
 

  

 

Aalborg Universitet

Particle track and trace during membrane filtration by direct observation with a high
speed camera

Jørgensen, Mads Koustrup; Eriksen, Kristian Boe; Christensen, Morten Lykkegaard

Published in:
Membranes

DOI (link to publication from Publisher):
10.3390/membranes10040068

Creative Commons License
CC BY 4.0

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Jørgensen, M. K., Eriksen, K. B., & Christensen, M. L. (2020). Particle track and trace during membrane filtration
by direct observation with a high speed camera. Membranes, 10(4), [68].
https://doi.org/10.3390/membranes10040068

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.3390/membranes10040068
https://vbn.aau.dk/en/publications/32842445-534d-4af4-b810-a5d37cbd0df7
https://doi.org/10.3390/membranes10040068


membranes

Article

Particle Track and Trace during Membrane Filtration
by Direct Observation with a High Speed Camera

Mads Koustrup Jørgensen * , Kristian Boe Eriksen and Morten Lykkegaard Christensen

Center for Membrane Technology, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Øst, Denmark;
boe.eriksen.kbe@gmail.com (K.B.E.); mlc@bio.aau.dk (M.L.C.)
* Correspondence: mkj@bio.aau.dk; Tel.: +45-408-283-10

Received: 20 March 2020; Accepted: 9 April 2020; Published: 10 April 2020
����������
�������

Abstract: A methodology was developed for direct observation and analysis of particle movements
near a microfiltration membrane. A high speed camera (1196 frames per second) was mounted on a
microscope to record a hollow fiber membrane in a filtration cell with a transparent wall. Filtrations
were conducted at varying pressure and crossflow velocities using synthetic core–shell particles
(diameter 1.6 µm) of no and high negative surface charge. MATLAB scripts were developed to
track the particle positions and calculate velocities of particle movements across and towards the
membrane surface. Data showed that the velocity of particles along the membrane increases with
distance from the membrane surface which correlates well with a fluid velocity profile obtained from
CFD modelling. Particle track and trace was used to calculate the particle count profiles towards
the membrane and document a higher concentration of particles near the membrane surface than in
the bulk. Calculation of particle velocity towards and away from the membrane showed a region
within 3–80 µm from the membrane surface with particle velocities higher than expected from the
velocity of water through the membrane, thus the permeation drag underpredicts the actual velocity
of particles towards the membrane. Near the membrane, particle velocities shift direction and move
away. This is not described in classical filtration theory, but it has been speculated that this is an effect
of particle rotation or due to membrane vibration or change in flow pattern close to the membrane.

Keywords: microfiltration; fouling; monitoring; model particles; microscopy; image analysis

1. Introduction

Crossflow microfiltration is an established unit operation in several applications from water and
wastewater treatment to food and pharmaceutical industry. However, membrane performance is
limited by membrane fouling. For microfiltration, the drag of particles and colloids with the permeate
flow results in membrane pore blockage and cake layer formation, reducing the permeability of
the membrane. Hence, higher transmembrane pressure (TMP) and frequent cleaning (physical or
chemical) is required to maintain flow through the membrane [1]. Therefore, the mechanisms of cake
formation and behavior has been studied in several studies in lab and pilot scale to understand fouling
mechanisms and through that alleviate fouling. From that, mathematical models have been developed
based on extended DLVO theory describing particle–particle and particle–membrane interactions [2],
theories for cake filtration [3], and cake formation has been described with particle transport theories.
The latter has been described for crossflow microfiltration by Ripperger and Altmann [4], dividing the
forces acting on a particle or colloid:

• FG is the gravitational force of particles transported towards the membrane by permeation,
• FD, a drag force of particles being dragged across the membrane by the crossflow,
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• FF, a frictional force of particles moving along the membrane acting against the crossflow, hence
slowing down the particles as the move across the membrane, and

• FL, lifting force, acting opposite to the permeate flow as pressure increase when the water velocity
decrease near the surface.

The mentioned models have been described theoretical and compared to filtration data in terms
of permeate flux, TMP and “post mortem” analysis of membranes after filtration, e.g., SEM [5,6].
However, the development of on-line fouling monitoring techniques have added extra dimensions
into understanding the mechanisms of fouling layer structure and formation [7]. Ultrasonic and laser
based methods have been developed for indirect measurements of fouling layer thickness during
filtration [8–10], while a more recent method, fluid dynamic gauging, can also estimate the cohesive
strength of fouling layers [11,12]. Direct observation (DO) techniques have been developed to directly
monitor the formation of fouling with videos recording the membrane through a microscope and follow
the evolution of thickness [13–16] and to observe single layer formation [17]. However, the existing
method is limited to observe deposited particles and thus cannot observe how the particles approach
to the membrane. With high speed cameras it will be possible to observe the particles as they approach
the membrane also at high cross-flow velocities. This enables the observation of particle distribution
(concentration polarization), particle speed with µm precision and particle acceleration. This can
contribute to a new understanding of the forces acting on particles before the membrane fouls, and
thereby be used to study how crossflow velocity, TMP, particle and membrane characteristics affect
particle transport and risk of fouling formation.

