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Thermal Characterization of Silicon Carbide

MOSFET Module Suitable for High-Temperature

Computationally-Efficient

Thermal-Profile Prediction
Mengxing Chen, Student Member, IEEE, Huai Wang, Senior Member, IEEE, Donghua Pan, Member, IEEE,

Xiongfei Wang, Senior Member, IEEE, and Frede Blaabjerg, Fellow, IEEE

Abstract—This paper characterizes the thermal behavior of a
commercialized silicon carbide (SiC) power MOSFET module
with special concerns on high-temperature operating condi-
tions as well as particular focuses on SiC MOSFET dies. A
temperature-dependent Cauer-type thermal model of the SiC
MOSFET is proposed and extracted based on offline finite-
element simulations. This Cauer model is able to reveal the
temperature-dependent thermal property of each packaging
layer and it is suitable for the high-temperature thermal-profile
prediction with sufficient computational efficiency. Due to the
temperature-dependent thermal properties of the SiC die and
ceramic material, the junction-heatsink thermal resistance can be
raised by more than 10% under high-temperature conditions (up
to 200 ◦C), which can considerably worsen thermal estimations
of the SiC die and its packaging materials. Furthermore, the
experimental measurement of transient thermal impedance was
conducted under operating temperature variations (with virtual
junction temperature ranging from 60.5 ◦C to 199.6 ◦C), and
the effectiveness of the proposed temperature-dependent Cauer
model was fully validated.

Index Terms—Finite-element method (FEM), high operating
temperature, computational efficiency, SiC power MOSFET mod-
ule, temperature-dependent Cauer model.

I. INTRODUCTION

The power electronic system based on wide bandgap (WBG)

devices is by far one of the most promising technologies in

order to achieve a large energy efficiency improvement and

a potential power-loss reduction by more than 50% [1], [2].

As one of the most popular WBG devices, the silicon carbide

(SiC) MOSFET features several superiorities in comparison

with the conventional silicon (Si) IGBT [2], e.g., the enhanced

electric field, the enhanced thermal conductivity, the high-

temperature operation capability, and etc.

Over recent years, the high-temperature capability of SiC

MOSFET has always been an active research topic, as it

enables new application areas such as automotive, aircraft, and

deep-space exploration [3], [4]. It has been demonstrated that
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the SiC die is capable of operating with junction temperatures

being above 200 ◦C [5]–[8]. Although the rated junction tem-

peratures of commercialized SiC modules are still constrained

by conventional die-attach and encapsulation technologies (as

lower than 150 ◦C) [9]–[11], novel materials for die-attach

and encapsulation are promising to enable a practical virtual-

junction-temperature up to 250 ◦C [12]–[15].

Nevertheless, the wide utilization of SiC MOSFETs for

high-temperature applications is still dramatically prohibited.

One of the most significant limiting factors is its reliability

uncertainty under such high-temperature conditions, as the

lifetime of the power semiconductor is closely related to

its thermal profile [16], [17]. Compared to the Si IGBT,

the SiC MOSFET is more fragile to transient-overloading

or short-circuit events, as it features a more compact die

area and thinner gate oxide [18]. On the other hand, if

suffered from a long-term high-temperature profile, the SiC

MOSFET can be deteriorated by issues such as the inter-

layer dielectric erosion, electrode delamination, and time-

dependent gate-oxide breakdown [19]. Besides, the long-term

thermal cycling with escalated temperature magnitude can

easily accelerate the wear-out processes, such as the bond-

wire lift-off and solder crack [16], [17]. In order to ensure a

reliable operation of the SiC MOSFET throughout its targeted

lifespan, a computationally-efficient thermal model suitable

for the high-temperature thermal-profile prediction is highly

demanded. Then, a mission-profile based reliability assessment

methodology can be applied to translate the thermal-profile to

a series of quantified reliability metrics [20], [21].

For the present-day thermal-profile prediction of power

semiconductors, one of the most prevailing methodologies

with a high computational efficiency is to perform thermal

simulations using compact resistor-capacitor (RC) lumped

thermal models [22], [23], i.e., the Foster-type and the Cauer-

type. Specifically, the Foster-type RC-lumped thermal model

(the Foster model) can be extracted from experimental mea-

surements of the transient thermal impedance, which is usually

accessible from the device datasheet. It has been utilized for

the evaluation of long-term thermal profiles of SiC MOSFETs

in [24]–[26]. The other Cauer-type RC-lumped thermal model

(the Cauer model) is attainable based on the knowledge of

device geometry and material property. A conventional yet

straightforward method to extracted the RC parameters in the
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Cauer model is based on two analytical equations, as it is

discussed in [27]. The applications of Cauer model for the

thermal-profile prediction of SiC MOSFET can be found in

several works. In [28], a Cauer network of a multi-chip SiC

MOSFET module was studied with a special concern on the

heat path. Moreover, a measurement method of the Cauer-type

thermal model of SiC MOSFETs was proposed in [29].

However, the Foster-type and Cauer-type thermal models

discussed above are generally obtained for a specific tem-

perature condition with fixed thermal resistance and capaci-

tance, while their accuracy for the high-temperature thermal

prediction is still unknown. Especially, the thermal properties

of the SiC die as well as its packaging materials can shift

considerably due to effects of free electrons and lattice vibra-

tions [30]. In consideration of this issue, [31] characterized

the temperature-dependent thermal performance of a Si IGBT

module. It was validated that omitting the temperature effect

can lead to unrealistic thermal-profile predictions. Moreover,

an electro-thermal model with a special focus on the SiC

die was proposed in [32], and the temperature effect of SiC

thermal properties was taken into account, which made the

proposed model suitable for short-circuit thermal predictions.

