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Novel Fitting Algorithm for Parametrization of
Equivalent Circuit Model of Li-Ion Battery from

Broadband Impedance Measurements
J. Sihvo, Student Membership, T. Roinila, Membership, and D.-I. Stroe, Membership

Abstract—The impedance of Li-ion batteries contains
information about the dynamics and state parameters of
the battery. This information can be utilized to improve
the performance and safety of the battery application. The
battery impedance is typically modeled by an equivalent-
circuit-model (ECM) which provides the dynamic informa-
tion of the battery. In addition, the variations in the model
parameters can be used for the battery state-estimation. A
fitting algorithm is required to parametrize the ECM due
to the non-linearity of both the battery impedance and
ECM. However, conventional fitting algorithms, such as the
complex-nonlinear-least-squares (CNLS) algorithm, often
have a high computational burden and require selection
of initial conditions which can be difficult to obtain adap-
tively. This paper proposes a novel fitting algorithm for the
parametrization of battery ECM based on the geometric
shape of the battery impedance in the complex-plane. The
algorithm is applied to practical and fast broadband pseudo
random sequence impedance measurements carried out
at various state-of-charges (SOC) and temperatures for
lithium-iron-phosphate cell. The performance of the method
is compared to conventional CNLS algorithm with differ-
ent initial conditions. The results show that the proposed
method provides fast and accurate fit with low computa-
tional effort. Moreover, specific ECM parameters are found
to be dependent on the battery SOC at various temperature.

NOMENCLATURE

CNLS Complex non-linear least squares
ECM Equivalent circuit model.
EIS Electrochemical impedance spectroscopy.
EoD End of the diffusion.
LiFePO4 Lithium iron phosphate.
PRS Pseudo random sequence.
NRMSE Normalized root mean square error.
SEI Solid electrolyte interface
SOC State of charge.
SOH State of health.
TSC Top of the semi-circle.
fgen Generation frequency of PRS.
fres Frequency resolution of PRS measurements.
CCT Capacitance of the charge-transfer region.
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CD Capacitance of the diffusion region.
N Length of the PRS period.
αCT Suppression factor of charge-transfer region.
αD Suppression factor of diffusion region.
k Iteration index
Ls Series inductance.
RCT Resistance of the charge-transfer region.
REoD Real-part of the end of the diffusion.
Rminreal Minimum real-part of the impedance.
RTSC Real-part of the top of the semi-circle.
Rs Series resistance.
XEoD Imaginary-part of the end of the diffusion.
Xminreal Imaginary-part of the minimum real-part.
XTSC Imaginary-part of the top of the semi-circle.
ZECM Equivalent circuit model impedance.
ZCT Charge-transfer region impedance.
ZCT-im Imaginary-part of the charge-transfer region.
ZCT-re Real-part of the charge-transfer region.
ZD Diffusion region impedance.
Zfit Model-fitted impedance.
Zmeas Measured impedance.

I. INTRODUCTION

The increasing usage of Li-ion batteries in electrical trans-
portation and renewable energy storage applications is intro-
ducing strict demands for the safety and performance moni-
toring of Li-ion batteries. The monitoring of Li-ion batteries
is based on the estimation of the battery state parameters, such
as, state-of-charge (SOC) and state-of-health (SOH), which are
indirectly obtained from the voltage, current, and temperature
measurements of the battery system. Conventional estima-
tion methods are based on the voltage-profile and coulomb-
counting methods for the SOC estimation, and capacity-fade
and internal DC resistance methods for the SOH estimation
[1], [2]. However, as the power and energy levels of the battery
systems increase, more state-estimation methods along with
the existing ones are required to guarantee the performance of
such applications in the future.

It is widely recognized that the AC impedance of a Li-
ion battery is highly dependent on the battery state pa-
rameters [1]–[4]. To investigate both the battery dynamics
and the variations in the impedance for the SOC and SOH
estimation, the impedance is usually mapped to non-linear
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equivalent-circuit-model (ECM) parameters [3], [5]–[8]. Due
to the non-linearity of the ECM, an optimization algorithm,
such as particle-swarm-optimization [7] or complex-nonlinear-
least-squares (CNLS) algorithm, is required to fit the ECM
accurately to the impedance data [3], [9]. Although these
algorithms are effective, they have high computational require-
ments and require initial conditions for the ECM parameters.
Moreover, the selection of the initial values affects on the
performance of the algorithm which should be as close to
the eventual fit as possible [10]. Recent studies have proposed
initialization methods for the parameters [11]–[15]. However,
some parameters have been found difficult to initialize adap-
tively based on the impedance data. This is the case with
the fractional-order element, also known as the suppression
factor. Moreover, the simplifications made to the derivation of
other ECM parameters (e.q. capacitances and inductances) are
insufficient because of the non-linearity, and the strong cross-
correlation of high-frequency terms of the ECM. However,
adaptively obtained accurate initial conditions can not only
improve the performance of the fitting algorithm in changing
operating conditions of the battery, but can also reduce the
complexity needed for the fitting algorithm [15]. This presents
an opportunity to design the algorithm in a lighter manner
than the conventional algorithms, making it more suitable for
practical applications.