In this study, a high crossflow microfiltration cell is designed and connected with a high speed
camera and a microscope to study and understand the transport of particles along and towards the
membrane prior to membrane fouling. A MATLAB script will be developed to track particles and
calculate concentration and velocity profiles along the membrane. Filtrations will be carried out at
varying TMP, crossflow velocity and particle surface charges to understand their influence on particle
behavior near the membrane. For this, synthetic microparticles with a hard core and a water swollen
shell, developed in a previous study, are selected [17]. The particles are selected as they are spherical
and monomodal in size distribution (mean diameter of 1.6 µm) and variable surface charge, making
them ideal for controlled studies of microfiltration foulants behavior.

2. Materials and Methods

2.1. Direct Observation Setup

A DO apparatus was developed. The DO apparatus consisted of a custom crossflow membrane
module, a microscope (10× objective lens, Carl Zeiss, Oberkochen, Germany) and a Nikon 1 J5 camera.
The feed solution was circulated from the feed container to the filtration module using an OSMO
inspector system (CONVERGENCE, NL) which records pressure and flow data. A schematic drawing
of the system with microscope and camera is presented in Figure 1.

The crossflow module is depicted in Figure 2 and was made of a custom CNC’ed aluminum block
with a flow volume of 160 × 15 × 5 mm. In the top and bottom of the membrane module a 3 mm glass
pane was fastened to allow the microscope to see through the assembly. A single 150 mm long piece
of hollow membrane fiber (SFX 2860xp 30 nm with polyvinylidene fluoride active layer) was placed
lengthwise in the module. To ensure the best observation conditions, the membrane was pulled taught
to minimize movement. The membrane was sealed on one end allowing permeate withdrawal from
one side. The videos were taken using a 10× objective lens at a resolution of 400 × 144 px at 1200 fps
and the scale of the video was calibrated using a micro ruler.
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2.2. Filtrations

Monodisperse core-shell particles with a polystyrene core and with a hairy shell of polyacrylic acid
(negatively charged) or hydroxypropyl cellulose (neutral) was synthesized with the method described
in Lorenzen et al. [17]. The particles were used as model foulants and had an average diameter of
1.6 µm, a density of 1050 kg/m3 and a zeta potential of −1.31 mV (low/no charge) and −40.47 mV
(high negative charge). The solution was made daily by adding 0.03 g particles to 5 L of tap water.
The solution was stirred and then circulated 15 min in the filtration system by pumping prior to the
filtration analysis.

Filtrations were carried out on suspensions of both low charge and high charge particles. Each
suspension type was filtered at room temperature (21 ◦C), 1 bar and 2 bar TMP and crossflows
of 60 kg/h and 160 kg/h, corresponding to average crossflow velocities of 0.13 and 0.33 m/s in the
membrane module, respectively. For each experiment, three repetitions were conducted to find the
reproducibility of the results. The permeate was collected in a beaker on a balance (Kern PCB 6000-1,
Kern & Sohn GmbH, Balingen, Germany) for on-line data collection. From the measured permeate
mass, the permeate flow and flux was calculated.

2.3. Microscopy and Video Analysis

The recorded video was converted in VLC Media Player to MP4.h265 format with an added
sharpness and graduation filter to make it easier to find the particles using MATLAB. A detailed
description of the particle track and trace procedure is presented in Appendix A. The particles were
identified using an area comparison function in MATLAB, and the center points were then saved. A
geometric overlay function was used on each particle in each frame to test if there was a particle close
by in the next frame. If they were within the specified geometry it was considered a trace. A trace can
be multiple frames long. If multiple particles were in the geometric target area the last one found were
saved. Traced data was filtered to allow for data analysis, by (1) removing traced articles that were
detected in less than 5 frames, (2) removing the last registered position of a traced particle, and (3)
by removing traces that did not move more than 20 µm in the length direction (in order to remove
erroneously tracked membrane).

Particle positions put into length coordinates along the membrane (x coordinate) and height
coordinates from the membrane (y coordinate), where lengths and heights has been calculated from
pixel positions, using a 1.26 µm distance between particles.

