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UAV Visual Servoing Navigation in Sparsely
Populated Environments

Petar Durdevic1, Daniel Ortiz-Arroyo, Shaobao Li, and Zhenyu Yang

Aalborg University, Esbjerg DK-6700, Denmark,
pdl@et.aau.dk,

WWW home page: https://vbn.aau.dk/en/persons/125324

Abstract. This paper presents a novel approach based on deep neu-
ral networks for autonomous navigation of a quad-copter UAV in a
sparsely populated environment. Images from the video camera mounted
on the UAV are split, emulating a compounded eye, and processed by
deep neural networks that calculate the probability that each image con-
tains a wind turbine object. Then, these probabilities are used as inputs
to a vision servoing system that controls the drone’s navigation move-
ments. Our experiments show that our approach produces relatively sta-
ble movements in the UAV, allowing it to find and navigate autonomously
towards a wind turbine.

Keywords: Quad-copter UAV, Control, Visual Servoing, Compounded
Eye, Artificial Intelligence, Vision, Monocular Camera

1 Introduction

The increasing demand of energy and the threat of climate change is continuously
expanding the production of energy with the use of green technologies. One of
the most effective green technologies for the production of electricity is wind
turbines.

Wind turbine technologies delivers energy that is cleaner than fossil fuels,
but they are not completely CO2 neutral given that their end-of-service life
span must be considered in the whole life-cycle analysis of energy production.
One key factor in keeping the wind turbines operational for a longer time is
proportioning them a proper maintenance. This requires continuous monitoring
of the wind turbine’s state. Currently, this task is performed using a diversity of
methods such as: drone-based inspections, ground-based camera inspections and
manual inspections, each with a market share of 7%, 10% and 83%, respectively
Jamieson and Hassan (2011). Eventually manual inspections may no longer be
able to keep up with the increase in demand, and thus automating this process
to a high degree is beneficial.

Drones and other unmanned autonomous vehicles (UAVs) have played an
increasingly important role in automating inspections, due to their flexibility and
low cost. This trend started as early as 1980s as reported in Lattanzi and Miller
(2017). Currently, drones are used for a variety of inspection tasks. For instance,
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to inspect river channels for pollution (Rusnák et al (2018); Flener et al (2013)),
detecting fractures in bridges and buildings (Rakha and Gorodetsky (2018)),
detecting faults in high voltage power transmission lines (Day (2017)), finding
defects and leakages in pipelines or building facade defects (Lattanzi and Miller
(2017); Shakmak and Al-Habaibeh (2015); Morgenthal and Hallermann (2014)),
and to inspect the state of the blades on on-shore and off-shore wind turbines
(Wang and Zhang (2017); Stokkeland et al (2015); Nikolov and Madsen (2017);
Moolan-Feroze et al (2019)), among other applications. Many of these inspection
tasks are performed by an operator who manually controls the movements of a
drone equipped with a camera or other sensory equipment. However, performing
autonomous inspections with an UAV, still remains a challenge. To accomplish
this task, one of the main features needed in a drone is the use of computer vision
techniques. Latest advancements in Deep Neural Networks (DNNs) now allow
drones to perform a variety of common computer vision tasks such as recognizing
objects from captured images, performing localization, image segmentation and
motion tracking.

One application of image-based servoing is in wind turbine inspection. In
this application, an autonomous drone equipped with a high resolution camera
may be used to reducing the burden on the operator for continuously keeping
track of drone’s position and trajectory. Instead, the operator may focus on
capturing the images required for the inspection. The ultimate goal is to reduce
overall inspection time and cost by fully automating the inspection process with
a drone.

The DNNs used in computer vision employ a stack of convolutional networks,
pooling layers, normalization and fully interconnected layers. Each of these layers
is designed to recognize from simple features such as lines and edges to contours
and other more complex forms, comprising these features.

