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Voltage Stability and Transient Symmetrical Fault 

Current Control of Voltage-Controlled MMCs 

Yingbiao Li, Jianbo Guo, Senior Member, IEEE, Heng Wu, Student Member, IEEE, Xiongfei Wang, Senior 

Member, IEEE, Bing Zhao, Shanshan Wang, Guanglu Wu 

Abstract—This paper presents a design-oriented analysis on 

the voltage stability and the transient fault current limitation of 

voltage-controlled modular multilevel converter (MMC) with L-

filters. First, a dual-loop voltage control based on the L-filter 

plant is systematically designed, where the upper limits of 

controller parameters for ensuring the small-signal stability are 

identified. Then, considering the transient current limitation 

during faults, the lower boundaries of inner current controller 

parameters are derived. Within the region of allowed controller 

parameters, the optimization is further made to minimize the 

closed-loop output impedance of MMC, which enhances the 

output voltage stiffness against the load current disturbance. 

Lastly, time-domain simulations corroborate the theoretical 

analysis. 

 Keywords—Modular Multilevel Converter (MMC), voltage 

control, controller design, fault current 

NOMENCLATURE 

Pw, Qw Active power and reactive power of wind farm  

uw, iw Voltage and current of grid connection point of 
wind farm 

Zw Impedance of the transmission line 

us Voltage of PCC of MMC  

uc, is  Voltage output by MMC and current input into 
MMC 

ug Voltage of the location of the fault 

uα, uβ,  Voltage in two-phase stationary frame 

iα, iβ Current in two-phase stationary frame 

idc, udc DC current and DC voltage of MMC 

Leq, Req Equivalent inductance and resistance of MMC 

Lg Equivalent inductance from fault point to PCC 
of MMC 

fc, ωc Crossover frequency and angular frequency 

ω0 Resonant frequency of PR controller 

u
* 

s , i
* 

s  Reference value of voltage and current. 

I
* 

smax Maximum value of the current limiter 

Tabc2αβ Clarke transformation 

Gd ,Td Time delay and time constant  

Hu , Td1 Filter of voltage feedforward and time constant 

Gi, Gv Transfer function of inner current loop regulator 
and outer voltage loop regulator. 

Kpi, Kii Proportional gain and resonant gain of inner 
current loop regulator 

Kpv, Kiv Proportional gain and resonant gain of outer 
voltage loop regulator 

δ1%, ts Overshoot and convergence time 

I. INTRODUCTION 

 HE modular multilevel converter (MMC) high voltage 

direct-current (HVDC) transmission systems have 

recently drawn increasing attentions in the grid integration of 

large-scale wind farms. Compared with the line-commutated 

converters (LCC)-HVDC, the MMC-HVDC is expected to 

have better dynamic performance when feeding to weak [1], 

[2] or passive [3], [4] ac power networks. On the wind farm 

side, the MMC needs to operate as a voltage source, forming 

the system voltage and frequency. Consequently, both the 

high-performance ac voltage control and the fast overcurrent 

limiting capability during ac faults become critical [5], [6]. 

Moreover, due to the versatile nature of wind, the load current 

of the voltage-controlled MMC can be fluctuated, and thus the 

output voltage of the MMC needs to be stiff against the load 

current disturbances. 

The controller parameters have a significant impact on the 

stability and transient performance of MMCs. Designing the 

voltage controller for voltage-source converters (VSCs) has 

been thoroughly discussed, considering the phase margin 

(PM), the gain margin (GM) and the steady-state error [7], [8]. 

Yet, those studies are mainly based on the LC-filtered VSCs, 

where the dual voltage-current control loops can be readily 

designed based on the second-order LC-filter plant [9]. In 

contrast, only the L-filter is used with MMCs, and hence no 

LC-filter resonance needs to be considered when designing 

the voltage controller [10], [11]. Further, differing from the 

capacitor voltage of the LC-filtered VSCs, the PCC voltage of 

the MMC cannot be treated as a state variable, due to the lack 

of capacitance. Therefore, the controller design for the LC-

filtered VSCs cannot be directly extended to MMCs.  

