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Abstract: We present an in-depth computational study of two local search metaheuristics
for the classical uncapacitated facility location problem. We investigate four problem instance
models, studied for the same problem size, for which the two metaheuristics exhibit intriguing
and contrasting behaviours. The metaheuristics explored include a local search (LS) algorithm
that chooses the best moves in the current neighbourhood, while a randomised local search
(RLS) algorithm chooses the first move that does not lead to a worsening. The experimental
results indicate that the right choice between these two algorithms depends heavily on the
distribution of coefficients within the problem instance. This is also put further into context by
finding optimal or near-optimal solutions using a mixed-integer linear programming problem
solver.
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1. INTRODUCTION

Many problems in science and engineering are widely re-
garded as computationally hard. Within operations re-
search, these involve a number of planning, scheduling
or production optimisation problems. Such problems in-
clude a variety of facility location (Gao and Robinson,
1992), supply chain optimisation problems (Melo et al.,
2009);(Sitek et al., 2014), as well as shop scheduling
problems (Blum and Sampels, 2004), including job shop
scheduling (Applegate and Cook, 1991) and flow shop
scheduling (Linn and Zhang, 1999). Typical application
areas for solving this type of problems include warehouse
location (Michel and Van Hentenryck, 2004), line balanc-
ing (Nilakantan et al., 2017), routing (Sitek and Wikarek,
2017);(Dang et al., 2012) or planning and scheduling tech-
nology design (Steger-Jensen et al., 2011).

The No free lunch theorems for optimisation have had a
vital impact on design of efficient algorithms to solve com-
binatorial optimisation problems (Wolpert and Macready,
1997). One of the implications is that approximation ca-
pabilities and runtime of algorithms for combinatorial op-
timisation problems are now increasingly interpreted in
their relation to specific problem instances.

In this paper, we present a computational study of lo-
cal search strategies for the classical uncapacitated facil-
⋆ Full version of this article is available as a technical report:
Chalupa, D., Nielsen, P. (2018). Instance Scale, Numerical
Properties and Design of Metaheuristics: A Study for the
Facility Location Problem. arXiv preprint, arXiv:1801.03419,
https://arxiv.org/abs/1801.03419.

ity location problem (Aikens, 1985). This problem has
very good scaling properties, as well as relatively less
constrained search space that does not seem to change
its structural properties heavily by scaling (Chalupa and
Nielsen, 2018b).

Contributions. In this research we use two local search
algorithms to solve the facility location problem and ob-
tain that their performance comparison indicators depend
vastly on the coefficients within the instance. We extend on
a previous study of local search algorithms for very large
instances of the problem (Chalupa and Nielsen, 2017) and
consider this as part of the effort to develop robust local
search algorithms (Chalupa and Nielsen, 2018a).

The first algorithm is steepest descent local search (LS),
choosing the move to open or close a facility at each
time step such that the best objective value is obtained.
Another algorithm studied will be randomised local search
(RLS), which attempts to open or close a facility and
accepts the move whenever it does not lead to a worsening.
We also use a mixed-integer linear programming solver
to compare the results of the local search algorithms to
distribution of the actual optima.

The experimental results are presented for four sets of
problem instances, with each set containing instances with
1000 customers and numbers of facility sites ranging from
50 to 140 (for instances with up to 90 facility sites we
also used the ILP-based solver). We obtain that the choice
of the right local search strategy is indeed closely tied to
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the numerical properties of a particular instance in strong
support of the No free lunch theorems.

Further theoretical analyses may provide more rigorous
explanations for some of our findings. Such analyses could
pave the way to better understanding of the relation be-
tween instance structure and algorithm efficiency. How-
ever, these analyses are outside of scope of this particular
article. On the other hand, the facility location problem
belongs to a class of classical assignment and cost optimi-
sation problems, i.e. similar phenomena may be discovered
for other popular real-world combinatorial optimisation
problems as well.

The paper is structured as follows. In Section 2, we
introduce and review the uncapacitated facility location
problem. In Section 3, we propose our four cost and
distance models for instances of the problem, as well as
the local search algorithms explored. Section 4 presents
the experimental results and provides a brief discussion.
Our conclusions are presented in Section 5.

2. THE UNCAPACITATED FACILITY LOCATION
PROBLEM

We will firstly formalise the problem as an integer linear
program and provide an overview of related results on
heuristics and metaheuristics to solve the problem in large-
scale.

Let F ′ ⊆ F be a subset of selected potential facility
locations. Let fi be the cost of facility i ∈ F and let d(j, ij)
be the distance from a customer j ∈ C to the nearest
facility ij ∈ F ′. Then, the objective in the uncapacitated
facility location problem will be to minimise the following
objective function:

min
∑

i∈F ′

fi +
∑

j∈C

d(j, ij). (1)

It is possible to transform this formulation into an integer
linear programming (ILP) formulation of the problem (Al-
Sultan and Al-Fawzan, 1999). Let n be the number of
facilities and let m be the number of customers. Then,
alternatively, the objective is solve the following ILP
formulation of the problem:

min
n
∑

i=1

fiyi +

n
∑

i=1

m
∑

j=1

cijxij , (2)

s.t.
n
∑

i=1

xij = 1, j = 1, ...,m (3)

xij ≤ yi, i = 1, ..., n, j = 1, ...,m, (4)

where cij is the cost of meeting the demand of customer j
from facility i, and xij and yi are binary decision variables
determining if facility i is used to serve customer j and if
a facility is established at position i.