The output of a computer vision system may be used as one of the multiple
inputs that UAVs use to navigate autonomously. In visual servoing, the position
and orientation of a UAV is controlled using one or more visual features. These
features could be points, lines or other geometric shapes (Kanellakis and Niko-
lakopoulos (2017)). Visual servoing algorithms may be classified into position-
based visual servoing, image-based servoing or a hybrid of the two techniques,
Kanellakis and Nikolakopoulos (2017); Espiau et al (1992). Position-based ser-
voing requires a 3D model to be built of the target, so that its position could
be estimated from the image features. In image-based servoing the input to the
control system is computed from a 2D image space.

Nicolas Guenard (2008); Mondragón et al (2010); Ho and Chu (2013); Sa
et al (2014); Metni and Hamel (2007) used traditional pattern recognition tech-
niques in their vision systems such as feature detection algorithms for edges and
blobs. However, image based visual servoing in UAVs may be also implemented
with supervised machine learning techniques based on shallow or deep neural
networks as reported in Pomerleau (1989, 1991); Bojarski et al (2016); Giusti
et al (2016); Smolyanskiy et al (2017); Loquercio et al (2018); Drews et al (2018);
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Goldfain et al (2019); Drews et al (2019); Durdevic et al (2019).

Similar to the aforementioned approaches, we used image-based visual servo-
ing to navigate towards our target object. However, we do not use trails or blobs
to find our target. As Giusti et al (2016); Smolyanskiy et al (2017); Drews et al
(2019); Loquercio et al (2018) do, we use DNNs but our DNNs are pre-trained
to recognize not trails, but more complex objects such as wind turbines. The
challenge we face is the absence of clearly defined paths, as we wish to deploy
the UAV in an offshore environment where no clear landmarks may be found.
Instead we identify and localize the object within an image that we wish to
navigate towards and use this information for navigation.

Our system segments images, captured by a RGB camera mounted on the
UAV, into what we call the compounded eye, currently consisting of four seg-
ments. The DNNs analyze, in parallel, the four segments in which an image
has been segmented, to determine which segment has the highest probability for
containing a wind turbine. This data is constantly fed into the controller that
computes the yaw angle required to navigate towards the wind turbine, the for-
ward velocity of the vehicle and when to stop the vehicle to avoid colliding with
the wind turbine.

This paper is a continuation of our previous work in Durdevic et al (2019),
where the drone scanned the environment searching for a wind turbine using a
convolutional DNN and stopped if the wind turbine was detected in an image.
This was a successful experiment performed in a laboratory environment.

The contribution of this work is a visual navigation system that gives a UAV
the ability to navigate autonomously towards an object, in an environment with
no visible tracks nor landmarks, other than the object itself. To our knowledge,
no other research work reported in the literature uses this approach for image
based visual servoing. Our work is a step in the direction of implementing a fully
autonomous system for wind turbine inspection.

2 Perception-Based Navigation

The perception based navigation is a fusion of a DNN image recognition and
classical feedback control for navigation of a UAV, with the aim of localizing
an object in a sparse environment. Additionally to this, the output from the
DNN serves as a reference to the UAV’s outer loop feedback controller and to
control UAV’s yaw and forward movement. The control system is described in
the following.

2.1 Image Capturing and Processing (Compounded Eye)

An on-board camera R200 from Intel is used to capture images. This camera is
capable of capturing images with a resolution of 1080x1920x3 pixels at 30 fps,
where the image size is scaled to 454x454x3 pixels to create the four segments of
our compounded eye. Figure 1 shows an image collected during the experiment
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presented in this work. Using this image, the DNN calculated the probability
the upper left segment contained a wind turbine, triggering the Object Found
event.

𝑡𝑡1 𝑡𝑡2

𝑡𝑡3 𝑡𝑡4

Fig. 1. Segmentation of the image into 4 segments, each has a resolution of 227x227x3
pixels. The recognition of this image, produced the Object Found event in the ex-
periments presented in this paper.