The single-loop voltage control is implemented with the 

MMC in [12], yet the fault current of the MMC cannot be 

limited in this case, when there is a short circuit fault in the ac 

side of voltage-controlled MMC. Considering the limited 

overcurrent capability of MMCs [13], [14], a fast fault current 

control is important. To limit the fault current, fault current 

limiters are employed in [6], [15], [16]. In practice, the dual-

loop control that consists of the outer voltage loop and the 

inner current loop is generally used for the fault current control 
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[15], [17]. However, in those works, the transient fault current 

is always assumed to be equal to the limit value of the current 

limiter [18], [19]. The parametric effect of current controller 

on the transient fault current is often overlooked. Since the 

limit value is merely a steady-state value of the fault current, 

the fault current can be much higher than the limit during the 

transient process, which affects the safe operation of MMC.  

The reliable operation of wind farms depends on a stable 

voltage formed by the MMC station. The small-signal stability 

of voltage-controlled MMC has been explored in [20], [21], 

but what is not yet clear is the impact of parameters on the 

stiffness of MMC output voltage under the power fluctuations 

of wind farms. In [22], the voltage stiffness is improved when 

a severe fault occurs by adjusting the reactive power output of 

the voltage-controlled MMC. To address the large power and 

voltage disturbances, the voltage stiffness is enhanced by an 

additional frequency control loop [6]. However, the effects of 

the inner current regulator and outer voltage regulator on the 

voltage stiffness of the MMC are not addressed.  

The voltage feedforward control is commonly used in the 

control of grid-connected VSCs [23] and MMCs [24]. The 

grid impedance is introduced to the control system through the 

feedforward loop and the influence of voltage feedforward on 

the voltage stability of grid-connected converters is studied in 

[25], [26], [27]. It can be seen that voltage feedforward has an 

important impact on the control and operation characteristic 

of converter. However, when the MMC is connected with 

wind farms, us is formed by MMC, while the effects of voltage 

feedforward on the stiffness of the voltage and fault current 

limitation of the MMC need to be clarified.   

This paper thus presents a systematic controller design 

guideline for the dual-loop voltage-controlled MMC-HVDC. 

The proportional-resonant (PR) regulators are used in both the 

outer voltage and inner current loops. Considering the effect 

of the voltage feedforward, the upper limits of controller 

parameters are identified first based on the small-signal model 

and stability analysis of the dual-loop voltage control. Then, 

the parametric effects of the current controller on the current 

overshoot and settling time are analyzed, which yields the 

lower limits of current controller parameters. Next, within the 

region of permitted controller parameters, the optimization is 

further made to minimize the closed-loop output impedance 

of MMC, in order to enhance the voltage stiffness against the 

power flucations from the wind farms. Lastly, time-domain 

simulations validate the effectiveness of the design guideline. 

II. PARAMETERS DESIGN BASED ON THE STABILITY 

REQUIREMENT 

A. System Description  

Fig. 1 illustrates the single-line diagram of the MMC with 

the dual-loop voltage control system implemented in the 

stationary frame. It is noted that the stationary-frame PR 

controller can be mathematically derived from the P-Integral 

(PI) controller in the synchronous (dq-) reference frame [28], 

[29]. The purpose of selecting the stationary-frame is to 

control both the positive- and negative-sequence components, 

and meanwhile avoid using the sequence decomposition 

algorithm and Park transformations. Thus, the phase variation  
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Fig. 1  Single-line diagram of MMC with dual-loop voltage control system. 
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Fig. 2.  Transfer function diagram of inner current loop. 
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Fig. 3.  Transfer function diagram of V-F controlled MMC. 

of PCC voltage, which may affect the dynamics of the dq-

frame control [28], can be avoided in the stationary frame. 

