and promising, deep neural networks were implemented in 

RL algorithms as function approximates. However, the combi-

nation of the online RL algorithms with deep neural networks 

was formerly considered to be difficult and lack of theoretical 

foundation. Moreover, the neural network-based Q learning 

methods may suffer the correlation problem among sample data 

and the serious instability. To address these problems, in 2015, 

some major problems of the deep reinforcement learning algo-

rithm were successfully overcome and a new artificial agent 

was developed based on the deep reinforcement learning algo-

rithm, called Deep Q-Network (DQN) [45], [46]. This algo-

rithm utilized an experience replay buffer with an ancillary tar-

get neural network, which surpasses the performance of all pre-

vious RL algorithms, and it could learn proper policies directly 

from inputs with high-dimensional sensory data. In recent years, 



some researchers observed that the DQN cannot be directly ap-

plied to continuous action domains. With the help of the deter-

ministic policy gradient (DPG) algorithm [47] and the experi-

ence replay buffer technique, a model-free, off-policy actor-

critic-based Deep Deterministic Policy Gradient (DDPG) algo-

rithm was proposed in [48]-[50] by using deep function approx-

imators that can learn policies in high-dimensional and contin-

uous action spaces. DDPG algorithm has already been applied 

in power system and showed its superiority [51]. 

This paper proposes a reinforcement learning-based optimal 

EV charging strategy in a distribution network, maximizing op-

erator profits while addressing grid-level constraints. The con-

tributions of this paper can be summarized as: 

(i) A second-order cone programming (SOCP) based optimal 

EV charging model is proposed for a distribution system oper-

ator (DSO), with the consideration of the physical constraints 

in the distribution network to mitigate the potential voltage is-

sues. To address the uncertain EV user behaviors, an MDP 

model is built to depict the time series of uncertainties.  

(ii) The proposed MDP based EV charging strategy model is 

solved by the DDPG reinforcement learning (RL) agent, adapt 

to the uncertainty of EV user behaviors and environmental 

changes. In this agent, we use an actor network to use observed 

environment states such as weather and traffic information to 

give proper actions, and a critical network to evaluate these ac-

tions and adapt the actor network to environmental changes.  

The rest of this paper is organized as follows. Section II pre-

sents a mathematical formulation of the optimal charging prob-

lem by a general SOCP model, where the uncertain boundary 

conditions are molded by the MDP.  In Section III, the DDPG-

based reinforcement learning agent is employed to solve the 

proposed optimal vehicle charging strategy model. Numerical 

results are presented in Section IV to examine the proposed 

model and method. Finally, Conclusions and further discus-

sions are given in Section V.  

II.  FORMULATION OF EV OPTIMAL CHARGING STRATEGY 

In this study, we consider a district distribution system shown 

in Fig. 1, containing the substation, distribution network, loads 

and the community-level EV charging stations (e.g., parking lot 

with charging points). The distributed system operator (DSO) 

will sell electricity and charging services to users. Due to the 

limited space area, the maximum number of EVs Wch is a 

given deterministic parameter. We assume that the DSO can 

partly control the load demand by  performing demand response, 

and can fully control each EV’s charging and discharging 

power when it is plugged in the charging station. Besides, we 

assume that each bus is connected to one and only one charging 

station. Thus, we can use the same index i to represent both bus 

and charging station. Clearly, the proper charging strategy 

should be conducted in the context of the existing market price 

tariff. That means, when the load is high (i.e., voltage level is 

low), the price is high and vice versa. This is well recognized 

as the time-of-use price policy in the demand side management. 

However, the voltage magnitudes in the distribution network 

may be violated if the EV charging strategy is improper (e.g., 

charging the EVs at the load peak and discharging the EVs at 

the load valley). Thus, coordinating the control of demand re-

sponse and EV charging is critical to the DSO. 

 
Fig. 1.  Distribution network and EV charging stations under study. 

A. Deterministic EV Optimal Charging Model 

An optimization model was set up to investigate an EV opti-

mal charging problem in a distribution system, which is to max-

imize DSO revenue over one day while satisfying all the phys-

ical constraints of the EVs, distribution network, and charging 

stations. DSO revenue consists of two parts. One is from the 

profit by buying from the grid and selling electricity to users, 

i.e. charging revenue. The other comes from the optimal charg-

ing services of the charging stations, i.e. load revenue. It should 

be noted that EV charging rate is only allowed to be at discrete 

levels due to the current battery and charger technology [52]-

[54] which will contribute to the computational complexity of 

the proposed optimization model. To reduce the problem com-

plexity, many works assumed that future infrastructure im-

provements will allow continuous charging rates [55]-[57], so 

we assume that EV charging rate is continuous in this paper. 

