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Unified Modular State-Space Modeling of
Grid-Connected Voltage-Source Converters

Dongsheng Yang , Senior Member, IEEE, and Xiongfei Wang , Senior Member, IEEE

Abstract—This article proposes a modular state-space modeling
framework for grid-connected voltage-source converters, where
the different control loops, including the ac current control, the
phase-locked loop, the dc-link voltage control, and the ac voltage
magnitude control, can be modeled separately as building blocks.
Moreover, the mathematical relationship between state-space mod-
els in the rotating (dq-) frame and the stationary (αβ-) frame is ex-
plicitly established, and, thus, the modal analysis can be performed
directly in the αβ-frame, which allows intuitive interpretation of
voltage and current oscillation modes in the αβ-frame. Exper-
imental tests of a 3-kW back-to-back converter system validate
the effectiveness of the unified modular state-space modeling and
analysis.

Index Terms—Component connection method (CCM),
frequency coupling, sensitivity analysis, state-space model,
stationary frame.

I. INTRODUCTION

VOLTAGE-SOURCE converters (VSCs) are widely used
in power grid applications, for e.g., renewable power

generations [1], flexible power transmission and distributions,
and energy-efficient consumptions [2], [3]. The ever-increasing
use of VSCs brings in more control flexibility and improved
efficiency, but does also pose a number of new challenges to
stability and power quality of the power system [4].

Many research efforts have thus been made to address VSC–
grid interactions. The impedance-based modeling approach has
been recently reported in [5] and [6] to analyze the dynamic
effects of different control loops on the VSC–grid interactions.
For the inner current loop, the multiple-input multiple-output
(MIMO) system model can be simplified into single-input
single-output (SISO) transfer functions based on complex space
vectors. This SISO impedance model not only provides an
intuitive insight into the interactions among the paralleled VSCs
and weak power grids, but also enables to reshape the output
impedances of VSCs for stabilizing the power system [7], [8].
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However, the frequency coupling effects will be induced by
the inherent asymmetry of the outer control loops, such as the
phase-locked loop (PLL), the dc-link voltage control (DVC),
and the ac voltage magnitude control (AVC), which significantly
complicate the analysis of converter dynamics. Instead of the
SISO impedance transfer function, the impedance matrix has to
be used to model the terminal dynamics of converters [9]–[11].
Consequently, the generalized Nyquist criterion is utilized for
the stability assessment, and the stability analysis results usually
provide little insight into the controller design and the system
damping.

To facilitate the controller-design-oriented analysis, research
works on transforming the MIMO impedance model as a closed-
loop SISO system have been reported recently [12]. However,
the approach requires prior knowledge on the grid impedance,
which is varying over time in practice, and it is difficult to predict.

Alternatively, the state-space modeling and modal analy-
sis can also be employed to design controllers for stabilizing
VSC–grid interactions [13]. The eigenvalues and eigenvectors
of the state matrix provide a complete overview of the sys-
tem oscillatory modes and their damping factors [14]. The
participation factors and sensitivity analysis further reveal the
dynamic contributions of state variables and system parameters
and, thus, help to identify the root causes of critical oscillations
[15]. Moreover, differing from the impedance-based analysis,
which reflects the input–output dynamic relationship locally, the
state-space modeling gives a global view of the system dynamics
and is thus generally preferred for large-scale interconnected
systems [16].

In spite of the advantages of the modal analysis, the basic
state-space modeling approach features less modularity and
scalability than the impedance-based method, with respect to
analyzing the control impacts of VSCs [17]. Moreover, the
nonlinear dynamics of the outer control loops and the PLL adds
more interconnections among control loops [18]–[20], which
complicate the derivation of the state matrix of the whole control
system.

To simplify the modeling process, many efforts have been
devoted to modularize the state-space modeling method. In [21],
each control loop of the VSC is modeled separately as a
substate-space model, and then the models are combined to-
gether based on their interconnections. However, there are
shared state variables among substate-space models, which have
to be merged together to obtain the right state variables for
the state matrix of the overall system. Therefore, without a
clear definition of the combination rule, considerable efforts
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are needed to reformulate the substate-space models for them
to be incorporated into the system model. Hence, to tackle this
challenge, the rules for combining two substate-space models
with different interconnection forms, i.e., the parallel, the con-
catenation, the feedback, and the common input or output, are
introduced in [22]. The shared state variables can be represented
by a single state variable with interconnections between the
submodules. Thus, the overall system model can be readily
derived without the reformulations of substate-space models.
Those rules only apply to two subsystems with a well-defined
interconnection form, whereas the control loops of VSCs are
cross coupled with each other, which makes those rules difficult
to apply.

Another modular state-space modeling approach that has been
applied to power systems is the component connection method
(CCM) [23], where the system is decomposed into multiple
components, whose interconnections are modeled as a linear
algebra matrix based on the algebraic relations of their inputs
and outputs. Thus, the system state-space model can be obtained
by combining the linear algebra matrix with the individual
state-space models of components [24]. This method features
better modularity and scalability than that reported in [22]
and remarkably reduces the computational effort for the power
networks in which the interconnections of equipment can be
explicitly defined. However, the CCM is still not readily used for
modeling the control loops of VSCs, since the linearization of the
outer control loops introduces additional substate-space models
and interconnections, which are implicit as opposed to the
physical substate-space model and interconnections. Therefore,
a modular state-space modeling method that can characterize
the effects of control loops is still missing.

Besides the modeling complexity, another obstacle that im-
pedes the widespread use of the state-space modeling method
is the lack of a unified mathematical relationship between the
state-space models in different reference frames.

To obtain the time-invariant operating point, the state-space
models of VSCs are generally developed in the dq-frame [25].
However, with the dq-frame state-space model, it is difficult to
link the oscillation modes in the dq-frame to actual oscillation
modes in the αβ-frame. The relations between the oscillation
modes in the two frames can be either frequency shifted, for e.g.,
the symmetric dq-frame current control, or frequency-coupled,
for e.g., the asymmetric dq-frame dynamics of the PLL [11],
[26], [27]. It is worth noting that this limitation of the dq-frame
state-space model is also imposed on the dq-frame impedance
model, and recent studies have thus been devoted to develop-
ing the αβ impedance model [28], [29]. In [27], the unified
impedance model is introduced, which bridges the mathematical
relationships between the impedance models in the dq- and
αβ-frame. It is shown that the αβ-frame impedance-based anal-
ysis can explicitly reveal the frequency couplings between the
sub- and supersynchronous oscillations. However, theαβ-frame
state-space model of VSCs still remains an open issue.

To address the abovementioned challenges, this study pro-
vides an improved modular state-space modeling framework as
compared with the work presented in [23], which enables us
to model the system with implicit subsystems and connections

Fig. 1. Control scheme of the grid-connected VSC.

caused by linearization of control loops. Another major contri-
bution of this study is to establish the mathematical relationship
between the state-space models in the dq-frame and the αβ-
frame, which allows the straightforward stability analysis and
intuitive interpretation of voltage and current oscillation modes
in the αβ-frame.