In Fig. 1, us denotes the voltage at the point of common 

connection (PCC), uc is the output voltage of MMC, is is the 

current injected into MMC, Leq is the equivalent inductance, 

and “*” represents the reference of the current and voltage. A 

constant dc-link voltage of the MMC is assumed and the 

timescale of internal dynamics is well decoupled from the 

external ac voltage control dynamics. With these assumptions, 

the MMC power stage can be approximated as a linear time-

invariant (LTI) plant [30], [31]. 

B. Controller Parameters Design of Inner Loop 

Fig. 2 shows the control block diagram of the inner current 

loop, where Gi is the current regulator and Gd represents the 

time delay. Since the internal control dynamic of MMC has 

little effect at the crossover frequency of the inner loop fc, it is 

not considered in the parameter tuning of dual-loop voltage 

control [30]. 

The open-loop transfer function of the inner current loop 

can be obtained as 

   i d

eq

1
G s G G

sL
  (1) 

where Gi and Gd are expressed as 

 
d

ii
i pi 2 2

0

d
sT

K s
G K

s

G e






 




  

(2) 

Kpi is proportional coefficient, Kii is resonant gain of inner 

current loop regulator, and Td is time constant of time delay. 

Assuming that the crossover frequency ωc >>ω
 

0, Gi can be 

approximated as 
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   ii
i c pi

c

K
G K

j



   (3) 

In order to guarantee the system stability, PM ＞ 0 and GM > 

0 are required at the crossover frequency. If the proportional 

gain of the PR regulator is designed to have a dominant effect 

at the crossover frequency, i.e., 

 
ii

pi

c

10
2

K
K

f
   (4) 

The loop gain and its phase response can be approximated 

as (5). 

 
 

 

   

pi

c

c eq

c d c

20lg
2

90 57.3 2

K
L

f L

T f




  

 
  

  

  

 (5) 

To ensure PM ＞ 0 and GM > 0, the parameters should be 

designed as  

 

 

c

d

pi c eq

90

104.6

2

f
T

K f L








 

＜
 (6) 

If the integral gain of the current regulator is designed to 

have a dominant effect at the crossover frequency, i.e., 

 
ii

pi

c

10
2

K
K

f
   (7) 

The loop gain and its phase response can be approximated 

as (8). 

 
 

 

   

ii
c
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c d c

1
20lg

2 2

180 57.3 2

K
L

f f L
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 (8) 

From (8), it can be seen that PM is always smaller than 0. 

Hence, the inner loop controller can’t be designed with the 

integral gain playing a dominant role at fc, and it can only be 

designed with the proportional gain dominating at the 

crossover frequency, where (6) is satisfied. 

C. Controller Parameters Design of Outer Loop  

In the islanded system, the MMC is controlled as a voltage 

source forming the us. And the influence of voltage 

feedforward is investigated in this part. 

1) With the voltage feedforward loop 

The mathematical model of outer voltage loop control can 

be obtained as (9). 

 

* *

s v sα sα

* *

s v sβ sβ

( )

( )

i G u u

i G u u

a



   


  

 (9) 

where  

 
iv

v pv 2 2
0

K s
G K

s 
 


 (10) 

Combining (9) with Fig. 2, the block diagram of the outer 

loop and the inner loop in the αβ frame is shown as Fig. 3, 

where Hu represents the filter of the voltage feedforward, i.e.,  

 u

d1

1

1
H

sT



 (11) 

From Fig. 3, the transfer function can be obtained as  

 
i d eq*i V d

sα sα sα

i V d d u i V d d u

 +
1 1

G G sLG G G
u u i

G G G G H G G G G H




   
 (12) 

Then, the open-loop transfer function is expressed as 

  c l i V d u dG s G G G H G   (13) 

If the proportional gain of the PR voltage regulator is 

designed to have a dominant effect at the crossover frequency 

of the voltage loop, i.e., 

 
iv

pv

c

10
2

K
K

f
   (14) 

Then, the amplitude-frequency characteristic and phase-

frequency characteristics can be approximated as (18) , which 

is shown in the bottom of this page. 