The physical constraints should include power flow, voltage re-

gion and the capacity limits of equipment. Finally, the optimi-

zation model can be expressed as [58]: 
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where ( ), , , ,0 , , , , , , , , , ,, , , , , , , , , ,
load

cha dis Ccha Cdis
i t w t w t t i t i t i j t i t i j t i j t w tP P P P P P I U P Q SOC are 

the decision variables of the proposed optimal charging strategy 

model which are defined in the Nomenclature. The aim of the 

optimization model is to maximize the profit of the DSO while 

satisfying all the physical constraints. The physical constraints 

of the distribution network are depicted in (2)-(8) and the phys-

ical constraints of charging station and EVs are formed in (9)-

(17). Specifically, equation (2) is the active and reactive power 

balance constraint at each bus in the distribution network; equa-

tion (3) specifies the relationship among the voltage magnitude, 

current and power; equation (4) characterizes the voltage drop 

related to the current and power in the whole distribution net-

work; constraints (5)-(7) specify the bound limits for voltage, 

current and substation; constraint (8) indicates that the aggre-

gated load with the normal load and EVs; constraints (9) and 

(10) give the integrated discharging and charging powers in the 

charging station at bus i. Equation (11) defines the initial state 

of charge (SOC) for the w-th EV; equation (12) describes the 

energy storage process corresponding to the charging and dis-

charging powers for the w-th EV; equation (13) guarantees the 

SOC of the w-th EV within the allowable region; equation (14) 

indicates that the SOC for the w-th EV should achieve a certain 

level once the EV leaves at Tout,w; equations (15) and (16) ensure 

that the charging and discharging limits should be within the 

allowable bound during the time when EV is plugged in the 

charging station. Here, the matrix Hw,t in (15) and (16) is em-

ployed to describe the charging and discharging state, which 

can be given as 
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Equation (17) guarantees that the capacity of the EV load de-

mand should be limited by the maximum allowable power in 

the station. Moreover, Kw,i is an indicator describing whether 

the w-th EV is plugged in charging station at bus i. When Kw,i=1, 

the w-th EV is plugged in charging station at bus i; otherwise, 

Kw,i = 0. However, the optimal charging model is a non-convex 

optimization model due to the non-convexity of power flow 

equations, challenging the global optimum. Here, the second-

order cones are utilized to relax the power flow equations. At 

first, a transformation is made for (2)-(4) by replacing the 

squared voltage magnitude and current as 
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Thus, the original (2)-(4) will become 
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 It can be found that only quadratic equalities (21) will lead to 

the non-convexity, which can be relaxed by conic relaxation, 

changing equalities into inequalities, such that  
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In addition, when taking the squares for both sides of (5)-(6) 

to replace (Ii,j,t, Ui,t) by (Fi,j,t, Vi,t), the optimal charging model 

can be reformulated as 

Obj:   (1)                                          (25) 

s.t.       ( ) ( )
2 2

min max

, ,    net ch

i i t iU V U i B t T  (26) 

 ( ) ( )
2

max

, , ,0 , , ,    net ch

i j t i jF I i j L t T   (27) 

(7)-(17), (20), (22), (24)                       (28) 

B. Markov Decision Process for EV Optimal Charging 

It should be noted that the constraints in the optimization 

model may be affected by the stochastic behavior of EV users. 

These are usually called boundary conditions, which cannot be 

revealed precisely in advance and will affect the charging strat-

egy accordingly. Intuitively, these boundary conditions should 

include each EV’s initial SOC, expected SOC, arriving time, 

leaving time and the choice of charging station. To solve the 

above optimization model, we must estimate the values of these 

boundary conditions before solving the model. For convenience, 

the above model can be compactly written as 

 ( ) ( )max profit f s.t.= 
x

x x q   (29) 

where (q) is the feasible region corresponding to the con-

straints (26)-(28) which is dependent on the boundary condi-

tions q, and x is the decision vector made by 

  , , , , , , , , , ,, , , , , ,Cdis Ccha

w t w t i j t i j t i j t i t w tP P PF QF F V SOC=x   (30) 