The velocity of particles moving along the fiber, vx, and velocity of particles moving towards the
fiber, vy, was calculated using the following equations.

vx,I = (xi+1 − xi)/∆t (1)

vy,i = (yi − yi+1)/∆t (2)

where vy,i and vx,i are the velocities along and towards the membrane (longitudinal and perpendicular
velocities, respectively) for the particle tracked in frame i. xi, xi+1, yi and yi+1, are the positions of
tracked particles in frame i and i+1 and ∆t = 1/1196 fps = 0.84 µs is the time difference between each
frame. Accordingly, the acceleration of particles towards the membrane, ay, was calculated using the
following equation:

ay,i = ((yi−1 − yi)-(yi − yi+1))/∆t2 (3)

2.4. Computational Fluid Dynamics Simulation

A three dimensional method to model the flow in the filtration cell was set up using the commercial
software Comsol Multiphysics 5.4. The 3D renderings shown in Figure 2a,b were used for simulations.
The water flow velocity through the cell was simulated at T = 20 ◦C and 160 kg/h flow of water through
the cell. The boundary condition for the membrane was set as a fixed flow outlet with the flow set at
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the measured permeate flow of 0.037 mL/s. The outlet was set as a pressure outlet at 2 bar and the
inlet was the inlet velocity which was 0.33 m/s. The mathematical model used was the κ-ε shear stress
transport (SST) model using Low Reynolds wall treatment. To make the model solvable with the flow
resolution needed the mesh was split into 3 parts. At the observable area, a 1 × 1 × 1 mm cube was
placed with an extremely fine mesh to get the best possible wall resolution. The membrane fiber had a
less fine mesh and the bulk flow and other walls had an optimized mesh. This was necessary because
of the limited hardware available. Multiple different passes were done with different meshes to ensure
that the meshing was adequate to resolve the flow. The membrane surface was set to smooth.

3. Results

3.1. Flow Simulations

The water velocity profile of the one half of the flow cell obtained from CFD simulation at 0.33 m/s
mean crossflow velocity is shown in Figure 3.
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Figure 3. Surface velocities in the right half cross sectional plane of the filtration cell calculated by CFD
modelling using a crossflow of 160 kg/h and 2 bar TMP.

The figure shows that the velocity approaches 0.40 m/s in the cell and decreases towards the walls
of the cell and the membrane. The velocity increases with the distance from the membrane and reaches
0.35 m/s at a distance of 1 mm from the membrane surface.

3.2. Particle Track and Trace

Core-shell particles were filtered and the filtration process monitored with DO. The videos were
analyzed in MATLAB. Figure 4 shows a representative map of particles tracked near a membrane
during filtration of lowly charged particles at TMP = 2 bar and crossflow velocity 0.13 m/s. The plot
shows a collection of all the identified particles during 3 s filtration. The same particle can be recorded
several times. The position is given in distance from the membrane, y, vs the length coordinate along
the membrane, x. The particles moved with the crossflow from left to right i.e., from low to high x.

As observed from Figure 4 there seem to be less particles near the membrane (less than 20 µm) than
far from the membrane (more than 40 µm from the membrane). Close to the membrane, the particles
can easily be identified and tracked as they move along the membrane, and it is observed how they
oscillate in distance from the membrane, y. At distances higher than 20 µm from the membrane there
is a more chaotic map of particles. In the video uploaded under supplementary material it can be
observed how particles approach the membrane. Once they reach a critical distance of approximately
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< 5 µm, from the membrane, the particle velocity decline and the particle falls into the membrane and
deposits. This is illustrated in Figure 5 showing frames captured from the video with 0.2 s intervals.
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Figure 5. Graphs (a)–(h) show frames in chronological order. The frames show how particles moves
from left to right along the membrane (in the bottom of each frame) during filtration of lowly charged
particles at a crossflow velocity of 0.33 m/s and 2 bar TMP. The difference in time between the frames is
0.2 s.

Figure 6a shows how five different particles selected from Figure 4 are tracked and move along
the membrane with the crossflow.
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Figure 6. Particle movements of five tracked particles from recordings of filtrations conducted with
lowly charged particles filtered at 2 bar and a crossflow velocity of 0.13 m/s (a). Plot (b) shows the
movement of Particle 1 from (a) along with the calculated velocity of the particle along and towards the
membrane fiber.

The graph shows how the five different particles’ positions are tracked and mapped as they move
along the fiber. Particles seem to appear and disappear, e.g., Particle 2 is no longer observed at x > 180
µm, while Particle 4 appears at 190 µm. This is explained by particles moving in the third dimension,
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z, towards or away from the camera, hence it comes out of focus to be captured. The MATLAB script
filtrates data to show only particles that have been tracked for at least five frames.