The remainder of this article is organized as follows. Section II
describes the configuration of the studied system and also pro-
poses the improved framework of modular state-space modeling.
The substate-space models and interconnections used in the
framework are derived in Section III and IV. Based on which,
the system state-space model is established first in the dq-frame
in Section V, and the mathematical relationships between the
state-space models in the dq- and αβ-frame are proposed in
Section VI. Then, the stability analysis based on the unified
state-space model is presented in Section VII. In Section VIII,
Experimental tests on a 3-kW back-to-back converter system are
conducted to validate the effectiveness of the unified modular
state-space modeling approach. Finally, Section IX concludes
this article.

II. SYSTEM DESCRIPTION AND MODELING METHOD

A. System Configuration

The control scheme of the grid-connected VSC is shown in
Fig. 1. Basically, the control scheme can be divided into four
parts, including the ac current control (ACC), PLL, DVC, and
AVC. Cdc is the dc-link capacitor; L1 is the converter filter
inductor; and Cg and Lg are equivalent grid capacitance and
grid inductance seen from point of common connection (PCC),
respectively.

As shown in [8], the real space vectors are usually denoted
with italic letters, for e.g., xdq = [xd, xq]

T , whereas complex
space vectors are denoted with boldface letters, for e.g., xdq =
xd + jxq, xdq∗ = xd − jxq. To avoid the confusion between real
space vector (such as xdq) and scalar (such as xd), the vectors in
this article are accented with a right arrow, i.e., �xdq = [xd, xq]

T

and X̃dq = [xdq,x
∗
dq]

T .
In Fig. 1, the complex space vectors of converter output

current and voltage are denoted by i and v, respectively, whereas
the complex space vector of grid voltage is denoted by vg.
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Fig. 2. Modular state-space modeling methods. (a) Conventional CCM
method. (b) Proposed method.

B. Modular State-Space Modeling Method

The flowchart of the CCM-based modular state-space mod-
eling is shown in Fig. 2(a). First, the system can be portioned
to n subsystems. Then, the subsystems are modeled separately.
Assuming that the substate-space model of ith component can
be given by a set of nonlinear equations as follows:

�̇xi = fi (�xi,�ai) (1a)

�bi = gi (�xi,�ai) (1b)

where �xi, �ai, and �bi denote the state variables, input variables,
and output variables, respectively. The small-signal state-space
model of the ith component can be obtained by linearizing (1)

Δ�̇xi = FiΔ�xi +HiΔ�ai (2a)

Δ�bi = JiΔ�xi +KiΔ�ai. (2b)

For simplicity, the prefixes Δ in (2) are disregarded in the
following.

Moreover, the interconnections among different components
have to be obtained and expressed by algebraic equations as

follows:

�a = L1
�b+ L2�u (3a)

�y = L3
�b+ L4�u (3b)

where �a = [�a1, . . .�ai, . . .�an]
T and �b = [�b1, . . .�bi, . . .�bn]

T are
input and output vectors of all components, respectively; �u and
�y are system’s input and output vectors, respectively. L1, L2,
L3, and L4 are parameter matrices that map the interconnection
relationships among different components.

The combination rule for obtaining the system state-space
model can be given as follows.

The composite system model can be formulated by combining
all the substate-space models of components

�̇x = F�x+H�a (4a)

�b = J�x+K�a (4b)

where F, H, J, and K are the diagonal parameter matrices
of the composite system model, F = diag(F1, . . . Fi, . . . Fn),
H = diag(H1, . . . Hi, . . . Hn), J = diag(J1, . . . Ji, . . . Jn),
and K = diag(K1, . . . Ki, . . . Kn); �x = [�x1, . . . �xi, . . . �xn]

T .
Then, the overall state-space model of the system can be

expressed as follows:

�̇x = A�x+B�u (5a)

�y = C�x+D�u (5b)

where A, B, C, and D are the parameter matrices of the overall
state-space model of the system, which are expressed as follows:

A = F +HL1(I −KL1)
−1J (6a)

B = HL1(I −KL1)
−1KL2 +HL2 (6b)

C = L3(I −KL1)
−1J (6c)

D = L3(I −KL1)
−1KL2 + L4 (6d)

where I is the identity matrix with the same dimension as KL1.
However, the traditional CCM-based modular state-space

modeling method can only be applied to the system in which the
interconnections among its subsystems can be explicitly defined.
Therefore, a modular state-space modeling method is developed
in this paper to deal with implicit substate space models and
interconnections that are introduced by linearizing of the outer
loops, as shown in Fig. 2(b). Moreover, mathematical relation-
ships between the system-state-space model in the dq-frame and
that in theαβ-frame are also incorporated to facilitate the system
stability analysis.

III. PHYSICAL SUBSTATE-SPACE MODELS

A. AC Current Control

The block diagram of the current control in the converter
dq-frame without considering the PLL dynamics is shown in
Fig. 3, which contains the current controllerGi, the voltage feed-
forward controller Gff, the control delay Gd, and the admittance
of L filterYp. id/q_ref , id/q_err are the current reference and error,
respectively; vm1d/q, vm2d/q, and vmd/q are modulating signals
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Fig. 3. Block diagram of the current control in the converter dq-frame without
considering the PLL dynamics.

generated by the current control, the feedforward controller, and
their sum respectively; vod/q and vLd/q are converter output
voltages and the inductor voltages, respectively; vcd/q and icd/q
are the voltage and current at the PCC of VSC, respectively. All
these variables are defined in the converter dq-frame.

Since the ACC contains multiple components, the CCM will
be employed to establish its state-space model. For a clear
illustration, Gi, Gff, Gd, and Yp will be denoted as components
1–4, respectively.

The current controller Gi(s) adopts PI controller, which is
given as

Gi(s) = kpc +
kic
s
. (7)

Active damping is implemented by a first-order high-pass
filter (HPF)-based feedforward control, which is expressed as
follows:

Gff1(s) =
kas

s+ ωa
. (8)

The HPF is chosen because it can be equivalently treated as a
virtual parallel resistor at the PCC within the corner-frequency
of HPF [30], which helps to improve the stability of the system.

With the digital control, the computation and pulsewidth
modulation (PWM) will introduce the control delay, which can
be expressed as follows:

Gd(s) = e−sTd (9)

where Td is the delay time, which is typically 1.5 times of sam-
pling period Ts, i.e., Td = 1.5Ts. To get the adequate state-space
model of the control delay, the third-order Pade approximation
is applied to make the model sufficiently accurate within the
Nyquist frequency, i.e., half of the sampling frequency, and
meanwhile minimize the complexity, as shown in Fig. 4, which
is expressed as

Gd(s) = e−sTd ≈ 120− 60Tds+ 12(Tds)
2 − (Tds)

3

120 + 60Tds+ 12(Tds)
2 + (Tds)

3 . (10)

The admittance of L filter in the converter dq-frame can be
given as

Yp(s) =
1

(s+ jω1)L1 +R1
(11)

where ω1 is the nominal angular frequency of the grid, and R1

is the equivalent series resistor (ESR).
Since all the components in ACC are linear, their state-space

models can be directly obtained according to their transfer

Fig. 4. Comparison of Pade approximations with different orders.

functions, where the details are presented in Appendix. With
these substate-space models denoted by subscript 1 to 4, the
composite model of ACC can be obtained by rearranging these
matrices in a diagonal form, which is expressed as

