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Stationary-Frame Complex-Valued
Frequency-Domain Modeling of
Three-Phase Power Converters

Yicheng Liao , Student Member, IEEE, and Xiongfei Wang , Senior Member, IEEE

Abstract— The stationary-frame complex-valued frequency-
domain modeling has been applied to characterize the frequency-
coupling dynamics of three-phase converters. Yet, those models
are generally derived through mathematical transformations of
the linearized time-invariant models in the rotating dq-frame.
A step-by-step modeling method with clear physical insight in
the stationary frame is still missing. This article attempts to fill
in the void by introducing a general stationary (αβ)-frame, three-
port equivalent circuit model for the converter power stage, based
on the direct linearization around time-periodic trajectories. The
model not only reveals the frequency-coupling effect of the ac–dc
dynamic interaction but also provides an explicit theoretical basis
for incorporating the control dynamics. Moreover, the depen-
dence of the frequency-coupling terms on the initial phase of the
input voltage is pointed out. Considering the phase-dependent
feature, a frequency scan method that can accurately measure the
αβ-frame converter model is proposed. The measured frequency
responses in both the nonlinear time-domain simulations and
experimental tests validate the effectiveness of the frequency scan
method and the theoretical analysis.

Index Terms— Complex vector, frequency coupling, impedance
measurement, phase dependence, stationary(αβ)-frame model,
voltage-source converter (VSC).

I. INTRODUCTION

THE frequency-domain modeling and analysis is an
efficient approach for dynamic studies of electric power

systems [1]. The converter-based power systems feature highly
nonlinear and wide timescale dynamics, which make the mod-
eling and analysis significantly different from the legacy power
systems that are dominated by synchronous generators [2].

Over the past decades, the frequency-domain modeling of
three-phase power converters has drawn increasing attention.
In earlier applications, the line-commutated converters (LCCs)
were deployed in high-voltage dc systems. It was reported that
the LCC can be linearized as a time-periodic system, which
features the frequency-coupling and phase-dependent dynam-
ics [3]. The frequency coupling indicates the dynamic cou-
pling between different frequency components caused by the
time-periodic operating trajectory, and the phase dependence
implies the dependence of the frequency-coupling dynamics
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on the initial phase of the time-periodic trajectory. These
impacts in the LCCs were mainly studied at specific harmonics
[4]–[7]. In recent years, the voltage-source converters (VSCs)
have been widely used in modern power systems. Differing
from LCCs, VSCs provide a full controllability over the power
and current, whose multi-timescale control dynamics tend
to result in instability phenomena across a wide frequency
range [8]. Consequently, the frequency-domain modeling of
VSCs becomes important for the stability analysis and control
of modern power-electronic-based systems.

Similar to the LCC, the VSC also behaves as a time-
periodic system, which intrinsically features the frequency-
coupling and phase-dependent properties. The classical way
to model the VSC is to utilize the Park transformation to
transform the time-periodic operating trajectory as the time-
invariant operating point in the synchronous (dq)-frame, and
then linearize the system as a linear time-invariant (LTI)
multi-input multi-output (MIMO) system based on real vectors
[9]–[11]. However, this dq-frame real-valued model hides
the frequency couplings and phase dependence, since the
reference frame is synchronized with the steady-state oper-
ating trajectory. Alternatively, the dq-frame modeling can
be extended to the complex space based on complex vec-
tors through mathematical transformations [1], [12], which
is called as dq-frame complex-valued model hereafter and
also known as the modified sequence-domain model in [13]
and [14]. Such a model points out the frequency-coupling
and phase-dependent behaviors of asymmetrically-controlled
VSCs [13], yet it is still represented in the dq-frame. The
phase-dependent behavior is related to the dynamic phase of
the input voltage, which usually requires a phase-locked loop
(PLL) to detect the dq-frame responses [15]. Consequently,
the dynamic of the PLL tends to affect the validation of the
model [16].

To avoid using Park transformations, VSCs can be modeled
directly in the αβ-frame [2], [17]–[20]. There are three mod-
eling methods reported, i.e., the harmonic state-space (HSS)
modeling [17], [18], the harmonic linearization [19], and the
αβ-frame complex-valued impedance model [20]. The general
principle of these methods is to linearize the VSC directly
around their time-periodic operating trajectories [17], instead
of the time-invariant operating points in the dq-frame. Thus, a
linear time-periodic (LTP) model can be obtained, which can,
then, be transformed into the frequency domain and further be
represented by harmonic transfer functions [21].
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Since the HSS model is represented by the Fourier coeffi-
cients of the steady-state trajectory, which are based on real
vectors, the obtained harmonic transfer function matrix is of
high order [2] and consequently complicates the dynamic
analysis. The harmonic linearization method was extended
in [19] to model the interactions of multiple harmonics in
the modular multilevel converters, which also yields a αβ-
frame complex-valued model. Yet, there is a lack of an
explicit mathematical basis in this multiharmonic linearized
model. Later on, a unified impedance model was developed
in [20], by which the mathematical relationship between the
dq-frame model and the αβ-frame complex-valued model was
rigorously derived. The unified impedance model also allows
reducing the model order in contrast to the HSS model,
yet it was merely derived from the dq-frame model through
mathematical transformations, while a step-by-step modeling
approach with clear physical insight is still missing for the
αβ-frame complex-valued model. Moreover, the impact of the
phase dependence on the αβ-frame complex-valued model
was overlooked in [19] and [20], which leads to challenges
to the model validation in the frequency domain. It is noted
that such a phase dependence in the αβ-frame model is not
related to the dynamic phase of the input voltage like that in
the dq-frame model, since the αβ-frame model does not need
the Park transformation that is time-and-frequency dependent.
A refined frequency scan approach to measuring the αβ-frame
complex-valued impedance was recently reported in [22]. The
method does consider the phase dependence of the frequency-
coupling terms, yet it can only measure the diagonal elements
of the impedance matrix, whereas the off-diagonal elements
still cannot be verified.