Concerning the above mentioned issues, this paper charac-

terizes the high-temperature thermal performance of the SiC

power MOSFET module with special focus on SiC MOSFET

dies, and a temperature-dependent Cauer model is proposed

accordingly. Without losing the generality, a commercialized

SiC MOSFET module is utilized as the study case and

the high-temperature thermal behavior of SiC MOSFET is

fully revealed. The thermal properties of packaging materials

(including SiC) are investigated in Section II to demonstrate

the physical reason of the temperature effect on thermal per-

formance. In order to be compatible for the long-term thermal-

profile prediction, a temperature-dependent Cauer model is

extracted based on offline FEM simulations in Section III.

The proposed Cauer model fully characterizes the temperature

effect on each packaging layer and is suitable for high-

temperature thermal profile predictions with sufficient compu-

tational efficiency. Furthermore, multiple experimental mea-

surements of the transient thermal impedance were conducted

under virtual junction temperature variations from 60.5 ◦C to

199.6 ◦C, and the results are given in Section IV. It is con-

cluded that neglecting the temperature-dependency of thermal

properties may cause 10% error on the magnitude of thermal

resistance. Although experimental validations were conducted

up to 199.6 ◦C on the commercialized SiC MOSFET module,

the Cauer model as well as its modeling methodology can also

be applied to SiC MOSFET modules with higher operating

temperatures. In Section V, the FEM extracted Cauer model

is benchmarked with the conventional analytical Cauer model

obtained by [27], and it is found that the FEM extracted Cauer

model can provide the higher prediction accuracy.

Compared to [31], which studied the temperature effect

on thermal models of the Si IGBT, this work characterizes

the SiC MOSFET module for a higher junction temperature

range as it is driven by the high-temperature capability of SiC.

Furthermore, the temperature-dependent thermal property of

the ceramic layer is modeled to give a more comprehensive

Tvj
Ts

Ts

Tc
Th

TCu
TAlN
TCu2

Fig. 1. Vertical view of the studied SiC MOSFET module interfacing with
an Al-extrude heatsink.

understanding of the temperature effect on SiC thermal mod-

eling. Compared to [32], which focused only on the thermal

modeling of SiC die, the whole SiC MOSFET module (from

the die to the heatsink) is studied in this work.

II. REVIEW OF STRUCTURE AND THERMAL PROPERTIES

OF COMMERCIALIZED SIC MOSFET MODULE

A. Structure of SiC MOSFET Module

The vertical structure of a commercialized SiC MOSFET

module is typically made of multiple layer stacks with various

packaging materials, which resembles its Si counterparts. The

vertical view of a commercialized SiC MOSFET module is

depicted in Fig. 1. The SiC dies are soldered on a direct copper

bonded (DCB) substrate, which consists of double copper

layers and a ceramic layer sandwiched in between. Likewise,

the DCB substrate is fixed on the copper baseplate via the

baseplate solder, and the baseplate is mounted on the cooling

system via the thermal interface material. Moreover, several

temperature measurement points are depicted in Fig. 1, which

will be discussed in the following section.

It is noted that the ceramic layer is typically made of from

aluminum oxide (Al2O3), aluminum nitride (AlN), or silicon

nitride (Si3N4). Compared with Al2O3, the AlN and Si3N4

feature higher thermal conductivity, but reduced coefficient

of thermal expansion, which are more preferable in high-

performance power semiconductor modules.

In this work, a commercialized half-bridge SiC MOSFET

module rated at 1200 V and 55 A (APTMC120AM55CT1AG

by Microsemi) is adopted as the study case. The top view

as well as the circuit diagram of the module are detailed in

Fig. 2(a) and Fig. 2(b), respectively. Each SiC switch consists

of dual MOSFET dies connected in parallel. In addition, one

pair of SiC Schottky-barrier diode (SBD) dies is applied in

anti-parallel with each pair of MOSFET dies to mitigate the

reverse-recovery current during the switching transient. The

geometry dimensions of the SiC MOSFET module under study

are listed in Table I. The AlN is utilized in this module

as the ceramic material, which features the lowest thermal

conductivity among the aforementioned ceramic materials.

B. Temperature-Dependent Thermal Properties of Packaging

Materials

For the thermal-profile prediction of power semiconductors,

it is generally assumed that the power module is adiabatic from
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(a) (b)

Fig. 2. Half-bridge SiC MOSFET module from Microsemi. (a) Top view. (b)
Circuit diagram.

TABLE I
DIMENSIONS OF DIFFERENT LAYERS INSIDE THE STUDIED SIC MODULE

(MICROSEMI APTMC120AM55CT1AG).

Layers Size (mm2) Thickness (mm)

MOSFET die 2.80× 3.00 (per die) 0.18

SBD die 3.08× 3.08 (per die) 0.377

MOSFET solder 2.80× 3.00 (per die) 0.09

SBD solder 3.08× 3.08 (per die) 0.09

Upper copper 28.2× 25.54 0.3

Ceramic (AlN) 28.2× 25.54 0.63

Lower copper 28.2× 25.54 0.3

Baseplate solder 28.2× 25.54 0.2

Baseplate 49.46× 40.8 2.5

TIM (silicone grease) 49.46× 40.8 0.1

the top and lateral sides. The heat generated from the SiC

die propagates through the solder layers, the DCB substrate,

and the baseplate and eventually reaches the cooling system,

where it is dissipated to the ambient. Therefore, the thermal

properties of packaging materials, i.e., the thermal conductivity

and specific heat capacity, will significantly affect the heat

propagation process and the thermal performance of the SiC

MOSFET module.