From (6) and (18), to ensure the PM > 0 and GM > 0, the 

satisfactory region can be obtained as  

 pi pv 1K K   (15) 

If the integral gain of the PR regulator is designed to have 

a dominant effect at the crossover frequency, i.e., 

 
iv

pv

c

10
2

K
K

f
   (16) 

Then, the amplitude-frequency characteristic at crossover 

frequency can be approximated as  

  
 

2

pi iv d1 pi iv

c 2
cc d1

20lg 1 2
1

K K T K K
L

T




 
   
   

 (17) 

From (17), the GM is always smaller than 0.  

Therefore, the outer voltage loop regulator can only be 

designed with the proportional gain dominated at the 

crossover frequency, in which (15) must be satisfied. 
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Fig. 4  Transfer function diagram without voltage feedforward loop. 
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Fig. 5  Transfer function diagram of inner current loop after fault. 

2) Without  the voltage feedforward loop 

If there is no voltage feedforward loop, the control block 

diagram is changed as shown in Fig. 4, from which, the 

closed-loop transfer function can be derived as 

 
i d eq*i V d

sα sα sα

i V d i V d

+
1 1

G G sLG G G
u u i

G G G G G G




 
 (19) 

Then, the open-loop transfer function is obtained as 

  c l i V dG s G G G  (20) 

Substituting (2) and (10) into (20), if the proportional gain 

of the PR regulator is designed to have a dominant effect at 

the crossover frequency, the amplitude-frequency and phase-

frequency characteristics at the crossover frequency can be 

obtained as 

 
 

 

c pi pv

c d c

20lg

114.6

L K K

T f



  

 


 

 (21) 

When KpiKpv < 1, the L(ωc) is always below 0. Therefore, 

the satisfactory region can be obtained as  

pi pv 1K K   (22) 

If the integral gain of the PR regulator is designed to have 

a dominant effect at the crossover frequency, the amplitude-

frequency and phase-frequency response at the crossover 

frequency can be obtained as 

 
 

 

pi iv

c

c

c d c

20lg

90 114.6

K K
L

T f




  



  

 (23) 

To ensure the PM > 0, the parameters should be designed 

as  

 
pi iv c

d c114.6 90

K K

T f





 




 (24) 

Hence, without using the voltage feedforward loop, the 

parameters of the outer voltage regulator can be designed with 

either the proportional gain or the integral gain dominating at 

the crossover frequency. When the proportional gain is 

designed to have a dominant effect at the crossover frequency, 

(22) must be satisfied. When the integral gain is designed to 

have a dominant effect at the crossover frequency, (24) needs 

to be satisfied. 

III. PARAMETERS DESIGN BASED ON THE FAULT CURRENT 

LIMITATION 

Short-circuit faults in the ac system increasingly arise as the 

power scale of wind farm is enlarged. Due to the limited 

overcurrent capability of the MMC, the fault current control is 

critical, and the fault current overshoot needs to be effectively 

suppressed. In this work, only the symmetrical three-phase 

short circuit fault at the ac-side of the MMC is considered. 

A. With the voltage feedforward loop 

Fig. 5 shows the control block diagram of the inner current 

loop after the short circuit fault on the ac side. ugα is the voltage 

of the location of the fault, Lg is the equivalent fault inductance. 

Based on Fig. 5, the transfer function of the inner current 

loop can be obtained as 

 
 

 

*i d
sα sα

eq g g u d i d

d u

eq g g u d i d

1
     g

G G
i i

s L L L H G G G

G H
u

s L L L H G G G
a


  




  

 (25) 

Considering a severe three-phase short-circuit fault, the 

voltage amplitude at the fault location reduces to zero. The 

reference current amplitude reaches the maximum of the 

limiter. Since the control system is a linear system, isa is the 

superposition of the two step responses, which are  

 
 

 

ref

g

i d
i _step

eq g g d i d

d
u _step

eq g g d i d

1

G G
G

s L L L G G G

G
G

s L L L G G G




  


 
   


 (26) 

Without loss of generality, the analysis is carried out at the 

initial current of 0 and the initial phase of 0 degree of ugα. 