As observed from Figure 6a, the particles far from the membrane surface (e.g., Particle 4 and 5)
move across the membrane with the same distance from the membrane. Particles moving closer to
the membrane alternate from advancing towards and retreating from the membrane surface. During
the 3 s video recordings, the particles near the membrane are detected a higher number of times than
particles far from the membrane. Also, the distance between particle positions between each frame
seems lower for particles near the membrane surface, showing that the velocity of particles along the
membrane is slower, the closer they are to the membrane.

In Figure 6b, the position of Particle 1 (from Figure 6a), velocity along the membrane, vx, and
towards the membrane, vy, is plotted as function of the length coordinate along the membrane. This
shows that the particle longitudinal velocity decreases as the particle advances towards the membrane.
As the particle retreats, the longitudinal velocity increases again. Hence, the tracking methodology
developed with high speed DO shows a clear influence of particle position on the longitudinal particle
velocity. The particle’s velocity in the y-dimension changes from being positive, i.e., the particle
advances towards the membrane, to being negative, i.e., the particle retreats from the membrane, and
then again moves away from the membrane. It is observed that vy << vx, which is a consequence of
the high crossflow velocity (0.13 m/s in the experiment behind Figure 5) compared to the permeate
flux, which was measured to be 351.8 ± 13.7 LMH, i.e., 9.8 · 10−5

± 0.38 · 10−5 m/s, during filtration at 2
bar TMP. At 1 bar TMP filtrations, the permeate flux was measured to 263.0 ± 1.9LMH, i.e., 7.3 · 10−5

±

0.05 · 10−5 m/s. The permeate flux was not affected by crossflow velocity, as almost no fouling was
formed with the low concentration of particles.

3.3. Longitudinal Velocity Profiles

The longitudinal velocity of particles along the membrane was calculated using Equation (1) for
each particle tracked in the video from filtration experiments. The velocities were averaged within 1
µm intervals in distance from the membrane, y, and plotted against y. The velocity profiles of lowly
charged particles during filtrations at 2 bar TMP and crossflow velocities of 0.13 m/s (three filtrations)
and 0.33 m/s (three filtrations) are plotted in Figure 7.
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Figure 7. Longitudinal velocity of lowly charged model particles along the membrane surface plotted
against particle distance from the membrane surface. Points �, • and H represent particles recorded at
a crossflow velocity of 0.13 m/s while �, # and ∇ are particles recorded at 0.33 m/s crossflow velocity.
For each crossflow velocity, three recordings were conducted during membrane filtration at TMP = 2
bar. The line represents modelled water velocities along the membrane fiber at 0.33 m/s crossflow
velocity and 2 bar TMP using COMSOL.
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The longitudinal velocity of particles increases with higher distance from the membrane surface
and the velocity of particles tracked during the 0.13 m/s crossflow experiments is lower than the velocity
of particles tracked during the 0.33 m/s crossflow experiment (Figure 7). The results are reproducible,
as the three experimental runs of each setting showed similar velocity profiles.

CFD simulations were used to calculate the profile of fluid velocity as function of distance from
the membrane during filtration at 2bar TMP and crossflow 0.33 m/s. There was good correlation with
theoretically modelled fluid flow and with measured particle velocity with some underprediction of
flow close to the membrane and overprediction far from the membrane. The longitudinal velocity
profiles obtained at a crossflow velocity of 0.33 m/s did not reach the expected bulk particle flow
velocity within a distance of 100 µm from the membrane, as also predicted from the CFD simulation.

Close to the membrane there is no data for measured longitudinal velocity for particles (<3 µm).
This is in accordance with the observation from Video S1 in Supplementary Material that when particles
move close to the membrane, they reach a position where they deposit instead of being transported
with the longitudinal crossflow. This may be observed as a stagnant layer in which crossflow does not
affect particle movement. The extent of the concentration polarization layer can also be determined
theoretically as described in Appendix B using the approach described in Christensen et al. [18]. Using
the measured flux at 2 bar TMP, 352 LMH, a particle diameter of 1.6 µm, and a crossflow velocity of
0.33 m/s, the theoretical thickness is determined to δ = 0.13 µm, which is well below the observed
thickness of the stagnant layer.

Figure 8 shows the longitudinal velocity profiles for tracked particles during filtration of high
charge particles at TMP = 2 bar and crossflow velocities of 0.13 and 0.33 m/s. These show the similar
trends as for the low charge particles. Hence, particle interactions (repulsion and attraction) do not
influence flow profiles along the membrane in the 4–100 µm distance range analyzed in this study.
This is well in accordance with DLVO theory, as the Debye length can be estimated to be only 2.6 nm
by assuming an ionic strength of the tap water of 0.013 mol/L. The assumed ionic strength was based
on water analyses by the local water utility company.