Specifically, the thermal conductivity measures the ability

to conduct heat, which correlates to the thermal resistance in

the RC lumped thermal model. The specific heat capacity,

on the other hand, defines the quantity of heat required to

raise the temperature per unit mass, as it can be characterized

as the thermal capacitance in the RC lumped thermal model.

Predicting the material temperature based on fixed thermal

conductivity and specific heat capacity is regularly straight-

forward and easily accessible. However, the thermal properties

of packaging layers can be considerably affected by material

local temperatures due to effects of free electrons and lattice

vibrations, which may lead to a significant discrepancy on

thermal-profile estimation.

According to [31], [33]–[35], the thermal conductivities

and specific heat capacities of various packaging materials

(i.e., SiC, AlN, Si3N4, Cu, and Al) in correspondence with

temperature are exhibited in Fig. 3(a) and Fig. 3(b), respec-

tively. It can be obtained that the thermal conductivities of SiC

and AlN feature an intensive temperature dependency, which
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Fig. 3. Temperature-dependent thermal properties of packaging materials of
the SiC MOSFET module. (a) Thermal conductivity. (b) Specific heat capacity.

decline with the increase of temperature. Moreover, the Cu and

Si3N4 also exhibit a non-neglectable temperature dependency,

though not comparable with that of the SiC and AlN. In

Fig. 3(b), the specific heat capacities of SiC, AlN, Si3N4,

and Al can be characterized as positively related with the

material temperature. Especially, the ceramic materials of AlN

and Si3N4 exhibit similar and more significant temperature

dependencies, whereas other materials of the SiC, Cu, and Al

are characterized by less temperature dependencies.

Consequently, neglecting the temperature-dependency of

thermal properties of packaging materials may lead to un-

realistic temperature estimations. Especially for the case of

high-temperature operation, the actual junction temperature

of the SiC die can be critically higher than the theoretical

estimation without considering the temperature effect, as the

thermal conductivities of SiC, AlN, Si3N4, and Cu are all

negatively related with temperature.

III. EXTRACTION OF TEMPERATURE-DEPENDENT CAUER

MODEL BASED ON FEM SIMULATION

For the high-temperature thermal modeling of the SiC

MOSFET module, the Cauer-type thermal model is applied

in this work, as it is illustrated in Fig. 4. Each packaging

layer of the SiC MOSFET module is represented by a thermal

capacitance in connection with a thermal resistance. Accord-

ingly, the temperature-dependent thermal properties of each

packaging layer can be characterized in this Cauer model.

In order to extract the RC parameters in the Cauer

model, FEM based simulations were performed on a three-

dimensional (3D) CAD model including geometry and mate-
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Fig. 4. Equivalent Cauer model of the SiC MOSFET module including
structural information.

rial details (especially temperature-dependent thermal proper-

ties) of the SiC MOSFET module.

A. Implementation of FEM Simulation

The basic concept of FEM can be considered as subdi-

viding the entire computational domain into separated small-

scale parts and calculating local solutions of the diffusion-

convection-reaction problem. For the analysis of heat-transfer

process, multiple FEM based softwares are available, and the

ANSYS/ICEPAK was utilized in this work.

As a study case, a 3D CAD model of the SiC MOSFET

module under study was constructed in SOLIDWORKS, and

was simulated in ANSYS/ICEPAK (as depicted in Fig. 5). The

stacked multi-layer structure of the SiC module (as illustrated

in Fig. 1 and Table I) was replicated in the model. The

aforementioned thermal conductivities and specific heat capac-

ities with temperature dependency were also programmed in

ANSYS/ICEPAK. Then, multiple transient FEM simulations

were conducted under different heatsink temperatures (i.e., 20
◦C, 50 ◦C, 80 ◦C, 110 ◦C, and 140 ◦C). The upper-third

volume of each MOSFET die was assumed as the heat source,

since the generated heat is not uniformly distributed among the

die volume but becomes more concentrated towards the upper-

third volume of the die [32], [36]. Letting the upper-third die

volume to be the heat source helps to better mimic the thermal

behaviors inside the die and obtain the more realistic thermal

impedance. Basic parameter settings of the FEM simulation

are listed in Table II. A minimum time step of 10 µs is

selected to fully reveal the transient thermal response, and the

maximum value of iterations-per-step is established to be 100

to ensure that the convergence criteria is fulfilled for each time

step. The procedures for performing each simulation trial are

demonstrated as follows:

1) The external conditions (i.e., the heatsink temperature and

the heating power) and material thermal properties are

defined prior to the simulation trial.

Fig. 5. Geometry overview of the 3D CAD model of the SiC MOSFET
module in ANSYS/ICEPAK.

TABLE II
PARAMETER SETTINGS USED FOR THE FEM SIMULATION

Parameters Values

Minimum time step 10 µs

Simulation duration 190 s

Maximum iterations/step 100

Convergence criteria (energy) ≤ 10−10 J

Minimum mesh size 30 µm

Heating power per die 30 W

Heatsink temperature 20–140 ◦C

2) During the starting stage of the simulation, a constant

heating power Pheat = 30 W is applied to each MOSFET

die until a thermal equilibrium is reached. The tempera-

ture distribution of the thermal equilibrium with heatsink

temperature of 140 ◦C is depicted in Fig. 6. The steady-

state temperatures at points of measurements [as indicated

in Fig. 6(b)] under the thermal equilibrium are recorded.