According to the characteristic of PR controller, the phase of 

reference current is opposite to the voltage of ugα after the fault. 

Thus, the reference current and voltage can be given by 

 
   

     

* *
sα sαmax

gα gα 0

cos

cos

i I t u t

u u t u t t u t





  


     

 (27) 

where 
*

sαmax
I  is the maximum of the limiter.  

With the Laplace transformation, (25) can be transformed 

as  

 

 

 

ref

0

g

0

*
sα sαmax i _step2 2

0

gα u _step2 2
0

1 2 2

           1

        

st

st

s
i s I G

s

s
e u G

s

G e G G





 


 


  

 
(28) 

Considering that 

    01
2 0 2 0( )

st
L e G u t t f t t     (29) 

which has little effect on the isa(t) at time t = 0, and thus it can 

be ignored. Then, (28) can be approximated as 
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where  

 

ref

2
*

i_step sαmax i _step2 2
0

2

u _step gα u _step2 2
0

step i_step u _step

g

s
G I G

s

s
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s

G G G





 






 



  

 

(31) 

The time-domain current response can then be obtained as 

    1
sα step

1
( )i t L G
s

  (32) 

The amplitude changes of current and voltage can be 

equivalent to the step response of Gstep, where the overshoot 

and convergence time can be obtained. Since the order of Gstep 

is too high to express isa(t) analytically, it is directly calculated 

through the MATLAB, and the parametric effect of the inner 

current regulator and the time delay on the overshoot are 

illustrated in Fig. 6. 

It is seen that the parametric effect on the overshoot has a 

minimum value when Kpi = Kpi1 with a certain value of Td. 

When Kpi < Kpi1, the larger the Kpi, the smaller the overshoot 

of fault current is obtained. In contrast, when Kpi > Kpi1, the 

larger the Kpi, the larger the overshoot of fault current is seen. 

From Fig. 6 (b), it is seen that the effect of Td on the overshoot 

has a minimum value when Td = Td0. When Td < Td0, the larger 

Td, the smaller the fault current overshoot is. When Td > Td0, 

the larger Td, the larger the fault current overshoot is. In order 

to ensure that the system has sufficient damping, the Kpi has a 

minimum Kpimin, and Td has a maximum Tdmax.  

 Considering that the allowed overshoot is δ1%, the 

satisfactory region of Kpi can be obtained as 

 
1 1pimin pi_ %min pi pi_ %maxmax( , )K K K K    (33) 

where 
1pi_ %minK 

 and 
1pi_ %maxK 

 are calculated with (32) with 

the condition of δ1%. 

The parametric effect of the inner current regulator and the 

time delay on the convergence time are shown as Fig. 7. From 

Fig. 7 it can be seen that the larger the Kpi and the smaller the 

Td, the shorter the convergence time ts is obtained. Assuming 

that the allowed convergence time is ts1, the satisfactory region 

can be obtained as  

 
1maxpi_ pist

K K  (34) 

where 
1maxpi_ st

K is calculated through with (32) in the condition 

of ts1.  

Considering that the initial phase of the voltage is 1, (27) 

can be written as 
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sα sαmax 1

gα gα 1 0

cos
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u u t u t t u t

 

 

   


      

 (35) 

And (31) should be modified as (36). 
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(a)                                                   (b) 

Fig. 6.  The effect on overshoot of fault current. (a) The effect of Kpi on 

overshoot. (b) The effect of Td on overshoot. 
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Fig. 7.  The effect on convergence time of fault current. (a) The effect of Kpi 
on convergence time. (b) The effect of Td on convergence time 
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Fig. 8  The effect of initial phase on overshoot. (a) The effect of 1 on 

overshoot of isα in different Kpi. (b) The maximum of fault current of 3-phase 
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Fig. 9  Transfer function diagram of inner current loop after fault without 
voltage feedforward. 
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(36) 