Images form the on-board camera in the UAV are processed and segmented,
creating a vector that represents the compounded eye as [Ii, ti], where Ii are the
concatenated image pixels with size (227*227*3) and ti is the tag of the image.
The resulting vector size is 227*227*3+1=154588. The tags, t = [t1, t2, t3, t4]

represent the four segments:

[
t1 t2

t3 t4

]
. This vector is then sent to the Ground

Control Station (GCS), where it is unpacked and converted into images, with
sizes (227x227x3 pixels) and their corresponding tags. The amount of segments
is arbitrary and only limited by the camera’s resolution. Therefore, in the general
case, tags can be represented by t = [t1, t2, ..., tn]. The unpacked images are then
processed by a pretrained DNN.

2.2 Image Detection Using DNN

In this work a pre-trained DNN namely AlexNet was used (Krizhevsky et al
(2012)). The DNN was retrained using transfer leaning to recognize wind tur-
bines.

This same network was used in our previous work, Durdevic et al (2019),
where the last layer consisted of two outputs [windturbine, environment]. In
this work it was extended to include four outputs representing the following
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classes, [curtain, net, wall, windturbine]. These classes were chosen as these
are the views that the UAV most often will face in our lab environment, where
the class [windturbine] is used for visual servoing. The network was retrained
using a total of 3036 images collected in our lab using a still camera (Canon
5ds). 70% of the images were used for training and 30% for validation. Images
were preprocessed in memory by applying synthetic transformations, such as
reflexions and translations with the goal of increasing the number of training
images and to avoid over-fitting. A low learning rate of 0.0001 was used to train
the first layers. For the last layers, a fastest weight learning rate of 20 was used
so that they could quickly learn the main new features that characterize a wind
turbine.

2.3 Visual Servoing

The perception based Visual Servoing controller is based on the hypothesis that
when the wind turbine appears in one of the segments, the probability computed
by the DNN will be largest in the corresponding segment. This probability can
thus be used to adjust the orientation of the UAV, such that it has the desired
orientation, i.e. the center most segments to have the largest probability of seeing
the object.

If we simply this problem to two segments in the horizontal plane, we will
get a left and right segments, whose center point is located in the Cartesian
coordinates, denoted as [Sl = [xl, yl], Sr = [xr, yr]]. The image in each of these
segments, has a probability of containing the object in question, represented by
the two probabilities [P (Sl), P (Sr)].

The process to compute these probabilities is not straight forward, as each
segment consists of a matrix of pixels, each representing an integer value with
eight bits. One way of computing this is using DNN. The final output of our
model in the visual servoing system is to use a DNN to perform inferences and
produce a probability, i.e. the probability that a wind turbine appears in either,
segment Sl or Sr. The next step is to link the probabilities [P (Sl), P (Sr)] to an
angle, ψ, which is used as a reference to our feedback loop. In the classical sense
this could be done using the atan2 function, as described in equation 1.

ψref = atan2(yS − yUAV , xS − xUAV ) (1)

Where [xS , yS ] is the segment’s center location and [xUAV , yUAV ] is the
UAV’s camera focal point in the Cartesian coordinate system and ψref is the
reference angle. This method works well if we have a deterministic system, but
in our case [P (Sl), P (Sr)] might be change randomly and not being necessary 0
in the case of not ’seeing a wind turbine’.

In this work we propose an alternative method, where the probabilities of the
two segments are subtracted as shown in equation 2, we call this the augmented
angle ψ̂. The three resulting yaw angle ψ cases are shown in equation 3.

ψ̂ = P (Sl)− P (Sr) (2)
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ψ̂ → 1 for P (Sl) > P (Sr)

ψ̂ → (−1) for P (Sl) < P (Sr)

ψ̂ = 0 for P (Sl) = P (Sr)

(3)

The augmented angle ψ̂ is used as the reference value, i.e. (ψref ), for the
outer loop controller as shown in figure 5.

Fig. 2. Block diagram of the visual servoing, which outputs the reference for the outer
loop’s yaw [ψ] control.