As the module is filled with silicone gel for insulation

purpose (with thermal conductivity of 0.2 W/mK), a small

portion of the generated heat can expand towards the

top and lateral sides of the power stack at a pretty slow

velocity [as can be seen from Fig. 6(b)]. Nevertheless,

this effect will not degrade the modeling accuracy, given

that the thermal conductivities of power-stack materials

are in the range of 100–400 W/mK.

3) After the thermal equilibrium is reached, the heating

power is removed and the cooling stage starts. Simulta-

neously, the transient temperature responses at the points

of measurement are then monitored.

Given that the thermal distribution is significantly dependent

on geometry and material, the temperature measurement points

should be defined in individual layers, and aligned with the

center point of the MOSFET die (i.e., Ts1 on die solder, TCu1

on upper copper, TAlN on AlN ceramic, TCu2 on lower copper,

Ts2 on baseplate solder, Tc on baseplate case, and Th on

heatsink). Specifically, the virtual junction temperature of Tvj

is recognized as the mean temperature of heated die volume,

as the temperature values also become much higher towards

the upper-third part of the die [36]. Otherwise, an optimistic

thermal expectation shall be obtained if Tvj is assumed as the

average temperature of the whole die-volume. It is noted that

the thermal response of lower MOSFET should be identical

with that of the upper MOSFET, since uniform packaging
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Fig. 6. FEM-simulated steady-state temperature distribution of the SiC
MOSFET module under the case of heatsink temperature of 140 ◦C. (a)
Top view. (b) Vertical view.

structures and materials are involved. Moreover, the thermal

profile of the SiC MOSFET in FEM simulation shall not be

affected by conditions of other power devices.

B. Extraction of Thermal Resistance and Capacitance

Knowing both the steady-state and transient temperature

responses at the defined measurement points, the parameters

of thermal resistance and capacitance components in the Cauer

model can be extracted accordingly.

The aforementioned multi-layer Cauer model is generalized

in Fig. 7 for the ease of illustration. First, the thermal resis-

tances of the Cauer model can be obtained according to the

steady-state temperature measurements:
{

Rth
k−1,k = (Tk−1,steady − Tk,steady)/Pheat

Rth
k,k+1 = (Tk,steady − Tk+1,steady)/Pheat

(1)

where Tk−1,steady , Tk,steady , and Tk+1,steady designate the

steady-state temperatures of the (k− 1)th, kth, and (k+1)th

measurement points under the thermal equilibrium, respec-

tively. Then, the thermal capacitance of the kth layer, Cth
k ,

can be extracted by:

Cth
k = Pk (t)

/

dTk(t)
dt

(2)







Pk (t) =
Tk−1(t)−Tk(t)

Rth
k−1,k

− Tk(t)−Tk+1(t)

Rth
k,k+1

,k 6= 1

Pk (t) = −Tk(t)−Tk+1(t)

Rth
k,k+1

,k = 1
(3)

where Tk−1(t), Tk(t), and Tk+1(t) denote the transient tem-

perature responses of the (k−1)th, kth, and (k+1)th measure-

ment points obtained from the FEM simulation. Additionally,

thC

th

k kR th

k kR

th

kC
th

kC

T kT kT kT

kPkPP

hT

heatP

thR

Fig. 7. The generalized multi-layer Cauer model for the extraction of thermal
resistance and capacitance parameters.
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Pk(t) denotes the transient power flowing through the kth

thermal capacitor branch.

C. Temperature-Dependent Cauer Model

Using the aforementioned methodology, the thermal resis-

tance and capacitance under heatsink-temperature variations

can be obtained accordingly, as listed in Table III. As the

heatsink temperature increases from 20 ◦C to 140 ◦C, the

thermal resistance values related to the SiC die (Rth
js1) and

AlN ceramic (Rth
Cu1AlN and Rth

AlNCu2) are increased by 26%,

24%, and 29%, respectively. In contrast, the values of Rth
s1Cu1,

Rth
Cu2s2, Rth

s2c, and Rth
ch are increased by 0.9%, 2.0%, 3.3%,

and 2.2%, respectively. Therefore, the temperature-dependency

of Rth
s1Cu1, Rth

Cu2s2, Rth
s2c, and Rth

ch can be omitted as they will

not cause significant error to the thermal prediction. The bar-

graph demonstrating the thermal resistance values is depicted

in Fig. 8. The overall junction-heatsink thermal resistance Rth
jh

is raised by more than 10%, from 0.5221 ◦C/W to 0.5787
◦C/W.

As the heatsink temperature increases from 20 ◦C to 140
◦C, the thermal capacitance values of Cth

s1 , Cth
Cu1, Cth

AlN ,

Cth
Cu2, Cth

s2 are increased by 15%, 11%, 29%, 16%, and

0.6% respectively, which is caused by the positive temperature

dependency of specific heat capacities [illustrated in Fig. 3(b)].

On the other hand, the values of Cth
j and Cth

c feature a

negative temperature-dependency, as they are decreased by

0.9% and 1.5% respectively. Because, for thermal capacitance

with greater layer-thickness but less temperature dependency,

i.e., Cth
j and Cth

c , the effect of heat-flux concentration may

dominate under a high-temperature-gradient condition [23].

