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15
16 Abstract: With the development of wind power, wind farms are required to provide reactive power 
17 to the power system. For permanent magnet synchronous generator (PMSG) based large wind farms 
18 (WF), it may be an economical way to generate reactive power using the power electronic devices 
19 inside each wind turbine (WT). In this paper, an optimal reactive power dispatch of PMSG WF is 
20 proposed to minimize the power loss. Both the losses inside WTs and the losses of transmission system 
21 are all considered. Particle swarm optimization (PSO) algorithm is adopted to find the reactive power 
22 references of each WT which makes the total loss of WF minimal. A WF with 25 5MW PMSG WTs 
23 arranged in 5 rows and 5 columns is used in the case study. And two traditional reactive power 
24 dispatch strategies are compared comprehensively with the proposed strategy at different scenarios, 
25 the results have shown that that the proposed strategy obtains lower power loss than the other two 
26 traditional strategies in all the studied cases.
27
28 Index Terms—Reactive power dispatch, permanent magnet synchronous generator (PMSG), loss 
29 minimization, particle swarm optimization (PSO) algorithm.

30 1. Introduction

31 With the development of wind power technology, the global cumulative and annual installed wind 

32 power capacity rises sharply in recent years. The 2016 market was more than 54.6 GW, bringing total global 

33 installed capacity to nearly 487 GW [1]. And the International Energy Association’s World Energy Outlook 

34 predicts that wind power is going to be the leading source of electricity generation in 2040 [2]. With the 

35 expansion of the scale of wind farms, wind power capacity occupies an important proportion in the power 

36 system. The power system operators have developed the guidance of wind power grid technology [3], which 

37 requires the wind farm to have the ability to provide reactive power to support the Point of Common 

38 Coupling (PCC) voltage.

39 To meet the requirements of grid, it is a common method for wind farms to add reactive power sources 

40 at the PCC, like capacitor banks, Static Synchronous Compensators (STATCOMs), and Static Var 

41 Compensators (SVCs) [4]-[6]. Those methods are suitable for small wind farms of the wind farms with no 

mailto:leejian@uestc.edu.cn
mailto:whu@uestc.edu.cn
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42 power electronic devices equipped. The scale of wind farm is increasing. And the doubly fed induction 

43 generators (DFIG) and permanent magnet synchronous generators (PMSG) are widely adopted in wind 

44 farms recently. This makes that the wind farm (WF) could be a reactive power source because of the power 

45 electronic devices inside each wind turbines (WTs) [7]-[9]. In this way, the investment of a wind farm can 

46 be reduced by not using extra reactive power sources. Then, the reactive power dispatch between WTs needs 

47 to be solved. .

48 When the power system operator gives a reactive power reference to a WF at PCC, the WF controller 

49 gives reactive power references to each WT according to some reactive power dispatch strategy. The 

50 traditional strategy is proportional dispatch. Literature [10]-[13] use this strategy to distribute the reactive 

51 power reference of each WT according to their available reactive power capacities. It is easy to calculate 

52 and it can be ensured that the reactive power of each WT doesn’t exceed the limit. Except the simplest 

53 strategy mentioned above, some optimization algorithms with different objective functions are used to make 

54 the reactive power dispatch meet various operation requirements, like minimizing losses [14] and 

55 maintaining voltage stability [15]. Literature [16] uses a Particle Swarm Optimization (PSO) algorithm 

56 combined with a feasible solution search (FSS) algorithm to meet the reactive power reference at PCC, while 

57 active power losses in a WF are minimized. Considering voltage stability, literature [17] presents a seeker 

58 optimization algorithm (SOA), simulating the act of human searching, updating the searching direction by 

59 the empirical gradient.  Literature [18] adopts an evolutionary-based approach, and its simulation results 

60 prove that this method can minimize the power loss, improve the voltage profile, and enhance the voltage 

61 stability. 