As the probabilities P (Sl), P (Sr) have significant fluctuations in the imple-
mentations, a low pass filter is added. The structure of the Visual Servoing is
shown in figure 2. Figure 3, shows the raw ψ̂ and the filtered ψ̂, which is referred
to as ψref in equation 4.

ψref = ψ̂ · 1

τs+ 1
(4)

This problem can increase if more segments are included, as the problem is
reformulated to sum the probabilities on either side of the image, see equation
6. Where (·)n indicates nth segment.

ψ̂ =
∑

P (xnl , y
n
l )−

∑
P (xnr , y

n
r ) (5)

In broader terms our approach increases the level of autonomy, since the
DNN is used to compute the trajectory of the UAV.

Practical Approach of This Paper The visual servoing controller uses the
DNN’s probabilities associated to the windturbine class. In this work we used
four segments, where the DNNs calculate the probabilities for segments 3 and 4,
i.e. the segments with the tags [t3, t4] which have the corresponding probabilities
[P3, P4], and use them to compute the yaw reference [ψref ], as shown in figure
2. The yaw reference is used to compute the error signal for the yaw controller,
as shown in figure 5.
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Fig. 3. Raw and filtered ψ̂, data stems from the experiment, from Found state to
Land state, refer to figure 9.

2.4 Perception Based Collision Avoidance and Forward Movement
Control

The perception based collision avoidance is based on the hypothesis that the
closer the UAV is to the object, the larger the sum of probabilities will be (see
equation (6)).

Psum =

q∑
i=1

Pi (6)

where q is the number of segments, (in this work four segments were used). A
threshold for the probability, P servt , is defined by the user. This is used to stop
the forward movement of the UAV. The forward movement of the UAV is equally
controlled using the sum of probabilities, where an increase of the sum is used
to decrease the forward velocity of the UAV.

The forward velocity v = ẋ, i.e. in the x direction as shown in figure 4, is
calculated as a function of the sum of probabilities of all segments multiplied by
a control parameter b and subtracted from the maximum forward velocity vmax,
see equation (7).

v = vmax − b ·
q∑
i=1

Pi (7)

ẋmax is defined by the user and depends on the maximally allowed velocity
for the UAV, the control parameter b is calculated based on equation 8.
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b = − vmax
P servt

(8)

Where vmax is the maximum allowable velocity set by the user.

Thus once a wind turbine is detected, the UAV starts navigating towards it
with a preset velocity, vmax. Then the Psum =

∑q
i=1 Pi is calculated and used to

reduce vmax. As the UAV moves nearer to the wind turbine, Psum will increase
since wind turbine’s apparent size will increase within the field of vision of the
camera, eventually reaching P servt . The designed control parameter in equation
8, will ensure that the two cases shown in equation 9 hold.

v =

{
> 0 for

∑q
i=1 Pi < P servt

= 0 for
∑q
i=1 Pi > P servt

(9)

As equation 8

Practical Approach of This Paper In the current implementation the for-
ward movement is controlled by the outer loop controller, which has xref as the
reference as seen in figure 5. The perception based forward movement controller
computes a position xref =

∫
v.

2.5 UAV Dynamics and Navigation Control

In this section, a navigation controller based on visual servoing will be designed
for the UAV using PID controllers. The coordinates of the UAV in the Euclidean
space is shown in Figure 4.

Fig. 4. Kinetic variables and coordinates describing the UAV’s dynamic.
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The dynamics of the UAV are modeled by a 6-DOF under-actuated nonlinear
system as follows (Dikmen et al (2009), Bolandi et al (2013), Choi and Ahn
(2015)):

mξ̈ = FRe3 −mge3, (10)

Iη̈ = τ − C(η, η̇)η̇. (11)

where ξ = [x, y, z]T are the translational positions of the UAV in the inertial
frame, η = [φ, θ, ψ]T are the Euler angles with φ, θ and ψ being the roll, pitch
and yaw, respectively, m is the mass of the UAV, R is the rotation matrix from
body-fixed frame of the UAV to the inertial frame described as follows