The effect of 1 on the overshoot is shown as Fig. 8. From 

Fig. 8 (a), it can be seen that the overshoot of α is related with 

the initial phase. Thus, the overshoot is largest when the fault 

occurs at the phase of n*π/3(n = 0, 1, 2, 3…), and the 

overshoot is smallest when the fault occurs at the phase of 

(2n+1)*π/6 (n = 0, 1, 2, 3…) as shown in Fig. 8 (b). Hence, 

both the overshoot and the convergence time of fault current 

should be calculated with 1 = 0, which is the most serious 

condition, and the satisfactory region can be obtained as (37). 

 
1 1max 1pimin pi_ %min pi_ pi pi_ %maxmax( , , )

st
K K K K K    (37) 
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Fig. 10  The effect of voltage feedforward on overshoot and convergence 

time of fault current. (a) The effect of voltage feedforward on overshoot. (b) 
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Fig. 11  The equivalent circuit of MMC 

B. Without the voltage feedforward loop 

When there is no voltage feedforward loop used, the control 

block diagram of the inner current loop after the short circuit 

fault is shown as Fig. 9. And the transfer function can be 

obtained as 

 
   

*i d
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Analyzing the overshoot of the fault current in the same  
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Fig. 12  The amplitude-frequency characteristic of Zcl (KpiKpv = 1,ωc = 4070) 

way, the results are shown in Fig. 10. From Fig. 10 it can be 

seen that the overshoot of fault current is significantly larger 

than that with a voltage feedforward yet the convergence time 

is similar. Hence, the voltage feedforward control is necessary 

considering the overshoot of fault current. 

IV. THE EFFECT ON IMPENDENCE OF PARAMETERS 

The equivalent circuit of MMC at the ac side is shown in 

Fig. 11. Generally, a smaller modulus of closed-loop output 

impendence can improve the voltage stiffness against the load 

current variation. Hence, the control parameters are further 

optimized to reduce the output impendence magnitude. 

A. With the voltage feedforward loop 

With the voltage feedforward loop used, according to (12), 

the closed-loop output impendence of MMC is derived as  
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(39) 

First, at the low frequency, Gd and Hu can be simplified as  

 
d 

u
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1
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H





 (40) 

Consequently, the impedance modulus can be obtained as 

(42) shown in the bottom of this page. From (42), it can be 

seen that the larger the Kpi and the smaller the KpiKpv, the larger 

the |Zcl(ω)| will be obtained.  

Second, at the high frequency, Gd and Hu cannot be ignored, 

where Gd is replaced as (41). 

    d

d dcos sin
j T

e T j T
  

     (41) 

The impedance modulus can be obtained as (43), where 

ωLeq is much larger than others in the numerator of (43) at 

high frequencies, and consequently Kpi has little effect on the 

impedance modulus. 

Fig. 12 plots the amplitude frequency responses of Zcl(ω) 
with the different parameters. It is clear that the difference of 
the impendence modulus is only seen in the low frequency 
range, which agrees well with the theoretical analysis. 
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Fig. 13  The amplitude-frequency characteristic of Zcl (KpiKpv = 0.5,ωc = 4070) 
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Fig. 14  The amplitude-frequency characteristic of Zcl (KpiKiv = 4070,ωc = 

4070) 

B. Without the voltage feedforward loop 

When there is no voltage feedforward loop, according to 

(19), the impendence of MMC can be obtained as  
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 (44) 

The parameters of outer voltage loop regulator can be 

designed with either the proportional gain or the integral gain 

of the PR regulator dominating at the crossover frequency. 

1) Proportional gain dominating at the crossover 

frequency. 

With the proportional gain dominating at the crossover 

frequency, the impedance modulus at the low frequency range 

can be obtained as (47) in the bottom of this page, from which, 

it can be seen that the larger the Kpi and the smaller the KpiKpv, 

the larger the |Z(ω)| is obtained.  