In order to utilize impedance information for the battery
system, it is necessary to measure the impedance on-board in
the battery system. The traditional method for the impedance
measurements is the electrochemical impedance spectroscopy
(EIS) [16]–[19]. While this method provides accurate results,
the long measurement time and high complexity of the si-
nusoid generation require to simplify its implementation for
on-board battery applications [19], [20]. To keep the mea-
surements’ complexity low, step and pulse excitations, such
as hybrid-pulse-power-characterization (HPPC) test, can be
applied [3], [7]. The method is an effective way to obtain
the SOC, SOH, current and temperature dependency of the
impedance but it requires several pulses to be injected which
prolongs the measurements. To achieve fast measurements,
broadband signals, such as, multi-sines [16] and pseudo-
random-sequences (PRS) can be used [21]–[23]. PRS signals
are especially attractive because they can be designed with
a finite number of signal levels which significantly reduces
the complexity of the method implementation. However, most
of the PRS signals are only suitable for measuring linear
systems which restricts their use for battery applications,
which are non-linear [21], [22]. Nevertheless, recent studies
have reported that a three-level PRS (regarded as a ternary
sequence) has good performance under system non-linear ef-
fects in battery applications [15], [24]. Because of the reduced
measurement time, low complexity, and good performance
under system non-linearities, the ternary sequence is well
suited for practical battery impedance measurements.

This paper proposes a novel fitting algorithm for battery
impedance ECM parametrization. The algorithm consists of
two parts: the initialization and optimization processes. In
both processes, the geometric shape of the impedance plot
is utilized for the parametrization. The performance of the

Fig. 1: Measured impedance plot of a LiFePO4 battery cell
along with the corresponding ECM

algorithm is validated to lithium-iron-phosphate (LiFePO4)
cell impedance, measured by a broadband ternary sequence
excitation signal applied at various SOCs and temperatures.
The algorithm is shown to produce accurate fit and to have
more consistent performance at all SOCs and temperatures
than the CNLS. The required low computational effort also
makes the algorithm very fast compared to conventional CNLS
algorithm. Moreover, the proposed initialization can adaptively
provide the initial conditions for the CNLS which can yield to
more robust performance in changing operating conditions. In
addition, some of the fitted ECM parameters are shown to have
clear dependency to the battery SOC and temperature. Thus,
along with the ternary-sequence measurements, the proposed
algorithm has the potential to be utilized for battery dynamic
analysis and state-estimation in practical battery applications.

The rest of the paper is organized as follows. The ap-
plied impedance ECM model is presented in Section II and
the proposed fitting algorithm is introduced in Section III.
The impedance measurements and the design of the ternary-
sequence excitation signal are presented in Section IV. The
experiments and the obtained results are discussed and pre-
sented in Sections V and VI, respectively. Conclusions are
drawn in Section VII.

II. IMPEDANCE MODEL

A typical impedance plot of a LiFePO4 cell along with the
used ECM is shown in Fig. 1. The imaginary-axis in Fig. 1
is inverted to illustrate the plot in the first quadrant in the
complex plane. In the impedance plot, three main regions
can be identified, each caused by different electrochemical
processes in a battery cell. The diffusion region in the low
frequencies (<3 Hz) represents the solid-state diffusion of
lithium-ions within the bulk of the electrode material. The
charge-transfer region is realized by the charge-transfer and
electrochemical double-layer reactions at frequencies between
3 Hz and 1 kHz. The ohmic/inductive region represents the
effect of current collectors and wires, usually realized at high
frequencies (>1 kHz). Depending on the battery chemistry,
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temperature, SOH and SOC, the impedance can also include
other distinctive regions. Along with the charge-transfer region
semi-circle, a second semi-circle may appear at very low
temperatures and low SOH caused by the formation of a
solid-electrolyte-interface (SEI) layer. However, the SEI effect
for the impedance of the LiFePO4 cell can be considered
negligible, which is why it is not visible in the impedance
spectrum presented in Fig. 1. [11], [19], [25]

A typical ECM for the LiFePO4 cell impedance is shown
at the bottom of Fig. 1, where the non-linearities of the
impedance are modeled by a constant-phase-element (CPE)
as

ZCPE =
1

(jω)αC
. (1)

In (1), C is the capacitance and α is the suppression factor
having values between 0 (pure resistance) and 1 (pure capaci-
tance) [6]–[8], [11]–[13]. The ECM in Fig. 1 can be expressed
as

ZECM = jωLs +Rs + ZCT + ZD (2)

where Ls is the inductance of the series inductor and Rs is the
series resistance which together models the ohmic/inductive
region of the impedance. ZCT given in (3) represents the
charge-transfer region impedance. The suppressed semi-circle
shape is obtained with the parallel connection of a resistor
and CPE. For the further parametrization of the model, it
is convenient to separate real and imaginary parts of ZCT,
which are given in (4) and (5), respectively. ZD represents
the diffusion region impedance in which the constant-slope
behavior can be modeled by using a single CPE. The diffusion
region impedance is given in both complex and separated real
and imaginary parts forms in (6). For the resistors, capacitors,
and suppression factors in (3)-(6), the subscripts ”CT” and
”D” denote the charge-transfer region and diffusion region
parameters, respectively.