In order to reveal this thermal-resistance-temperature rela-

tionship in the Cauer model, curve fittings were performed

using linear polynomials. In consideration of easy implemen-

tation, only the thermal components with parametric variance

higher than 20% throughout the testing range are characterized
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TABLE III
PARAMETERS OF THERMAL RESISTANCE AND CAPACITANCE OF THE MULTI-LAYER CAUER MODEL OBTAINED BY FEM SIMULATION.

(UNIT: Rth – ◦C/W, Cth – J/◦C)

Heatsink Temperature

20 ◦C 50 ◦C 80 ◦C 110 ◦C 140 ◦C

Rth
js1 0.0557 0.0592 0.0629 0.0665 0.0704

Cth
j 8.20× 10−3 8.18× 10−3 8.16× 10−3 8.16× 10−3 8.13× 10−3

Rth
s1Cu1 0.0628 0.0630 0.0632 0.0633 0.0634

Cth
s1 3.63× 10−3 3.76× 10−3 3.90× 10−3 4.04× 10−3 4.19× 10−3

Rth
Cu1AlN

0.0730 0.0767 0.0809 0.0857 0.0905

Cth
Cu1 1.50× 10−2 1.54× 10−2 1.58× 10−2 1.62× 10−2 1.67× 10−2

Rth
AlNCu2

0.0564 0.0599 0.0639 0.0684 0.0730

Cth
AlN

2.14× 10−2 2.30× 10−2 2.46× 10−2 2.62× 10−2 2.75× 10−2

Rth
Cu2s2 0.0390 0.0393 0.0395 0.0397 0.0398

Cth
Cu2 5.26× 10−2 5.44× 10−2 5.65× 10−2 5.89× 10−2 6.12× 10−2

Rth
s2c 0.0811 0.0820 0.0827 0.0832 0.0838

Cth
s2 8.46× 10−2 8.49× 10−2 8.51× 10−2 8.50× 10−2 8.51× 10−2

Rth
ch

0.1542 0.1552 0.1561 0.1569 0.1577

Cth
c 3.34 3.33 3.32 3.31 3.29

Rth
jh

0.5221 0.5354 0.5492 0.5637 0.5787
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Fig. 9. Temperature-dependent thermal resistances and curve fitting results
of Rth

js1, Rth
Cu1AlN

, and Rth
AlNCu2

.

by linear polynomials (i.e., Rth
js1, Rth

Cu1AlN , and Rth
AlNCu2).

This selecting criteria also applies for the characterization

of thermal capacitances, and only Cth
AlN with a parametric

variance of 29% is modeled using the linear polynomial. As

depicted in Fig. 9, the curve fitting results match well with

discrete data points and reflect a rising tendency of Rth
js1,

Rth
Cu1AlN , and Rth

AlNCu2. Then, the temperature-dependent

Cauer model can be concluded accordingly. As illustrated in

Fig. 10, the thermal resistance and capacitance components

of Rth
js1, Rth

Cu1AlN , Rth
AlNCu2, and Cth

AlN are characterized

as temperature dependent by linear polynomial equations,

whereas other components can be regarded as temperature-

constant as discussed above.

It is noted that the SiC SBD dies may also operate in

applications and generate considerable amount of heat, which

may also affect the thermal profiles of MOSFET dies [37].

In this situation, a module-level thermal characterization inte-

grating thermal models of both the MOSFET and SBD shall

be required. For that module-level thermal modeling, it is

generally assumed that thermal models of the MOSFET and

SBD are coupled through either the heatsink or baseplate [36].

(1.2e–4) Tvj 
+ 4.93e–2 6.32e–2 

(1.5e–4) TAlN 
+ 6.54e–2 

(1.4e–4) TAlN 
+ 4.98e–2 3.95e–2 8.29e–2 1.56e–1 

j s1 Cu1 AlN Cu2 s2 c h 

8.16e–3 3.98e–3 1.60e–2 5.78e–2 8.50e–2 3.3
(4.9e–5) TAlN 

+ 1.95e–2 

Pheat Th

Fig. 10. The FEM-extracted Cauer model with temperature-dependent RC
components.

Hence, the junction-heatsink (or junction-baseplate) thermal

impedances of SiC MOSFET and SBD can be studied inde-

pendently and integrated together via the heatsink or baseplate

node as the module-level thermal model. Moreover, the FEM

based modeling method discussed above can also be utilized

for the thermal modeling of SiC SBD.

D. Application for Transient Thermal Simulation

As Rth
js1, Rth

Cu1AlN , Rth
AlNCu2, and Cth

AlN are dependent

on material local temperatures, the values of these thermal

components should be calibrated prior to the transient thermal

simulation. An implementation flowchart of the Cauer-model

simulation with a calibration process is depicted in Fig. 11.

An iteration process with steady-state thermal calculations (it-

eration of mean Tvj and TAlN and update of Rth
js1, Rth

Cu1AlN ,

Rth
AlNCu2, and Cth

AlN ) is utilized to calibrate these temperature-

dependent components until the convergence condition of

|Tvj,n − Tvj,n| ≤ 1◦C is satisfied. In normal cases, it takes

three times of iteration in maximum to reach the convergence

condition. Thereafter, the transient thermal simulation can be

conducted using the calibrated thermal resistance and capaci-

tance values. A specific application example is demonstrated

as follows.