R =

 c(θ)c(ψ) −c(θ)s(ψ) s(θ)
c(φ)s(ψ) + c(ψ)s(φ)s(θ) c(φ)c(ψ)− s(φ)s(θ)s(ψ) −c(θ)s(φ)
s(φ)s(ψ)− c(φ)c(ψ)s(θ) c(ψ)s(φ) + c(φ)s(θ)s(ψ) c(φ)c(θ)

 , (12)

where s(·) = sin(·) and c(·) = cos(·), g is the gravitational acceleration, C(η, η̇)
is the Coriolis matrix, F is the translational force in the inertial frame, I is the
inertial matrix and e3 = [0, 0, 1]T .

Vision 
based 

trajectory

PID control

PID control

PID control

PID control

PID control

Quad-rotor

PID control

Optitrack Cameras

IMU

+
-

+
-

+
- +-

+-
+
-

z

y

x






F







d

d

Outer loop control Inner loop control

Visual 
Servoing

User set 
reference

yref

xref

ψref

yref

zref

Fig. 5. Structure of navigation control system.

Since the Coriolis matrix is highly nonlinear and thus difficult to determine
accurately, we propose to use a series of PID controllers to design the navigation
control system, using an inner-outer loop control strategy. See Figure 5. The
controller’s objective is that the UAV reaches a desired position and attitude
[xref , yref , zref , ψref ], keeping a constant distance away from the wind turbine
facing the navigation camera. In practice, this is done to make the UAV reach
the starting position for wind turbine inspection.

In the outer loop control, we define the tracking error as ξ̃ = ξ− ξref . Then,
equation (10) can be rewritten as

m
¨̃
ξ = FRe3 −mge3. (13)
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We define three virtual control inputs in x, y and z directions as follows:uxuy
uz

 =


s(θ)F
m

−c(θ)s(φ)F
m

−g + c(φ)c(θ)F
m

 (14)

Here, ux, uy and uz are designed by three PID controllers as follows:

ux,y,z = Kpδξ(t) +Ki

∫ t

0

δξ(τ)dτ +Kd
d

dt
δξ(t). (15)

The transfer function of (15) can be written as

u(s)

ξ(s)
= Kp +

Ki

s
+Kds. (16)

To get good controller’s performance, we tune the control parameters Kp, Ki

and Kd through experiments using the PID block in SIMULINK/MATLAB.
Then, we can calculate the control force, roll and yaw Euler angles by

F = m
√

(uz + g)2 + u2x + u2y, θref = arcsin
(mux

F

)
, φref = arctan

(
uy

uz + g

)
.

Now, the desired Euler angles φref , θref and ψref are known. Similarly, other
three PID controllers are employed to control the attitude in the inner loop as
follows:

τφ,θ,ψ = Kpδη(t) +Ki

∫ t

0

δη(τ)dτ +Kd
d

dt
δη(t), (17)

Control parameters Kp, Ki and Kd are tuned using PID block in the SIMULINK
/MATLAB to guarantee the closed-loop stability as well as good control perfor-
mance.

Finally, we get the 4-dimensional control input (F, τ), which needs to be
transformed into PWM pulse and allocated to four motors denoted by [u1, u2, u3, u4].
To balance the motor moments, the linear mapping between control forces and
PWM values of motors can be given by

F
τφ
τθ
τψ

 =


Ff Ff Ff Ff
−Ff lφ −Ff lφ Kf lφ Ff lφ
Ff lθ −Ff lθ Kf lθ −Ff lθ
T −T −T T



u1
u2
u3
u4

 , (18)

where Ff is the maximum force of each motor with PWM at 1, lφ is the dis-
tance between motors F1 and F2 to the center of the UAV along forward/backward
direction as shown in figure 4, lθ is the distance between motors F1 and F3 to
the center of the UAV along sideways direction, and T is the motor torque con-
stant. It is noted that the mapping matrix in equation 18 between the control
forces and motor moments is invertible and thus [u1, u2, u3, u4]T can be uniquely
determined by the control force [F, τφ, τθ, τψ]T .