Velocity profiles of particles tracked under 1 bar TMP filtrations (data not shown) showed the
same tendencies as for 2 bar TMP filtrations, hence neither TMP nor particle surface charge affected
particle’s longitudinal flow profiles.
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Figure 8. Speed of highly charged particles along the membrane surface plotted against particle
distance from the membrane surface. The points �, • and H represent velocities of particles recorded
at a crossflow velocity of 0.13 m/s while �, # and ∇ are obtained from particles recorded at 0.33 m/s
crossflow velocity. For each crossflow velocity, three recordings were conducted during membrane
filtration at TMP = 2 bar. The line represent modelled water velocity along the membrane fiber at
0.33 m/s crossflow velocity and 2 bar TMP using COMSOL.
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3.4. Perpendicular Velocity Profiles

The perpendicular velocities, i.e., the speed of particles directly towards or away from the
membrane, was calculated using Equation (2). Figure 9a,b show the particle velocities towards the
membrane at varying particle positions near the membrane during filtration of lowly charged particles
at TMP = 2bar and 0.13 m/s and 0.33 m/s crossflow velocity, respectively.
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Figure 9. Velocities of particles towards and away from the membrane recorded during filtration of
particles of low negative charge at 2 bar TMP and crossflow velocity of 0.13 m/s (a) and 0.33 m/s (b).

Figure 9a show data for an experiment with a crossflow velocity of 0.13 m/s. The measured
velocities towards the membrane (−0.004 m/s–0.004 m/s) are orders of magnitude lower than the
measured velocities of the particles along the membrane (up to 0.1 m/s), which prevents rapid
deposition. Secondly, it is observed that the velocity of particles moving towards the membrane
from the permeation drag is counteracted by particles moving out from the membrane towards bulk
suspension. The velocity of particles moving towards the membrane is measured to maximum 0.004
m/s, which corresponds to a permeate flux of up to 14400 L/m2/h (LMH). This is higher than the
actual permeate flux measured at TMP = 2 bar, which were only 353 ± 14 LMH. Although particles
move with a high velocity towards the membrane, a low amount of deposition on the membrane is
observed in the videos, which is in accordance with the stable flux throughout filtrations. If particles
deposited on the membrane, a lower drag of particles towards the membrane would be observed due
to reduced permeability. The lower-than-expected observed velocities of particles moving towards the
membrane suggests that (1) the hydrodynamic around the membrane disturbs the fluid flow eventually
due to vibration of the membrane or (2) the forces acting on the particles change during the particle
transportation, e.g., due to particle rotation. The surface of the membrane was monitored during the
experiment and no vibration was observed, still the fluid flow may be disturbed around the filter and
cause small fluctuation of the particle velocity. Also, forces acting on the particle may change. If this is
correct, the permeation drag used in literature to quantify foulant transport to a membrane surface
significantly underestimates the real rate of transport and the forces may vary more than expected.
Another explanation might be that the permeation drag can only describes particle transport rate
towards the membrane close to the membrane, e.g., a distance < 5–10 µm which is where the particle
starts deposition as described in Section 3.2.

Figure 9b shows data obtained at filtration with a crossflow velocity of 0.33 m/s. There is only
particles moving towards and away from the membrane within a distance of up to 80 µm (critical
distance) from the membrane surface. At this critical distance, the velocity of particles along the
membrane is approximately 0.075 m/s (Figure 7). Comparing with the perpendicular velocities
obtained at 0.13 m/s crossflow filtrations in Figure 9a shows that the apparent critical distance has not
been reached, which may be a consequence of the crossflow not reaching a critical level to eliminate
transport towards and away from the membrane within the first 100 µm from the membrane (Figure 7).



Membranes 2020, 10, 68 11 of 17

It was expected that a higher crossflow velocity, which was reached at longer distances from the
membrane, would counteract the relatively low transport of particles towards the membrane, hence
that perpendicular transport would decrease with distance from the membrane, but the abrupt absence
of perpendicular transport at distances > 80 µm was not expected. Alternatively, the lack of transport
towards the membrane of particles further from the membrane than 80 µm could also be a result of
an inadequate amount of frames of tracked particle a high distances from the membrane and at high
crossflow velocity, e.g., there is not enough captured particles to determine a perpendicular velocity.