Moreover, the boundary condition vector q is associated with 

EV user’s uncertain behaviors that can be expressed as 
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where
chW  is the cardinality of Wch, denoting the total number 

of the EVs. Stationw denotes the EV w’s choice of charging sta-

tions. In fact, the station corresponds to the bus in the distribu-

tion network. For example, if Stationw=5, it means that the w-th 

EV will choose the station at bus 5 for charging. As shown in 

Fig. 2, the boundary conditions are affected by the current en-

vironment conditions, which will be changed with the time pe-

riods, making the EV user behaviors vary as well. This means 

that we need to update the predictions at each time step with 

latest environment observations. In this regard, the boundary 

conditions can be depicted by time series, such that 

( )0 1, ,..., Tq q q . To characterize the temporal relation of these 

uncertainties, the MDP framework is adopted to represent the 

problem as a 5-tuple { , , , , }R J  with state space 

=(s1,…,st,…sT), action space  =(a1,…,at,…aT), reward 

R=(r1,…,rt,…,rT), policy =(1,…, t,…T), and the return 

J=(J1,…,Jt,…JT),. Here, ,0 1
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Fig. 2.  EV charging control system. 

1) State 

State is used to describe the environment. As the environ-

ment conditions change, the current decisions will be corrected 

to avoid the violation of the physical constraints with the up-

dated boundary conditions, which will affect the state as well. 

The observation of environment from the past to the current is 

defined as a state, which can be written as 

 ( ), , , , 1,..., ,Γ
in out

s W ,T ,T d
      = =t D t     (32) 

where W refers to the weather information at the past time pe-

riod , including temperature, humidity, cloudiness and air 

quality index (AQI), which gives  

( ), , ,    = Temperature Humidity Cloudiness AQIW   (33) 

The weather may affect an EV user’s decision on whether to 

use the EV. For example, if there is a heavy rain in a weekend 

morning, an EV user may cancel the use plan, leaving the EV 

in the charging station.  represents the traffic information at 

the past time period  which will affect the boundary conditions 

Tin and SOCini. Generally, for a heavy traffic, the EV users will 

need more time to arrive and the power consumption will be 

increased, which thus leads to a large Tin and a low SOCini. Be-

sides, 

in
T and 

out
T are the Tin and Tout at the past time period , 

respectively; D  is the load level of the charging stations at the 

time period  and the load level for the i-th charging station is 

formulated as 

 

, , ,

, , 1,..., 1
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w i i

netw W
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i
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 =  = −


  (34) 

 1 ,,arg min ,
& , , ,

i

ch ch net

in ww D
K T T w W i B 

 − =      (35) 

where & denotes the logical operator “and”. 

The charging station load level will also affect the EV user’s 

choice of charging stations. Naturally, an EV user expects to 

choose a charging station with a relatively low load level be-

cause according the current retail price tariff, when the load is 

high, the price is high and vice versa. This is well recognized as 

the time-of-use price tariff in the demand side management. 

The EV user usually expects to find the charging station with 

the relative low price. 

Furthermore, the vector d uses a set of integers to represent 

dates in a year, where 

 ( ), ,d = season month holiday   (36) 

where we use 1 to 4 for season to represent spring, summer, 

autumn, and winter respectively, 1 to 12 for month to represent 

12 months, and 0 (working day) and 1 (holiday) for holiday to 

represent whether a day is holiday. The three dimensions of the 

above d may greatly affect the behaviors of EV users. For ex-

ample, EV user’s behaviors on a major holiday and a normal 

workday are certainly distinct, and the users may act differently 

in winter and summer.  

2) Action 

Action is the decision made by the agent to adapt to the en-

vironment (i.e., state). In the proposed model, the action at at 

the time t is chosen as the prediction of EV’s future behaviors:  

 1,..., ,...,f f f

t t T+ =a q q q
                         

 (37) 

where q


f
 is the prediction for the boundary condition q at the 

time period ={t+1,…,T}. Note that once an EV is connected 

to the charging station, some unknown information (Tin, SOCini, 

SOCexp, Station) in q will be revealed, while the leaving time 

Tout remains unknown. This means that (Tin, SOCini, SOCexp, Sta-

tion) in q  do not need to forecast anymore in the future.  

3) Reward 

 Any state-action pair is associated with a reward. Consider-

ing that the optimal action should maximize the DSO’s profits, 

here we define the reward at the time period t as 

( ) ( ), , 1, , ,,   −

  

= + − −  
net ch net

sell load cha buy sub

t t t t t i t w t w cap w t t i

i B w W i B

r s a P SOC SOC E P

(38) 

4) Policy 

A deterministic policy is a map of state-action pairs into real 

numbers (probability), such that  

 ( ) ( )  : 0,1t t t ta s a s=  →π    (39) 

where ( )t ta s  is the conditional probability under the (st,at). 