To further explore the modeling and validation solutions
for the αβ-frame complex-valued model of VSCs, this article
proposes first a general αβ-frame, three-port small-signal
circuit model for the converter power stage, based on complex
vectors and linearizations directly around the time-periodic
trajectories. The three-port equivalent circuit model not only
reveals the frequency-coupling and phase-dependent charac-
teristics of the ac–dc power conversion, but also provides
an explicit mathematical basis for modeling the closed-loop
control dynamics for VSCs. Based on the rigorous derivation,
the physical insight behind the αβ-frame complex-valued
model is clarified, i.e., the phase dependence is merely related
to the initial phase of the input voltage, which appears together
with the frequency-coupling terms. Considering the phase
dependence, a frequency-scan approach to accurately validat-
ing the αβ-frame frequency-domain model is further devel-
oped. An important advantage of the validation approach over
that reported in [22] is that all the elements of the αβ-frame
transfer matrices can be directly measured. The effectiveness
of the frequency scan approach and the theoretical findings
are finally validated by nonlinear time-domain simulations and
experimental tests.

II. STATIONARY-FRAME FREQUENCY-DOMAIN MODEL

In this section, the complex vectors and their implications
in three-phase systems are discussed first, and then a general

step-by-step modeling procedure for the stationary (αβ)-frame
complex-valued model of VSCs is introduced.

A. Complex-Vector Representations and Their Implications

In a three-phase three-wire system with no zero-sequence
component, the three-phase voltage in the αβ-frame can be
denoted by a two-dimensional (2-D) vector in the real space,
i.e., [vα , vβ ]T, or a 2-D vector in the complex space, i.e.,
[v, v∗]T, where v and v∗ are defined as two base vectors for
the 2-D complex space[

v
v∗

]
=

[
vα + jvβ

vα − jvβ

]
↔

[
V(s)
V∗(s)

]
=

[
Vα(s) + j Vβ(s)
Vα(s) − j Vβ(s)

]
(1)

where the left-side small letters represent the time-domain sig-
nals and the right-side capital letters denote the corresponding
frequency-domain signals. Bold letters are used to represent
complex vectors. The conjugate operator, i.e., “∗,” maps the
conversion between the two base vectors.

The dq-frame complex-valued voltage can be defined in a
similar way but with the subscript “dq,” which is given as

[
vdq

v∗
dq

]
=

[
vd + jvq

vd − jvq

]
↔

[
Vdq(s)
V∗

dq(s)

]
=

[
Vd(s) + j Vq(s)
Vd(s) − j Vq(s)

]
. (2)

The Park transformation maps the conversion from the αβ-
frame to the dq-frame, which is denoted by an exponential
operator in the time domain, i.e., e− jθ1 , where θ1 = ω1t +ϕ1,
ω1 denotes the fundamental angular frequency, and ϕ1 is
the initial phase of the fundamental-frequency voltage. Such
an exponential operator represents an angle rotation, which
can apply to both signals and systems, yet have different
implications.

If the exponential operator applies to a signal, there exists

vdq = e− jθ1v ↔ Vdq(s) = e− jϕ1V(s + jω1) (3)

v = e jθ1vdq ↔ V(s) = e jϕ1Vdq(s − jω1). (4)

It is clear that the angle rotation not only results in a frequency
shift but also involves an initial phase rotation. The same
relationship also applies to other ac vectors, such as the current
vector or the duty-cycle vector [11].

For a system, whose complex-valued transfer function G(s)
is represented by an operator G(p) in the time domain, where
p = d/dt [12], the effects of a pair of angle rotations on
the system transfer function can be denoted by the following
equations:

e− jθ1G(p)e jθ1 = G(p + jω1) ↔ G(s + jω1) (5)

e jθ1G(p)e− jθ1 = G(p − jω1) ↔ G(s − jω1). (6)

It is seen that the pair of angle rotations only results in
a frequency shift since the initial phase rotations can be
canceled.
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Fig. 1. Single-line diagram of a three-phase VSC with multitimescale control
loops.

B. Stationary-Frame Three-Port Circuit Model of Converter
Power Stage

Fig. 1 shows a single-line diagram of a three-phase VSC,
where the PLL, the current control (CC) loop with a propor-
tional + resonant (PR) regulator, and the dc-link voltage con-
trol (DVC) loop with a proportional + integral (PI) regulator
are considered in this article.

A three-port small-signal circuit model for the converter
power stage shown in Fig. 2 is proposed in this part, which is
derived based on the use of αβ-frame complex vectors and the
linearization around the steady-state time-periodic trajectory.
The detailed derivation is presented as follows.