The measured perpendicular velocity profiles suggest that particle movement is more complex and
chaotic and underestimates local velocities of particles moving towards and away from the membrane.
With the dimensions and flows along the membrane used in this study, the results can be transferred to
e.g., flat sheet and spiral wound microfiltration, whereas the flow around close packed fibers in hollow
fiber modules may differ from the flows investigated in this study. This puts demand for further
understanding of the mechanisms of particle movement in membrane filtration at lab scale (idealized
conditions) and full scale (real conditions), which should be described in detail in further studies.

The measured force of particles moving towards and away from the membrane can be determined
by first finding the acceleration of each particle moving towards and away from the membrane by use
of Equation (3). The mass of particles was estimated from the volume of a sphere with diameter of
1.6 µm and density 1050 kg/m3 relative to the density of water (998 kg/m3). Accordingly, the force
of particle movement can be found as the product of the particle mass and acceleration and plotted
against distance from membrane in Figure 10.
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Figure 10. Measured kinetic forces of lowly charged particles towards the membrane plotted vs distance
from the membrane surface during filtration at 2 bar TMP and crossflow velocity of 0.13 m/s (a,c) and
0.33 m/s (b,d).

The measured particle forces are in the range−1× 10−14 N to 1× 10−14 N, positive if they accelerate
towards the membrane and negative if the accelerate away from the membrane. However, Figure 10c,d
shows that most particle forces are in the range −4 × 10−16 N to 4 × 10−16 N. The trend in forces is the
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same as for velocities, as there for the 0.33 m/s filtrations also is a critical distance at around 80 µm
above which there are no forces acting on the particles towards or away from the membrane.

The theoretical lift force, FL, transporting particles away from the membrane can be estimated by
the following Equation (4):

FL= 0.761τw
1.5
· a3
· ρ0.5/η (4)

in which a is the particle diameter (1.6 µm), ρ is the density of water (998 kg/m2), and η is the dynamic
viscosity of water (1.002 × 10−3 Pa · s). The wall shear stress (τw) was determined to τw = 1.28 Pa by
multiplying the gradient in fluid velocity with distance from the membrane (du/dy = 1280 1/s within
0–10 µm) at a crossflow of 0.33 m/s (determined from CFD simulations). The resulting lift force is
1.43 × 10−13 N, i.e., a factor 10 larger than the measured forces of which particles move away from the
membrane (Figure 10b,d). Thus, lifting forces may also play a role in the particle velocity and change
of particle velocity, but are counteracted by the gravity force, i.e., the drag of particles by permeation.

3.5. Particle Count Profiles

The number of particles during 3 s of filtration was counted and plotted against distance from the
membrane in Figure 11 for lowly (a,b) and highly (c,d) charged particles filtrated at 2 bar TMP and
crossflow velocities of 0.13 m/s (a,c) and 0.33 m/s (b,d). It should be noted that particles far from the
membrane will be replaced faster than particles close to the membrane.
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Figure 11. Graphs showing number of particle counts during 3 s filtration videos plotted against distance
from the membrane surface. Data are obtained from recorded filtrations at TMP = 2 bar for (a) lowly charged
particles at 0.13 m/s crossflow velocity, (b) highly charged particles at 0.13 m/s, (c) lowly charged particles at
0.33 m/s crossflow velocity and (d) highly charged particles at 0.33 m/s crossflow velocity. Each plot contains
three different plots for the three filtrations performed at each setting (�, • and H).
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Comparing the plots in Figure 11a,b shows a steady distribution of lowly charged particles from
the membrane for the lower crossflow velocity, while for the higher crossflow velocity, the number of
particles declines towards reach zero near y = 100 µm. For the higher charge particles there seems to be
a higher total count of particles (Figure 11c), suggesting a higher concentration of particles. However,
there is a decline in count with distance from the surface even at the low crossflow velocity, which may
be due to repulsion between the charged particles.

4. Conclusions

A procedure was developed to record and analyze particle distribution and movements along
and towards a membrane during crossflow microfiltration. The particles were tracked and traced
using video recordings through a microscope with a high speed camera. Particle velocity along the
membrane was measured and showed good correlation with fluid velocity along the membrane
determined by CFD simulations and showed higher velocities for experiments conducted at higher
crossflow velocities. The particle velocity was independent of TMP and particle surface charge.

The velocity of particles towards and away from the membrane was significantly higher than the
measured permeate flux, which in literature is frequently used to quantify foulants transport towards
the membrane. This was only observed within a region close to the membrane. The extent of this region
decreases with higher crossflow velocity. The high velocity towards the membrane is counteracted by
similar particle velocities away from the membrane. This may be due to distribution of the fluid flow
close to the fiber. Close to the membrane, the particle velocities shift direction, which is not described
in classical filtration theory. An explanation may be that the shift in velocity is an effect of particle
rotation, membrane vibration or shift in flow pattern close to the membrane. Furthermore, the lifting
force may also have an influence but was significantly higher than the particle force estimated from the
acceleration of the particles. Hence, the results suggest that the mechanism of particle deposition is
more complex than described in literature today, as the particles move in a highly chaotic manner, even
at low crossflow velocities with local velocities towards the membrane exceeding that predicted by the
permeation drag. This calls for a revised understanding of particle behavior during crossflow filtration.