⎡
⎢⎢⎣

�̇x1

�̇x2

�̇x3

�̇x4

⎤
⎥⎥⎦

︸ ︷︷ ︸
�̇xacc

=

⎡
⎢⎢⎣
F1

F2

F3

F4

⎤
⎥⎥⎦

︸ ︷︷ ︸
Facc

⎡
⎢⎢⎣
�x1

�x2

�x3

�x4

⎤
⎥⎥⎦

︸ ︷︷ ︸
�xacc

+

⎡
⎢⎢⎣
H1

H2

H3

H4

⎤
⎥⎥⎦

︸ ︷︷ ︸
Hacc

⎡
⎢⎢⎣
�a1
�a2
�a3
�a4

⎤
⎥⎥⎦

︸ ︷︷ ︸
�aacc

(12a)
⎡
⎢⎢⎢⎣

�b1
�b2
�b3
�b4

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�bacc

=

⎡
⎢⎢⎣
J1

J2
J3

J4

⎤
⎥⎥⎦

︸ ︷︷ ︸
Jacc

⎡
⎢⎢⎣
�x1

�x2

�x3

�x4

⎤
⎥⎥⎦

︸ ︷︷ ︸
�xacc

+

⎡
⎢⎢⎣
K1

K2

K3

K4

⎤
⎥⎥⎦

︸ ︷︷ ︸
Kacc

⎡
⎢⎢⎣
�a1
�a2
�a3
�a4

⎤
⎥⎥⎦

︸ ︷︷ ︸
�aacc

(12b)

where the expressions of matrices F1, H1, J1, and K1 are defined
in (A1); F2, H2, J2, and K2 in (A2); F3, H3, J3, K3 in (A3); and
F4, H4, J4, and K4 in (A6).

According to Fig. 3, the input vector �aacc and output vector
�bacc in (12) can be expanded as follows:

�aacc =

⎡
⎢⎢⎢⎣

�a1

�a2

�a3

�a4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

id_err

iq_err

vcd
vcq
vmd

vmq

vLd
vLq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�bacc=

⎡
⎢⎢⎢⎢⎣

�b1
�b2
�b3
�b4

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vm1d

vm1q

vm2d

vm2q

vod
voq

icd
icq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)



9704 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 35, NO. 9, SEPTEMBER 2020

The input vector �uacc and output vector �yacc of overall ACC
are expressed as

�uacc =

⎡
⎢⎢⎣
id_ref

iq_ref

vcd
vcq

⎤
⎥⎥⎦ �yacc =

[
icd
icq

]
. (14)

Consequently, the physical interconnection among different
components, shown in Fig. 3, can be depicted as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

id_err

iq_err

vcd
vcq
vmd

vmq

vLd

vLq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�aacc

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Lacc1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vm1d

vm1q

vm2d

vm2q

vod
voq

icd
icq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�bacc

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

0 0 0 0
0 0 0 0

0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Lacc2

⎡
⎢⎢⎣
id_ref

iq_ref

vcd
vcq

⎤
⎥⎥⎦

︸ ︷︷ ︸
�uacc

(15a)

[
icd

icq

]

︸ ︷︷ ︸
�yacc

=

[
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

]

︸ ︷︷ ︸
Lacc3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vm1d

vm1q

vm2d

vm2q

vod
voq

icd
icq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�bacc

+

[
0 0 0 0
0 0 0 0

]

︸ ︷︷ ︸
Lacc4

⎡
⎢⎢⎣
id_ref

iq_ref

vcd
vcq

⎤
⎥⎥⎦

︸ ︷︷ ︸
�uacc

(15b)

where the prefixes Δ in (15) are disregarded for simplification.
Accordingly, the state-space model of overall ACC can be

established as

�̇xacc = Aacc�xacc +Bacc�uacc (16a)

�yacc = Cacc�xacc +Dacc�uacc (16b)

where Aacc, Bacc, Cacc, and Dacc are the matrices of the state-
space model of ACC, which can be formulated according to the

Fig. 5. Block diagram of the SRF-PLL.

rule defined in (6) and using matrices Facc, Hacc, Jacc, and Kacc

in (12), and Lacc1, Lacc2, Lacc3, and Lacc4 in (15).

B. Phase-Locked Loop

Two dq-frames are defined in this article to include the dynam-
ics of the PLL [8]. One is the grid dq-frame that defined by the
phase angle of fundamental positive-sequence PCC voltage v,
denoted as θ1. The other is the converter dq-frame, which is
defined by the phase angle obtained from conventional syn-
chronous rotating frame (SRF)-PLL, denoted as θ. The input
and output variables of the state-space model in the converter
dq-frame will be denoted with the superscript c.

The control scheme of the SRF-PLL is shown in Fig. 5, where
vα and vβ are the PCC voltages in the αβ-frame; and Gpll(s) is
the PLL controller.

According to Fig. 5, the open-loop transfer function between
the input q-axis voltage perturbation Δvcq and the

output synchronization angle variation Δθ is given as

Δθ =

(
kpp + kip

1

s

)

︸ ︷︷ ︸
Gpll(s)

·1
s
·Δvcq. (17)

In the time domain, (17) can be expressed by two differential
equations

dφq

dt
= Δvcq (18a)

dΔθ

dt
= kppΔvcq + kipφq. (18b)

Therefore, the state-space model for the SRF-PLL can be
given as

[
φ̇q

Δθ̇

]

︸ ︷︷ ︸
�̇xpll

=

[
0 0
kip 0

]

︸ ︷︷ ︸
Fpll

[
φq

Δθ

]

︸ ︷︷ ︸
�xpll

+

[
1
kpp

]

︸ ︷︷ ︸
Hpll

[
Δvcq

]
︸ ︷︷ ︸
�apll

(19a)

[Δθ]︸︷︷︸
�bpll

=
[
0 1

]
︸ ︷︷ ︸
Jpll

[
φq

Δθ

]

︸ ︷︷ ︸
�xpll

+ [0]︸︷︷︸
Kpll

[
Δvcq

]
︸ ︷︷ ︸
�apll

. (19b)

C. DC-Link Voltage Control

The block scheme of the DVC is shown in Fig. 6. To avoid
the operating-point-dependent control dynamics, the voltage-
square control scheme is employed [31], i.e., using the error
(v2dc_ref − v2dc)/2 to calculate the power reference Pref, and then
generate the d-axis current reference.
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Fig. 6. Block diagram of DVC.

Fig. 7. Block diagram of the AVC.

The active power reference in the frequency domain can be
given as

Pref =

(
kpd +

kid
s

)

︸ ︷︷ ︸
Gdc(s)

v2dc_ref − v2dc
2

. (20)

Therefore, the small-signal variation of the active power ref-
erence ΔPref resulted from dc-link voltage perturbation Δvdc
can be expressed as

ΔPref = −Gdc(s)Vdc0Δvdc (21)

where Vdc0 is the rated dc-link voltage.
The d-axis current reference is generated by

id_ref = −Pref

V1
⇒ Δid_ref = −ΔPref

V1
=

Gdc(s)Vdc0

V1
Δvdc

(22)
where V1 is the rated voltage at the PCC point.