Similar to the conventional dq-frame small-signal modeling,
the state-space averaging operator is applied here to remove
the switching ripples [9], and d = dα + jdβ and d∗ = dα−jdβ

are defined as the averaged duty cycle vectors in the αβ-frame.
Such complex-vector representations apply to all the ac-side
variables shown in Fig. 1. The voltage and current conversions
between the ac and dc sides of the VSC can be represented
by complex vectors in the αβ-frame as

u = uα + juβ = dαvdc + jdβvdc = dvdc (7)

idc = dαiα + dβ iβ = d + d∗

2
· i + i∗

2
+ d − d∗

2 j
· i − i∗

2 j

= 1

2
(di∗ + d∗i). (8)

Then, combining the ac- and dc-side circuits, there exists

v = Zac(p)i + u = Zac(p)i + dvdc (9a)

vdc = Zdc(p)idc = 1

2
Zdc(p)(di∗ + d∗i) (9b)

which represents the time-domain model of the VSC power
stage in the αβ-frame. Differing from the dq-frame model
that consists of steady-state operating points, the αβ-frame
model is based on steady-state operating trajectories [2]. The
linearization is thus done directly around the steady-state
operating trajectories, by expanding (9) with steady states plus
small perturbations. Then, omitting the steady-state variables,
the small-signal model can be derived as

v̂ = Zac(p)î + Vdcd̂ + Ddqe jθ1 v̂dc (10a)

v̂dc = 1

2
Zdc(p)

(
I ∗
dqe− jθ1 d̂ + Ddqe jθ1 î∗

+D∗
dqe− jθ1 î + Idqe jθ1d̂∗) (10b)

where the symbols with “^” denote small perturbations. Ddq

and Idq are the steady-state complex values in the dq-frame.
The exponential operators present in (10) are actually time
periodic at the fundamental frequency, which imply the exis-
tence of the steady-state trajectories [20]. Here, the exponential
operators are intentionally combined with the signals, then
it can be seen from (10a) that the ac input v̂ results in the
response of e jθ1 v̂dc at the dc side. Applying the angle rotation,
e jθ1, to (10b) yields

e jθ1 v̂dc = 1

2
Zdc(p − jω1)

× (
I ∗
dq d̂ + Ddqe j2θ1 î∗ + D∗

dq î + Idqe j2θ1 d̂∗) (11)

where besides the responses of î and d̂, the responses of e j2θ1 î∗
and e j2θ1d̂∗ are also generated on the ac side.

To derive the general forms of the ac- and dc-side signals,
the complex conjugate and the angle rotation of e j2θ1 are
applied to (10a) successively, yielding

e j2θ1v̂∗ = Zac(p − j2ω1)e
j2θ1 î∗+Vdce j2θ1d̂∗ + D∗

dqe jθ1 v̂dc.

(12)

It is noted that the complex conjugate and the angle rotation
are both nonlinear operations, so they are not exchangeable in
modeling. Then, from (10a), (11), and (12), it can be derived
that[

v̂
e j2θ1 v̂∗

]
=

[
Zac(p)

Zac(p − j2ω1)

] [
î

e j2θ1 î∗
]

+Vdc

[
d̂

e j2θ1d̂∗
]

+
[

Ddq

D∗
dq

]
e jθ1 v̂dc (13a)

e jθ1 v̂dc = 1

2
Zdc(p − jω1)

[
D∗

dq Ddq
] [

î
e j2θ1 î∗

]

+ 1

2
Zdc(p − jω1)

[
I ∗
dq Idq

] [
d̂

e j2θ1 d̂∗
]

.

(13b)

According to (13), the three-port small-signal model of the
VSC can be obtained, as shown in Fig. 2. The corresponding
open-loop model of the VSC is derived, as shown in Fig. 3,
where vac and dac are input signals, and iac and e jθ1vdc are
output signals. Zac is defined as

[Zac]2×2 =
[

Zac(s)
Zac(s − j2ω1)

]
(14)

where the “[]2×2” is added here to denote that the matrix Zac
is a two-by-two matrix, which is omitted in later analysis for
brevity. Then the four complex transfer matrices in Fig. 3 can
then be derived as

[Zol]2×2 = Zac+ 1

2
Zdc(s − jω1)

[
Ddq D∗

dq D2
dq

D∗2
dq Ddq D∗

dq

]
(15)

[Gdi]2×2 = −Z−1
ol

(
Vdc

[
1

1

]
+ Zdc(s − jω1)

2

×
[

Ddq I ∗
dq Ddq Idq

D∗
dq I ∗

dq D∗
dq Idq

])
(16)
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Fig. 2. Stationary-frame three-port small-signal circuit model for the VSC power stage.

Fig. 3. Open-loop small-signal model for the VSC power stage.

[Gvv]1×2 =
Zdc(s− jω1)

2

[
D∗

dq Ddq
]

Z−1
ac

1 + Zdc(s− jω1)
2

[
D∗

dq Ddq
]

Z−1
ac

[
Ddq

D∗
dq

] (17)

[Gdv]1×2 =
Zdc(s− jω1)

2

([
I ∗
dq Idq

] − Vdc
[

D∗
dq Ddq

]
Z−1

ac

)
1 + Zdc(s− jω1)

2

[
D∗

dq Ddq
]

Z−1
ac

[
Ddq

D∗
dq

] .

(18)

It is noted that the Gvv and Gdv are both one-by-two matrices
that map the relationships from ac-side signals to dc-side
signal, while Zol and Gdi are both two-by-two matrices that
map the relationships between ac-side signals.