ZCT =
1

1
RCT

+ (jω)αCTCCT
(3)

ZCT-re =
RCT + cos(παCT

2 )R2
CTCCTω

αCT

1 + 2cos(παCT
2 )RCTCCTωαCT + ω2αCTR2

CTC
2
CT

(4)

ZCT-im =
−jsin(παCT

2 )R2
CTCCTω

αCT

1 + 2cos(παCT
2 )RCTCCTωαCT + ω2αCTR2

CTC
2
CT

(5)

ZD =
1

(jω)αDCD
⇐⇒

cos(παD
2 )

ωαDCD
−
jsin(παD

2 )

ωαDCD
(6)

The impedance plot in Fig. 1 also contains points which are
important for the parametrization of the ECM. These points
are the zero-derivative points and the minimum real-part. The
first zero-derivative point is realized at the intersection of
the diffusion and charge-transfer regions and is regarded as
the end-of-the-diffusion (EoD). The second zero-derivative
point is realized at the top-of-the-semi-circle (TSC) at the
charge-transfer region. The minimum real-part is simply the
lowest real-part occurring in the impedance. It is also worth

Fig. 2: Discrepancy illustration of the individual parts of ECM
with respect to the total ECM in the frequency range of
200mHz - 3.5kHz

mentioning the boundary between the charge-transfer and
ohmic/inductive regions which is typically considered at the
point where the battery impedance intersects the real axis. The
point is often used to model the battery aging and the SOH
[5], [17]. However, same information can be obtained from
the minimum real part which is why the real-axis intersection
point is not further used in this paper.

III. PROPOSED FITTING ALGORITHM

The proposed fitting algorithm consists of two parts, the
initialization and iteration processes. The initialization process
aims to produce satisfying fit which provides a good start point
for the iterative process to converge quickly. The initialization
process alone is insufficient to obtain accurate fit due to
the non-linearity of the ECM and strong cross-correlation of
the impedance regions in the model. This is illustrated in
Fig. 2, where fitted ZECM and its separately plotted terms
(jωLs + Rs, ZCT and ZD) have huge discrepancies. Thus,
the zero-derivatives at the EoD and TSC, along with the
minimum real-part, are also found in a slightly different
locations in the complex plane. This introduces error to the
initialization process since the zero-derivatives are obtained
from the measurements while the separated terms are mostly
used for the parameter calculations. Therefore, an iterative
process is required in order to guarantee the performance of
the algorithm. The algorithm is applied to impedance data
provided from the battery impedance measurements which are
discussed later in Section IV. In further parts of this section,
the parameters in (2) - (6) are included with a superscript
indicating the iteration index k.

A. Initialization

The initialization process starts with the extraction of the
zero-derivative points at the EoD (R0

EoD, X0
EoD) and at the

TSC (R0
TSC, X0

TSC), along with the minimum real-part (R0
minreal,

X0
minreal) from the impedance data. In addition, two arbitrary

data points at the diffusion region, (R0
1, X0

1 ) and (R0
2, X0

2 ) are
required. The superscript denotes the iteration index k = 0
at the initialization process. The locations of these sub-
parameters are illustrated in Figs. 3 and 4 (without the iteration
index). These sub-parameters can be extracted numerically
from the complex impedance data and they are also needed in
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Fig. 3: Parameter and sub-parameter illustration of the ECM
in the diffusion region

the iteration process and must be stored throughout the fitting
algorithm.

At the diffusion region, the initial value of the suppres-
sion factor α0

D can be obtained from the angle between the
impedance slope and the real axis as illustrated in Fig. 3 [15].
Thus, α0

D can be derived as

α0
D =

2

π
atan(

X0
1 −X0

2

R0
1 −R0

2
) (7)

where R0
1 and R0

2 are the real parts, and X0
1 and X0

2 are
the imaginary parts of the two arbitrary data points in the
diffusion region. By using either of these data points, C0

D can
be calculated from the imaginary part in (6) as

C0
D = −

sin(
πα0

D
2 )

ω
α0

D
1 X0

1

. (8)

At the ohmic/inductive and charge-transfer regions, the
initial value of the series resistance R0

s can be approximated
as the minimum real part of the impedance given in (9). The
initial value of the resistance R0

CT is given by the width of the
semi-circle (as shown in Fig. 4) given in (10) [13], [15].

R0
s ≈ R0

minreal (9)

R0
CT ≈ R0

EoD −R0
minreal (10)

For the initialization of α0
CT, its correlation to the imaginary-

part at TSC can be utilized. For simplicity, the model is re-
duced at this point to consist only of the charge-transfer region
impedance imaginary part in (5). Moreover, the iteration index
notations are neglected from the superscript for simplicity.
When obtaining the zero derivative of (5) in terms of ωαCT

to obtain the angular frequency at the TSC, we get

dZCT-im

dωαCT
= 0⇐⇒ ωαCT

TSC =
1

RCTCCT
. (11)

When substituting the resulting (11) back to (5) and re-
organizing the terms, the following relation can be obtained.