With the policy function, we are able to make actions based on 

any environment observations.  



5) Return 

The objective of the MDP model is to maximize the return 

with the optimal policy. To find an optimal policy, the action-

value function, Q
𝜋

: ×→R, underlying a policy π, is defined 

in (38). Assuming that the first state and the first action are 

given at the time t, the subsequent actions will be determined 

by the policy π.  

 ( )( , ) | ,

  





−

=

 
=  

 
 t

t t t t

t

Q s a E r s a   (40) 

Furthermore, the optimal action-value Q*(st,at) at the state-

action pair (st,at) is defined as the maximum of the expected 

return under (st,at). In this way, when the exact action-value 

function is found, an optimal policy π*  will naturally be ob-

tained by 

 ( )* arg max ( , )
π

π =t t ts Q s a   (41) 

 Furthermore, let the state transition from state st to st+1 be 

( )( )1 1 , ,s s s a+ +=t t t tp , where ( )( )1, ,s s a+t t tp is the transition 

probability at time t from the state st to st+1 under the action at, 

reflecting the environment dynamics. Furthermore, the Bellman 

equation for the action value function can be formulated as  

( ) ( )( ) ( )
1 1

1 1 1 1 1

,

( , )= , , ( , )
t t t

t t t t t t t t t t t

s r a

Q s a p s r s a r a s Q s a  
+ +

+ + + + +

 
+ 

 
   

(42) 

III. REINFORCEMENT LEARNING AGENT FOR OPTIMAL  

VEHICLE CHARGING STRATEGY MODEL 

A. Reinforcement Learning Agent for Markov Decision Process 

Traditionally, the MDP model can be solved by the dynamic 

programming which requires the knowledge of the transition 

function ( )( )1, ,s s a+t t tp . However, this transition function is 

difficult to obtain, so the precise optimal policy π* and the exact 

action-vale function in the MDP model are difficult to find. To 

address this problem, the RL approach is adopted to solve the 

proposed MDP model. In general, the RL, which is capable of 

solving MDP problems, has been successfully utilized in dy-

namic environments, stochastic systems, control systems and 

etc. For traditional RL methods, finding the optimal action that 

maximizes Q(st,at) at each time step needs to enumerate all pos-

sible combinations and the computation is very complex. Re-

cently, it was reported in [34] that the DDPG algorithm had ex-

cellent advantages in dealing with both continuous states and 

continuous actions while alleviating the curse of dimensionality. 

DDPG is a deep reinforcement learning algorithm, leading to 

an actor-critic architecture, in which the actor produces a cur-

rent policy and the critic aims to evaluate the current policy.  
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Fig. 3.  The structure of the DDPG algorithm. 

As shown in Fig.3, the core idea of the DDPG algorithm is 

to approximate the action-value function Q(st,at) by an approx-

imator parameterized by Q(st, at, θQ). This approximator can be 

updated by the DPG algorithm guarantees the gradient of the 

off-policy to be equal to the expectation of the gradient of the 

action-value function. It shows that updating the actor will also 

use the information from the critic, e.g., the gradient action-

value function ( ), , Q

a i iQ a s  . At the beginning, we do not 

know the optimal policy and a stochastic policy is deployed to 

generate an action at. Furthermore, obtaining a reward rt and a 

new state st+1 gives a sample 1, , , +t t t ts a r s . Then, a set of sam-

ples are collected by  1 1 1 1, , ,..., , , , +t t t ts a r s a r s  in the replay 

buffer to improve the policy and obtain a better reward. In par-

ticular, the DDPG algorithm employs an experience replay 

buffer. Different from the traditional DQN techniques in which 

the samples are input into the network directly, the samples in 

DDPG algorithm are stored in a large-size replay buffer instead 

and then mixed with other stored samples. When the buffer is 

full, the oldest sample is deleted to make space for the latest 

sample. At each time step, the RL agent randomly chooses sev-

eral samples to update the critic. This technique would mini-

mize the correlation among the samples that are used to update 

the critic. Additionally, directly using the DPG to update Q(st, 

at, θQ) may be unstable in many environments. The DDPG al-

gorithm introduces an ancillary target network to improve the 

stability, where the parameters of the critic in both networks 

(main network and target network), i.e., ( )' ', Q  and 

( ), Q   are updated simultaneously. 