It is seen from Fig. 3 that there are actually dual complex-
valued voltage inputs on the ac side, i.e., v and e j2θ1v∗, which
is defined as the vector vac. All the ac-side signals, i.e., iac,
dac, and uac should all comply with this form.

As for the dc-side response, the output signal is e jθ1vdc,
which is a complex scalar. There is only a single output signal
on the dc side, whose signal flow is marked in gray shown
in Fig. 3 to be distinguished from the dual inputs on the ac
side.

It is noted that, the exponential operators, i.e., e j2θ1 and
e jθ1 , representing the time-periodic trajectory, are the origins
of the frequency-coupling and phase-dependent dynamics for
VSCs, wherein the 2ω1t and ω1t indicate the coupling dynam-
ics between two different frequency components, while the
initial phases 2ϕ1 and ϕ1 imply the phase dependence of the
frequency-coupling transfer functions. Here these operators
are intentionally combined with the input and output signals,

instead of transfer functions, in the modeling, such that the
derived transfer matrices can be treated as LTI and analyzed
with the classical frequency-domain tools, e.g., the Bode
diagrams and the generalized Nyquist stability criterion [20].
With the general form of the input and output signals at the
ac and dc sides, the control dynamics of VSCs can be easily
fit into the model.

C. DVC and PLL

For the system shown in Fig. 1, the VSC adopts two
asymmetric control loops in the dq-frame, i.e., the DVC and
the PLL. Here, the asymmetric control loop means that the
control dynamics in d- and q-axes are different or the coupling
control dynamics between d- and q-axes are not negated [12].

The DVC merely regulates the dc-link voltage and provides
the d-axis current reference, i.e., idref , and it thus results in
the asymmetric control dynamic in the dq-frame. Defining
GDVC(s) as the transfer function for the DVC, i.e., GDVC(s) =
KPDVC + (KIDVC/s), in time domain, there exists

idref = −GDVC(p)vdc. (19)

Then, the small-signal idqref is obtained as

îdqref = îdref + j0 = −GDVC(p)v̂dc. (20)

The PLL regulates the q-axis voltage to generate the phase
of the input voltage, whose small-signal model is denoted by

θ̂ = GPLL(p)v̂q = GPLL(p)
e− jθ1v̂ − e jθ1v̂∗

2 j
(21)

where GPLL(s) = (KPPLLs + KIPLL)/
(s2 + KPPLLVds + KIPLLVd) is the closed-loop transfer
function of the PLL [11]. It is seen from (21) that the
PLL only controls the q-axis voltage, which also results
in asymmetric control dynamic in the dq-frame, thus the
modeling with complex vectors cannot be simply analyzed in
the single-input single-output (SISO) form, and the dynamic
couplings between the two voltage inputs (v and e j2θ1 v∗)
should be considered [20].

The inverse Park transformation is applied to generate the
current reference in the αβ-frame, such that

iref = e jθ idqref = e jθ1(1 + j θ̂ )idqref (22)
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whose small-signal model can be represented as

îref = e jθ1 îdqref + j Idqrefe
jθ1 θ̂ . (23)

It can be seen from (23) that the dynamic of iref originates
from both idqref and θ , i.e., from both the DVC and the PLL.

Combining (20), (21), and (23), it can be derived that

îref = −GDVC(p − jω1)e
jθ1 v̂dc

+ Idqref

2
GPLL(p − jω1)v̂ − Idqref

2
× GPLL(p − jω1)e

j2θ1v̂∗. (24)

Similarly, applying the complex conjugate and the angle
rotation successively to (24) yields

e j2θ1 î∗ref = −GDVC(p − jω1)e
jθ1 v̂dc

+ I ∗
dqref

2
GPLL(p − jω1)e

j2θ1v∗ − I ∗
dqref

2
× GPLL(p − jω1)v. (25)

Then YDVC(s) and YPLL(s), which are defined as two admit-
tance transfer matrices from the dc-side voltage and the ac-side
voltage to the current reference, respectively, can be derived
by substituting p with s in the following equation:[

îref

e j2θ1 î∗ref

]

= −
[

GDVC(p − jω1)
GDVC(p − jω1)

]
︸ ︷︷ ︸

[YDVC(p)]2×1

e jθ1 v̂dc

+
⎡
⎢⎣

Idqref

2
GPLL(p − jω1) − Idqref

2
GPLL(p − jω1)

− I ∗
dqref

2
GPLL(p − jω1)

I ∗
dqref

2
GPLL(p − jω1)

⎤
⎥⎦

︸ ︷︷ ︸
[YPLL(p)]2×2

×
[

v
e j2θ1v∗

]
(26)

D. CC and Time Delay

The VSC system also consists of symmetric control loops,
such as the CC and the time delay. The CC is implemented
in the αβ-frame with the PR regulator. There are no cross-
coupling control terms between the α- and β-axes and the CC
transfer functions are identical on both axes, thus the model
can be represented in the complex space with a SISO complex
transfer function [12] as

y = Gi(p)x = (Gi(p) + j0)x (27)

where x = xα + j xβ denotes the input signal of the CC,
and y = yα + j yβ denotes the output signal. Gi(s) =
(KPI + (KRIs)/(s2 + ω2

1))/(Vdc) is the transfer function of the
CC in the α- or β-frame, and j0 denotes the zero coupling
control terms between the α- and β-axes. Similarly, with the
complex conjugate and the angle rotation, it is derived that

e j2θ1y∗ = G∗
i (p − j2ω1)e

j2θ1x∗. (28)

Fig. 4. Closed-loop small-signal model for the VSC.