62 The losses of WF mainly come from the devices in the WF containing the transmission system within 

63 wind farm and WTs. The reactive power dispatch will change active power and reactive power flow, which 

64 will result in different active power losses of transmission system [19]. So literature [20] [21] adopt the 

65 optimal reactive power dispatch strategy aiming at minimizing the loss of transmission system, the objective 

66 function is the sum of the active power loss of cables and transformers, and then the optimal reactive power 

67 reference of each WT is found by using an optimization algorithm. Literature [22] introduces a reactive 

68 power assignment strategy to minimize the system loss caused by the power flow in the inner-grid of the 

69 wind farm, but only the loss of cables is considered in this paper. However, the losses inside the WTs are 

70 not considered in these articles, which is also a part of the total loss of WF. What’s worse, the minimization 

71 of the loss of transmission system may cause the increasing of the losses inside WTs. So every part of WF 

72 should be taken into account to make the total loss of WF minimal.
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73 In this paper, an optimal reactive power dispatch strategy of PMSG wind farm is proposed, aiming at 

74 loss minimization. The losses inside WTs and the losses of transmission system are both taken into account, 

75 including the loss of converters, filters, transformers and cables. And a PSO algorithm is adopt to assign the 

76 reactive power reference of WF to each WT, while ensure the objective function, the total loss of WF, 

77 minimal. And the proposed strategy is compared with other strategies in different scenarios to prove its 

78 superiority.

79 This paper is organized as follows. Section II gives the loss model of the WF. Section III introduces 

80 three kinds of reactive power dispatch strategies, concluding the proposed strategy. Section IV is the case 

81 study, the three strategies mentioned in Section III are compared in five different cases. Section V is the 

82 conclusion.

83 2. Wind Farm Loss Model

84 The total electrical power loss of a wind farm mainly comes from the losses inside WT and the losses 

85 of transmission system. Fig.1 shows the main components of a WF, which contains PMSG, converter, filter, 

86 transformer and the cables. In this section, the detail loss model of each part is specified. Actually, the loss 

87 of the generator is independent of the reactive power of the wind farm, so the loss model of PMSG is not 

88 considered in this paper.

89

~

Converter
~

PMSG Filter

WT

Trans

Cable

Grid

… … …

…

…

…

Wind Turbine

Wind 
Farm

90 Fig.1. The wind farm structure

91 2.1. Loss Model of Converter

92 The power loss of converter mainly comes from the IGBT s and revers diodes, and the loss contains 

93 switching loss and conducting loss. So the loss model of converter can be expressed as [23]:

94                                                                         (1) 2
con l rms l rmsP a I b I 
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95                                          (2), ,

6 2

3

ON OFF rr
l IGBT sw sw

C nom C nom

l IGBT

E E Ea V f f
I I

b r



  
       

 

96 Where  is the RMS value of the sinusoidal current at the converter ac terminal,  and  are the power rmsI la lb

97 module constants,  is the voltage across the collector and emitter of the IGBT,  and  are the IGBTV ONE OFFE

98 turn-on and turn-off losses of the IGBT,  is the nominal collector current of the IGBT,  is the ,C nomI swf

99 switching frequency,  is the turn-off loss of the diodes,  is the lead resistance of the IGBT.rrE IGBTr

100 In this paper, two IGBT modules (ABB 5SNA 2000K451300) are series connected on each bridge in 

101 the converter. According to the data sheet of IGBT module, the constants is known as  , 7.0252la 

102  and Hz [24].0.0087lb  800swf 

103 2.2. Loss Model of Filter

104 The loss model of filter can be expressed as [8]:

105                                                                 (3)2 2( )filter filter gd gqP R I I 

106 Where  is the resistance of the filter,  and  are the d-axis and q-axis current of the grid side filterR
gdI gqI

107 converter.

108 2.3. Loss Model of Transformer

109 The loss model of transformer can be expressed as [25]:

110                                                                          (4)2
0trans kP P P 

111 Where  is the no-load loss,  is the load loss,  is the load ratio. This paper chooses the Siemens 0P kP 

112 GEAFOL cast-resin transformer rated at 8000kVA as the transformer of WT. According to [26], the no-load 

113 loss  is 13.5 kW, and the load loss  is 36 kW.0P kP

114 2.4. Loss Model of Cable

115 The equivalent model of the cable between bus i and bus j is shown in Fig.2. 
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116

ijI lI jiI

0iI 0jI

0jy0iy

iV jV
ijy

117 Fig.2. Equivalent model of the cable [27]

118 Define the direction form bus i to bus j is the positive direction, so the cable current can be expressed 

119 as [27]:

120                                                 (5)0 0

0 0

( )
( )

ij l i ij i j i i

ji l j ij j i i j

I I I y V V y V
I I I y V V y V

    
      

121 And the complex power  from bus i to bus j and  from bus j to bus i can be given by:
ijS jiS

122                                                                      (6)
*

*

ij i ij

ji j ji

S V I

S V I

 



123 The power loss of the cable between bus i and bus j is the algebraic sum of  and :

ijS jiS

124                                                                  (7),cable ij ij jiP S S 

125 3. Reactive Power Dispatch Strategies

126 The proportional dispatch is a common traditional reactive power dispatch strategy [10], and later 

127 some improved optimal reactive power dispatch strategies came out [16]. This section introduces two kinds 

128 of existing reactive power dispatch strategies and the proposed reactive power dispatch strategy. 

129 3.1. Strategy A: Proportional Dispatch Strategy

130 In this strategy, the reference reactive power required by the grid is distributed among all the WTs 

131 according to their available reactive power [10]-[13], like the formula shows bellow:

132                                                                                (8),
,

,
1

avail
WT kref ref

WT k WFn
avail
WT k

k

Q
Q Q

Q






133 Where  and  are the reference reactive power of wind turbine k and the whole wind farm ,
ref
WT kQ ref

WFQ

134 respectively,  is the available reactive power of wind turbine k, n is the number of WTs.,
avail
WT kQ

135 3.2. Strategy B: Optimal Dispatch Strategy with WF Transmission Loss Minimization

file:///D:/360Downloads/Software/Youdao/Dict/7.5.2.0/resultui/dict/%3Fkeyword=respectively
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136 This dispatch uses optimization algorithm to get the reference reactive power of each WT. And the 

137 target of the optimization algorithm is to minimize the loss of WF transmission including the transformers 

138 and cables [16] [20]. Its objective function is given as:

139                                                           (9), ,
1 1

min
n m

trans k cable l
k l

P P
 

  
 
 

140 Where  is the loss of transformer k,  is the loss of cable l ,  n is the total number of transformers, ,trans kP ,cable lP

141 m is the total number of cables. 

142 3.3. Strategy C: Proposed Optimal Dispatch Strategy with WF Total Loss Minimization

143 This strategy uses optimization algorithm to get the reference reactive power of each WT, aiming to 

144 minimize the total loss of the WF. The objective function of strategy C contains not only the loss of WF 

145 transmission system but also the loss inside each WT, which is given as:

146                                           (10), , , ,
1 1

min ( )
n m

con k filter k trans k calbe l
k l

P P P P
 

    
 
 

147 The constraints are given as:

148                                                      (11) 
1

cos
BN

j j i ji ji j i
i

P V V V   


  

149                                                    (12) 
1

sin
BN

j j i ji ji j i
i

Q V V V   


   

150                                                                           (13)ref
PCC WFQ Q

151                                                                      (14)min max
j j jV V V 

152                                                                          (15),
rms rated
GSC k GSCI I

153 Where  and  are the active and reactive power injected at bus j, and formula (11) and (12) are jP jQ

154 the power flow balance limits.  is the reactive power at the point of common coupling, and formula PCCQ

155 (13) is the WF reference reactive power constraint.  is the voltage of bus j, and formula (14) is the bus jV

156 voltage constraint.  is the RMS value of grid side converter current, and formula (15) is the GSC ,
rms
GSC kI

157 current constraint.

158 3.4. Optimization Method
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159 To solve such nonlinear and non-convex problems like Strategy C and Strategy B, Particle Swarm 

160 Optimization (PSO) algorithm is rather suitable. Particle Swarm Optimization was introduced by Eberhart 

161 and Kennedy originally according to swarm intelligence [28]. In PSO, each d-dimensional particle xi is a 

162 possible solution. The particles collaborate as a population to reach a collective goal, usually to minimize a 

163 function f. 