The feedback parameters x, y, z, ψ are acquired from the opti-track camera
system, and the attitude angles φ and θ are computed using complimentary
filters and the on-board IMU. The full structure is shown in figure 5.
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3 Implementation

The algorithms developed in this work were tested in a indoor laboratory envi-
ronment, with an area of 4.5 × 4m2 with a height of 4 meters. The laboratory
set-up, called the ’Autonomous Vehicles Research Studio’ (AVRS) is manufac-
tured by Quanser, Quanser (2018), and consists of a quad-copter UAV, GCS and
an optical tracking system. In addition a 1:336 scale version of a Vestas V112-3.0
MW wind turbine was used.

3.1 Program Flow

The algorithms implemented follow an event based control scheme shown in
figure 6, the events and states are described below.

Take-Off Hover Scanning

Visual 
Servoing

Stop and 
Hover

Object 
Found

Position 
Reached

Start

Land

Scan

Fig. 6. Flow diagram of the algorithm, consists of six states: 1) Start, 2) Hover, 3)
Scanning, 4) Visual Servoing, 5) Stop and Hover and 6) Land, and four events
: 1) Take-off, 2) Scan, 3) Object Found, 4) Position Reached.

Start Program is initialized, the UAV is stationary on the ground with the
motors turned off and the GCS stores the UAV’s HOME position. The take-
off event is activated manually by the operator, which starts the attitude
controller and triggers the Hover state when the UAV reaches the desired
hovering altitude.

Hover The UAV hovers in the HOME position until the Scan event is triggered
by a timer and the system transitions to the Scanning State.

Scanning A scanning algorithm that increments the yaw angle reference [ψref ]
indefinitely, is triggered. During the Scanning state the DNN outputs four
probabilities [P1, P2, P3, P4], one for each segment. When the threshold for
the probability at quadrant 1 is reached, i.e. P1 > P scant , the Scanning
is halted and the Object Found event is triggered and the system transi-
tions into the Visual Servoing state. Here P scant is the minimum thresold
probability for detecting a wind turbine while in the scanning state.
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Visual Servoing The UAV starts to move forward in the [x] direction, where
the reference xref is calculated based on the sum of probabilities [P1, P2, P3, P4].
In addition, [ψref ] is computed from the two probabilities [P3, P4] and the
angle [ψ] is controlled by the inner loop controller. When the sum of prob-
abilities have been reached the Position Reached event is triggered and the
system transitions into the Stop and Hover state.

Stop and Hover The Visual Servoing continues to keep the UAV true to
the wind turbine, and a timer eventually triggers the Land State.

Land The UAV lands in front of the wind turbine and the motors are turned
off.

4 Experimental Results

The purpose of the experiment was to test the systems ability to scan and find
a scaled wind turbine and navigate towards it using visual servoing.

4.1 Experiment Description

The UAV was placed roughly 1.5 m away from the wind turbine, which sat in
front of the back wall, as seen in figure 1, and the UAV was angled at 0.8 rad
in relation to the OptiTrack reference frame. Figure 7 shows the UAV at four
states, where the first image is the Start state described above.

The UAV’s 3D coordinates from the experiment have been sketched in figure
8, from taking off to after landing. In relation to the 3D plot in figure 8, the
back wall is perpendicular to the y axis located at x ≈ 1.5m, and the net is
perpendicular to the back wall and located at x ≈ −2.8m. The x, y, z = 0 is the
zeroth coordinate of our lab in the OptiTrack reference frame, which is offset by
-0.085 rad from the lab frame.

4.2 Result Description

Figure 9 shows data for ψ angle and x position from the Visual Servoing state
until the Land state.

