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Abstract—Ultra-wideband (UWB) technology offers the poten-
tial for unparalleled support of short-range broadband commu-
nication over a multi-gigahertz spectrum and are expected to
enable several applications with extreme requirements in future
wireless networks. Enabling these systems in the unlicensed
spectrum requires efficient co-existence management and ade-
quate understanding of the characteristics and spatio-temporal
dynamics of interference signals over the multi-GHz bandwidth.
This paper investigates the suitability of Gaussian, Middleton
canonical class A, symmetric alpha stable and Gaussian Mixture
distributions for modelling radio frequency interference from
systems in the UWB spectrum based on measurements. We
evaluate the closeness of fit of the distributions to measured
interference data and provide insights on the applicability of these
models for characterizing interference in the UWB spectrum.
Results show that the Gaussian Mixture distribution (GMD)
yielded the best fit to the measured interference evaluated with
Kullback-Leibler (KL) divergence below 0.05. Results also show
that interference signals generated from the GMD agree closely
with the measurements.

Index Terms—UWB, Interference measurements, Gaussian
mixture model, Interference modelling, statistical distributions,
symmetric alpha stable distribution.

I. INTRODUCTION

UWB transmission enables low power, short range com-
munication over a large part of the radio spectrum from
3.1 GHz to 10.6 GHz, with tight restrictions in terms of power
spectral density. The restrictions on transmission power limits
the amount of interference from UWB devices to other co-
existing users. However, UWB devices may be interfered by
the large number of licensed and unlicensed systems such as
WLAN, WiMAX, and satellite systems operating in the ultra-
wide spectrum.

Recently, unlicensed spectrum is receiving attention as at-
tractive option for the support of ultra-relaible and low latency
communication [1], though it may suffer from regulatory
limitations such as Listen Before Talk (LBT). It is therefore
important to understand the behaviour of potential coexisting
systems in such spectrum.

There has been considerable amount of research on in-
terference from UWB devices to other co-exisiting systems
such as WiFi, WIMAX and GPS, see e.g., [2] and the
references therein. However, investigations on interference to
UWB systems [3] has been mostly focused on performance
evaluations and receiver processing techniques for specific
UWRB transmission technologies. For instance, approximations

for multiuser interference in time hopping-UWB using Gaus-
sian mixture distribution, Middleton class A noise and the
Laplace distribution are investigated in [4] based on bit error
rate performance simulations. In [5], results of a number of
interference measurements at an indoor and outdoor location
on the campus of Aalborg University, Denmark were pre-
sented. An analysis of the amplitude and inter-arrival time
distributions were also presented. While it was shown that
inter-arrival time between signal occurrence is predominantly
exponential distributed, no model for amplitude and/or power
distribution was investigated.

In this paper, we study the suitability of four statistical dis-
tributions viz: Gaussian, Middleton class A, symmetric alpha
stable and Gaussian mixture distributions for characterizing
interference signals over the entire UWB spectrum. While
these models has been extensively studied for interference
at different frequencies below 3 GHz, see e.g., [6]-[8], their
suitability for interference signals at higher frequencies and
possibility for a generic distribution that is able to model
interference at different frequencies over a large spectrum re-
mains an open problem. Based on the measurements in [5], we
evaluate the goodness of fit of four statistical distributions to
measured empirical probability distributions and give insights
on their suitability for interference characterization. We further
illustrate the accuracy of the distributions for interference
modelling by sampling from the Gaussian mixture model and
comparing with the measured signals.

The remaining part of this paper is organized as follows.
The statistical distributions considered in the analysis are
introduced in Section II. A discussion of the analysis as well
as techniques for estimating parameters of the distributions
from measurements is then presented in Section III. The results
are discussed in Section IV. Finally, we draw conclusions in
Section V.

II. RADIO FREQUENCY INTERFERENCE MODELS

We present a brief overview of the interference models
in this section. These distributions are chosen based on the
expected differences in the characteristics of systems operating
over the large bandwidth.