ZCT-im(ωαCT
TSC) = XTSC =

RCTsin(
παCT

2
)

2(cos(
παCT

2
) + 1)

(12)

Eq. (12) shows that XTSC is independent of the capacitor value
and is defined only by αCT and RCT. Therefore, αCT can be

Fig. 4: Parameter and sub-parameter illustration of the ECM
in the charge-transfer and ohmic/inductive regions

solved from (12) as in (13) where the iteration index is again
presented.

α0
CT =

4

π
atan(

X0
TSC
R0

CT
2

). (13)

The impedance at the TSC can also be used for the extraction
of C0

CT. Z0
CT-re in (4) can be arranged in terms of C0

CT as
in (14), from which the solution for C0

CT is given by the
quadratic equation. Deriving C0

CT from the real-part instead
of the imaginary part is useful because series inductance is
not required for the calculations.

aCC
0
CT

2
+ bCC

0
CT + cC = 0

aC = R0
TSCR

0
CT

2
ω
2α0

CT
TSC

bC = cos(
πα0

CT

2
)R0

CTω
α0

CT
TSC(2R0

TSC −R0
CT)

cC = R0
TSC −R0

CT

(14)

For the initialization of L0
s , charge-transfer region impedance

should be taken into account due to the strong cross-correlation
of the ohmic/inductive and charge-transfer regions. Because
the inductive behavior of the impedance is higher towards
higher frequencies, a data point in the ohmic/inductive region
should be used for the calculations. The imaginary part of
the minimum real-part of the impedance curve can be used
for this purpose since the point is already extracted for (9).
By incorporating the Z0

CT-im in (5) with the conventional
inductor impedance equation (jωL0

s ) and solving L0
s , we get

the following equation for the series inductance.

L0
s =

jX0
minreal − Z0

CT-im(ωminreal)

jωminreal
(15)

The resulting fit from the initialization in (7) - (15) is not likely
to accurately match the measurement data due to the simplifi-
cations made to the model during the initialization. However,
the resulting impedance fit provides a good start point for the
iteration process or more advanced fitting algorithms such as
the CNLS.

B. Iteration
At the iteration process, the the parameters from the previ-

ous iteration index k − 1 are substituted to (2) and new sub-
parameter values for Xk

TSC, Rk
1, Xk

1 , Rk
2 and Xk

2 are extracted
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Fig. 5: Step-by-step block diagram of the proposed fitting algorithm

aR = X0
EoDω

2αk-1
CT+α

k-1
D

EoD Ck-1
CT

2
Ck-1

D + sin(
παk-1

D

2
)ω

2αk-1
CT

EoD Ck-1
CT

2
+ sin(

παk-1
CT

2
)ω
αk-1

CT+α
k-1
D

EoD Ck-1
CTC

k-1
D

bR = 2sin(
παk-1

D

2
)cos(

παk-1
CT

2
)ω
αk-1

CT
EoDC

k-1
CT + 2X0

EoDcos(
παk-1

CT

2
)ω
αk-1

CT+α
k-1
D

EoD Ck-1
CTC

k-1
D

cR = X0
EoDC

k-1
D ω

αk-1
D

EoD + sin(
παk-1

D

2
)

(19)

from the impedance model data. With all the parameters
available from the previous iteration k−1, the value of Rk

s can
be derived by using the real-part in (2). At the ohmic/inductive
region, the influence of diffusion region impedance is negli-
gible and it can be neglected from the derivation. Therefore,
Rk

s can be derived as given in (16).

Rk
s = R0

minreal − Zk-1
CT-re(ωminreal) (16)

Similarly to Rk
s , the estimation accuracy of Rk

CT can now
be improved by solving it directly from (2). The imaginary-
part of (2) at the EoD is here used for the calculations but
also the real-part could be used. At the EoD, the effect of the
series inductance can be considered negligible. Thus, (2) can
be reduced to (17), which can be written open and arranged
in terms of Rk

CT as in (18) with the coefficients aR, bR, and cR
given in (19). The coefficients can be applied to the quadratic
equation to obtain a solution for Rk

CT.

X0
EoD = −

jsin(
παk-1

D
2 )

ω
αk-1

D
EoDC

k-1
D

+ Zk-1
CT-im(ωEoD) (17)

aRR
k
CT

2
+ bRR

k
CT + cR = 0 (18)

αk
CT can be re-adjusted by compensating the difference of

the imaginary-part at the TSC between the original measure-
ments (X0

TSC) and the model derived at the current iteration
(Xk

TSC) as given in (20). The absolute value of the difference
Xk

TSC−X0
TSC in (20) is used as the convergence criteria for the

algorithm. The value for Ck
CT is updated based on (14) already

used in the initialization process by updating the coefficients
as given in (21). The quadratic equation is then applied to
solve Ck

CT. The value for Lk
s is obtained based on (15) where

parameters are updated to correspond the current iteration
given in (22).