Finally, particle counting enabled the determination of particle distribution profiles away from the
membrane surface, which confirms and quantifies higher particle accumulation near the membrane
for lower crossflow velocities. The determination of particle distribution and velocity profiles with
the procedure developed in this study is a promising tool to study the behavior of particles near the
membrane before they deposit and form fouling layers.
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Appendix A

MATLAB Particle Tracking

To analyze what is considered a particle in MATLAB, the videos were first converted with a
gradient and sharpness filter in VLC Video Player. Figure A1 shows an example of a post filter frame.

http://www.mdpi.com/2077-0375/10/4/68/s1


Membranes 2020, 10, 68 14 of 17

Membranes 2020, 10, x FOR PEER REVIEW 14 of 17 

 

Appendix A 

MATLAB Particle Tracking 

To analyze what is considered a particle in MATLAB, the videos were first converted with a 

gradient and sharpness filter in VLC Video Player. Figure A1 shows an example of a post filter frame. 

 

Figure A1. Representative filtered frame with visible particles. 

To track the particles in MATLAB the individual frames were converted to grayscale using the 

“imbinarize” function and anything below a set threshold were set to black. Then using “imdilate” 

anything that is not background is dilated so all particles are a solid color. “imopen” is then used to 

draw circles around the particles making them more regularly shaped. This is done in the following 

lines of code:  

img = img(:, :, 3); 

img = ~imbinarize(img, ‘adaptive’,’Sensitivity’,0.7); 

img = imdilate(img, strel(‘disk’, 1)); 

img = imopen(img, strel(‘disk’, 1)); 

Afterwards the center of the particles is found and it is determined what is a particle and what is 

noise. The function “regionprops” is used to find the center of all circles and measure their area. All 

circles above a certain minimum area then have their center coordinate saved as a result. This is done 

in the following code: 

p = regionprops(img, {‘Centroid’, ‘Area’}); 

ind = [p.Area] > minsize; 

cent = reshape([p.Centroid], 2, length(ind)); 

cent = cent(:, ind); 

This code is repeated for every single frame in a single video. To help find the correct minimum 

area a plot of the frame and what is shown for testing purposes however that is too slow for actually 

doing a whole video and is commented out normally. Additionally, rotation and cropping was added 

in the code to align the membrane horizontally and to minimize runtime. 

MATLAB Particle Tracing 

To trace the particles and find them in all frames of the video the center points given from the 

particle analyzing script was used. Around any given particle center point a polar coordinate system 

is made and a function is drawn around it. Through testing the following functions were used: 

L = linspace(0,2*pi,6); –sets up graph space 

xv = ParPos(frame).xy(1,particlenumber) – 30 + cos(L)*50’; -x part of polar function 

yv = ParPos(frame).xy(2,particlenumber) + 2 + sin(L)*5’; -y part of polar function 

Figure A1. Representative filtered frame with visible particles.

To track the particles in MATLAB the individual frames were converted to grayscale using the
“imbinarize” function and anything below a set threshold were set to black. Then using “imdilate”
anything that is not background is dilated so all particles are a solid color. “imopen” is then used to
draw circles around the particles making them more regularly shaped. This is done in the following
lines of code:

img = img(:, :, 3);
img = ~imbinarize(img, ‘adaptive’,’Sensitivity’,0.7);
img = imdilate(img, strel(‘disk’, 1));
img = imopen(img, strel(‘disk’, 1));

Afterwards the center of the particles is found and it is determined what is a particle and what
is noise. The function “regionprops” is used to find the center of all circles and measure their area.
All circles above a certain minimum area then have their center coordinate saved as a result. This is
done in the following code:

p = regionprops(img, {‘Centroid’, ‘Area’});
ind = [p.Area] > minsize;
cent = reshape([p.Centroid], 2, length(ind));
cent = cent(:, ind);

This code is repeated for every single frame in a single video. To help find the correct minimum
area a plot of the frame and what is shown for testing purposes however that is too slow for actually
doing a whole video and is commented out normally. Additionally, rotation and cropping was added
in the code to align the membrane horizontally and to minimize runtime.