Finally, the detailed flowchart of the DDPG algorithm can be 

summarized as follows: 

Step 1: Initialize the parameters of the actor-critic structure in 

the main network with ( ), Q
; 

Step 2: Initialize the parameters of the actor-critic structure in 

the target network with ( ) ( )' ', ,    Q Q
; 

Step 3: Choose a stochastic policy to generate an action at. Fur-

thermore, obtain a reward rt and a new state st+1. 

Step 4: Add  1, , , +t t t ts a r s  into the replay buffer. 

Step 5: Randomly choose N samples in the replay buffer and 

set the yo for each sample by 

( )'1 1' , ' , , 1,..., + += + =Q

o o o oy r Q s a o N

            

(43) 



Step 6: Minimize the loss to update the parameters of the critic 

in the main network by 

( ) ( )( )
2

1

1
min , ,
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= −Q
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o o o

o

L Q s a y
N

                

(44) 

Step 7: Using stochastic gradient updates the parameters of in 

the actor in the main network by 

( ) ( ) ( )
1

1
, , , , , 

 

 
    

=

   
N

Q

i i i a i i

o

s a s Q a s
N

  

(45) 

Step 8: Update the parameters of the actor-critic structure in the 

target network by 

( )

( )

' '

' '

1

1

     

   

 + −

 + −Q Q Q
                       (46) 

where τ is soft replacement with 0 < τ < 1.  

Step 9: Online application to the optimal EV charging problem 

and goto Step 3. 

B. Flowchart of Optimal EV Charging Problem 

In this section, we will show the online application of the 

proposed EV optimal charging model driven by the DDPG al-

gorithm. As shown in Fig. 4, at the beginning, the DSO gathers 

the boundary conditions q, including current and historical in-

formation about current weather, traffic condition, and charging 

stations’ load levels, to form the state st that will be the input to 

the RL agent. Then, the proposed DDPG agent will train the RL 

agent to generate the optimal policy ( )*

t ta sπ . Subsequently, 

the feasible region ( )q can be formed by ( )*
q g π s =   . 

Based on the optimal policy ( )*

t ta sπ to give an action at, the 

corresponding boundary conditions ( )* 
 t ta sq π  can be esti-

mated and form a feasible region ( ) *

t ta s   q π , on which 

we can perform the SOCP to have the optimal charging strategy 

 * * *

1 2 Tx , x , ..., x over the next 24 hours by solving the following 

EV optimal charging problem  

 

( )

( ) ( ) 
1 2

1 2

*

1 2

max
T

T

T t t

profit f

s.t. a s

=

   

x ,x ,...,x

x , x , ..., x

x , x , ..., x q π

  (47) 

Note that for the online closed-loop control, the DSO will 

conduct the decision at the next hour *

1x  and keep the decisions 

in the future hours * *

2 Tx , ..., x . After one hour, we have the true 

reward rt, and the environment moves to a new state st+1. Fur-

thermore, we will recalculate the SOCP model under the latest 

environment observations to update the decisions. This control 

strategy is called the horizon rolling control. Finally, at the end 

of each period, the DSO will have all the actual information re-

alized at this hour. Then, all the information will be added in to 

the historical database for training the boundary conditions at 

the next hour. At the same time, the RL agent will update the 

parameters of the DDPG.  

Last but not the least, in the above optimization model, we 

assume that the SOCP model is always feasible under the EV 

charging strategy. However, the infeasibility of the SOCP may 

occur due to the uncertain EV behaviors. For example, it is not 

possible to get all EVs to their expected SOC by their deadlines. 

At this time, the DSO cannot provide the charging strategy for 

EVs and the control may be interrupted. In order to prevent this 

problem, once (47) is infeasible, an unconstrained model is gen-

erated by adding penalty functions into the objective function 

of (47), such that 

( ) ( ) 
1 2

*

1 2max +
T

T t tprofit f a s  =   
x ,x ,...,x

x , x , ..., x q π  (48) 

where ρ is the penalty factor corresponding to the constraints 

and ||•|| is the regularization norm of the constraint set. Specifi-

cally, the constraint set ( ) *

t ta s   q π includes both equali-

ties 
( )

( )* 1 2 =0
t t

Ta s
h

 
 

q π
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Furthermore, the unconstrained optimization model can be 

written as 

( )
( )

