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ABSTRACT

In this paper, a method for estimating the autoregressive pa-
rameters from a signal segment is proposed. The method is
based on a deep neural network (DNN) in combination with
the classical Levinson-Durbin recursion (LDR). The DNN
acts as a pre-processor for the LDR and can be trained on dif-
ferent metrics commonly encountered in speech processing
using a generalized analysis-by-synthesis (GABS) structure
where the LDR acts as the encoder. Unlike end-to-end data-
driven approaches, this structure ensures that the DNN is
easy to train and initialize since the DNN only has to learn a
simple mapping. The results confirm this and show that the
proposed method produces an AR-spectrum that efficiently
represents the speech spectrum in terms of the Itakura-Saito
divergence, Kullback-Leibler divergence, log-spectral distor-
tion, and speech distortion.

Index Terms— Auto-regressive model, Levinson-Durbin
recursion, DNN, generalized analysis-by-synthesis.

1. INTRODUCTION

The AR coefficients play an important role in many speech
applications such as speech recognition [1], coding [2, 3],
and enhancement [4, 5]. Therefore, the estimation of the
AR parameters from an observed signal segment has been a
classical signal processing problem, and many different es-
timators have been proposed over many decades. The clas-
sical way of estimating the AR-parameters is to solve the
Yule-Walker equations [6, 7] which can be performed effi-
ciently using the Levinson-Durbin recursion (LDR) [8, 9].
This works extremely well for unvoiced speech which can
be accurately modelled using an autoregressive process. For
voiced speech, however, the excitation signal does not resem-
ble a white, Gaussian excitation signal as in the autoregressive
process, but is much more accurately modelled by an impulse
train [3]. As a consequence of this, many alternative ways
of estimating the AR-parameters have been proposed based
on the prior knowledge on the power spectral density (PSD)
[10, 11, 5] or the excitation signal [3, 12, 13]. For example,
El-Jaroudi and Makhoul proposed in [10] the discrete all-pole

(DAP) approach in which the AR-parameters are estimated
by minimising the Itakura-Saito (IS) divergence for a discrete
set of points, leading to better performance for voiced speech.
Based on a harmonic residual assumption, Murthi and Rao
[11] proposed an AR estimator to match the envelope of the
speech spectrum based on the idea of minimum variance dis-
tortionless response (MVDR) which gives a robust estima-
tion of the AR-parameters for both voiced and unvoiced sig-
nals. The prior information that the excitation signal of voiced
speech is similar to a periodic impulse train has also been uti-
lized in sparse linear predictive coding (LPC) [3] in which the
AR-parameters are also modelled as being sparse.

In addition to classical signal processing methods, data-
driven approaches to estimating the AR-parameters have also
been proposed [5, 14]. One recent example of this is the
part-defined auto-encoder (PAE) [5] in which the analysis-
by-synthesis (ABS) strategy [15] is combined with an auto-
encoder [16]. In this approach, a DNN is trained to learn
the mapping from the raw data to the reflection coefficients
which can easily be translated into the corresponding AR-
parameters. While this approach is conceptually simple, the
DNN is hard to train and initialize since the mapping from
the raw data to the reflection coefficients is complicated and
non-linear.

In this paper, we instead propose to use a DNN as a
pre-processor for a classical AR-parameter estimator. Specif-
ically, the pre-processor converts the raw data into autocor-
relation values which are then converted to AR-parameter
estimates using LDR. The DNN is designed with fixed input
and output layers that makes the training and initialization
of the DNN much easier than in the PAE method since the
DNN is only responsible for learning a simple mapping.
The DNN can be optimised for different metrics such as
the Itakura-Saito divergence or the log-spectral distortion
[17]. Interestingly, the approach also resembles the gener-
alized ABS (GABS) method [18] where the modifier is the
DNN-based pre-processor, and the decoder and encoder are
the LDR and the computation of the AR-spectrum from the
AR-parameters, respectively.

The paper is organized as follows: in Sec. 2 we describe
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Fig. 1. The training stage of the DNN-based AR estimator.

the classical AR estimator based on the LDR, the PAE, and
the proposed AR-estimator with a DNN-based pre-processor.
These methods are evaluated and compared in Sec. 3. Finally,
the conclusions are given in Sec. 4.

2. AR PARAMETER ESTIMATION

As alluded to in the introduction, we here augment the classi-
cal way of estimating AR parameters with a DNN-based pre-
processor to obtain an efficient representation of the speech
spectrum. Efficient here relates to the metric (e.g., Itakura-
Saito or log-spectral distortion) used to measure the distance
between the estimated AR-spectrum φ̂X and the periodogram
φX pertaining to a signal segment x. Fig. 1 shows how the
DNN-based pre-processor is trained on one or several of these
metrics to obtain such an efficient representation. Before we
go into more details on how the pre-processor is trained, how-
ever, we first describe classical AR parameter estimation.