For the diffusion region parameters, αk
D is compensated

according to the difference of the slopes between the mea-
surements and the model derived at current iteration as given
in (23). Finally, Ck

D is adjusted based on (7) where parameters
are updated as given in (24). The presented algorithm is step-
wisely summarized in Fig. 5.

αk
CT = αk-1

CT −
4

π
atan(

Xk
TSC −X0

TSC
Rk

CT
2

) (20)

aCC
k
CT

2
+ bCC

k
CT + cC = 0

aC = R0
TSCR

k
CT

2
ω
2αk

CT
TSC

bC = cos(
παk

CT

2
)Rk

CTω
αk

CT
TSC(2R0

TSC −Rk
CT)

cC = R0
TSC −Rk

CT

(21)

Lk
s =

jX0
minreal − Zk

CT-im(ωminreal)

jωminreal
(22)

αk
D = αk-1

D −
2

π
(atan(

Xk
1 −Xk

2

Rk
1 −Rk

2
)− atan(

X0
1 −X0

2

R0
1 −R0

2
)) (23)

Ck
D = −

sin(
παk

D
2 )

ω
αk

D
1 X0

1

. (24)

IV. IMPEDANCE MEASUREMENTS

The impedance of a battery can be measured by exciting
the battery with a current perturbation and measuring the
voltage response. The measured current and voltage can then
be Fourier-transformed to obtain the frequency response of the
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Fig. 6: Ternary-sequence in time domain (fgen=34Hz and
N=34)

Fig. 7: Ternary-sequence in frequency domain (fgen=34Hz and
N=34)

measurements. The impedance can then be obtained according
to Ohm’s law in the frequency domain as

Z(jω) =
V (jω)

I(jω)
. (25)

The form of the excited pulse is very important because its
frequency content determines the reliability of the measure-
ment results. In the conventional EIS method, the sinusoidal
excitation is utilized due to its good signal-to-noise ratio [16].
However, in theory, the sinusoidal excitation requires infinite
number of signal levels which complicates the implementation
of the method to an application. Moreover, it is also very
slow method because the sinusoid contains energy only at
the fundamental frequency and every frequency harmonic has
to be excited separately. A solution to these drawbacks can
be provided by PRS signals, which are broadband signals
having only a few number of signal levels. Therefore, these
signals provide fast measurements and are also simple to
implement. As a drawback, most PRS signals are only suited
for measuring linear systems which makes them unsuited for
measuring battery systems which are non-linear [16], [21].
However, some PRS signals are capable of reducing the
effect of system nonlinearities. From such signals, a three-
level ternary sequence signal has been reported to have good
performance for battery measurements [15], [24].

In the present paper, the ternary-sequence PRS signal is
used as perturbation for the battery impedance measurements.
The properties of the ternary-sequence are determined by the
length of the sequence (N ) and the generating frequency
(fgen). Together, these parameters define the lowest frequency
harmonic of the ternary sequence as

fmin =
fgen

N
. (26)

Fig 6. shows a sample of a 34-bit-length ternary sequence
in the time domain, and Fig. 7 shows the sequence in the
frequency domain. The sequence is generated at 34 Hz. In
the time domain, the sequence has only three signal levels
making such signal easy to implement to a system. In the
frequency-domain, the even-order harmonics have zero energy,
which prevents the non-linear distortion at these harmonics
from leaking into the non-zero harmonics. This phenomenon

reduces the non-linear effects of the system in the measure-
ments results [22]. Moreover, there are no sudden changes in
the amplitude spectrum of the non-zero harmonics and each
harmonic component is equally weighted, making the mea-
surements reliable. However, the amplitudes of the harmonics
will decrease to zero at fgen which limits the highest usable
frequency of the measurements as given in (27). [21]

fmax = 0.45fgen. (27)

The design of the ternary-sequence starts by selecting the
desired bandwidth of the measurements (fmin and fmax).
For battery impedance measurements, comprehensive char-
acterization of the diffusion region at very low frequencies
(<100 mHz) is avoided because this significantly increases
the measurement time. Moreover, very low frequencies pro-
vide minimal information about the battery state. In addition,
inductive behavior at high frequencies (>5 kHz) provide little
information about the state of the battery and should not be
included in the measurements. In this work, the bandwidth
is chosen to cover the charge-transfer region as a whole, as
well as, the end of the diffusion region, and the beginning of
the ohmic/inductive region. For the used LiFePO4 cell, the
bandwidth fmin=200mHz and fmax=3.5kHz was empirically
found to satisfy the foregoing design criteria. The desired
fgen can then be obtained by solving it from (27) and further
substituting it to (26) to solve N . The sequence can be
generated by applying N to the generation algorithm presented
in [22]. However, the generation algorithm accepts limited
number of possible values for N in which case the closest
possible value to the designed one should be used.