In the time domain, (22) can be expressed as

dγdc
dt

= Δvdc (23a)

Δid_ref =
kpdVdc0

V1
Δvdc +

kidVdc0

V1
γdc. (23b)

According to (23), the state-space model of the DVC can be
derived as follows:

[γ̇dc]︸︷︷︸
�̇xdvc

= [0]︸︷︷︸
Fdvc

[γdc]︸︷︷︸
�xdvc

+ [1]︸︷︷︸
Hdvc

[Δvdc]︸ ︷︷ ︸
�advc

(24a)

[Δid_ref ]︸ ︷︷ ︸
�bdvc

=

[
kidVdc0

V1

]

︸ ︷︷ ︸
Jdvc

[γdc]︸︷︷︸
�xdvc

+

[
kpdVdc0

V1

]

︸ ︷︷ ︸
Kdvc

[Δvdc]︸ ︷︷ ︸
�advc

. (24b)

D. AC Voltage Magnitude Control

The block diagram of the AVC is shown in Fig. 7.
Assuming that the ac voltage is regulated using the droop con-

trol method, then the expression of the q-axis current reference

Fig. 8. Block diagram of dq transformations.

can be given as

iq_ref = − kpaωac

s+ ωac︸ ︷︷ ︸
Gac(s)

(vac_ref − Vm) (25)

where Vm = |v| =
√

v2d + v2q . The small-signal variation of

voltage magnitude ΔVm resulting from the Δvd and Δvq can
be derived as follows:

(Vm1 +ΔVm)2 = (V1 +Δvd)
2 +Δv2q ⇒ ΔVm ≈ Δvd. (26)

According to (25) and (26), the following can be obtained

Δiq_ref =
kpaωac

s+ ωac
Δvd. (27)

In the time domain, (27) can be expressed by

dxac

dt
= −ωacxac + kpaωacΔvd (28a)

xac = Δiq_ref . (28b)

Then, the state-space model of AVC can be derived as

[ẋac]︸︷︷︸
�̇xavc

= [−ωac]︸ ︷︷ ︸
Favc

[xac]︸︷︷︸
�xavc

+ [kpaωac]︸ ︷︷ ︸
Havc

[Δvd]︸ ︷︷ ︸
�aavc

(29a)

[Δiqref ]︸ ︷︷ ︸
�bavc

= [1]︸︷︷︸
Javc

[xac]︸︷︷︸
�xavc

+ [0]︸︷︷︸
Kavc

[Δvd]︸ ︷︷ ︸
�aavc

. (29b)

IV. IMPLICIT SUBSTATE-SPACE MODELS

AND INTERCONNECTIONS

The major challenge of CCM-based modeling in the converter
level lies in the representation of the implicit substate-space
modes and implicit connections caused by the control couplings.
The implicit connections between ACC and PLL can be es-
tablished by linearizing the dq transformations. Moreover, the
implicit connections and substate-space models between DVC
control loop and voltages and currents at PCC can be obtained
according to the active power balance principle.

A. dq-Transformation I

As shown in Fig. 8, the inputs of dq-transformation I are
PCC voltages in the stationary frame, i.e., vα and vβ , and the
synchronization angle θ obtained from the PLL; the outputs are
PCC voltages in the converter dq-frame vcd and vcq . The input
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Fig. 9. Relationships of different phase angles.

and output voltages can be represented in the complex space
vector form, i.e.

vs = vα + jvβ vc = vcd + jvcq. (30)

The relationship between the PCC voltage vector vs and
converter dq-frame defined by synchronization angle θ is shown
in Fig. 9. Accordingly, the dq-transformation can be expressed as

vs = vs · e−jθ. (31)

Assuming that both inputs, including PCC voltages and
synchronization angle, contain the small-signal perturbations,
the PCC voltage in the stationary αβ-frame can be expressed as
follows:

vs = (V1 +Δv) ejθ1 (32)

where V1 = V1 + j0 is the steady-state PCC voltage vector in
the grid dq-frame, and Δv =Δvd + jΔvq is the corresponding
small-signal perturbation.

Similarly, the PLL output synchronization angle with the
small-signal perturbation can be expressed as

θ = θ1 +Δθ. (33)

Substituting (33) and (32) into (31) yields

vc = vs · e−jθ = (V1 +Δv)ejθ1e−j(θ1+Δθ)

= (V1 +Δv)e−jΔθ. (34)

Considering the small-signal perturbation Δθ and applying
the first-order Taylor expansion, (34) can be approximated as
follows:

vc ≈ (V1 +Δv)(1− jΔθ)

= V1︸︷︷︸
Vc

1

+Δv − jV1Δθ − jΔvΔθ︸ ︷︷ ︸
Δvc

. (35)

By neglecting the second-order small-signal variation term
ΔvΔθ, the small-signal variation of PCC voltage in the converter
dq-frame Δvc can be obtained as

Δvc ≈ Δv − jV1Δθ = Δvcd + jΔvcq. (36)

Therefore, the relationship between the PCC voltages in con-
verter dq-frame and grid dq-frame can be given as

Δvcd = Δvd (37a)

Δvcq = Δvq − V1Δθ. (37b)

Fig. 10. Active power flow of VSC.

B. dq-Transformation II

As shown in Fig. 8, the inputs of dq-transformation I are the
PCC currents in the stationary frame, i.e., iα and iβ , and the
synchronization angle θ obtained from PLL; the outputs are the
PCC currents in the converter dq-frame icd and icq . The input and
output currents can be represented in the complex space vector
form, i.e.

is = iα + jiβ ic = icd + jicq. (38)

The relationship between the PCC current vector is and con-
verter dq-frame defined by synchronization angle θ is shown in
Fig. 9. Accordingly, the dq-transformation can be expressed as

ic = is · e−jθ. (39)

Assuming that PCC current vector contains the small-signal
perturbations, i.e.

is = (i1 +Δi) ejθ1 (40)

where I1 = Id1 + jIq1 is the steady-state PCC current vector
in the grid dq-frame and thereby ϕ = arctan(Iq1/Id1);
Δi =Δid + jΔiq is the corresponding small-signal
perturbation.

Substituting (33) and (40) into (39) yields

ic = ise−jθ = (I1 +Δi)e−jΔθ ≈ (I1 +Δi) (1− jΔθ)

= I1 +Δi− jI1Δθ − jΔiΔθ︸ ︷︷ ︸
Δic

. (41)

By neglecting the second-order small-signal variation term
ΔiΔθ, the following can be obtained:

Δic ≈ Δi− jI1Δθ = Δicd + jΔicq. (42)

Therefore, the relationship between the PCC currents in grid
dq-frame and converter dq-frame can be given by

Δid = Δicd − Iq1Δθ (43a)

Δiq = Δicq + Id1Δθ. (43b)

C. Active Power Balance

As shown in Fig. 10, the dynamic equation for the dc-link
capacitor can be given by

1

2
Cdc

d
(
v2dc

)
dt

= Pin − Pdc. (44)

Applying the small-signal perturbation yields

CdcVdc0
dΔvdc
dt

= ΔPin −ΔPdc. (45)

Assuming that input power fluctuation is negligible, i.e.,
ΔPin ≈0 and the power switches are ideal with no loss,
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the input active power injected into the dc side of VSC
is equal to the output active power at the ac side, i.e.,
ΔPdc ≈ dEL/dt+ΔPo, where EL is the energy storage in the
inductor L1.