164 In PSO, a group of particles is randomly generated as initialization firstly. And then every particle is 

165 evaluated by calculating its fitness value using function f, thus the personal best position (pbest) and global 

166 best position (gbest) will be found. The velocity and position of each particle is updated according to pbest 

167 and gbest, like the formula shows below [29]:

168                                              (16)1
1 1 2 2( ) ( )k k k k k k

i i i i iv v c r pbest x c r gbest x     

169                                                                           (17)1 1k k k
i i ix v x  

170 Where  and  are the velocity and position of particle i at k-iteration,  and  are acceleration k
iv k

ix 1c 2c

171 coefficients,  and  are random numbers between 0 and 1,  is the personal best position of particle 1r 2r k
ipbest

172 i at k-iteration,  is the global best position at k-iteration. After the updating of velocity and position, kgbest

173 a new generation of particles is generated. Repeat the work until the number of iterations reaches the set 

174 value or the change of gbest in N iterations is less than M (the value of N and M is set by users). 

175 Fig.3 is the PSO algorithm flow chart with the objective function and constraints of Strategy C shown 

176 inside it. Formula (10) is set as the objective function, and formula (11)-(15) are the constraints. The reactive 

177 power reference given by power system  is the input of the entire program, more specifically,  is ref
WFQ ref

WFQ

178 put in as a part of the WF reactive power constraint as formula (13) shows. After times of iterations, the 

179 reactive power reference of each WT  is found out at the end of PSO program.,
ref
WT kQ
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180

Start

Initial particle 
population，k=1

Calculate the fitness 
value of each 

particle

Get  pbest、gbest

k=Kmax or 
the change of gbest in 
250 iterations is less 

than        .

End

Y

N

Update the 
velocity and 

particle position 

PSO main 
function

Fitness function

Objective function: 
total loss of WF (10)

Constraints:

1010

maxk k

1k k 

1k 

Power flow balance 
limits (11,12)

WF  reactive power 
constraint (13)

Bus voltage constraint 
(14)

GSC current 
constraint (15)

ref
WFQ

,
ref

WT kQ

Put in:

Put out:

181 Fig.3. PSO algorithm flow chart

182 4. Case Study

183 In this section, a wind farm with 25 PMSG WTs is chosen for the case studies. The WTs are arranged 

184 in 5 rows and 5 columns like Fig.4 shows. The 5 MW NREL WT is chosen as the WT in the simulation 

185 wind farm, its parameters are shown in Table 1. The distance between each WT is 882 m, and the parameters 

186 of the cables is given by Table 2. Considering the different load of each cable, the cables between row 1 and 

187 row 3 use the 95 mm2 XLPE-Cu, the cables between row 3 and row 5 use the 150 mm2 XLPE-Cu, the 

188 cables between row 5 and PCC use the 240 mm2 XLPE-Cu. 

189 This paper mainly focus on the dispatch of reactive power, so the traditional MPPT control strategy 

190 for each WT is chosen as the active power dispatch. Considering the wake effect of WF, the active power 

191 of each WT is calculated by the Jensen Model. 

file:///D:/360Downloads/Software/Youdao/Dict/7.5.2.0/resultui/dict/%3Fkeyword=chart
file:///D:/360Downloads/Software/Youdao/Dict/7.5.2.0/resultui/dict/%3Fkeyword=distance
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Infinite
Bus Bar

193 Fig.4. The layout of the wind farm

194 Table 1 Parameters of Wind Turbine [30]

Parameter 5 MW NREL Wind Turbine
Cut-in, Rated, Cut-out Wind Speed 4 m/s, 11.4 m/s, 25m/s 

Rotor, Hub Diameter 126 m, 3m
Rated Power 5 MW

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm

195 Table 2 Parameters of Cable [31]

Cables’ position Cross section
(mm2)

Resistance
(Ω/km)

Capacitance
(μF/km)

Inductance
(mH/km)

row 1 - 3 95 0.1842 0.18 0.44
row 3 - 5 150 0.1167 0.21 0.41

row 5 - PCC 240 0.0729 0.24 0.38

196 4.1. Scenario 1: Simulation at different with wind velocity=10 m/s, wind direction=270°ref
WFQ

197 In this scenario, the velocity and direction of wind are set to 10 m/s and 270°. The active power of 

198 each WT captured from wind is show in Fig.5. 
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200 Fig.5. The active power of WTs captured from wind                   Fig.6. The total power loss of WF using each strategy at 