Consequently, the CC in the αβ-frame can also be formu-
lated with the general forms of ac-side signals. According to
(27) and (28), the resultant transfer matrix is given by

[Gi]2×2 =
[

Gi(s)
G∗

i (s − j2ω1)

]
=

[
Gi(s)

Gi(s− j2ω1)

]
(29)

where the off-diagonal elements are zero, which indicates that
no frequency couplings are involved with the CC. It is noted
that the form of (29) is general for any linear system in the
αβ-frame, including control systems and balanced ac linear
circuits.

Similarly, the time delay represented by the linear transfer
function of Gd(s) = e−sTd = e−1.5sTs can be formulated with
the same form as (29). Then, the CC and the time delay can be
integrated into the three-port small-signal model of the VSC.

E. Closed-Loop Small-Signal Model of VSC

Fig. 4 shows the closed-loop small-signal model of the
VSC with all the control loops included. The black arrows
denote the signal flows on the ac side and the gray arrows
represent the signal flows on the dc side. Thus, the closed-
loop complex transfer matrix from vac to iac, i.e., the converter
ac-side admittance Yaccl, can be derived as (30), where I is a
two-by-two identity matrix. The closed-loop complex transfer
matrix from vac to e jθ1vdc, i.e., Gvvcl, is derived as (31), which
is a one-by-two matrix.

[Yaccl]2×2

= iac

vac
= [I − Gdi(I − GdGiYDVCGdv)

−1GdGi]−1

× [
Z−1

ol − Gdi(I − GdGiYDVCGdv)
−1GdGi

× (YPLL − YDVCGvv)
]

(30)

[Gvvcl]1×2

= e jθ1vdc

vac
= [1 − Gdv(I − GdGiGdi)

−1GdGiYDVC]−1

× [Gvv − Gdv(I − GdGiGdi)
−1GdGi(YPLL − Z−1

ol )]
(31)
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III. PHYSICAL IMPLICATIONS OF STATIONARY-FRAME

MODEL

The physical implications of the stationary-frame (αβ-
frame) complex-valued model are further discussed.

A. Phase-Dependent Effects

As aforementioned, the responses of the system are
expressed by vac, iac, and e jθ1vdc, whose frequency-domain
representations can be denoted by

vac =
[

v
e j2θ1v∗

]

↔ Vac =
[

V(s)
e j2ϕ1V∗(s − j2ω1)

]

=
[

Vα(s) + j Vβ(s)
e j2ϕ1(Vα(s − j2ω1) − j Vβ(s − j2ω1))

]
(32)

iac =
[

i
e j2θ1i∗

]

↔ Iac =
[

I(s)
e j2ϕ1I∗(s − j2ω1)

]

=
[

Iα(s) + j Iβ(s)
e j2ϕ1(Iα(s − j2ω1) − j Iβ(s − j2ω1))

]
(33)

e jθ1vdc ↔ e jϕ1 Vdc(s − jω1). (34)

Since s is represented by jω in frequency domain, for vac
and iac, the first element implies the signal formulated by the
first base vector at the frequency of ω, while the second ele-
ment denotes the signal formulated by the second base vector
at the frequency of ω−2ω1 as well as a phase rotation related
to 2ϕ1. Therefore, the frequency-shifted and phase-dependent
responses will be generated on the ac side. Similarly, the dc-
side response, e jθ1vdc, is also frequency shifted and phase
dependent, where the frequency is shifted to ω − ω1, and the
phase is dependent on ϕ1. It is important to note that differing
from the dq-frame model, the phase dependence of the αβ-
frame model is merely related to the initial phase ϕ1, instead
of the dynamic phase θ1 [13].

The frequency-domain relationships from the input signal
vac to the output signals iac and e jθ1vdc can be represented as[

I(s)
e j2ϕ1I∗(s − j2ω1)

]
=

[
Yac11(s) Yac12(s)
Yac21(s) Yac22(s)

]
︸ ︷︷ ︸

Yaccl

×
[

V(s)
e j2ϕ1V∗(s − j2ω1)

]
(35)

e jϕ1 Vdc(s − jω1) = [
Gvv1(s) Gvv2(s)

]︸ ︷︷ ︸
Gvvcl

×
[

V(s)
e j2ϕ1V∗(s − j2ω1)

]
(36)

where Yac11, Yac12, Yac21, and Yac22 are the four elements
of the admittance matrix Yaccl. Gvv1 and Gvv2 are the two
elements of the transfer matrix Gvvcl. It is worth mentioning

that (35) and (36) can also be reformulated as[
I(s)

I∗(s − j2ω1)

]
=

[
Yac11(s) Yac12(s)e j2ϕ1

Yac21(s)e− j2ϕ1 Yac22(s)

]
︸ ︷︷ ︸

Y′
accl

×
[

V(s)
V∗(s − j2ω1)

]
(37)

Vdc(s − jω1) = [
Gvv1(s)e− jϕ1 Gvv2(s)e jϕ1

]︸ ︷︷ ︸
G′

vvcl

×
[

V(s)
V∗(s − j2ω1)

]
(38)

where the phase-dependent terms are expressed within the
transfer matrices instead of the input and output signals.
It is clear that the phase dependence always comes with the
frequency coupling transfer functions, i.e., the off-diagonal
elements in the admittance matrix and both elements in the
voltage transfer matrix. These phase-dependent terms are only
related to the initial phase of the steady-state trajectory, which
are constant. Therefore, each element of the transfer matrices
is still characterized by LTI functions, which denotes the
mapping relationship of the Fourier coefficients of the input
and output signals at the corresponding frequency.