One of the typical heating conditions of SiC power MOS-

FETs can be considered as a periodic power in a dc/ac inverter
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start

define mean Pheat, Th.

steady-state calculation

transient thermal simulation

nth iteration: 
mean Tvj,n, TAlN,n

define initial temperature: 
mean Tvj,1, TAlN,1 = Tambient

if |Tvj,n – Tvj,n–1| 
< 1 °C

Y

N

update temperature-dependent components: 
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end
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Fig. 11. Implementation flowchart of the Cauer-model simulation with a
calibration process.

application, which comes from switching and conduction

losses per half ac-cycle. By simulating the Cauer model in

a circuit simulator (MATLAB/Simulink), the virtual junction

temperature of Tvj under a periodic heating power (square

wave with 180 W magnitude, 50% duty cycle, and 50 Hz

frequency) is obtained as depicted in Fig. 12(a), and the

heatsink temperature is set to be 140 ◦C. For comparison, the

Tvj simulated by the FEM simulation (ANSYS/ICEPAK) as

well as by the Cauer model without temperature dependency

are plotted in Fig. 12(a).

It can be seen that the Tvj obtained from the temperature-

dependent Cauer model matches satisfactorily with that

simulated by ANSYS/ICEPAK in Fig. 12(a). The tempera-

ture peaks Tvj,peak obtained by the FEM simulation and

temperature-dependent Cauer model are observed as 212.5 ◦C

and 211.7 ◦C respectively (with 0.3% error). Additionally, the

amplitudes of temperature swing ∆Tvj calculated by the two

methods are exhibited as 39.1 ◦C and 39.0 ◦C (with 0.2%

error). Nevertheless, a significant discrepancy is witnessed if

the temperature-dependency of the thermal model is neglected.

The maximum disparity of Tvj between Cauer-model calcu-

lations with and without the temperature dependency counts

to be 8.9 ◦C (with 4.4% error), which occurs at peak points

Tvj,peak in Fig. 12(a). Moreover, a considerable discrepancy

on ∆Tvj (with error up to 4.5 ◦C, 13%) can be observed from

Fig. 12(a). Additionally, another reliability-critical variable,

the die-solder temperature of Ts1, can also be obtained from

the temperature-dependent Cauer model, as it is depicted in

Fig. 12(b). Similar conclusions can also be drawn.

IV. EXPERIMENTAL CHARACTERIZATION OF TRANSIENT

THERMAL IMPEDANCE

A. Introduction to Experimental Setup

In order to validate the temperature-dependent Cauer model,

an experimental setup was built in laboratory and the junction-

Cauer w/ TD
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Cauer w/o TD

Tvj,peak Tvj

211.7 °C
202.8 °C

39.0 °C
34.5 °C

0 0.04
Time / s

T
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 /

 °
C

0.08 0.12 0.16
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220

240

212.5 °C 39.1 °C

(a)

0 0.04
Time / s

T
s1

 /
 °

C

0.08 0.12 0.16
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FEM

Cauer w/o TD
Ts1,peak Ts1

199.4 °C
194.3 °C

27.4 °C
26.3 °C

199.6 °C 27.7 °C
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Fig. 12. Temperature profile of the SiC MOSFET module. (a) Cauer-
simulated virtual junction temperature of Tvj with (w/) and without (w/o)
the temperature dependency (TD), as well as the Tvj recorded from the FEM
simulation. (b) Cauer-simulated die-solder temperature of Ts1 w/ and w/o the
TD, as well as the Ts1 recorded from the FEM simulation.

Iload

Rdson

Imes

Th

Fig. 13. Main circuit diagram of the experimental setup for the transient-
thermal-impedance measurement of SiC MOSFET.

heatsink transient thermal impedance of the SiC MOSFET

was measured. As demonstrated in Fig. 13, the main circuit

of the experimental setup consists of a DC power source, an

auxiliary IGBT, and a SiC module APTMC120AM55CT1AG

with its peripheral circuits. It is noted that the circuit diagram

illustrated above is only valid for the thermal characterization

of the SiC MOSFET, not for that of the external SBD. A

photograph of the experimental setup is exhibited in Fig. 14.

The SiC module was mounted on a Al-extrude heatsink

with temperature-control functionality, and a layer of silicone

grease (Dow Corning 340) was applied in between.

Doing so, the experimental measurement of transient ther-

mal impedance was able to be conducted under temperature

variations. The heatsink temperature Th was sampled via an

optic fiber temperature sensor, which was inserted into the

heatsink plate. Meanwhile, the on-state resistance of Rdson

was acquired by external voltage and current probes.
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Fig. 14. Photograph of the experimental setup for the transient-thermal-
impedance measurement of SiC MOSFET.
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Fig. 15. Virtual junction temperature of Tvj in correspondence
with the on-state resistance of Rdson of the SiC MOSFET module
APTMC120AM55CT1AG.

B. Experimental Measurement of Transient Thermal

Impedance

As the Rdson of the SiC MOSFET features an intensive

sensitivity to the temperature, the virtual junction temperature

of Tvj in time domain can be indirectly obtained by the mea-

sured Rdson profile [38]. This is also noted as the temperature-

sensitive electrical parameter based methodology for junction

temperature monitoring.

Without generating heating power from the MOSFET die,

the Tvj can be assumed identical to the heatsink temperature of

Th once a thermal equilibrium is reached. Then, multiple sets

of Tvj - Rdson data was able to be experimentally measured

with the temperature-controlled heatsink. Then, the Tvj -

Rdson function can be acquired as a fractional equation by

means of curve fitting:

Tvj (Rdson) =
n1 ·Rdson

2 + n2 ·Rdson + n3

Rdson + d1
(4)

where n1 = 1.842, n2 = 66.95, n3 = −4427, and d1 = −14.67,

which can be obtained by the curve-fitting tool of MATLAB.