( )

( )
( )

*

1 2

*

2

1 2 1 2
2

2

1 2

2

max +

+ max 0,

t t
T

t t

T h Ta s

g Ta s

profit f h

g





 
 

 
 

=

 − 
 

q π
x ,x ,...,x

q π

x , x , ..., x x , x , ..., x

x , x , ..., x

(50) 

where ρh and ρg are the penalty factors corresponding to the 

equality and inequality constraints, respectively. It can be obvi-

ous that solving the unconstrained optimization model (50) is 

always feasible and the optimal solution can be given if the 

original model (47) is infeasible. 
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Fig. 4.  EV optimal charging strategy with reinforcement learning agent. 

IV. NUMERICAL EXAMPLES 

The proposed MDP model is tested by a distribution network 

with 33 buses and 3 parking stations as shown in Fig.1. There 

are 400 EVs in the district and the EV penetration rate is 40%. 

The detailed information and data for EVs can be available from 

[59]. We choose one-year EV data as the train set and then use 

one day data as the test set for online application. The optimal 

control is conducted over one workday, with each time horizon 

being one hour. The proposed algorithm is performed on 



MATLAB with the Reinforcement Learning Toolbox. We used 

synthetic data to evaluate proposed method. Moreover, there 

are two layers in both critic network and actor network. For the 

critic network, the sizes of the first and second layers are 500 

and 300, respectively; learning rate is 10-3; soft replacement is 

τ=0.001. For the actor network, the first and second layers are 

500 and 300, respectively; learning rate is 10-4; soft replacement 

is τ=0.001. For the DDPG, buffer size is set as 10000, batch size 

is N=64 and reward discount factor is γ= 0.99. 

Table I    Tariff TOU price (￥/kWh) 

Time (h) 1 2 3 4 5 6 7 8 

Tariff price  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.7 

Time (h) 9 10 11 12 13 14 15 16 

Tariff price  0.7 0.7 0.7 0.7 0.7 0.5 0.5 0.5 

Time (h) 17 18 19 20 21 22 23 24 

Tariff price  0.5 0.7 0.7 0.7 0.5 0.5 0.5 0.5 

 

For comparison, the traditional offline stochastic program-

ming model is employed. Furthermore, for the online applica-

tion, we will fix the offline optimal charging strategy, randomly 

choose 100 scenarios for the boundary conditions and then 

compute the power flow. To characterize the stochastic nature 

of the EVs in the district distribution network, the number of 

EVs for arriving and leaving at different time periods are shown 

in Fig.5, in which the blue legends represent arriving EVs and 

the orange legends represent the leaving EVs. In general, the 

EVs mainly distribute during 4:00-9:00 for leaving and during 

16:00-21:00 for arriving. However, the uncertainty during the 

arriving and leaving time periods is stronger due to the traffic, 

weather and etc., and the corresponding interval is large. At the 

other time periods, the uncertainty is small and the correspond-

ing interval is small. For example, at midnight, most of EVs are 

staying at the charging stations for charging. As a result, the 

uncertainty is not remarkable. 

Fig.6 compares the voltage levels between the proposed and 

the traditional methods. The proposed method utilizes the rein-

force learning technique to solve the MDP model while the tra-

ditional method employs the offline stochastic programming to 

solve the EV charging strategy without considering the MDP 

model. Moreover, Fig. 7 gives the comparison of the load 

curves between the proposed and the traditional methods. 

Specifically, we can find from the Fig. 6 and Fig. 7 that the 

MDP model has advantages in guaranteeing the voltage secu-

rity. On one hand, the traditional load peak usually occurs at 

20:00 when the voltage magnitude is at the lowest level for the 

traditional method. With the optimal charging strategy, the volt-

age valley will become the voltage peak since the EV discharg-

ing will alleviate the heavy load at this moment. On the other 

hand, the load valley occurs at around 3:00 when the voltage 

magnitude is at the highest level. The optimal charging strategy 

will charge EVs at this moment, so that the traditional voltage 

peak will become the voltage valley. This shows that the opti-

mal charging strategy can benefit the voltage regulation through 

the charging and discharging at proper time periods.  

Moreover, the proposed MDP method is compared with tra-

ditional stochastic programming method without MDP and the 

MPC method. It should be noted that the black solid line repre-

sents the voltage curve with MDP model, and the point repre-

sents the voltage under 100 possible realizations without MDP 

model (i.e., by using the offline stochastic model) for the tradi-

tional method. Moreover, the blue solid line represents the volt-

age curve by the MPC method. The results can be found in Fig. 