B. Physical Implications

Compared with the models in [13] and [20], the proposed
model has direct physical implications, since it is derived
directly based on the stationary-frame equivalent circuit shown
in Fig. 2. To illustrate this, a comparison regarding different
modeling procedures is shown in Fig. 5, where the main
contributions of different modeling methods are highlighted
in dashed boxes. It is seen that in both [13] and [20],
the models are linearized around the time-invariant point based
on the dq-frame equivalent circuit first, and then transformed
to other frames by mathematical transformations. Therefore,
the frequency coupling and phase dependence are explained
from the mathematical basis. In contrast, the proposed model
is directly linearized around the time-varying trajectory based
on the αβ-frame equivalent circuit, without using any non-
linear transformations related to θ1. Therefore, the frequency
coupling and phase dependence can be characterized by the
stationary-frame circuit model from a physical basis.

The αβ-frame complex-valued model directly maps the
frequency couplings with the sequence components for three-
phase systems, since the two base vectors denoted by vα + jvβ

and vα − jvβ are mathematically equivalent to the time-
dependent sequence components (u+ and u− introduced in
[23]), except a scale factor of 1/2 for the magnitude-invariant
form or

√
2/2 for the power-invariant form. However, the two

base vectors do not essentially represent the positive-sequence
component and negative-sequence component, respectively,
since the sequence component is merely defined for a given
positive frequency. For the αβ-frame model, the frequency
of the second response is shifted to ω−2ω1, which can be
negative. That is to say, when ω >0 and ω−2ω1 <0, both
ac-side responses are positive-sequence components, and the
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Fig. 5. Modeling procedures for VSCs by different methods.

Fig. 6. Perturbation injection for frequency scan.

couplings between the positive-sequence component and the
negative-sequence component do not exist.

IV. FREQUENCY-SCAN APPROACH

A frequency-scan approach to validating the stationary-
frame complex-valued model of VSC is introduced in this
section, where the frequency-coupling and phase-dependent
properties are addressed. Then the advantages of the proposed
frequency-scan approach over the existing approaches are
summarized.

A. Measurement Method for VSC Frequency Response

A frequency-scan method for measuring the frequency
response of the VSC is proposed, whose step-by-step proce-
dure is shown in detail in Table I. Overall, there are three
major steps as follows.

1) Perturbation Injection: To measure the six elements
in the admittance and voltage transfer matrices, the system
under test should be perturbed by at least two independent
perturbations. The perturbation source can be either a voltage
source (vp1 and vp2) or a current source (ip1 and ip2), as shown
in Fig. 6, where the subscripts “1” and “2” indicate the
first and second independent perturbations, respectively. It is
important to guarantee that the steady-state voltage at point of
common connection (PCC) maintains the same when the two
perturbations are injected, respectively.

The perturbation frequency is scanned with ω changing
(ω > 0 rad/s). The two independent perturbations can be
realized based on the definitions of the two base vectors. The
first perturbation is determined by the first base vector only,
i.e., Vα(s)+ j V β(s), and the second perturbation is determined
by the second base vector only, i.e., Vα(s − j2ω1)− j V β(s −
j2ω1). The first perturbation can be realized by two sinusoidal
signals at ω applied to α-axis and β-axis, respectively, with

TABLE I

STEPS OF THE FREQUENCY-SCAN METHOD

the β-axis initial phase lagging 90◦ of the α-axis initial phase.
The second perturbation can be realized by two sinusoidal
signals at ω−2ω1 applied to α-axis and β-axis, respectively,
with the β-axis initial phase leading 90◦ of the α-axis initial
phase. The perturbation implementations are shown in Steps
1 and 4 in Table I.
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Fig. 7. Experimental setup for model validation.

2) Response Analysis: With the system perturbed by vpk

or ipk (k = 1 or 2), there will be responses detected in the
ac input voltage (vk), the ac input current (ik), and the dc
voltage (vdck), based on which the αβ-frame voltages (vαk and
vβk) and currents (iαk and iβk) can be obtained, as shown in
Steps 2 and 5. Through the discrete Fourier transform (DFT),
the frequency-domain responses of the voltages and currents
can be calculated by the equations shown in Steps 3 and 6.
It can be seen that the dual ac-side responses are calculated
with the Fourier coefficients of different frequency components
based on the base vector definitions, indicating the frequency
coupling effects.

In addition, the phase dependence of the initial phase (ϕ1k)
is also considered in the analysis. However, the initial phase
is merely a static value, which can be easily analyzed by DFT
analysis. This makes the αβ-frame model validation much
simpler than the dq-frame model validation since no PLL is
needed to capture the dynamic phase of the steady-state input
voltage for Park transformation. It is important to note that for
each time when the perturbation is injected, the initial phases
of the steady-state input voltage can be different, i.e., ϕ11 and
ϕ12. Thus, they are calculated with the Fourier coefficients
of the voltages and currents to validate Yaccl and Gvvcl, and
the different initial phases under different perturbations do not
affect the calculation of the complex transfer matrices.