Another important parameter in the perturbation design is
the amplitude of the sequence, which is the battery current.
The magnitude of the internal impedance of the used LiFePO4
cell is very small (≈ 5mΩ) which requires high current to
introduce a measurable voltage response. The current ampli-
tude should be high enough to produce accurate impedance re-
sponse from which the zero-derivatives and other required sub-
parameters can be extracted for the proposed fitting algorithm.
In turn, the amplitude should be small enough not to disturb
the battery non-linearities nor the application the battery is
operating in. To meet these requirements, the amplitude is
here chosen according to [24] where LiFePO4 battery of the
same capacity, voltage and internal impedance magnitude was
analyzed as in this work. The amplitude design yields to a
current of 1.35A which is relatively small compared to the
voltage response magnitude it introduces to the cell in the
existing HPPC and EIS studies [3], [6], [18]–[20]. Therefore,
the measured impedance spectra is filtered by the moving-
average-filter (MAF) in order to guarantee the smoothness
of the impedance plot for the ECM fitting [24], [26]. The
design of the MAF is carried out according to [24], where two
windows (length of 20 and 120) with 25% overlap are applied
to the impedance measurements. The ternary-sequence design

TABLE I: Ternary-sequence design parameters for the mea-
surements

Amplitude fgen N fmin - fmax MAF windows
1.35A 7.8 kHz 39002 200 mHz - 3.5 kHz 25 and 120
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(a) Measurement setup scheme (b) Used laboratory setup
(c) Comparison of the ternary-
sequence measurements and conven-
tional EIS at 50% of SOC at 35◦C

Fig. 8

and MAF parameters from the foregoing derivation for the
impedance measurements are shown in Table I.

V. EXPERIMENTS

Figs. 8a and 8b illustrates the experiments scheme and
the laboratory setup, respectively. In the experiments, the
impedance of a LiFePO4 battery cell with a nominal voltage
of 3.3V and a capacity of 2.5Ah was measured. The ternary
sequence was injected to the battery as a current reference
for the bi-directional power supply. The offset of the current
perturbation is set to zero which means that the battery is
equally charged and discharged during the ternary-sequence
measurements. This assures that the SOC is not changing
during the measurements which increases the reliability of the
measurements. The measurements were carried out in the SOC
range 90%-10%, with 10% SOC resolution at three different
temperatures: 25◦C, 35◦C, and 45◦C. The transition between
the SOCs was performed by discharging the cell to the desired
SOC with a current of 1C where a relaxation time of 1 minute
was applied to the cell before every measurement. With such
short relaxation time, the battery is at the non-equilibrium
state and the relaxation time affects to the impedance measure-
ments. Therefore, it is necessary to keep the relaxation time the
same to get comparable results. It is suggested in [27] that the
relaxation time should be several hours but this is not feasible
especially in real-life applications which is why the time is
significantly shortened in this paper. After the measurements,
the resulting impedance was applied by the MAF to smooth
the spectra. The measurement data is modified by taking 50
logarithmically distributed data points and neglecting the rest
to reduce the amount of data.

The performance of the ternary-sequence measurements
is illustrated in Fig. 8c in comparison to the conventional
EIS measurement applied with similar frequency and am-
plitude characteristics and configurations than the ternary-
sequence measurements. It is shown that the ternary-sequence
measurements provide very similar impedance plot than the
conventional EIS measurements. Similar results are obtained
in [24] where the performance of the ternary-sequence was

also validated by the error analysis and by the linear Kronig-
Kramers compliance test. The slight differences in the curves
can be explained both by the lower signal to noise ration
of the ternary-sequence measurements and by the fact that
the measurement setups of the ternary-sequence and EIS
measurements are slightly different. The EIS is measured with
a separate EIS analyzer that cannot be used for the ternary-
sequence measurements and vice-versa. Despite the small
differences in the curves, the ternary-sequence impedance
measurements provide reliable impedance data from which
the zero-derivatives and other important parts are clearly
obtainable for the further use in the proposed ECM fitting
algorithm.

For the fitting process, the absolute value of the difference
||Xk

TSC−X0
TSC|| in (20) is selected as the convergence limit and

the algorithm is stopped when the difference is smaller than
1e-8. The performance of the algorithm is analyzed both in
terms of computation time, and normalized-root-mean-square-
error (NRMSE). The NRMSE is defined as given in (28),
where Zfit is the fitted impedance, Zmeas is the measured
impedance, and l is the length of the impedance vectors.
For the NRMSE, the maximum absolute difference of the
impedance curve is used as the normalization factor.