2.1. Classical AR Parameter Estimation

A p’th order autoregressive (AR) process x(n) is a stationary
random signal given by

x(n) = −
p∑
i=1

aix(n− i) + e(n) (1)

where ai is the i’th AR parameter and e(n) is a white Gaus-
sian excitation signal with variance σ2. The power spectral
density (PSD) of such an AR-process is given by

φ̂X(k) =
σ2

|1 +
∑p
i=1 aie−jωki|2

, k = 0, . . . , N − 1 (2)

where ωk = 2πk/N . An estimate of the PSD can be obtained
by replacing the true AR parameters with estimated ones. The
classical way of estimating these AR parameters from a signal
segment

x =
[
x(0) x(1) · · · x(N − 1)

]T
(3)

is to compute the parameters that minimize the power of the
excitation signal, i.e.,

(â, σ̂2) = argmin
a,σ2

N−1∑
n=0

e2(n) (4)

where
a =

[
a1 a2 · · · ap

]T
. (5)

By assuming that the observed signal is 0 outside the obser-
vation window, i.e., that x(n) = 0 for n < 0 ∨ n ≥ N ,
minimising (4) leads to the estimate

â = −R̂
−1

X r̂X (6)

where R̂X and r̂X are the estimated covariance matrix and
vector given by

r̂X =
[
r̂X(1) · · · r̂X(p)

]T
(7)

R̂X =

 r̂X(0) · · · r̂X(p− 1)
...

. . .
...

r̂X(p− 1) · · · r̂X(0)

 (8)

r̂X(m) =
1

N

N−1−m∑
n=0

x(n+m)x(n) , (9)

respectively. The estimate of the excitation variance σ2 is
given by

σ̂2 = r̂X(0) + r̂TX â . (10)

Since R̂X is a Toeplitz matrix, the estimate of â can be com-
puted very efficiently using the Levinson-Durbin recursion
(LDR) [19]. Moreover, the estimate of â will guarantee that
the all-pole filter model in (1) is stable.

2.2. Part-defined Auto-encoder (PAE)

While estimating the AR spectrum as described above works
well for unvoiced speech, it does not work well for voiced
speech. The primary reason for this is that the excitation sig-
nal for voiced speech is an impulse train instead of a white
Gaussian signal so obtaining the AR parameter estimates by
minimising the two-norm typically results in an AR spectrum
with a too sharp contour [3]. Consequently, many methods
have been proposed to solve this problem such as [10, 11, 3].
An alternative to these classical methods is to use a purely
data-driven approach for computing the AR-spectrum. Al-
though originally introduced for speech enhancement, the re-
cently proposed PAE in [5] can easily be modified to be an ex-
ample of such a data-driven approach. For the modified PAE,
the functions by training a DNN convert the log-periodogram
of a signal segment x into a set of p reflection coefficients (to
ensure stability). Then the reflection coefficients can easily be
translated into an AR-spectrum. In [5], the DNN was trained
to minimize the log-spectral distortion, but we here use other
metrics as described in Table 1.



Table 1. Metrics used in the training and test
Metric Formula

LSD
1

K

∑K
k=1

[
log10

φX(k)

φ̂X(k)

]2
IS

1

K

∑K
k=1

[
φX(k)

φ̂X(k)
− ln

φX(k)

φ̂X(k)
− 1

]

KL
1

K

∑K
k=1

[
φX(k)ln

φX(k)

φ̂X(k)
− φX(k) + φ̂X(k)

]

β
1

Kβ(β − 1)

K∑
k=1[

φβX(k) + (β − 1)φ̂βX(k)− βφβX(k)φ̂β−1
X (k)

]
SD

1

K

∑K
k=1

[
φX(k)− φ̂X(k)

]2
2.3. AR Parameter Estimation with pre-processing

The main problem with PAE is that the DNN has to learn the
complicated and non-linear mapping from the log-periodogram
to the reflection coefficients. This requires a lot of training
data and a good initialization. To make this mapping much
simpler, a better approach might be to combine the classical
way of computing the AR parameters with a DNN-based pre-
processor as illustrated in Fig. 1. This structure is very simi-
lar to the generalized analysis-by-synthesis (GABS) structure
[18], and the main idea is to modify the signal so that the
classical LDR produces an AR-spectrum minimising the dis-
tance to the periodogram in terms of one of the metrics listed
in Table 1. Specifically, we perform the pre-processing with
a DNN with the structure

ϕX = log10(φX) (11)
ϕY = fθ(ϕX) (12)

r̂X(m) =
1

N

N−1∑
k=0

10ϕY (k)ejωkm (13)

for m = 0, 1, . . . , p where θ contains the DNN parameters
and

φX =
[
φX(0) · · · φX(bN/2c)

]T
(14)

ϕY =
[
ϕY (0) · · · ϕY (bN/2c)

]T
(15)

ϕY (k) = ϕY (N − k) . (16)

It is important to note that the fixed input and output layers of
the DNN are selected so that the mapping fθ(·) is extremely
simple. For example, setting it to unity so that ϕY = ϕX
asymptotically gives the same estimates of the AR parame-
ters as the classical AR parameter estimator described in Sec.
2.1. This also suggests that setting the mapping to unity is a
good initialization for training the parameters of the mapping
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â,σ̂2

performance

x

r̂X

r̂X(0)

φ̂X

Fig. 2. The test stage of the DNN-based AR estimator.

fθ(·). Finally, we also remark that fθ(·) operates on the log-
spectrum since this has proven to work better than operating
directly on the spectra [20].