201 different ref
WFQ

202 Fig.6. shows the total power loss of WF using each strategy at different . It is obvious that Strategy ref
WFQ

203 C always gets the lowest total loss, while Strategy B gets the highest. The reason is that the target of Strategy 

204 B is minimizing the loss of cables and transformers, which may cause the rising of the loss inside WTs, so 

205 the total loss of WF will be bigger. As the figure shows, the bigger the absolute value of , the higher ref
WFQ

206 difference between each Strategy. Because when , the  tends to 0, while the 0ref
WFQ  , ( 1,..., 25)ref

WT kQ k 

207 absolute value of  rising, the difference of  becomes obvious, so the difference of total power loss ref
WFQ ,

ref
WT kQ

208 of WF also becomes significant.

209 4.2. Scenario 2: Simulation at different wind velocity with , wind direction=270°0.2ref
WFQ 

210 In this scenario, the wind direction is set to 270°, and . At this direction, the wind speed 0.2ref
WFQ 

211 at each column is equal, and Fig.7 shows the active power captured by WTs at each column. 

212 When the wind velocity is lower than 4m/s, every WT’s active power generation is 0, because 4m/s is 

213 the cut-in wind speed of WT. when the wind velocity is higher than 14m/s, every WT’s active power 

214 generation is 5 MW, because the rate active power of WT is 5 MW. Therefore, the strategies are compared 

215 at different Wind Velocities within the range of 4 m/s to 14 m/s. And the total power loss of wind farm using 

216 each strategy under Scenario 2 is show in Fig.8.
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218 Fig.7. Active power of WTs in each column at 270°  
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220 Fig.8. The total power loss of WF using each strategy and the loss reduction at different wind velocity

221 In Fig.8, it is hard to identify the difference of these strategies, so the reduction of the total power loss 

222 of WF is made. Strategy A-C means the result of the total loss got by Strategy A minus that got by Strategy 

223 C, and Strategy B-C has the similar meaning. As shown in Fig. 8, the loss reductions after 14 m/s remains 

224 unchanged. Because when the wind speed is higher than 14 m / s, the active power generation of each WT 

225 is 5 MW, so the results given by each strategy no longer change with the wind velocity. And the loss 

226 reduction is always positive, which means that strategy C gets lower total power loss than the other two 

227 strategies at each wind velocity. 

228 4.3. Scenario 3: Simulation at different wind directions with wind velocity =10 m/s, 0.2ref
WFQ 

229 In this scenario, the wind velocity is set to 10 m/s, and . Fig.9 shows the total active power 0.2ref
WFQ 

230 of WF at different directions. 
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232 Fig.9. Active power of WF at different wind directions           Fig.10. The total power loss of WF using each strategy and the loss 

233 reduction at different wind direction

234 In Fig.9, the active power of WF decreases sharply at four directions of 0°, 90°,180°and 270°, 

235 because at these directions, the wake effect is the strongest, the active power captured from wind is the 

236 lowest at these four directions. As the wind farm is square, Fig.9 is similar in quarters. The strategies are 

237 compared at different wind direction from 0°to 360°. And the total power loss of wind farm using each 

238 strategy under Scenario 3 is show in Fig.10.

239 As we can see in Fig.10, the total power loss decreases sharply at four directions of 0°, 90°,180°

240 and 270° ,  which is similar the Fig.8, that’s because at these directions, the total active power the WF 

241 captured from the wind is very low, thus the total power loss is low. And among these four directions, the 

242 power loss is the highest at 270°, because at this direction, the WTs far from PCC generate more active 

243 power, so the losses on the cables increase. In Fig.10, it is hard to identify the difference of these strategies, 

244 so the reduction of the total power loss of WF is made. As Fig.10 shows, the loss reductions are positive, 

245 thus Strategy C always gets lower power loss at every wind directions.