A. Gaussian Distribution

The Gaussian distribution represents each interference sam-
ple, zi, as a realization of a random variable with probability



distribution function (pdf) defined as

. 2

1 6_(11;;;0 ’ (1)
V2mo?
where 1 and o are the mean and standard deviation of the ran-
dom variable, respectively. The Gaussian distribution is used
extensively in the radio communication literature for several
applications. However, it has been shown that interference
signals are generally non-Gaussian [9].
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B. Middleton Class A Model

Middleton class A model [9], [10] characterizes narrow-
band interference and is thus applicable when the receiver
bandwidth is much larger than the interference spectrum as in
the case of UWB systems interfered by signals from systems
with relatively smaller bandwidth. The model defines an
interference signal as the sum of a Gaussian and non-Gaussian
component and the interference statistics is expressed as [9]
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where the variance of the nth component, 2
o2 = At
To14 X
The distribution in (2) is characterized by two parameters: an
overlap/impulsive index, A, which is the product of the mean
number of interfering signals arriving at the receiver per unit
time and the mean duration of a typical interference signal,
and a Gaussian factor, X, defined as the amplitude ratio of the
Gaussian to non-Gaussian components.
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is expressed as
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C. Symmetric Alpha Stable Model

The Symmetric Alpha Stable (SaS) model [11] was pro-
posed as an approximation to Middleton Class B model [9]
for characterizing impulsive noise in cases where the noise (or
interference) originates from a broadband system and has no
Gaussian component. An interference sample, x, is said to
be SaS distributed if its characteristic function is of the form
(6], [11]:

(I)(w) _ ej5w*7\w|a, 4)
where (v > 0) is the scale (or dispersion) parameter and § is
the localization parameter, which is equivalent to the median of
the distribution. The parameter, « indicates the thickness of the
distribution’s tail and is often referred to as the characteristic
exponent.

D. Gaussian Mixture Model

The Gaussian Mixture Model (GMM) represents each in-
terference samples xj as a realization of a random variable
with probability distribution function (pdf) given by an N-
components mixture of Gaussian pdfs [12]
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Fig. 1: Diagramatic illustration and picture of the measurement
set-up.

3 a5

4
50
6 s
60

9
65

10
1 70

0 200 400 600 800 1000 1200 1400
Time [Minutes]

45

200 400 600 8O0 1000 1200 1400
Time [Minutes]
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Fig. 2: Spectrogram of UWB RFI obtained from measurements at
WCN Lab and FRB7 roof top [5].

where ©® is a vector of model parameters; ® =
(A1, AN, 0%, ,0%), A, are non-negative coefficients
referred to as mixing probabilities, the sum of which is equal
to unity, i.e., S0 A, = 1 and f,, (2x|pn; 02) is the pdf of a
Gaussian distribution with mean pu,, and variance, 0',?“ defined
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Thus, a GMM distributed interference sample has a pdf:

Jn(@r|pn;

_ (zp—pn)?
2
n

20 . 7
nzl \/27”7% ™

fomm(zk|©®) =

III. UWB RFI MEASUREMENTS AND DATA FITTING

In this section, we describe the radio frequency interfer-
ence (RFI) measurements as well as procedure for estimating
parameters of the distributions from the measured data.

A. Measurements

The RFI data used in this paper are from interference mea-
surements in the 3 - 11 GHz band conducted at an indoor (i.e.,
Wireless Communication Networks laboratory) and outdoor
(on the roof top of the FRB building) location on the premises
of Aalborg University, Denmark [5]. The measurements were
conducted using the system in Fig. 1 which comprises of;
a 2GHz — 30 GHz biconical antenna, a 2 — 18 GHz Low
Noise Broadband Amplifier (LNBA) with 26 dB gain/3 dB
noise figure, and a R & S FSEM 30 spectrum analyzer with



frequency range, 20 Hz - 26.5 GHz and resolution bandwidth
(RBW) of 10 Hz - 10 MHz.

The datasets for the two locations contain 55000x 500
samples corresponding to 55000 consecutive sweep of the
entire 8 GHz spectrum over a duration of 24 hours with
resolution bandwidth (RBW) and video bandwidth (VBW) of
1 MHz.The maximum peak detector of the analyzer was used
for all measurements and a total of 500 equally spaced discrete
samples (i.e., bins) were recorded over the 8 GHz frequency
span. Thus, the recorded spectrum analyzer measurements
during each sweep correspond to the maximum power level
within each 16 MHz bin from the start frequency (3 GHz)
to the stop frequency (11 GHz). Detailed description of the
measurements can be found in [5]. Measured spectrograms
from the indoor and outdoor locations are shown in Fig. 2.
The spectrograms show clear differences in signal activity at
the two locations as well as across the spectrum.