3. SYSTEM EVALUATION AND COMPARISON

3.1. Data set and the proposed DNN structure

All experiments were conducted on speech data from the
TIMIT corpus [21] which we down-sampled to 8 kHz. These
signals were segmented intoN = 256 samples long segments
with 50% overlap and windowed by a sine window [22]. 600
randomly selected utterances were used for the training of
the DNNs, and another 40 randomly selected utterances were
selected for testing the data-driven methods as well as the tra-
ditional LDR and the DAP approach [10]. For both the PAE
and the DNN-based pre-processor, the DNNs were trained
by optimising different metrics. Specificially, DNNs were
trained for the LSD, IS divergence, KL divergence, and beta
divergence with β = 0.5. These metrics are listed in Table 1.

The performance was evaluated as illustrated in Fig. 2.
For the LSD, the IS divergence, and the KL-divergence, the
training and performance metrics were the same. For the last
case, however, the training was performed using the beta di-
vergence with β = 0.5 and the performance evaluated using
the speech distortion (SD) metric.

An LPC order of p = 12 was used for both training and
testing. The DAP and LDR were run on MATLAB 2018b
while the other methods were run in Pytorch [23]. All the
DNN-based methods were trained by Adam [24]. The map-
ping fθ(·) in the DNN-based pre-processor had three hidden
fully connected layers, each consisting of 2048 units and each
having a rectified linear activation unit (Relu) [25]. For a fair
comparison, the PAE method had the same three hidden lay-
ers which were proceded by a fourth hidden fully connected
layer responsible for mapping ϕY into the reflection coeffi-
cients. This fourth layer had 129 units and produces the re-
flection coefficients using a tanh activation function.

For each metric, DNNs were trained with different ini-
tial conditions, drop-out rates, learning rates, and biases. For
the method referred to as DNNs, the initial condition was the
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Fig. 3. The performance of different AR estimators illustrated by the mean and 95% confidence values. For the IS divergence,
KL divergence, and the LSD, the training and testing was evaluated on the same metric. In the last case, the beta-divergence
with β = 0.5 was used for training and the speech distortion for testing.

identity matrices for the weights, the drop-out rate was zero,
the learning rate was 2 · 10−7, the three hidden layers had
the bias parameters 15, 0, and 0, respectively, and the output
layer had a bias parameter of -15. For the methods referred
to as DNN and DNN1, the default in Pytorch was used for
the initialization of the weights and the bias parameters, the
learning rate was 2 · 10−5, and the drop-out rates were 0.01
and 0.2, respectively.

3.2. Results

Fig. 3 shows the mean performance of different methods with
95 % confidence intervals. As described earlier, the train-
ing and test metrics were the same, except for the last case
were the beta divergence with β = 0.5 was used for training
and the speech distortion for testing. For the case of the IS-
divergence, only the PAE method is significantly worse than
the remaining methods which more or less have the same per-
formance. Since DAP and asymptotically LDR minimize the
IS divergence, it is hardly surprising that no other method
performs better than these methods. The DNN-based meth-
ods seem to have the same or a slightly worse performance
which is encouraging since this suggests that over-fitting has
been avoided in the training. On the other hand, the over-
fitting might explain why the PAE has a significantly worse
performance than the rest of the methods. For both the KL-
divergence and the LSD, all data-driven methods significantly
outperform the classical LDR and DAP approaches. This
shows that the idea of implementing a pre-processor can po-
tentially lead to improvements when other performance met-
rics than the IS distortion is used. In the last case where dif-
ferent metrics are used for training and testing, all methods
seem to have the same performance, except for the PAE which

seems to be slightly worse.

4. CONCLUSIONS

In this paper, a classical AR estimator combined with a
DNN-based pre-processor is proposed and compared to a
completely data-driven AR estimator called PAE as well as
the classical AR estimators LDR and DAP. The main moti-
vation for using the proposed method is that the DNN-based
pre-processor is much easier to initialise and train than PAE
in which the DNN has to learn the complicated mapping
from the raw data to the reflection coefficients. The results
supported that including such a DNN-based pre-processor in
a classical AR estimator is more robust to over-fitting and
initialization than PAE and can potentially lead to perfor-
mance improvements for other metrics than the Itakura-Saito
distortion which the classical AR estimators LDR and DAP
are (asymptotically) optimised for.
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