When the state Visual Servoing is triggered the angle of the UAV is -0.28
rad, this angle is caused by the pose of the UAV at the end of the Scanning
state. The reason for this pose is that the object found event is activated by
quadrant 1, which is located on the left side of the image and thus the pose of
the UAV will tend to move slightly away from the center to detect the wind
turbine. The image from quadrant 1 collected during this experiment can be
seen in figure 1 as the top left segment. This initial angle is corrected quickly by
the Visual Servoing and the UAV reaches an equilibrium point of -0.125 rad,
where the frame of the optical tracking system is offset by -0.085 rad from the
lab frame.

The ψ angle oscillates slightly through the Visual Servoing state, this is
caused by the variations in P3 and P4 which are used for the visual servoing as
can be seen in the bottom plot in figure 10.
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Start Scanning

Visual Servoing Stop and Hover

Fig. 7. Experimental results: UAV at four states, Start, Scanning, Visual Servoing
and Stop and Hover.
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0.45
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0.4 0

Fig. 8. Path of the UAV in 3D, from takeoff to landing.
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Fig. 9. Test results: (Top plot) close-up from the Visual Servoing state until the
Land state. (Bottom plot) summed probability.
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During the Visual Servoing state the v decreases as the UAV approaches
the wind turbine, which is consistent with the increase in the summed probability
shown in the bottom plot of figure 9. The UAV eventually stops as intended due
to the summed probability reaching the threshold value, i.e. Pt > 2.5, which is
marked by the horizontal dotted line in the bottom plot of figure 9.

During the Stop and Hover state, the visual servoing is still active and it
continues to keep the UAV’s ψ angle straight towards the wind turbine, here the
aforementioned ψ offset of -0.085 rad is evident.
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Fig. 10. Test results, (Top plot) shows the positions, (Bottom plot) shows the proba-
bility of quadrant 1 used for detection of target, and the probability of quadrant 3 and
4, used for visual servoing.

5 Discussion

From the current results the algorithm is capable of finding the wind turbine,
navigate towards it and stop when the wind turbine has been reached. From
the data, it is evident that the system performs well and that every state is
performed with success.

During the Visual Servoing state the v is relatively low, as it takes the
UAV 28s to move roughly 0.7m. This is due to a low ẋmax, which was chosen
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to keep the UAV safe during these experiments. During the experiments some
issues did arise when the UAV started far away from the wind turbine, as it
appeared too small in the image to be detected and we aim at improving this
by introducing a higher resolution image with more segments.

In this work the triggering of the Object Found event was based on the
probability of quadrant 1 P1, in future work the trigger should instead be based
any quadrant which produces a probability larger than the threshold P scant . In
addition, the choice of P3 and P4 for the calculation of the ψref , should in future
work be done dynamically, depending on the location of the wind turbine relative
to the quadrants.

The threshold parameters P scant and P servt are in the current paper subjected
to ad-hoc tuning, future work will involve a more systematic way of tuning these
parameters.

6 Conclusions

In this work we have successfully used a DNN to navigate a UAV autonomously,
trained from captured images to recognize a wind turbine using transfer learning
techniques. The images acquired from an RGB camera on the UAV were seg-
mented to create what we call the compounded eye with four quadrants, where
each quadrant’s image is processed by a DNN. The probability produced by
the DNN in quadrant one is used in searching for the wind turbine, whilst the
probabilities of quadrant three and four are used for visual servoing to perform
perception-based navigation. The algorithm for visual servoing, uses the prob-
abilities of quadrant three and four to obtain a reference for the UAV’s yaw
position, which is then fed to the UAV’s outer loop controller. The sum of the
probabilities obtained in all quadrants is used in a velocity and collision avoid-
ance controller. The controller computes a desired x reference and feeds it to
the UAV’s outer loop controller, enabling the UAV to safely reach the wind tur-
bine and stop in front of it for inspection purposes. The algorithm was initially
tested within a simulation environment as a proof of concept. Our preliminary
experiments, show that the UAV can autonomously find and navigate towards
the wind turbine, control its speed towards it and stop at a safe distance. In
our future work we will use a larger amount of quadrants and incorporate in the
algorithm the calculation of pitch and roll angles additionally to implement a
complete visual servoing navigation system.
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