B. Model Parameter Estimation

Empirical fitting of the interference models in Section II to
measurements requires estimation of the models parameters.
Parameter estimation for these models have been extensively
investigated (see e.g., [6], [9]-[11], [13] and the references
therein). For the MCA and GMM, Expectation Maximization
(EM) [10], [12] algorithm have been shown to offer superior
estimation performance over other methods and will be used in
this study. We will estimate the parameters of the SaS model
using the fast estimator in [14], which is based on the asymp-
totic behaviour of extreme-order statistics. For completeness,
we summarize the estimation procedure for each of the models
as follows.

1) Middleton Class A: Denoting the parameters of the
MCA as 6 = [A,G], where G = AX, the EM method for
MCA involves: [10]:

E-step: Evaluate the expected log-likelihood function,
D

Q(o16"). o .

M-step: Determine @ = 6 to maximize Q(0]60").
where 8" denotes the parameter estimates at the pth iteration.
A closed form expression for Q(9|9p) is derived in [10].

2) Symmetric Alpha Stable: The estimators for the three

parameters of the SasS are given as [14]
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In (8), omin and op,ax corresponds to the standard deviations of
the minimum and maximum centered data segments obtained
by dividing the interference samples into L non-overlapping
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Fig. 3: Probability density function of selected measured RFI and
fitted statistical models obtained from the indoor measurement.
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Fig. 4: Probability density function of selected measured RFI and
fitted statistical models obtained from the outdoor measurement.

subsets, respectively. Detailed discussion on the segmentation
procedure can be found in [14].

3) Gaussian Mixture Model: The steps in the EM estimator
for the GMM are similar to those for the MCA with the
parameter set; @ = {\,,, it,,, 02 }_, . Expressions for posterior
probability distributions and the log-likelihood function are
given in [12].

We will utilize the implementation of these estimation
methods contained in an Interference Modeling and Mitigation
MATLAB Toolbox [15] in this work.

IV. RESULTS AND DISCUSSION

We now present results on the empirical fitting of the models
in section II to the measured interference data. We used
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Fig. 5: Tail probabilities of measured RFI and fitted statistical models
obtained from the indoor measurement.

TABLE I: Estimated Kullback-Leibler divergence between
empirical distribution and considered models.

Fig. 6: Tail probabilities of measured RFI and fitted statistical models
obtained from the outdoor measurement.

TABLE II: Estimated parameters of two components GMM.

Location  Freq.[MHz] Parameters
Mean Variance Probabilities
5196 0.066 -0.413 9.43 401.73 0.863  0.137
5244 -0.016  0.001  2.245 0.129 0.055  0.945
5324 0.0234 -0.013  95.77 0.439 0.055 0945
Indoor 5533 0.019 -0.188  9.149  898.450  0.909  0.091
5693 0.011 -0.252 0354 30.630 0.960  0.040
7665 0.001 0 0.477 0.062 0.300  0.700
10406 0 0.015  0.175  35.670 097  0.030
3048 -0.018 0.011 7.041 0.943 0.387 0.613
Outdoor 3080 0.009  -0-019  5.060 0.681 0.687 0313
9541 0 0.001 0.056 0.443 0.634  0.365
9910 -0.0289 0 35.65 0.157 0.013  0.987

Location  Freq.[MHz] Kullback-Leibler Divergence
SaS MCA Gaussian ~ GMM
5196 0.146 - 0.462 0.104
5244 0.043  0.0951 0.130 0.008
5324 0.056 - 0.707 0.007
Indoor 5533 0.207 - 0.683 0.128
5693 0.032 2219 0.314 0.046
7665 0.047 0.058 0.131 0.011
10406 0.149 - 0.619 0.031
3048 0.031 0.029 0.078 0.016
3080 0.020 0.014 0.029 0.009
9541 0.037 0.066 0.078 0.024
Outdoor 9910 0.045 0.102 0.380 0.051

the Kullback-Leibler (KL) divergence (i.e., relative entropy
between two probability distributions) to evaluate the similar-
ities between the empirical probability distribution computed
from measurements and distributions of each of the models.
A KL divergence of zero indicates an exact match between
the measured and fitted probability distributions. In the uti-
lized toolbox, empirical probability distribution is computed
using kernel smoothing density estimator [16]. Except where
otherwise stated, the number of components for the GMM
and MCA are 2 and 100, respectively. These values were
heuristically selected and appear to provide reasonable fits to
the measurements. However, in practical applications, methods
for model order selection such as Akaike Information Crite-
rion (AIC) and Bayesian Information Criterion (BIC) can be
used to determine the best number of components for each
distribution.