MATLAB Particle Tracing

To trace the particles and find them in all frames of the video the center points given from the
particle analyzing script was used. Around any given particle center point a polar coordinate system is
made and a function is drawn around it. Through testing the following functions were used:

L = linspace(0,2*pi,6); –sets up graph space
xv = ParPos(frame).xy(1,particlenumber) – 30 + cos(L)*50’; -x part of polar function
yv = ParPos(frame).xy(2,particlenumber) + 2 + sin(L)*5’; -y part of polar function

Notice in the “linspace” function it is only drawing 6 points, effectively drawing a hexagon.
Increasing this number gets it closer and closer to a circle. However, it also increases computation time.
The function for x (−30 + cos(L)*50) and y (+2 + sin(L)*5) was chosen to draw the polygon that had the
best chance to include only the correct particle in the following frame.
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The “inpolygon” function is used on the just made polygon to test if any particle centers from the
next frame is inside the polygon. If there are, they are saved. This is done in the following code:

Xq = ParPos(frame+1).xy(1,:); –x position for all particles in the next frame
yq = ParPos(frame+1).xy(2,:); –y position for all particles in the next frame

in = inpolygon(xq,yq,xv,yv); –Here the particles are tested if they are inside the polygon

The xq and yq is the particle center positions for all particles in the following frame. The results of
the test are either a true or false for all particles tested and are saved in the vector “in”.

If any particles are found inside the polygon they need to be saved as a trace. That is done in the
following “for” loop:

for lengthin=1:length(in) –Makes a loop that goes through the length of “in”
lengthins=lengthin;
if in(lengthin)==true –Goes through the “in vector and checks for points in the polygon
if ismember(ParPos(frame).xy(1,particlenumber),tracer(:,:))==true -Tests if original particle has been

seen before
[row,col]=find(tracer==ParPos(frame).xy(1,particlenumber));
kolonne=col;
tracer(row(end),col(end)+1)=ParPos(frame+1).xy(1,lengthins);
tracer(row(end)+1,col(end)+1)=ParPos(frame+1).xy(2,lengthins);
else -If they haven’t been found before both particles are saved here
tracer(tracenumber*2-1,1)=ParPos(frame).xy(1,particlenumber);
tracer(tracenumber*2,1)=ParPos(frame).xy(2,particlenumber);
tracer(tracenumber*2-1,2)=ParPos(frame+1).xy(1,lengthins);
tracer(tracenumber*2,2)=ParPos(frame+1).xy(2,lengthins);
tracenumber=tracenumber+1;
end
end
end

The “for” goes through the “in” vector made in the “inpolygon” and the “if” functions finds if
any particle were in the polygon. If there is a particle in the polygon the “ismember” function test to
find if the testing particle is part of a previous trace, if it is the new particle position is saved there.
If it has not been saved before, a new trace is made containing both the testing particle and the new
particle. If there are multiple particles inside the polygon the last particle found inside the polygon
is saved as it simply overwrites the previous found particles. No evaluation of what is the “best” fit
particle is made and would be a good addition should further work be made. This could easily be
added as a test before the “for” loop.

The testing polygon shape was decided through testing and for that a figure was made to show
the polygon and particles in the next frame. However, that was commented out when running the
script normally to make it possible to actually complete the script.

MATLAB Scripts and Their Functions

The following MATLAB scripts are used to analyze particle flow and distributions.

• videotracking.m: Tracks particles in converted videos. Input: Filtered video file directory. Output:
Particle positions “ParPos”.

• tracing.m: Traces particle positions. Input: particle positions “ParPos” from videotracking.m.
Output: Traced particle data “tracer”.

• Filterfunction: Filters tracked particles. Input: “tracer”. Output: “tracer”.
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• Velocities.m: Calculates velocities along and towards the membrane. Input: “tracer”. Output:
“Velocities”.

• PlotParticles.m: Plots traced particles and saves their position in Excel file.. Input: “tracer”.
Output: “ALLPAR”, Excel file and Plot of particle positions.

• Plots.m: Generates plots of particle velocities and saves velocity data. Input: “tracer”. Output:
Plots and Excel file.

Appendix B

The thickness of the concentration polarization layer is estimated using the following equation:

δ = D/J · ln(C.P.) (A1)

where D is the diffusion coefficient (sum of shear induced, DS, and Brownian diffusion, DB, coefficients.
C.P. is the concentration polarization modulus, which is assumed to be 20.

DS and DB are determined from:

DS = 0.5(φ · a/2)2
· τw/µ (A2)

DB = kB · T/(3π · µ · a) (A3)

where φ is the solid volume fraction (assumed to be 0.01), τw = 1.28 Pa, kB is the Boltzmann constant
and T is the temperature (294 K).
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