246 4.4. Scenario 4: Simulation at different wind velocities and different wind directions, 0.2ref
WFQ 

247 In this scenario, set . The strategies are compared at different wind velocities and different 0.2ref
WFQ 

248 wind directions. Fig.11 (a) shows the total loss of WF at  using Strategy A, B and C, and the 0.2ref
WFQ 

249 reduction of Strategy A and C is shown in Fig.11 (b), the reduction of Strategy B and C is shown in Fig.11 

250 (c). In Fig.11 (a), the total loss of WF rises with wind velocity, and then stays the same when the wind 

251 veloctiy exceeds about 14 m/s. But this phenomenon will be earlier when the wind direction is not 0°, 90°, 

252 180° or 270°, the total loss of WF stays the same when the Wind Veloctiy exceeds about 12 m/s. Because 
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253 in these directions, the wake effect is not that strong, so there are four gaps in the surface. And the four 

254 ridges in Fig.11 (b) and (c) can be explained, too. As the reuctions are all positive, it can be ensured that 

255 Strategy C will always be the best in any conditions with three datas (wind velocity, wind direction, ).ref
WFQ

256

257 (a) The total power loss of WF using differnt strategies at 0.2ref
WFQ 

258       

259 (b) The loss reduction of Strategy A-C                                             (c) The loss reduction of Strategy B-C

260 Fig.11. The total power loss of WF and loss reductuion using different strategies at different wind velocities and directions

261 4.5. Scenario 5: Simulation in a year at different ref
WFQ

262 To prove the superiority of strategy C in practical application, these three strategies are compared in 

263 the case of a year’s actual wind record at differnent . The wind velocity and wind direction are sampled ref
WFQ

264 every 3 hours, totally 2920 data, and the wind rose of a year is shown in Fig.12. Table 3 shows the total loss 

265 of a year using Strategy A,  Strategy B, Strategy C, and the loss reductions as Strategy A-C and Strategy 

266 B-C are also calculated.
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267
268 Fig.12. Wind rose of a year

269 Table 3 Total power loss of a year using different strategies at each ref
WFQ

(p.u.)ref
WFQ Strategy A (GWh) Strategy B (GWh) Strategy C (GWh) A-C (MWh) B-C (MWh)

-0.33 13.9015 13.9020 13.8725 29.0014 29.5043
-0.3 13.7639 13.7677 13.7395 24.3834 28.1642
-0.2 13.3964 13.3975 13.3851 11.2283 12.3806
-0.1 13.1723 13.1723 13.1691 3.2110 3.2450

0 13.0942 13.0942 13.0941 0.0821 0.0402
0.1 13.1637 13.1661 13.1616 2.0840 4.5000
0.2 13.3787 13.3845 13.3695 9.1309 14.9987
0.3 13.7361 13.7428 13.7148 21.2349 27.9427
0.33 13.8704 13.8737 13.8443 26.1514 29.4761

270 It can be seen from Table 3 that the total loss of a year using different strategies always obeys the 

271 sequence: Strategy B > Strategy A > Strategy C at every  . And the total loss of a year using different ref
WFQ

272 strategies are all the lowest at  , and rise with the increasing of the absolute value of  . As the 0ref
WFQ  ref

WFQ

273 results in Scenario 2 and Scenario 3 show, the total loss of WF using different strategies always obeys the 

274 sequence: Strategy B > Strategy A > Strategy C, no matter at which wind velocity or wind direction. The 

275 total loss of a year can be seen as a cumulative result of losses of WF at many different wind velocities and 

276 wind directions. Therefore, it is not hard to explain the result shows in Table 1 that the total loss of a year 

277 using Strategy B is the highest and that of Strategy C is the lowest.

278 With the calculation and comparison of total power loss using different strategies under different 

279 conditions, the highest loss reduction of A-C appears at wind velocity=13m/s, wind direction=90° , 

280 , and the highest loss reduction of B-C appears at wind velocity=12m/s, wind direction=180°, 0.33ref
WFQ  

281 . Assuming that the wind farm is working for a year under these conditions, the power loss and 0.33ref
WFQ 
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282 economic loss of WF using different strategies is calculated in Table 4. And the economic loss is calculated 

283 according to the spot price in Denmark in 2017 [32].
284 Table 4 Max loss reduction conditions