With this exact formulation, an out-of-the-box mixed-
integer linear programming solver can be used to solve the
problem up to a certain scale. A brief study has previously
been conducted for such an approach with a high number
of customers (Chalupa and Nielsen, 2017).

We will investigate the performance of two local search
algorithms for a set of carefully chosen facility location
instances. These will highlight the contrast between search
space structures and their influence on the actual be-
haviour of different optimisation techiniques. The aim is to
establish how the behaviours of metaheuristics can vastly
differ with only a slight variation in values within the
problem instance. This will not only highlight the need
for hybrid metaheuristics in these problems but will also
strengthen the case for hybrid algorithms with a compact
parameter suite and underline that robust approaches may
for uncertain problem structures be preferable.

3. OUR FACILITY COST AND DISTANCE MODELS
AND LOCAL SEARCH ALGORITHMS

In this section, we introduce our four facility cost and
distance models, as well as the algorithms we use to solve
them.

3.1 Facility Cost and Distance Models

Each of the four problem models have specific quantitative
properties, leading to contrasting search landscapes. In
Model 1, all facilities have the same cost, while the
distances follow a moderately varied uniform distribution.
Model 2 works with binary facility costs and a bimodal
distribution of distances, with many distant connections
but a few close ones. Model 3 assumes both binary facility
costs and binary distances. Last but not least, Model
4 works with facility costs and distances following a
Poissonian distribution.

Model 1: Flat Facility Cost, Moderately Varied Random
Distances. The first model will assign the same unit
cost to all facilities. The distances will be represented by
integers taken uniformly at random from a limited interval
between 1 and 10. This way plateaus will be generated in
the search space. The corresponding values of fi and cij
will be:

fi = 1, i = 1, ...n, (5)

cij = random(1, 10), i = 1, ..., n, j = 1, ...,m. (6)

Model 2: Binary Facility Cost, Bimodal Distribution of
Distances. In the second model, we use a binary choice
facility cost. Each facility costs either 1 or 2 units. The
distances will follow a bimodal distribution. Similarly to
the previous model, we will generate uniformly random in-
teger values between 1 and 10. However, each value higher
than 1 will be overwritten by the maximum possible value.
This generates instances with many high distances, but
also several low distances between customers and facilities.
The values within an instance will be the following:

fi = random(1, 2), i = 1, ...n, (7)

cij =
{

1 with probability 0.1
10 otherwise

, i = 1, ..., n, j = 1, ...,m.(8)
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Model 3: Binary Facility Cost, Binary Distances. The
facility cost structure in this model is the same as in
the previous model. However, the distances will also be
generated as 1 or 2. This will lead to a relative flat problem
landscape. The aim will be to effectively search for a
solution with as many facility cost and distance values
equal to 1 as possible.

fi = random(1, 2), i = 1, ...n, (9)

cij = random(1, 2), i = 1, ..., n, j = 1, ...,m. (10)

Model 4: Flat Facility Cost, Poissonian Distribution of
Distances. The last model is a modification of Model 1.
The uniform facility cost will be used, with each facility
costing a single unit. The distances will be taken from
the Poissonian distribution Pok(λ), with k trials and a
probability of success λ/k per trial. The distance will
be equal to the number of successful trials, incremented
by 1, to avoid zero distance in case that all trials fail.
This leads to a highly skewed distribution of distances. In
our implementation, we choose k = 10 and λ = 1. The
parameters of the model are the following:

fi = 1, i = 1, ...n, (11)

cij = 1 + Pok=10(λ = 1), i = 1, ..., n, j = 1, ...,m. (12)

3.2 Local Search Algorithms

We use two local search algorithms that have been ex-
plored in a previous study on a similar large-scale model of
customer service centre applications (Chalupa and Nielsen,
2017). The algorithms have been chosen for their simplicity
and scalability, as well as the fact that neither of them
requires extensive explicit or implicit parameter tuning
making them straight forward to implement.

The first one is a systematic local search (LS) algorithm
that, at each time step, chooses the move that leads
to the largest drop in the objective value. The second
algorithm is a randomised local search (RLS), which
attempts opening or closing a single randomly chosen
facility in each time step and accepts the move if it does
not lead to a worsening.

Local search (LS). The algorithm will search in space
of bit strings, i.e. in {0, 1}n. Each bit yi determines
whether facility i is open or closed, similarly to the ILP
formulation of the problem. The algorithm starts with
all facilities open, i.e. with a bit string consisting solely
of 1-bits. Each customer is then assigned to the closest
facility. Let y be the current bit string and let y′(i) be
the bit string obtained by flipping bit yi in y. Then, LS
chooses i such that the objective value of y′(i) is minimised
within the neighbourhood. In our investigations, LS will
be terminated after n iterations, where n is the number of
candidate facilities.