The energy stored in the inductor L1 can be given by

EL =
1

2
L1i

2 =
1

2
L1

(
i2d + i2q

)
. (46)

Applying the small-signal perturbation yields

dEL

dt
= L1

(
Id1 · dΔid

dt
+ Iq1 · dΔiq

dt

)
. (47)

The output instantaneous complex power at the PCC is ex-
pressed as

So = vi∗ ≈ V1i
∗
1 + V1 ·Δi∗ +Δv · i∗1

= V1Id1︸ ︷︷ ︸
Po1

+ Id1Δvd + Iq1Δve+ V1Δid︸ ︷︷ ︸
ΔPo

+ j (−V1Iq1)︸ ︷︷ ︸
Qo1

+ j (Id1Δvq − Iq1Δvd − V1Δiq)︸ ︷︷ ︸
ΔQo

⇒ ΔPo = Id1Δvd + Iq1Δvq + V1Δid. (48)

Considering ΔPdc ≈ dEL/dt+ΔPo, and substituting (47)
and (48) into (45) yields

CdcVdc0
dΔvdc
dt

= −
(
L1Id1 · dΔid

dt
+ L1Iq1 · dΔiq

dt

+ Id1Δvd + Iq1Δvq + V1Δid

)
(49)

which can be further rewritten as
dxdc

dt
=

Id1
CdcVdc0

Δvd +
Iq1

CdcVdc0
Δvq +

V1

CdcVdc0
Δid (50a)

Δvdc = −
(
L1Id1Δid + L1Iq1Δiq

CdcVdc0
+ xdc

)
. (50b)

Consequently, an additional state-space model of active power
balance can be established to represent the implicit connections
between the dc-link voltage dynamics and the PCC voltages and
currents, which is expressed as

[ẋdc]︸︷︷︸
�̇xapb

= [0]︸︷︷︸
Fapb

[xdc]︸︷︷︸
�xapb

+
[

Id1
CdcVdc0

Iq1
CdcVdc0

V1

CdcVdc0
0
]

︸ ︷︷ ︸
Hapb

⎡
⎢⎢⎢⎣

Δvd

Δvq

Δid

Δiq

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�aapb

(51a)

[Δvdc]︸ ︷︷ ︸
�bapb

= [−1]︸︷︷︸
Japb

[xdc]︸︷︷︸
�xapb

+
[
0 0 − L1Id1

CdcVdc0
− L1Iq1

CdcVdc0

]
︸ ︷︷ ︸

Kapb

⎡
⎢⎢⎢⎣

Δvd

Δvq

Δid

Δiq

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�aapb

.

(51b)

Fig. 11. Interconnection relationships among different control loops.

According to physical connections shown in Fig. 1 and im-
plicit connections in (37), (43), and (51), the overall connections
among different control loops are depicted in Fig. 11, where the
prefixes Δ are disregarded for simplification.

V. SYSTEM STATE-SPACE MODEL IN THE dq-FRAME

A. State-Space Model of VSC

Considering the state-space models of ACC, PLL, DVC, AVC,
and APB, the composite system model of VSC can be given as
follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

�̇xacc

�̇xpll

�̇xdvc

�̇xavc

�̇xapb

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�̇xvsc

= Fvsc ·

⎡
⎢⎢⎢⎢⎢⎣

�xacc

�xpll

�xdvc

�xavc

�xapb

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�xvsc

+Hvsc ·

⎡
⎢⎢⎢⎢⎢⎣

�uacc

�apll

�advc

�aavc

�aapb

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�avsc

(52a)

⎡
⎢⎢⎢⎢⎢⎢⎣

�yacc
�bpll
�bdvc
�bavc
�bapb

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�bvsc

= Jvsc ·

⎡
⎢⎢⎢⎢⎢⎣

�xacc

�xpll

�xdvc

�xavc

�xapb

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�xvsc

+Kvsc ·

⎡
⎢⎢⎢⎢⎢⎣

�uacc

�apll

�advc

�aavc

�aapb

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�avsc

(52b)

where Fvsc = diag(Aacc, Fpll, Fdvc, Favc, Fapb), Hvsc =
diag(Bacc, Hpll, Hdvc, Havc, Hapb), Jvsc = diag(Cacc, Jpll, Jdvc,
Javc, Japb), and Kvsc = diag(Dacc, Kpll, Kdvc, Kavc, Kapb), with
the matrices Aacc, Bacc, Cacc, and Dacc defined in (16), the
matrices Fpll, Hpll, Jpll, and Kpll defined in (19), the matrices
Fdvc, Hdvc, Jdvc, and Kdvc defined in (24), the matrices Favc,
Havc, Javc, and Kavc defined in (29), and the matrices Fapb, Hapb,
Japb, and Kapb defined in (51).
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According to Fig. 11, the input vector uvsc and output
vector yvsc of overall VSC are expressed as

�uvsc =

[
vd
vq

]
�yvsc =

[
id
iq

]
. (53)

The interconnection relationship can be described as

ACC

PLL

DVC

AVC

APB

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

id_ref

iq_ref

vcd
vcq
vcq
vdc

vd

vd
vq
id
iq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�avsc

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 −V1 0 0 0

0 0 −V1 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
1 0 −Iq1 0 0 0
0 1 Id1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Lvsc1

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

icd
icq
θ

id_ref

iq_ref

vdc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�bvsc

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
1 0
0 1

0 1

0 0

1 0

1 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Lvsc2

[
vd
vq

]

︸ ︷︷ ︸
�uvsc

(54a)

[
id
iq

]

︸ ︷︷ ︸
�yvsc

=

[
1 0 −Iq1 0 0 0
0 1 Id1 0 0 0

]

︸ ︷︷ ︸
Lvsc3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

icd
icq
θ

id_ref

iq_ref

vdc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�bvsc

+

[
0 0
0 0

]

︸ ︷︷ ︸
Lvsc4

[
vd
vq

]

︸ ︷︷ ︸
�uvsc

.

(54b)

Therefore the state-space model of VSC can be derived as

�̇xvsc = Avsc�xvsc +Bvsc�uvsc (55a)

�yvsc = Cvsc�xvsc +Dvsc�uvsc (55b)

where Avsc, Bvsc, Cvsc, and Dvsc are the matrices of the state-
space model of ACC, which can be formulated according to the
rule defined in (6) and using matrices Fvsc, Hvsc, Jvsc, and Kvsc

in (52) and Lvsc1, Lvsc2, Lvsc3, and Lvsc4 in (54).

Fig. 12. Block diagram of VSC and grid impedance.

B. State-Space Model of the Grid-Side Impedance

As for the equivalent grid impedance shown in Fig. 1, its
dynamic equations can be derived as

Cg

(
dvCgd

dt
− ω1vCgq

)
= id − iLgd (56a)

Lg

(
diLgd

dt
− ω1iLgq

)
+RLgiLgd = vCgd +RCg (id − iLgd)

(56b)

Cg

(
dvCgq

dt
+ ω1vCgd

)
= iq − iLgq (56c)

Lg

(
diLgq

dt
+ ω1iLgd

)
+RLgiLgq = vCgq +RCg (iq − iLgq)

(56d)

where vCgd/q and iLgd/q are the grid capacitor voltage and grid
inductor current, respectively; and RLg and RCg are the ESRs of
Lg and Cg , respectively.