Condition W=13 m/s , D=90°; 0.33ref
WFQ   W=12 m/s , D=180°; 0.33ref

WFQ 

Strategy A C A-C B C B-C

Loss of  WTs  (GWh) 9.8532 9.7891 0.0641 7.8679 7.7371 0.1307
Loss of transformers and cables  

(GWh) 9.7937 9.6665 0.1272 7.7649 7.8016 -0.0366

Total loss of WF (GWh) 19.6469 19.4556 0.1914 15.6328 15.5387 0.0941

Economic loss (MDKK) 14.2202 14.0817 0.1385 11.3148 11.2467 0.0681

285 It is clear form Table 4 that power loss of WF using Strategy C is the lowest. Comparing with Strategy 

286 A, Strategy C saves a large amount of wind power of 0.1914 GWh, equivalent to 0.1385 MDKK. Comparing 

287 with Strategy B, Strategy C saves a large amount of wind power of 0.0941 GWh, equivalent to 0.0681 

288 MDKK. Because Strategy A is the traditional proportional strategy, in which the power loss is not considered, 

289 so the loss of WT and the loss of transformers and cables are both higher than that of Strategy C. Since 

290 Strategy B aims to minimize the loss of transformers and cables, so the loss of transformers and cables is 

291 lower than that of Strategy C, but its loss of WT is higher than that of Strategy C.

292 4.6. Scenario 6: Simulation in a year

293 To simulate the values of  in a year, a normal distribution function is used to generate 2920 data. ref
WFQ

294 The values of  and the number of times each value appears is corresponded in Fig.13. So the 2920 ref
WFQ

295 sample points (each point with three values of wind velocity, wind direction, ) are used as the status ref
WFQ

296 record of WF in a whole year sampled every 3 hours. And the total power losses and economic loss of WF 

297 in a whole year using different strategies are list in Table 5. The economic losses of a year are also calculated 

298 according to the spot price in Denmark in 2017 [32].

299

300 Fig.13. A year’s ref
WFQ
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301 Table 5 Total power loss of a year using different strategies

Strategy Strategy A Strategy B Strategy C A-C B-C

Power loss (GWh) 13.2727 13.2743 13.2659 0.0067 0.0083

Economic loss (MDKK) 22.8854 22.8881 22.8738 0.0116 0.0144

302 It is clear form Table 5 that that the total loss of a year using Strategy C is the lowest. Comparing with 

303 Strategy A and Strategy B, Strategy C saves a large amount of wind power of 0.0067 GWh and 0.0083 GWh 

304 respectively. And Strategy C saves the money of 0.0116 MDKK and 0.0144 MDKK in a year compared to 

305 Strategy A and Strategy B.

306 5. Conclusions and Future Works

307 This paper proposed an optimal reactive power dispatch strategy aiming to minimize the total loss of 

308 wind farm.  With this method, reactive power demand of grid is distributed to each wind turbine, reducing 

309 the capital investment of reactive power compensation equipment. The optimized reactive power dispatch 

310 strategy reduces the power loss of the wind farm, increasing the income of the wind farm. Compared with 

311 the existing literature, the novelty of the paper is that the objective function contains not only the loss of 

312 transmission system but also the loss of wind turbines. And PSO algorithm is adopted to get the optimal 

313 reactive power reference of each WT, making the total loss smallest. Another two stategies are compared 

314 with the proposed strategy at different wind velocities, different wind directions and different WF reactive 

315 power references, and the result in the case studies proves that the propose strategy always gets lower power 

316 loss than the other two strategies. And the last simulation shows that the proposed strategy can save 0.0116 

317 MDKK and 0.0144 MDKK compared to the other two traditional strategies respectively. The proposed 

318 reactive power dispatch strategy can be used in the wind farm control center to make the wind farm more 

319 efficiency. In further study, the operating costs of WF will be considered in the reactive power dispatch 

320 strategy to make the wind farm operating at a higher output and a lower cost.
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Highlights:

(1) An optimal reactive power dispatch of a full-scale converter based wind farm is 

proposed to minimize the power loss of wind farm.

(2) The power losses of wind turbines and transmission system of wind farm are both 

considered.

(3) Compared to the traditional reactive power dispatch strategy, the proposed strategy 

can reduce the power loss of 0.98% in the most effective case. 