NRMSE =

√
1

l

∑l
i=1(1− ||Zfit(i)||

||Zmeas(i)||
)2

max(||Zmeas||)−min(||Zmeas||)
(28)

The CNLS fitting is carried out according to [9] by using
three different initial conditions which are shown in Table II.
The init-1 conditions are obtained adaptively according to the
initialization process in Section III-A and the maximum range
for the parameters from all SOCs and temperatures are pre-
sented in Table II. The init-2 parameters are fixed and obtained
empirically according to NRMSE in (28) which is selected
to be higher than the init-1 conditions but not drastically
inaccurate. For the init-3 conditions, every parameter is fixed
to unity which represents the simplest method to obtain the
initial conditions that are also highly inaccurate. To discuss
the relevance of the selected initial conditions, there is no

TABLE II: Different initial conditions of the parameters and the average NRMSEs of the initial fit along the SOC at different
temperatures

Ls Rs RCT αCT CCT αD CD Average NRMSE (25◦C, 35◦C, 45◦C)

CNLS-init-1 5e-8-5.7e-8H 4.7e-3-5.1e-3Ω 0.8e-3-2.3e-3Ω 0.63-0.68 5C-12C 0.46-0.8 540C-910C ≈ 2.3%,≈ 4.1%,≈ 8.8%

CNLS-Init-2 1e-8H 5e-3Ω 4e-3Ω 0.5 10C 0.65 10000C ≈ 15%,≈ 75%,≈ 150%
CNLS-Init-3 1H 1Ω 1Ω 1 1C 1 1C ≈ 80e6%,≈ 141e6%,≈ 200e6%
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Fig. 9: impedance plots obtained with different algorithms at
50% of SOC at 45◦C

analytical guideline on what the NRMSE should be for the init-
2 and init-3. However, the values in Table II were considered
to well establish the cases of accurate with adaptive operation
(init-1), relatively accurate guess (init-2) and inaccurate guess
(init-3) initial conditions.

VI. RESULTS

The proposed fitting algorithm along with the CNLS with
init-1 and -2 provides an accurate match to the measurement
data, as illustrated in Fig. 9. Also the proposed initialization
produces relatively accurate fit. However, the CNLS-init-3
fails to fit correctly to the impedance data. Similar results
can be concluded from Table III where the CNLS-init-3
parameters greatly differ from the parameters provided by
other fittings. This is most likely caused by the fact that the
CNLS-init-3 found different local minimum than the other
CNLSs due to the poor selection of the initial conditions [9].
The larger NRMSE values in Table IV also indicate the weak
performance although they are remained relatively low. This
is due to the fact that the fit is located close to the measured
curve even though it cannot adapt to its shape.

The lowest fitting error is achieved by the CNLS when
the initial conditions are appropriately chosen (init-1 and -
2). Despite the slightly larger error of the proposed algorithm,
it fits the EoD and the diffusion region more accurately than
the CNLS as shown in Fig. 10. Thus, the proposed algorithm
has more consistent performance throughout the impedance
curve than the CNLS which provides very accurate fit in
the charge transfer and ohmic/inductive regions. Compared
to these regions, the diffusion region has fewer data points
which have smaller effect on the NRMSE values. By taking
the quantitative and graphical analysis into account, it can be
stated that the performances of the proposed algorithm and
CNLS init-1 and -2 are very similar in terms of the fitting
accuracy.

The proposed algorithm is 7-10 times faster than the fastest
CNLS at all temperatures. This is because the proposed
algorithm has no complex calculations included while the

TABLE III: ECM parameter values from fits in Fig. 9
Ls Rs RCT αCT CCT αD CD

Proposed alg. 6.6e-8H 4.3e-3Ω 1.4e-3Ω 0.48 17.7C 0.68 854C
Init-1 5.7e-8H 4.7e-3Ω 0.8e-3Ω 0.64 12.3C 0.65 836C

CNLS-Init-1 7.0e-8H 4.0e-3Ω 1.9e-3Ω 0.36 27C 0.72 866C
CNLS-Init-2 7.2e-8H 3.7e-3Ω 2.2e-3Ω 0.32 28C 0.74 885C
CNLS-Init-3 6.1e-8H 1.3e-7Ω 0.9Ω 0.03 160C 1.0 1200C

Fig. 10: Impedance plots obtained with the proposed algorithm
and CNLS at 50% of SOC at different temperatures

CNLS utilizes matrix products that require more computation
time [9]. The initial conditions have also significant effect
on the fitting time of CNLSs. Especially the CNLS-init-3
has 2-3 times longer fitting time. The proposed initialization
also slightly makes the fitting faster compared to init-2 fitting
time. Although the NRMSE values of init-1 and -2 are gen-
erally similar, the proposed initialization provides adaptively
obtained initial conditions which ensures the robustness of
the CNLS at different temperatures. This is expected to be
even more beneficial at more extreme temperatures where the
impedance and, thus, the ECM parameter values are changing
even more.