Fig. 3 shows the distribution functions of selected inter-
ference from the indoor measurements and the fitted models.
The plots show that the Gaussian distribution does not fit any
of the interference signals well. Except for the interference
at 5196 MHz, probability distributions of the MCA, SaS and

GMM exhibit some similarities with the measured distribution.
The GMM is seen to yield the closest fit to all measured
interference distributions. This agrees with the results in [4],
where it was shown via simulations that the bit error rate of a
TH-UWB systems with MUI GMM distributed agree closely
with the actual BER.

Similar observations are made from Fig. 4, where we
plot fitted distributions to interference signals in the outdoor
measurement. However, Gaussian distribution fit to the signals
at 3048 MHz and 3080 MHz appears much closer to the
measured distributions when compared to the Gaussian fits
in Fig. 3. Fig. 4 also shows that the SaS distribution is closer
to the empirical distribution than the MCA for the signals at
3048 MHz, 3080 MHz, and 9541 MHz.

We present the tail probabilities (i.e., probability that the
interference power deviates from its mean by a given amount
or equivalently, the probability that the centered interference
power exceeds a threshold, Pry) for the indoor and outdoor
measurements in Fig. 5 and Fig. 6, respectively. In Fig. 5,
an exact match is seen between the tail probabilities of
measured indoor signals and the GMM for interference sources
at 5693 MHz in Fig. 4c and 10406 MHz in Fig. 4d. The
tail probabilities of Gaussian and SaS distributions, differ
significantly from the empirical probabilities. It is therefore
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Fig. 7: Temporal variation and CDF of measured and simulated RFI
from the 2 components GMM at 5196 MHz.

reasonable to infer that these interference signals can not be
modelled using either Gaussian or SaS distributions. A plausi-
ble explanation for the difference between tail probabilities of
the measured data and SaS distribution is that, the interfering
signals can not be considered broadband relative to the large
UWRB spectrum. Similar agreement between the empirical tail
probabilities obtained from the outdoor measurements and the
GMM is seen in Fig. 6. In addition, the MCA distribution’s fit
shows good agreement to the empirical tail probability from
the measurements. We show the KL divergence for all the
distributions in Table I. The GMM and Gaussian distributions
have the lowest and highest KL divergence for all interfer-
ence sources in both measurements. This indicates that while
Gaussian distribution is not suitable for interference modelling,
most of the signals in the UWB can be approximated using
the GMM.

The parameters of the two-components GMM distribution
for the different interference signals is shown in Table II. These
parameters, can for example be used to model realizations of
interference at the measured frequency bands. The table shows
that the model parameters differ for all sources except for the
two interferers at 3048 MHz and 3080 MHz, which are spaced
32 MHz apart and may potentially originate from the same
system(s).

Finally, we compare interference signals generated from
the GMM distribution with measurements in Fig. 7 where
we show the measured signal at 5196 MHz along with an
example generated from the two components GMM. As seen
in Fig. 7a, the simulated signal exhibits a high similarity with
the measured interference indicating that GMM is a good
statistical model for the interference at this frequency. This
similarity is further shown in Fig. 7b where emprical CDF of
the simulated signal matches that of the measured data very
closely.

V. SUMMARY AND CONCLUSION

This paper presents the analysis of radio frequency interfer-
ence measurements in the UWB spectrum between 3 GHz and
11 GHz. The suitability of Gaussian, MCA, SaS and GMM
for modelling interference from different sources in the UWB
has been evaluated based on measurements. Results show that
interference signals in the UWB spectrum are not Gaussian

distributed. MCA and SaS models provide reasonable fits to
some of the interference signals. The GMM gives the best

fit to all measurements and signals generated from this distri-
bution agree closely with measurements. Study on temporal
characteristics of these signals is the focus of our ongoing
research.
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