According to (56), the state-space model of the grid
impedance can be derived as

⎡
⎢⎢⎣

v̇Cgd

i̇Lgd

v̇Cgq

i̇Lgq

⎤
⎥⎥⎦

︸ ︷︷ ︸
�̇xg

=

⎡
⎢⎢⎢⎢⎣

0 − 1
Cg

ω1 0

1
Lg

−RLg−RCg

Lg
0 ω1

−ω1 0 0 − 1
Cg

0 −ω1
1
Lg

−RLg−RCg

Lg

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Fg

⎡
⎢⎢⎣
vCgd

iLgd

vCgq

iLgq

⎤
⎥⎥⎦

︸ ︷︷ ︸
�xg

+

⎡
⎢⎢⎢⎢⎣

1
Cg

0
RCg

Lg
0

0 1
Cg

0
RCg

Lg

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Hg

[
id
iq

]

︸ ︷︷ ︸
�ag

(57a)

[
vd
vq

]

︸ ︷︷ ︸
�bg

=

[
1 0 0 0
0 0 1 0

]

︸ ︷︷ ︸
Jg

⎡
⎢⎢⎣
vCgd

iLgd

vCgq

iLgq

⎤
⎥⎥⎦

︸ ︷︷ ︸
�xg

+

[
0 0
0 0

]

︸ ︷︷ ︸
Kg

[
id
iq

]

︸ ︷︷ ︸
�ag

. (57b)

C. State-Space Model of Overall System

The block diagram of single VSC and grid impedance is
given in Fig. 12. The composite system model of VSC and grid
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impedance can be given by
[
�̇xvsc

�̇xg

]

︸ ︷︷ ︸
�̇xall

=

[
Avsc

Fg

]

︸ ︷︷ ︸
Fall

[
�xvsc

�xg

]

︸ ︷︷ ︸
�xall

+

[
Bvsc

Hg

]

︸ ︷︷ ︸
Hall

[
�uvsc

�ag

]

︸ ︷︷ ︸
�aall

(58a)

[
�yvsc
�bg

]

︸ ︷︷ ︸
�ball

=

[
Cvsc

Jg

]

︸ ︷︷ ︸
Jall

[
�xvsc

�xg

]

︸ ︷︷ ︸
�xall

+

[
Dvsc

Kg

]

︸ ︷︷ ︸
Kall

[
�uvsc

�ag

]

︸ ︷︷ ︸
�aall

(58b)

where the matrices Avsc, Bvsc, Cvsc, and Dvsc are defined in (55),
and the matrices Fg , Hg , Jg , and Kg are defined in (57).

According to Fig. 12, the interconnections between the VSC
and grid impedance can be explained by the following equations:

VSC

Zg

⎡
⎢⎢⎣

vd
vq

id
iq

⎤
⎥⎥⎦

︸ ︷︷ ︸
�aall

=

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Lall1

⎡
⎢⎢⎣

id
iq

vd
vq

⎤
⎥⎥⎦

︸ ︷︷ ︸
�ball

+

⎡
⎢⎢⎣

0
0

0
0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Lall2

[0]︸︷︷︸
�uall

(59a)

[0]︸︷︷︸
�yall

=
[
0 0 0 0

]
︸ ︷︷ ︸

Lall3

⎡
⎢⎢⎣

id
iq

vd
vq

⎤
⎥⎥⎦

︸ ︷︷ ︸
�ball

+ [0]︸︷︷︸
Lall4

[0]︸︷︷︸
�uall

. (59b)

Thus, the whole system state-space model can be obtained as

�̇xall = Aall�xall +Ball�uall (60a)

�yall = Call�xall +Dall�uall (60b)

where Aall, Ball, Call, and Dall are obtained using (58) and (59)
and are expressed as

Aall = Fall +HallLall1(I −KallLall1)
−1Jall (61a)

Ball = Call = Dall = 0 (61b)

and �xall can be expended as (61c), shown at the bottom of this
page.

VI. MATHEMATICAL RELATIONSHIP BETWEEN STATE-SPACE

MODELS IN DIFFERENT FRAMES

In order to bridge the state-space models of VSC in the dq-
frame and the αβ-frame, the relationships between the variables
in the two frames have to be established.

Assumed that the state-space model of the subsystem or the
whole system in the dq-frame is denoted by

�̇xdq = Adq�xdq +Bdq�udq (62a)

�ydq = Cdq�xdq +Ddq�udq (62b)

which can represent the state-space models of components or
the whole system.

The variables in the state vector �xdq, input vector �udq, and the
output vector �ydq can be categorized into two types. One type is
the variable that appeared in dq pairs, such as id and iq . The other
type is the variable that does not have their d or q counterparts,
such as vdc and θ.

As for the dq pairs, taking xd and xq as the example, the
complex space vector and its conjugation can be defined as

xdq = xd + jxq (63a)

x∗
dq = xd − jxq. (63b)

Then, the transformation between dq pairs and complex space
vectors can be obtained as

[
xd

xq

]
=

1

2

[
1 1
−j j

]
·
[
xdq

x∗
dq

]
. (64)

As for the single variable, take xs as an example, it can be
treated as the real part of a virtual complex space vector x̃dq

[32], which can be expressed as

x̃dq = xs + jxv (65)

where xv is the virtual imaginary part. Since xv is the virtual
variable with no physical meaning, it can be set to zero for
simplification and thereby xs = x̃dq.

Consequently, the transformation rule from the real state vec-
tor �xdq to the complex space state vector �Xdq can be obtained as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
xd

xq

...
xs

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�xdq

=
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
1 1
−j j

. . .
2

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Tx

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
xdq

x∗
dq
...

x̃dq

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�Xdq

. (66)

The state complex space vector �Xdq in (66) can be further
translated to the stationary frame, which can be expressed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
xdq

x∗
dq
...

x̃dq

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�Xdq

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
xαβe

−jθ1

x∗
αβe

jθ1

...
x̃αβe

−jθ1

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= e−jθ1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
xαβ

x∗
αβe

j2θ1

...
x̃αβ

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�Xαβ

. (67)

Substituting (67) into (66) yields

�xdq = Tx · �Xdq = Tx · e−jθ1 · �Xαβ . (68)

�xall =
[
γid γiq xff_d xff_q xdel_1d xdel_2d xdel_3d xdel_1q xdel_2q xdel_3q icd icq φq θ γdc xac xdc vCgd iLgd vCgq iLgq

]T

(61c)
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Similar transformation rule can be derived for the input vector
�udq and the output vector �ydq, which are defined as

�udq = Tu · �Udq = Tu · e−jθ1 · �Uαβ (69a)

�ydq = Ty · �Ydq = Ty · e−jθ1 · �Yαβ . (69b)

Substituting (68) and (69) into (62) yields

d
(
Tx · e−jθ1 · �Xαβ

)

dt

= Adq ·
(
Tx · e−jθ1 · �Xαβ

)
+Bdq ·

(
Tu · e−jθ1 · �Uαβ

)

(70a)

Ty · e−jθ1 · �Yαβ

= Cdq ·
(
Tx · e−jθ1 · �Xαβ

)
+Ddq ·

(
Tu · e−jθ1 · �Uαβ

)
.