At high frequencies, the impedance modulus is obtained as 

(45).  
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where the ωLeq is far larger than others, and hence the Kpi has 

little effect on the impedance modulus. Fig. 13 plots the 

amplitude-frequency responses of Zcl(ω). 

2) Integral gain dominating at the crossover frequency 

With the integral gain dominating at the crossover 

frequency, the impedance modulus in the low frequency range  
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Fig. 15  The parametric impact of inner current loop on stability. (a)  PM <0. 
(b) PM = 10° 

TABLE I 

MAIN CIRCUIT PARAMETERS USED IN SIMULATIONS 
SYMBOL DESCRIPTION VALUE 

us Rated ac voltage of MMC 230 kV 
P Rated power of the MMC 400 MW 

Leq Equivalent inductance of MMC 0.1 H 

LW Line inductance 0.05 H 
Imax The limit value of current limiter 1.0 p.u. 

f0 Grid frequency 50 Hz 

Td Time delay 0.3 ms 

is expressed as (48), which is shown in the bottom of this page. 

From (48), the same effect of Kpi, and KpiKiv on |Z(ω)| as that 

with the proportional gain can be observed. 

In the high frequency range, the impedance modulus can be 

obtained as  
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where similarly the ωLeq is far greater than others, and Kpi has 

little effect on the impedance modulus.  

The amplitude-frequency characteristic of Zcl(ω) is shown 

in Fig. 14. It is clear that the controller parameters only affect 

the impedance modulus in the low frequency range. 

V. SIMULATIONS  

The simulation study is carried out in PSCAD to verify the 

effectiveness of the parameters design method. The arm-

averaged model of the MMC given in Fig. 1 is adopted in the 

simulation, in which each bridge is replaced by a controlled 

voltage source [32]. The wind farm is modeled by a controlled 

current source with the PLL. The parameters used in the 

simulation are given in Table I. 

Fig. 15 shows the parametric impact of the inner current 

loop on voltage stability with Td = 0.3 ms. Based on (6), it can 

be calculated that the stability of the inner current loop 

requires fc < 913 Hz and Kpi < 523.5. The simulation result with 

fc = 920 Hz > 913 Hz and Kpi = 577 > 523.5 is given in Fig. 15 

(a), where the unstable operation of the MMC can be clearly 

observed. In contrast, the MMC can be stabilized when the 
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(a)                                                                               (b)                                                                               (c)                                      

Fig. 16  The parametric impact on stability with the voltage feedforward loop. (a) KpiKpv = 0.5 < 1, stable. (b) KpiKpv = 0.8 < 1, stable. (c)KpiKpv = 1.1 > 1, unstale 
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(a)                                                                               (b)                                                                        (c)                                            

Fig. 17  The parametric impact on stability without the voltage feedforward loop when proportional gain has a dominant effect at the crossover frequency. (a) 

KpiKpv = 0.5 < 1, stable. (b) KpiKpv = 0.8 < 1, stable .(c)KpiKpv = 1.1 > 1, unstale  

0.00 0.05 0.10 0.15 0.20
-300

-200

-100

0

100

200

300

 

 

V
o
lt

ag
e/

k
V

Time/s   

0.00 0.05 0.10 0.15 0.20
-300

-200

-100

0

100

200

300

 

 

V
o

lt
ag

e/
k

V

Time/s   
0.78 0.80 0.82 0.84 0.86 0.88

-300

-200

-100

0

100

200

300

Time/s

V
o

lt
ag

e/
k

V

 

 

 
(a)                                                                               (b)                                                                               (c)                                      

Fig. 18  The parametric impact on stability without the voltage feedforward loop when integral gain has a dominant effect at the crossover frequency. (a) KpiKiv 

= 3000 < 4070, stable. (b) KpiKiv = 4000 < 4070, stable. (c) KpiKiv = 5500 > 4070, unstable 
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(a)                                                        (b)                                                        (c)                                                        （d）                            

Fig. 19  Comparison of simulation and calculation of the fault current in different parameters. (a)Td = 0.3 ms, Kpi = 10 with voltage feedforward  (b)Td = 0.3ms, 

Kpi = 20 with voltage feedforward.（c）Td = 0.3 ms, Kpi = 20 without the voltage feedforward.（d）Td = 0.6 ms, Kpi = 20 without the voltage feedforward 

requirement of (6) is met. As an example with fc = 740 Hz < 

913 Hz and Kpi = 465 < 523.5 given by Fig. 15 (b). The 

simulation results given in Fig. 15 verify the correctness of (6). 