3) Calculation of Complex Transfer Matrix: Given the
frequency responses of the voltages and currents under two
perturbations, the frequency responses of the complex transfer
matrices can be solved by (39) and (40), as shown in Step
7. Each element of the transfer matrices is an LTI transfer
function expressed in the frequency domain.

[
Yac11(ω) Yac12(ω)
Yac21(ω) Yac22(ω)

]

=
[

I1(ω) I2(ω)

e j2ϕ11I∗
1(ω − 2ω1) e j2ϕ12I∗

2(ω − 2ω1)

]

×
[

V1(ω) V2(ω)

e j2ϕ11V∗
1(ω − 2ω1) e j2ϕ12V∗

2(ω − 2ω1)

]−1

(39)

[
Gvv1(ω) Gvv2(ω)

]
= [

e jϕ11 Vdc1(ω − ω1) e jϕ12 Vdc2(ω − ω1)
]

×
[

V1(ω) V2(ω)

e j2ϕ11V∗
1(ω − 2ω1) e j2ϕ12V∗

2(ω − 2ω1)

]−1

(40)

TABLE II

FEATURES OF DIFFERENT FREQUENCY-SCAN APPROACHES

It is noted that the complex transfer matrices can be directly
calculated by two responses under independent perturbations,
thus the frequency scan method does not require any prior
knowledge of the source impedance or test impedance, e.g.,
Z test used in [22].

B. Advantages of the Proposed Frequency-Scan Approach

The proposed frequency-scan approach is developed for
frequency-response validations of the αβ-frame complex-
valued model, which can also be utilized to measure any
other transfer function matrices of interest. Its properties
are compared with other existing frequency-scan approaches,
as shown in Table II.

It is found that differing from the dq-frame models, the αβ-
frame complex-valued model can directly address the fre-
quency couplings in the stationary frame without using the
Park transformations, and therefore, there is no need to use a
PLL to capture the dynamic information of θ1 = ω1t + ϕ1,
which simplifies the model validation.

For the frequency-scan approach also developed for the αβ-
frame complex-valued model in [22], the phase dependence is
only partially addressed, and thus, the off-diagonal elements
of the VSC impedance still cannot be measured. In contrast,
the proposed frequency-scan approach is capable of measuring
all elements of the VSC impedance, which makes it more
convenient for validation and analysis of “black-box” systems.

V. VALIDATIONS AND DISCUSSION

The nonlinear time-domain simulations and experiments are
carried out to validate the proposed modeling method for
VSCs. The simulation is performed on the switching model
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TABLE III

SYSTEM AND CONTROL PARAMETERS

Fig. 8. Simulated results for Case A. (a) AC-side admittance. (b) AC–dc
voltage transfer matrix

of VSC in the Simulink, which is set as the same as the
experiment.

Fig. 7 shows the layout of the experimental setup used for
validation, where the L-filtered converter VSC1 is connected
to the grid simulator through a grid impedance. On the dc
side, a dc voltage source Vdc0 in series with Rd is used to
generate a current source. The control is implemented as the
same, as shown in Fig. 1. All the parameters are shown in
Table III. The VSC2 is controlled as a current source to

Fig. 9. Simulated results for Case B. (a) AC-side admittance. (b) AC–dc
voltage transfer matrix.

inject perturbations into the system. The grid impedance is
intentionally designed with large inductance to ensure that the
needed current perturbation flows into the VSC1. It is noted
that the grid impedance value influences the distribution of
ip between the VSC1 and the grid, thus the magnitude of
the perturbation flowing into the VSC1 is important to the
accuracy of the frequency scanned results [16].

A. Simulated Results

To validate the model, the VSC1 is simulated at different
scenarios, i.e., inverter mode (Case A) and rectifier mode
(Case B). Perturbations at different frequencies from 10 to
190 Hz are injected into the system by the VSC2. The
frequency-scanned results are shown in Figs. 8 and 9. Fig. 8
shows the simulated results with Case A, and Fig. 9 shows
the simulated results with Case B. The solid lines represent
the analytical models of (30) and (31), where the steady-
state values are calculated from the time-domain waveforms.
The asterisks denote the simulated results obtained by the
frequency-scan approach introduced in Section IV, which are
in good alignment with the analytical models in both cases.
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Fig. 10. Experimental results for Case A. (a) AC-side admittance. (b) AC–dc
voltage transfer matrix.

It is thus verified that the proposed model is accurate for VSCs
in different scenarios.

B. Experimental Results

Figs. 10 and 11 show the experimental results of the ac-
side admittance and the ac–dc voltage-transfer matrix of the
VSC1 for Cases A and B. The solid lines denote the analyti-
cal models, and the crosses denote the experimental results
with or without phase dependence. It is seen that without
considering the phase dependence, the experiment fails in an
accurate estimation of the model in all the frequency-coupling
terms. There are constant phase errors, which are impacted by
the initial phase of the steady-state input voltage.