6 that through the online control, the boundary conditions will 

be updated to the real-time control system. Therefore, the volt-

age magnitudes controlled by the proposed MDP can always 

guarantee the voltage security. In contrast, the traditional sto-

chastic programming method performs the offline optimal 

charging strategy under the forecasted boundary conditions but 

without the online learning environment for updating the 

boundary conditions. Thus, the voltage magnitudes may signif-

icantly violate the specified boundaries. As for the MPC 

method, the system will conduct a multi-period optimization 

model while only deploying the first-period control strategy. 

Then, the multi-period optimization problem will be recom-

puted again with the updated forecasted boundary conditions. 

Although the voltage violation by the MPC method can be alle-

viated compared to the traditional method, the voltage may still 

slightly violate the specified boundaries. The reason is that the 

MPC is an open-loop control framework, and the control for 

EVs at one time period will affect the boundary conditions of 

the model at the next time period. In contrast, the online learn-

ing system in the proposed method will reconsider the boundary 

conditions once the current decisions are made and then update 

the control strategy. This suggests that the boundary conditions 

and the optimal charging strategy will have strong temporal cor-

relations and the online learning techniques can fully recognize 

this property, leading to a better solution. In this term, the pro-

posed method can be termed as a closed-loop control frame-

work. However, the traditional stochastic programming and 

MPC method only focus on the boundary conditions in the view 

of historical data while neglecting the correlation between the 

control strategy and the boundary conditions. This may result 

in the improper control strategy and voltage violation.  

Arriving EVs

Leaving EVs

 
Fig. 5.  Number of EVs for arriving and leaving at different time periods. 



 
Fig. 6.  Comparison of Voltage Magnitudes between the proposed MDP 

method, the traditional stochastic method without MDP and the MPC method 

 
Fig. 7  Comparison of the proposed load curve and traditional load curve. 

In addition, the charging and discharging states of three 

charging stations are depicted in Fig. 8. It is obvious that the 

time periods for charging is at the load valley, while at load 

peak for discharging, since the price is high at the load peak and 

low at the load valley. The charging stations are served for the 

demand response to reduce the cost. At 18:00~20:00, although 

the three charging stations are discharging simultaneously to 

mitigate the under-voltage violation, the discharging powers are 

coordinated. We randomly choose 20 EVs for illustration and 

the charging powers are shown in Fig. 9. It can be observed that 

some EVs at 18:00-20:00 do not participate in the demand re-

sponse. This is because the EVs for leaving will keep the SOC 

or the EVs with very small SOC values could not reduce the 

SOC anymore. Other EVs will shift the charging tasks from 

18:00~20:00 to 1:00~5:00 to reduce the cost. 

 
Fig. 8.  Charging/discharging curves of charging stations. 

Charging

Power (kW) 
Fig. 9.  Charging power of 20 EVs in 24 hours. 

Finally, the daily revenue for DSO with two parts (profit for 

serving load and charging services of EVs) is shown in Fig. 10, 

where the two parts account for 66% and 34%, respectively. 

The detailed the hourly revenue data for DSO is shown in Table 

II, where we can find that the load revenue is high while the 

charging revenue is low during 18:00-20:00. This is because the 

electricity price and electricity power consumption during this 

time period are very high. Therefore, DSO will expect to reduce 

the charging power of EVs to avoid potential under-voltage 

problems. Likewise, DSO will expect to increase the charging 

power of EVs during 2:00-5:00 to maximize its revenue when 

the load and electricity price are low. 

Furthermore, we perform a sensitivity analysis on the EV 

penetration rate. In addition to the 40% EV penetration rate, we 

test the model under 10%, 20% and 80% EV penetration rate, 

respectively. Fig. 11 and Fig. 12 depict the comparisons of volt-

age levels under different penetrations by the proposed method 

and traditional method. When the EV penetration rate rises, the 

fluctuations of voltage magnitudes are severer for both methods. 

The load peak of EVs is around 17:00 to 20:00, so the voltage 

levels at charge stations rapidly decline by the traditional 

method, which will negatively affect the operation of the charg-

ing station. In contrast, lots of EVs discharge at the load peak 

by the proposed method, and the voltage levels do not decline 

significantly. When the EV penetration rate is pretty high in this 

Proposed method

Traditional method

MPC method



district (e.g. 80%), the voltage levels even rise at the load peak. 