Considering the voltage feedforward loop, the stability of 

the system requires KpiKpv ≤ 1, which is indicated by (15). Fig. 

16 shows the simulation results with Td = 0.3 ms ,Td1 = 0.1 ms 

and ωc = 4070, where the unstable operation of the system 

when KpiKpv > 1 can be clearly observed, as shown in  Fig. 16 

(c), and thus, the correctness of (15) is verified. 

For the condition that voltage feedforward is not adopted, 

either the proportional or the integral gain of the PR regulator 

of the voltage loop can be designed to have dominant effect at 

crossover frequency. In former case, Eq. (22), i.e., KpiKpv < 1, 

should be satisfied. This is verified by Fig. 17, which 

illustrates the unstable operation of the MMC system when 

KpiKpv > 1 (see Fig. 17 (c)) and the stable operation when 

KpiKpv < 1 (see Fig. 17 (a) and (b)). In the latter case, (24) 

should be met in order for the stable operation of the system, 

which is verified by Fig. 18. 

Table II shows the simulated and calculated overshoot of 

the fault current with different parameters under a three phase 

short circuit fault with Lg = 0.01 H and Td = 0.3 ms. From 

TABLE II, it can be seen that the error between simulation and 

the time-domain waveform of the simulated and calculated fau 
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TABLE II  

OVERSHOOT OF FAULT CURRENT IN DIFFERNET 
 PARAMETERS WITH VOLTAGE FEEDFORWARD 

Kpi 
Imax 

simulation/p.u. calculation/ p.u. error/% 

10 1.30 1.24 4.61 

20 1.21 1.18 2.4 
30 1.17 1.14 2.56 

40 1.15 1.13 1.73 

50 1.14 1.11 2.63 
60 1.13 1.08 4.42 

70 1.12 1.05 6.25 
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Fig. 20  The parametric impact on stiffness of the voltage 

-lt current. The close match between the calculation and 

simulation verify the correctness of the theoretical analysis. 

Fig. 19(c) and (d) show the effect of the voltage feedforward 

on fault current with different time delay, it can be seen that 

the overshoot of fault current is significantly increased if the 

voltage feedforward is not used, which also agrees with the 

theoretical analysis. 

Fig. 20 shows the dynamics of the output voltage of the 

MMC under 0.5 kA current steps. According to the section IV, 

the modulus of the output impendence is smallest when Kpi = 

0.1 and largest when Kpi = 100. Therefore, the largest 

overvoltage of the MMC (about 1.3 p.u.) can be observed 

when Kpi = 100, while the best voltage stiffness against current 

variation is achieved when Kpi = 0.1. To increase the stiffness 

of the output voltage of the MMC, the Kpi should be set as 

small as possible within the satisfactory region. 

VI. CONCLUSIONS 

This paper presents a systematic parameters tuning guild-

line for the dual-loop voltage-controlled MMC considering 

the requirement of voltage stability, transient fault current 

limitation and stiffness of voltage against load current change. 

The impact of voltage feedforward on stability and fault 

current limitation is investigated. It is found out that the 

overshoot of the fault current increases significantly if the 

voltage feedforward is not used. Within the satisfactory region 

of the parameters, the smaller Kpi will lead to higher stiffness 

of the output voltage of the MMC against load current change. 

Based on the proposed method, the controller parameters can 

be calculated directly without trial and error. The effectiveness 

of the proposed method is verified by time domain simulation. 
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