In contrast, the experimental results considering the phase
dependence closely correlate with the analytical models. The
slight differences in the off-diagonal elements of Yac (the
frequency-coupling terms) are due to a few nonideal impact
factors in the experimental setup. For clarify, the impacts of

Fig. 11. Experimental results for Case B. (a) AC-side admittance. (b) AC–dc
voltage transfer matrix.

two particular factors, the inaccurate measurement sensors and
the deadtime of VSC1, are analyzed in the following.

1) Impact of Inaccurate Measurement Sensors: The inaccu-
racy of the voltage and current sensors also has an impact on
the experimental results. Fig. 12 compares the experimental
results when the precalibration of measurement sensors is
performed or not for Case A. It is clear that the precalibrated
test leads to the closer correlation with the analytical model.
The experimental results shown in Figs. 10 and 11 have been
both refined with precalibration of the measurement sensors.

2) Deadtime Effect: The deadtime of 2 μs is adopted
with VSC1 in experiments, whose impact on the impedance
measurement is crosschecked by nonlinear time-domain sim-
ulations. Fig. 13 shows the simulated results with or without
deadtime for Case A, comparing against the analytical model.
It is obvious that the deadtime can lead to a similar mismatch
in the off-diagonal elements of the admittance matrix in
contrast to Fig. 10(a), especially in Yac21. The mismatch
is caused by the nonlinear effects of the deadtime on the
impedance modeling and measurement [24].
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Fig. 12. Effect of the sensor precalibration on the admittance plot for Case A.

Fig. 13. Deadtime effect on the admittance plot for Case A.

C. Discussions

1) Phase Dependence Consideration: It is seen from
Figs. 10 and 11 that without considering the phase depen-
dence in measurement, there are constant phase shifts in the
frequency-coupling terms that are related to the initial phase
of the steady-state trajectory. The initial phase can be random
in each measurement, therefore, as compared by Case A and
Case B, the two initial phases are different, i.e., ϕ1 = 113.68◦
for Case A and ϕ1 = 212.59◦ for Case B. One can either
consider the phase dependence with the analytical models,
as indicated by (37) and (38), which are changing with
ϕ1, or consider the phase dependence with the frequency
responses in measurement, as implied by (35) and (36) and
addressed by the proposed frequency-scan approach. It is

easier to implement the latter method for the VSC model
validation, because the model remains independent of ϕ1
for each measurement. If the former method is utilized for
validation, a careful alignment of ϕ1 for each perturbation
injection in one measurement is required, which complicates
the validation process.

On the other hand, if the impedance models are utilized
for the system-level stability analysis with multiple converters,
the phase dependence should be considered in the model by
(37) and (38). In such cases, different converters are linearized
around their own trajectories and, thus, have different phase-
dependent terms. Combining these phase-dependent terms
with the converter models can make the input–output signals
independent of initial phases. These initial phases are static,
which can be easily solved by the power flow calculation of
the entire system or obtained by phasor measurement units.

2) Frequency Response Behaviors of the VSC: It can be
seen from Figs. 8(a) and 9(a) that there is an anti-resonance
at 50 Hz in Yac11 and two anti-resonances at 50 and 150 Hz
in Yac22. Around the two frequencies, the magnitudes of Yac11
and Yac22 are much lower than those of Yac12 and Yac21,
which implies that the frequency coupling effects are dominant
around 50 and 150 Hz. This also explains why the frequency
scan is implemented from 10 to 190 Hz in the validation.
It is important to note that the two anti-resonances in Yac22
are caused by the effect of the current-loop PR regulator on
both positive- and negative-sequence components of 50 Hz.
In addition, it can be found that the admittances shape differ-
ently around the fundamental frequency for the inverter mode
and rectifier mode, which have different implications on the
low-frequency stability as studied in [25].

For the ac–dc voltage-transfer matrix shown in Figs. 8(b)
and 9(b), both elements involve the frequency-coupling effects.
It can be found that the magnitudes of Gvv1 and Gvv2 are both
very low, which means that the ac-side dynamics almost do
not affect the dc-side dynamics. Similarly, two anti-resonances
can be found in Gvv2, which are also caused by the control
effects of the current-loop PR regulator.

VI. CONCLUSION

In this article, a stationary-frame, frequency-domain mod-
eling approach to three-phase converters has been developed
step by step using complex vectors. A general stationary-frame
three-port model for the VSC is put forward, considering
the ac–dc interactions. With the complex-valued model, the
frequency-coupling (i.e., ω−2ω1 for ac side and ω − ω1
for dc side) and the phase-dependent (i.e., 2ϕ1 for ac side
and ϕ1 for dc side) features of the VSC can be revealed
explicitly. It is found that the phase dependence is related
to the initial phase of the steady-state voltage and always
comes with the frequency-coupling terms, which has a critical
impact on the frequency-domain validation of the off-diagonal
elements of the ac admittance matrix and the elements of the
ac–dc voltage-transfer matrix of the VSC. Thus, considering
the frequency-coupling terms and their phase dependence,
a frequency scan method that is directly applied in the station-
ary frame has been further proposed. The frequency-scanned
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results obtained from both nonlinear time-domain simulations
and experimental tests closely match with the theoretical
analysis. Therefore, the frequency-domain dynamics of three-
phase converters can be directly characterized and validated
in the stationary frame with the presented methods, which
avoids the Park transformation and the PLL required in the
conventional dq-frame modeling and frequency scan, and thus
remarkably simplify the frequency-domain dynamic studies of
the future converter-based power systems.
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