(70b)

The derivative term in the left side of (70a) can be expended
as follows:

d
(
Tx · e−jθ1 · �Xαβ

)

dt
=Txe

−jθ1 · d
�Xαβ

dt
−jω1Txe

−jθ1 · �Xαβ

(71)
where ω1 = dθ1/dt. By substituting (71) into (70a) and elimi-
nating e−jθ1 from both sides of (70), the state-space model in
stationary αβ-frame can be obtained as

�̇Xαβ = T−1
x (Adq + jω1I)Tx · �Xαβ + T−1

x BdqTu · �Uαβ

(72a)

�Yαβ = T−1
y CdqTx · �Xαβ + T−1

y DdqTu · �Uαβ . (72b)

As a conclusion, the transformation between the matrices of
the state-space model in the dq- and αβ-frame can be expressed
as follows:

Aαβ = T−1
x (Adq + jω1I)Tx (73a)

Bαβ = T−1
x BdqTu (73b)

Cαβ = T−1
y CdqTx (73c)

Dαβ = T−1
y DdqTu. (73d)

VII. MODAL ANALYSIS USING UNIFIED STATE-SPACE MODEL

The modal analysis is a common practice for the small-signal
stability of power grids, which is mainly about how to interpret
the dynamic modes of system by analyzing the eigenvalues,
eigenvectors, participation factor, and sensitivity of the state
matrix in the state-space models. Since the modal analysis
procedures are the same for the dq state matrix Adq and αβ
state matrix Aαβ , therefore the notation Adq/αβ is used to stand
for either Adq or Aαβ for the following analysis.

The eigenvalues of state-matrix Adq/αβ can be derived by:

det
(
λI −Adq/αβ

)
= 0. (74)

Assuming that Adq/αβ is n by n matrix, n eigenvalues can be
obtained by solving (74).

Suppose that hth eigenvalue of Adq/αβ , λh, is expressed as

λh = σh + jωh. (75)

Then, corresponding frequency fh and damping ratio ζh of
hth dynamic mode can be obtained as

fh =
ωh

2π
(76a)

ςh = − σh√
σ2
h + ω2

h

. (76b)

The stability of the hth dynamic mode can be assessed by
the value of ζh: when ζh > 0, the mode is stable; when ζh = 0,
the mode is marginally stable; and when ζh < 0, the mode is
unstable.

The right eigenvector �Rh of λh is defined as

Adq/αβ · �Rh = λh · �Rh (77)

which contains n elements, indicating the magnitudes and phase
angles of n state variables of xdq/Xαβ , respectively, in the hth
dynamic mode [33], i.e.

�Rh =

⎡
⎢⎢⎢⎢⎢⎢⎣

M1e
ϕ1

...
Mie

ϕi

...
Mne

ϕn

⎤
⎥⎥⎥⎥⎥⎥⎦

→
→

→

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

...
xi

...
xn

⎤
⎥⎥⎥⎥⎥⎥⎦
= �xdq/�Xαβ . (78)

To provide a good insight into tuning the control parameters to
damp the critical dynamic modes, the sensitivity of the damping
ratio with respect to the specific control parameter can be also
calculated. The damping ratio ζh with respect to the control
parameter p can be obtained as

∂ςh
∂p

≈ ςh (p0 +Δp)− ςh (p0)

Δp
(79)

where p0 is the original control parameter, and Δp = 5%–10%
p0 is the parameter perturbation.

It should be noted that since the elements of Aαβ are complex
numbers, the eigenvalues of complex matrix Aαβ are not paired
with their conjugations, which can directly reveal the coupled
oscillation frequencies in the αβ-frame caused by the asymmet-
rical dynamics of the control system.

VIII. EXPERIMENTAL VERIFICATION

In order to verify the correctness of the unified modular state-
space model and modal analysis, a downscaled experimental
setup is built in the lab, as shown in Fig. 13, where two converters
are operated back-to-back. The converter 1# draws the constant
magnitude of current at ac side, which can be treated as a constant
power source given that both the power loss and ac voltage
magnitude of converter 1# are constant. The converter 2# is the
grid-connected VSC, which contains ACC, PLL, DVC ,and AVC
control loops. All the control algorithms are implemented in the
dSPACE 1007. The capacitor Cg and inductor Lg are connected
with grid simulator Chroma 61845 to emulate the weak grid. The
main circuit parameters of the grid-connected VSC are shown
in Table I. The control parameters and steady-state values are
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Fig. 13. Photograph of the experimental setup.

TABLE I
MAIN CIRCUIT PARAMETERS OF GRID-CONNECTED VSC

presented in Table II. In real-life applications, the dc source with
variable input power may be used, such as a PV generator, where
the steady-state values of the system will be changed by the input
power fluctuations. In this case, the stability analysis may need
to be performed at different operating points.

Using the state-space model in the dq-frame, it is able to
identify the critical oscillation modes and tell the stability margin
by checking the corresponding damping ratios. Based on the
control parameters presented in Table II, the frequencies and
damping ratios of different dynamic modes are shown in Fig. 14;
the dynamic mode at ±37 Hz have negative damping ratios,
which is unstable. However, these stability analysis is difficult
to be verified in the grid dq-frame directly from the perspectives
of both the measurement and the interpretation.

On the one hand, the current and voltage oscillations cannot
measurable directly and the ideal phase angle θ1 defined by
the fundamental positive component of PCC voltage needs to be

TABLE II
CONTROL PARAMETERS AND STEADY-STATE VALUES

Fig. 14. Frequencies and damping ratios of dynamic modes in the ideal grid
dq-frame.

Fig. 15. Transformed waveforms in the grid dq-frame estimated by PLL with
20 Hz control bandwidth.

estimated for dq-transformation, which could be easily distorted
by oscillation itself. Any algorithm that used to estimate θ1
may introduce additional errors due to the dynamics of the
phase-tracking controller and the filters used for separating the
fundamental positive component of PCC voltage from oscilla-
tions. Figs. 15 and 16 show the oscillated voltage and current
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Fig. 16. Transformed waveforms in the grid dq-frame estimated by PLL with
100 Hz control bandwidth.

Fig. 17. Frequencies and damping ratios of dynamic modes in the αβ-frame.

waveforms in the different grid dq-frame estimated by PLL with
different control bandwidths. As can be seen, the oscillation
magnitudes of voltages and currents are significantly different
from each other in different estimated grid dq-frames.

On the other hand, the linkage between oscillation frequencies
in the dq-frame and theαβ-frame is control-structure dependent.
Considering the 50 Hz frequency shift effect of the dq transfor-
mation, if the control system is symmetrical for d- and q-axis
(such as single current control loop), then 37 Hz oscillation
in the dq-frame only results in single oscillation at 87 Hz in
the αβ-frame [27]. If the control system is asymmetrical, then
37 Hz oscillation in the dq-frame will result in 13 and 87 Hz in
the αβ-frame. Therefore, it is not straightforward to predict the
actual oscillations in the αβ-frame based on the modal analysis
results in the dq-frame.

Using the state-space model in the αβ-frame, the frequencies
and damping ratios of different dynamic modes can be directly
obtained, as shown in Fig. 17, the dynamic modes at 13 and 87
Hz have negative damping ratios, and thus they are unstable.
Moreover, according to (78), the right eigenvectors of the two
critical dynamic modes at 13 and 87 Hz can be obtained, which
provides an insight on the oscillations magnitudes of the PCC
voltages and currents in the αβ-frame, as shown in Fig. 18. As
can be seen, the oscillations in PCC voltages are dominated at
87 Hz, whereas comparable oscillations at both 13 and 87 Hz

Fig. 18. Oscillations of PCC voltages and currents for unstable modes at 13
and 87 Hz in the αβ-frame.

Fig. 19. Oscillated experimental waveforms in the αβ-frame.