The calibrated Tvj - Rdson function with the data points are

depicted in Fig. 15.

The implementation procedure as well as the temperature

responses of the transient thermal impedance measurement

are illustrated in Fig. 16. During the initial stage of the

experiment, both the auxiliary IGBT and the SiC MOSFET

maintained conducted with load current of Iload = 30 A

supplied by a programmable DC source. The SiC MOSFET

works in its ohmic region and its junction temperature was

t = 

Tvj t
Rdson t

Th t

Tsteady

t

Fig. 16. Implemented test procedure and temperature response of the transient
thermal impedance measurement.

heated up by the on-state resistance of Rdson. After the

thermal equilibrium was reached and the junction temperature

was in steady state, the gate voltage of the auxiliary IGBT

was removed and the load current was switched-off. Then,

the cooling stage starts and a measurement current of Imes =

1 A was injected into the SiC MOSFET die by an external

current source in parallel with the device. Meantime, the SiC

MOSFET maintained conduction and still worked in the ohmic

region. The transient Rdson indicating Tvj can be sampled by

external voltage and current probes. It is noted that the resistive

heating power generated by Imes is in the range of tens of

miliwatt (I2mesRdson), therefore the Imes will not affect the

accuracy of the measurement.

Multiple experimental measurements were conducted with

different heatsink temperatures, i.e., Th = 37 ◦C, 70.2 ◦C,

113.3 ◦C, and 145.8 ◦C. The load current of Iload = 30 A

was applied and a broad range of junction temperature was

reached during the experiment (see Table IV). It is noted that

the transient thermal impedance under the Tvj of 199.6 ◦C

was successfully tested, which is 50 ◦C higher than its rated

junction temperature.

Once the transient virtual junction temperature of Tvj(t)
and the heatsink temperature of Th(t) were obtained from

the cooling stage of the experiment, the transient thermal

impedance from junction to heatsink can be calculated by:

Zth
jh (t) =

− [Tvj (t)− Th (t)] + ∆Tsteady

Pheat

(5)

where ∆Tsteady and Pheat denote the steady-state junction-

heatsink temperature difference and the die loss, respectively.

C. Experiment Results and Comparison

The measured junction-heatsink transient thermal

impedance of Zth
jh(t) under heatsink conditions of Th =

37 ◦C, 70.2 ◦C, 113.3 ◦C, and 145.8 ◦C are depicted

in Fig. 17(a)–(d), respectively. The thickness variations

of Zth
jh(t) curves in Fig. 17(a)–(d) are induced by the

noise-level differences under various Pheat conditions, as a

higher Pheat value also helps to attenuate the measurement

noises of Tvj(t) according to (5). In order to do validation,

the Zth
jh(t) simulated by the temperature-dependent Cauer

model are also studied as exhibited in dashed curves, and

identical external conditions (Pheat and Th) are assumed in

Cauer-model simulations. A steady-state error of lower than

0.9% between the Cauer-model simulation and experimental
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TABLE IV
EXTERNAL CONDITION AND STEADY-STATE RESULTS OF MULTIPLE EXPERIMENTS UNDER THERMAL EQUILIBRIUM.

Experiment No.

Expt 1 Expt 2 Expt 3 Expt 4

Heatsink temperature Th 35.7 ◦C 70.2 ◦C 113.3 ◦C 145.8 ◦C

Load current Iload 30 A 30 A 30 A 30 A

Junction loss Pheat 46.3 W 55.4 W 73.2 W 91.9 W

Virtual junction temperature Tvj 60.5 ◦C 100.2 ◦C 154.9 ◦C 199.6 ◦C
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Fig. 17. Junction-heatsink transient thermal impedance obtained by both experimental measurements and the temperature-dependent Cauer model with different
temperature conditions. (a) Th = 35.7 ◦C, Iload = 30 A. (b) Th = 70.2 ◦C, Iload = 30 A. (c) Th = 113.3 ◦C, Iload = 30 A. (d) Th = 145.8 ◦C, Iload =
30 A.

measurement applies for all of the conditions studied. It can

be concluded that the proposed temperature-dependent Cauer

model can characterize transient thermal behaviors of a real

SiC MOSFET with limited error-band under both the normal

and high-temperature conditions. Furthermore, the amplitude

of the measured thermal impedance, i.e., the Rth
jh, is raised by

more than 10% (from 0.5287 ◦C/W to 0.5830 ◦C/W) as Tvj

increases from 60.5 ◦C to 199.6 ◦C, as indicated in Fig. 17.

V. BENCHMARKING OF MODELING METHODOLOGIES OF

CAUER-TYPE THERMAL MODELS

As validated in Section IV, the FEM-extracted Cauer model

is able to predict the high-temperature thermal performance

of the SiC MOSFET module under both the transient- and

steady-state. Other than conducting parameter extractions by

FEM simulations, the conventional method studied in [27] can

also be a promising solution for the establishment of the Cauer

model, by which the temperature dependencies of thermal

behaviors can be modeled using two analytical equations. This

section will give an introduction to this method and provide a

performance benchmarking of these two approaches.