The parameter values from the fitting algorithms are shown
as a function of SOC at different temperatures in Fig. 11.
The parameters from CNLS-init-3 are omitted due to its weak
performance. The proposed algorithm is shown to have more
consistent trends in the parameters at all temperatures than
CNLSs. The adaptive performance of the proposed initializa-
tion can also be concluded from Fig. 11. The CNLS-init-1
parameters have mismatch at 25◦C and CNLS-init-2 at 35◦C
which can also be seen from the increased NRMSE at the
corresponding SOCs in Table IV. The fitting error of the CNLS
at these specific SOCs could most likely be fixed by tightening
the convergence and boundary conditions of the algorithm
[10]. However, this would make the fitting process to last
even longer. Moreover, the parameter values of the proposed
algorithm and the CNLS are very different although the

TABLE IV: Fitting errors at various SOCs and temperatures

SOC 90% 70% 50% 30% 10%
Measurements at 25◦C

Algorithm NRMSE average fit time
init-1 3.7% 2.5% 2.3% 2.8% 2.6% 1.5ms

Prop.-algorithm 1.2% 1.3% 1.3% 1.3% 1.3% 7ms
CNLS-init-1 1.0% 0.7% 0.7% 2.9% 1.7% 65ms
CNLS-init-2 1.0% 0.7% 0.7% 0.6% 0.7% 67ms
CNLS-init-3 4.8% 4.9% 4.8% 2.2% 4.7% 207ms

Measurements at 35◦C
Algorithm NRMSE average fit time

init-1 5.6% 5.0% 3.9% 2.8% 2.9% 1.5ms
Prop. algorithm 1.8% 1.7% 1.5% 1.3% 1.3% 9ms

CNLS-init-1 1.3% 1.3% 1.1% 1.0% 1.0% 65ms
CNLS-init-2 1.4% 2.1% 5.5% 0.9% 1.0% 69ms
CNLS-init-3 2.5% 5.1% 4.2% 4.2% 4.4% 143ms

Measurements at 45◦C
Algorithm NRMSE average fit time

init-1 8.8% 7.1% 5.2% 4.0% 3.9% 1.5ms
Prop. algorithm 4.2% 3.8% 2.6% 2.0% 1.8% 9ms

CNLS-init-1 3.0% 2.3% 1.8% 1.6% 1.6% 90ms
CNLS-init-2 3.0% 2.3% 1.8% 1.6% 1.6% 100ms
CNLS-init-3 15% 10% 5.7% 3.4% 5.6% 182ms
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(a) 25◦C (b) 35◦C (c) 45◦C

Fig. 11: Fitted ECM parameters as a function of SOC at various temperatures

NRMSE difference of the algorithms is relatively small. This
also applies to the parameter values of the CNLS init-2 and
-3 which have similar NRMSE but a little different parameter
values as shown in Fig. 11 and Table III. This clearly states
that there are more than one possible combinations for the
parameters to fit to the measurement data and the performance
cannot be compared based on the magnitude of the parameters.
This can be explained by the fact that the minimization
problem of the proposed algorithm is very different to that
of the CNLS [9], [10]. Therefore, adaptively obtained initial
conditions can provide consistent starting values for the CNLS.
This can guarantee more robust performance in changing
operating conditions than the randomly obtained fixed initial
conditions. However, in terms of fitting accuracy, time and the
consistency of the parameters, the performance of the proposed
fitting algorithm can be considered to be even better than the
CNLS with any initial conditions.

The diffusion region parameters (CD and αD) seem to
have most characteristic trends at all temperatures. This is
in line with the recognized fact that the battery impedance
has strongest SOC-dependency at the diffusion region [5].
Other ECM parameters have less distinguishing trends at all
temperatures which is also shown in previous studies [4], [5],
[14]. This is considered to be caused by the non-linearity
of the ECM which effect is significant especially at the
charge-transfer and ohmic regions. However, the proposed
algorithm is able to keep some of the parameters in these
regions more constant than the CNLS. This is especially true
for the resistance Rs which should be remained relatively
constant as a function of SOC for LiFePO4 batteries [5],
[14]. Furthermore, the battery non-equilibrium state may have
effect on the inconsistencies of the parameters since the used
relaxation time before measurements is only 1 minute. This is
significantly lower than what is generally suggested to allow

the battery reach equilibrium [27]. Therefore, the effect of
such short relaxation time should be considered when utilizing
the impedance for state-estimation algorithms. Despite the
inconsistency of the parameters, the extracted ECM parameters
provide an accurate fit to the measurement data which is
valuable for the dynamic analysis and simulations of the
battery.

VII. CONCLUSIONS

This paper has proposed a novel fitting algorithm for
extracting the battery ECM parameters from the measured
impedance data. The performance of the algorithm is validated
for real LiFePO4-cell impedance data measured with a ternary
sequence PRS signal at various SOCs and temperatures. The
performance of the algorithm is also compared to the conven-
tional CNLS algorithm with different initial conditions. It has
been shown that the proposed algorithm is computationally
light and provides accurate fit to the impedance data. The
performance of the proposed algorithm is also more consistent
at all regions of the impedance curves at all SOCs and tem-
peratures. The initialization process of the proposed algorithm
was discovered as an effective tool to adaptively obtain the
initial conditions also for the CNLS. Moreover, some of the
ECM parameters are observed to have consistent dependency
to the battery SOC at various temperatures. The results also
shows that, together with the ternary sequence measurements,
the proposed algorithm has the potential to be utilized for
battery dynamics analysis, as well as for the battery state-
estimation in practical battery applications.
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