This is because the cost of buying electricity from the grid dur-

ing this period is higher than that of electric vehicle discharge. 

As a result, the EV will discharge the power to the power grid, 

although there are many EV connects to the charging stations. 

 
Fig. 10. Analysis of the daily revenue for the DSO (103 yuan). 

Table III displays the DSO revenue under different penetra-

tion level of EVs for the two methods, as well as the computa-

tional time. It can be found that for both the two methods, the 

DSO revenue will increase as the EV penetration level grows. 

There are two reasons for this phenomenon. First, increasing 

the penetration level of EVs implies that the charging demand 

of EV will increase and the first part of the DSO revenue will 

increase accordingly. Second, higher penetration level of EVs 

will increase the EV battery capacity and provide more flexibil-

ities to the power grid. When the electricity price is high, the 

EVs can be fully charged, and the DSO can sell more electricity 

to grid, suggesting that the second part of the DSO revenue will 

increase as well. Furthermore, for the same EV penetration 

level, the DSO revenue by the proposed method is higher than 

that of the traditional method. In particular, larger difference of 

the DSO revenue will be obtained between the two methods 

with the increasing EV penetration level. This shows that the 

traditional method will sacrifice more benefits under the higher 

penetration of EVs. However, the computational complexity of 

the proposed method is higher than the traditional method. Gen-

erally, the proposed method will take 50-200 iterations for the 

reinforcement learning which is a little time-consuming. 

Table II.  Hourly revenue of the DSO with 40% EV penetration rate 

Time (h) 1 2 3 4 5 6 

Overall revenue (103 ￥) 0.26  3.20  3.11  3.05  2.89  0.26  

Charging revenue (103 ￥) 0.16  3.17  3.07  3.01  2.84  0.10  

Load revenue (103 ￥) 0.10  0.03  0.04  0.04  0.05  0.16  

Time (h) 7 8 9 10 11 12 

Overall revenue (103 ￥) 0.33  0.47  0.66  0.65  0.77  0.91  

Charging revenue (103 ￥) 0.16  0.06  0.00  0.11  0.23  0.30  

Load revenue (103 ￥) 0.17  0.41  0.66  0.54  0.52  0.61  

Time (h) 13 14 15 16 17 18 

Overall revenue (103 ￥) 1.04  1.67  1.56  1.61  1.54  0.69  

Charging revenue (103 ￥) 0.42  1.52  1.42  1.48  1.41  0.11  

Load revenue (103 ￥) 0.62  0.15  0.14  0.13  0.14  0.58  

Time (h) 19 20 21 22 23 24 

Overall revenue (103 ￥) 2.55  0.98  0.42  0.28  0.17  0.13  

Charging revenue (103 ￥) 
-

0.54  

-

0.09  0.17  0.09  0.02  0.01  

Load revenue (103 ￥) 3.09  1.07  0.25  0.19  0.15  0.12  

Table III.  DSO revenue and computational complexity under dif-

ferent EV penetration levels for two methods 

Method 
EV Penetration 

level (%) 

Revenue 

(103 yuan/day) 

Computational 

Time (s) 

Proposed 

Model 

10 9.494 38.11 
20 17.943 98.45 

40 29.173 212.34 

80 50.229 416.54 

Traditional  

Model 

10 8.726 3.19 
20 13.854 5.65 

40 20.354 6.35 
80 32.379 14.72 

 
Fig. 11. Comparisons of voltage levels under different penetrations. (The pro-

posed method) 

 
Fig. 12. Comparisons of voltage levels under different penetrations. (The tra-

ditional method)  

V. CONCLUSIONS 

This paper proposes a reinforcement learning-based optimal 

charging strategy model for a DSO to address the voltage vio-

lation problem. In the context of uncertain EV users’ behaviors, 

an MDP framework is utilized for the temporal properties of the 

uncertainties. Furthermore, the deep deterministic policy gradi-

ent algorithm is employed to solve the proposed model. Simu-

lation results suggest that the optimal charging strategy for EVs 

is served as a kind of demand response which will be beneficial 

for the voltage regulation through the charging and discharging 

at proper time periods. Moreover, it verifies that the proposed 

method can strictly guarantee the voltage security while the tra-

ditional stochastic approach cannot. This is because the control 

for EVs at one time period will affect the boundary conditions 
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of the model at the next time period. The MDP and the online 

learning techniques can fully take the temporal correlations into 

account.  
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