A. Introduction to the Analytical Methodology

According to the Fourier’s Law for heat conduction, the

thermal resistance of each packaging layer can be calculated

from the thermal conductivity of its forming material:

Rth =
1

k
·
d

A
(6)

where k is the material thermal conductivity, d is the heat-

dissipation distance, and A is the effective cross-sectional

area for heat spreading. An example for dAlN and AAlN

identifications is demonstrated in Fig. 18. More analysis on

the calculation of effective heat-spreading area can be found

in [39].

Additionally, the thermal capacitance of single layer is able

to be attained from its specific heat capacity:

Cth = ch · ρ · d ·A (7)

where ρ is the mass density of material, and ch is the specific

heat capacity. By applying (6) and (7), it is noted that the heat

flux and temperature distribution of each physical layer are
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AAlN
dAlN AAlN

Fig. 18. Vertical view of the heat-spreading boundary and identifications of
heat-dissipation distance d and effective cross-sectional area A of the AlN
layer.

TABLE V
PARAMETER VALUES UTILIZED FOR ANALYTICAL CALCULATION OF

THERMAL RESISTANCE AND CAPACITANCE

Component Related layer
ρ

(g/cm3)

d
(mm)

A
(mm2)

Rth
js1 j — 0.12 16.8

Rth
Cu1AlN +

Rth
AlNCu2

Cu1 — 0.15 20.5

AlN — 0.63 34.1

Cu2 — 0.15 51.2

Cth
j j 3.10 0.18 16.8

Cth
AlN AlN 3.26 0.63 34.1

simplified as uniformly distributed within the defined cross-

sectional area of A.

As the temperature dependencies of thermal conductivities

and specific heat capacities can be obtained from Fig. 3, the

temperature-dependent thermal resistance and capacitance are

also able to be modeled according to (6) and (7).

B. Performance Benchmarking of Modeling Methodologies

In order to benchmark their ability to model the

temperature-dependent thermal resistance, the values of Rth
js1

and Rth
Cu1AlN + Rth

AlNCu2 obtained from both the FEM ex-

traction and what is derived by (6) are detailed in Fig. 19(a).

The values of heat-dissipation distance d and effective cross-

sectional area A utilized for analytical derivations are listed

in Table V for reference. It is observed in Fig. 19(a) that the

temperature dependency is able to be characterized by (6),

as comparable resistance-temperature slew rates are exhibited

from both methods. Nonetheless, the analytical method shows

relatively lower thermal resistance values, since (6) assumes

an equalized distribution of the heat flux among the effective

cross-sectional area. In contrast, the heat flux can be more

concentrated beneath the center of the SiC die in FEM simu-

lations, which better imitates the real heat-spreading scenario.

Moreover, the parameters of Cth
j and Cth

AlN calculated by

(7) are compared with FEM extractions in Fig. 19(b), where

an analogous explanation also applies. The values of ρ, d, and

A used in (7) are also given in Table V for reference. As the

temperature-field assumed in (7) is regarded as homogeneous

among the effective heat-spreading area, more Joules of energy

are to be calculated in (7) to heat up the whole area per

Celsius degree, i.e., more thermal capacitance compared to

FEM extractions. Consequently, a significant discrepancy on

Cth
AlN can be observed in Fig. 19(b). In spite of this, the
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Fig. 19. Benchmarking of temperature-dependent thermal resistances and
capacitances obtained from both the FEM extraction and the analytical
equations. (a) Rth

js1 and (Rth
Cu1AlN

+Rth
AlNCu2

). (b) Cth
j and Cth

AlN
.

calculation on Cth
j exhibits a satisfactory match with its FEM

extraction since the heat-spreading area of the SiC die is

not comparable with that of the AlN ceramic layer and less

computational error shall be incurred.

Overall, as featured by lower thermal resistances and higher

thermal capacitances, the conventional method [by analytical

equations (6) and (7)] will expect a relatively more optimistic

thermal-profile estimation when compared with the FEM

based method studied in this work. Nevertheless, it should also

be pointed out that these two methods summarized in this work

are currently unable to characterize the thermal degradation

induced by the aging process of power device.

VI. CONCLUSION

This paper characterizes the thermal performance of a com-

mercialized SiC MOSFET module with special concerns on

high-temperature operating conditions as well as a particular

focus on SiC MOSFET dies. It is found that the temperature-

dependent thermal properties of the SiC die and AlN ceramic

can considerably worsen the thermal performance under high

operating temperature. Then, a temperature-dependent Cauer-

type thermal model of the SiC MOSFET is extracted in this

work based on FEM simulations, which is able to reveal

the temperature-dependent thermal properties of packaging

layers and it is suitable for high-temperature thermal-profile

prediction with sufficient computational efficiency.

It is concluded from the proposed Cauer model that the

overall thermal resistance can be raised by more than 10%

under high-temperature conditions (up to 200 ◦C). An ap-

plication case with periodic heating power has demonstrated
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that the predicted virtual junction temperature of Tvj can

be raised by 8.9 ◦C with the consideration of temperature

dependency. Additionally, the junction temperature swing of

∆Tvj is elevated by 4.5 ◦C using the extracted Cauer model.

Furthermore, the accuracy of the extracted temperature-

dependent Cauer model was validated through experiments.

Multiple experimental measurements of thermal impedances

were conducted under both normal- and high-temperature con-

ditions (60.5–199.6 ◦C), and their transient thermal impedance

curves match satisfactorily for a broad temperature range. A

steady-state error of lower than 0.9% between the Cauer-model

simulation and experimental measurement applies for all of

the conditions studied. Additionally, the accuracy of the FEM-

extracted Cauer model is proven to be more superior through

the benchmarking with an analytical Cauer model.
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