Fig. 20. DFT analysis experimental waveforms in the αβ-frame.

are observed in the PCC currents. These analysis results can be
directly verified in the αβ-frame.

Fig. 19 shows experimental results, where the sustained low-
frequency oscillations can be observed in both the PCC voltages
and currents. According to the discrete Fourier transformation
(DFT) analysis presented in Fig. 20, the oscillation frequencies
can be observed at 13 and 87 Hz, and the normalized magni-
tudes of the oscillations are matched well with the predictions
presented in Fig. 18.
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Fig. 21. Damping ratio sensitivity of the unstable modes and critical modes.

Fig. 22. Frequencies and damping ratios of dynamic modes in the αβ-frame
after tuning the controllers.

Fig. 23. Stabilized experimental waveforms after tuning controllers.

Fig. 21 shows the damping ratio sensitivity of the critical
modes at 13 Hz and 87 Hz with respect to the different controller
parameters. It reveals that the tuning of the proportional gains
kpp in the PLL controller and kpc in ac current controller is the
most effective way to stabilize the unstable modes. As for the
case in this article, the control parameters kpp and kpc are set
0.8 and 1.2 of their original values, respectively. Fig. 22 shows
the frequencies and damping ratios of dynamic modes in the
αβ-frame after tuning the controllers, where the unstable modes
are successfully stabilized.

Fig. 23 shows the experimental results after tuning the con-
troller parameters, and the system is stabilized, which confirms
the effectiveness of the control tuning strategy.

IX. CONCLUSION

This article proposed a modular state-space model of grid-
connected VSCs, where the cross couplings among various loops
are identified and represented by the implicit interconnections,
which allows that different control loops can be modeled sepa-
rately and merged together like building blocks. Moreover, the
mathematical relationship between the state-space models in the
dq-frame and the αβ-frame is established. Intuitive interpreta-
tions of the modal analysis in the αβ-frame are also provided,
which can directly predict the frequencies and magnitudes of
voltage and current oscillations in the αβ-frame. Experimental
results from a 3-kW VSC confirms the accuracy of the estab-
lished state-space model and the effectiveness of the new modal
analysis.

APPENDIX

A. AC Current Controller

The inputs are dq-current errors id_err and iq_err, and the
outputs are part of the PWM references, noted as vm1d and vm1q.
Defining the states in integrators of current controllers Gi(s) as
γid and γiq , the state-space models of the current controllers can
be given as

[
γ̇id

γ̇iq

]

︸ ︷︷ ︸
�̇x1

=

[
0 0

0 0

]

︸ ︷︷ ︸
F1

[
γid

γiq

]

︸ ︷︷ ︸
�x1

+

[
1 0

0 1

]

︸ ︷︷ ︸
H1

[
id_err

iq_err

]

︸ ︷︷ ︸
�a1

(A1a)

[
vm1d

vm1q

]

︸ ︷︷ ︸
�b1

=

[
kic 0

0 kic

]

︸ ︷︷ ︸
J1

[
γid

γiq

]

︸ ︷︷ ︸
�x1

+

[
kpc 0

0 kpc

]

︸ ︷︷ ︸
K1

[
id_err

iq_err

]

︸ ︷︷ ︸
�a1

. (A1b)

B. Feedforward Controller

The inputs of the feedforward controller are PCC voltages
vcd and vcq , and the outputs are PWM reference noted asvm2d and
vm2q. By defining [xff_d, xff_q]

T as the state variables, the state-
space model of feedforward controllers Gff(s) can be derived as
[
ẋff_d

ẋff_q

]

︸ ︷︷ ︸
�̇x2

=

[
−ωa 0

0 −ωa

]

︸ ︷︷ ︸
F2

[
xff_d

xff_q

]

︸ ︷︷ ︸
�x2

+

[
1 0

0 1

]

︸ ︷︷ ︸
H2

[
vcd
vcq

]

︸ ︷︷ ︸
�a2

(A2a)

[
vm2d

vm2q

]

︸ ︷︷ ︸
�b2

=

[
−kaωa 0

0 −kaωa

]

︸ ︷︷ ︸
J2

[
xff_d

xff_q

]

︸ ︷︷ ︸
�x2

+

[
ka 0

0 ka

]

︸ ︷︷ ︸
K2

[
vcd
vcq

]

︸ ︷︷ ︸
�a2

.

(A2b)

C. Digital Control Delay

The inputs of the control delay are PWM references vmd and
vmq, and the outputs are VSC bridge voltages vod and voq. By
defining [xdel_1d, xdel_2d, xdel_3d, xdel_1q, xdel_2q, xdel_3q]

T

as the state variables, the state-space model of the control delay
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can be derived as follows:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋdel_1d

ẋdel_2d

ẋdel_3d

ẋdel_1q

ẋdel_2q

ẋdel_3q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�̇x3

=

⎡
⎣Fd 0

0 Fq

⎤
⎦

︸ ︷︷ ︸
F3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xdel_1d

xdel_2d

xdel_3d

xdel_1q

xdel_2q

xdel_3q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�x3

+

⎡
⎣Hd 0

0 Hq

⎤
⎦

︸ ︷︷ ︸
H3

⎡
⎣vmd

vmq

⎤
⎦

︸ ︷︷ ︸
�a3

(A3a)

⎡
⎣vod
voq

⎤
⎦

︸ ︷︷ ︸
�b3

=

⎡
⎣Jd 0

0 Jq

⎤
⎦

︸ ︷︷ ︸
J3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xdel_1d

xdel_2d

xdel_3d

xdel_1q

xdel_2q

xdel_3q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�x3

+

[
−1 0

0 −1

]

︸ ︷︷ ︸
K3

⎡
⎣vmd

vmq

⎤
⎦

︸ ︷︷ ︸
�a3

(A3b)

where the matrices Fd, Fq , Hd, Hq , Jd, and Jq are expressed as
follows:

Fd = Fq =

⎡
⎢⎣

0 1 0

0 0 1

−120/T 3
d −60/T 2

d −12/Td

⎤
⎥⎦ (A4a)

Hd = Hq =
[
0 0 1

]T
(A4b)

Jd = Jq =
[
240/T 3

d 0 24/Td

]
. (A4c)

D. L Filter

For the L filter, the relationship between the inductor voltages
vLd, vLq and inductor currents icd, i

c
q in the time domain can be

given as

dicd
dt

= ω1i
c
q −

R1

L1
icd +

vLd
L1

(A5a)

dicq
dt

= −ω1i
c
d −

R1

L1
icq +

vLq
L1

. (A5b)

Therefore, the state-space model of the L filter can be derived
as

[
i̇cd

i̇cq

]

︸︷︷︸
�̇x4

=

[
−R1

L1
ω1

−ω1 −R1

L1

]

︸ ︷︷ ︸
F4

[
icd

icq

]

︸︷︷︸
�x4

+

[
1
L1

0

0 1
L1

]

︸ ︷︷ ︸
H4

[
vLd

vLq

]

︸ ︷︷ ︸
�a4

(A6a)

[
icd

icq

]

︸︷︷︸
�b4

=

[
1 0

0 1

]

︸ ︷︷ ︸
J4

[
icd

icq

]

︸︷︷︸
�x4

+

[
0 0

0 0

]

︸ ︷︷ ︸
K4

[
vLd

vLq

]

︸ ︷︷ ︸
�a4

. (A6b)
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