Randomised local search (RLS). This algorithm also
starts with all facilities open. Let y be the current bit
string and let y′(i) be the bit string obtained by flipping
bit yi in y. Then, RLS chooses 1 ≤ i ≤ n at random in
each time step. The new bit string y′(i) is accepted if the

objective value of y′(i) is not higher than the objective
value of y. In terms of the number of bit flips attempted,
each iteration of LS corresponds to n iterations of RLS.
RLS will therefore be terminated after n2 iterations in our
further experiments.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the experimental results ob-
tained. We first describe the experimental settings and
then present the results for the four problem instance
models.

4.1 Experimental Settings

For each of the facility cost and distance models, we
generated 10 instances and ran LS and RLS 1000 times
for each instance.

To determine actual optima or near-optimal solution we
use the CBC mixed-integer programming branch-and-cut
solver from the COIN-OR package (Bonami et al., 2008;
Linderoth and Lodi, 2011). We use a precompiled 64-
bit Windows binary of CBC compiled by the Intel 11.1
compiler. The time limit for CBC solution search was set
to 24 hours per instance.

The experiments were performed on a machine with an
Intel Core i7-6820 CPU @ 2.70 GHz, 32 GB RAM and
Windows 10 operating system. LS and RLS were imple-
mented in C++ using Qt, compiled by the MinGW 32-bit
compiler.

Each run of LS was stopped after n iterations, as in each
iteration, a flip of each bit separately is attempted. For
RLS, n2 local search iterations were allowed, since a single
bit is always flipped in each iteration.

4.2 Results for the Four Facility Cost and Distance Models

The experimental results are presented for each model
separately using box-whisker plots to illustrate the distri-
bution of solutions found by LS and RLS. The distribution
of optimal or near-optimal solutions and lower bounds will
also be presented.

Model 1: Flat Facility Cost, Moderately Varied Random
Distances. Figure 1 presents the box-whisker plots ob-
tained for the instances generated by Model 1. For these
instances, RLS outperforms LS. This can be explained by
the possibility that closing or opening a facility, which
leads to a higher objective value at the moment, could not
necessarily lead to the best moves in the future. CBC was
able to find optima for instances with up to 60 customers,
as well as for most instances with 70 customers. One can
observe that the gaps between the typical performances
tend to widen with growing instance size. This suggests
that more advanced techniques could offer some improve-
ment in this model, including tabu search (Sun, 2006) or
evolutionary algorithms (Jaramillo et al., 2002).

While the numerical differences observed here are not
that large, it is worth mentioning that more pronounced
differences between LS and RLS are obtainable. This is
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Model 3: Binary Facility Cost, Binary Distances. The
facility cost structure in this model is the same as in
the previous model. However, the distances will also be
generated as 1 or 2. This will lead to a relative flat problem
landscape. The aim will be to effectively search for a
solution with as many facility cost and distance values
equal to 1 as possible.

fi = random(1, 2), i = 1, ...n, (9)

cij = random(1, 2), i = 1, ..., n, j = 1, ...,m. (10)

Model 4: Flat Facility Cost, Poissonian Distribution of
Distances. The last model is a modification of Model 1.
The uniform facility cost will be used, with each facility
costing a single unit. The distances will be taken from
the Poissonian distribution Pok(λ), with k trials and a
probability of success λ/k per trial. The distance will
be equal to the number of successful trials, incremented
by 1, to avoid zero distance in case that all trials fail.
This leads to a highly skewed distribution of distances. In
our implementation, we choose k = 10 and λ = 1. The
parameters of the model are the following:

fi = 1, i = 1, ...n, (11)

cij = 1 + Pok=10(λ = 1), i = 1, ..., n, j = 1, ...,m. (12)

3.2 Local Search Algorithms

We use two local search algorithms that have been ex-
plored in a previous study on a similar large-scale model of
customer service centre applications (Chalupa and Nielsen,
2017). The algorithms have been chosen for their simplicity
and scalability, as well as the fact that neither of them
requires extensive explicit or implicit parameter tuning
making them straight forward to implement.

The first one is a systematic local search (LS) algorithm
that, at each time step, chooses the move that leads
to the largest drop in the objective value. The second
algorithm is a randomised local search (RLS), which
attempts opening or closing a single randomly chosen
facility in each time step and accepts the move if it does
not lead to a worsening.

Local search (LS). The algorithm will search in space
of bit strings, i.e. in {0, 1}n. Each bit yi determines
whether facility i is open or closed, similarly to the ILP
formulation of the problem. The algorithm starts with
all facilities open, i.e. with a bit string consisting solely
of 1-bits. Each customer is then assigned to the closest
facility. Let y be the current bit string and let y′(i) be
the bit string obtained by flipping bit yi in y. Then, LS
chooses i such that the objective value of y′(i) is minimised
within the neighbourhood. In our investigations, LS will
be terminated after n iterations, where n is the number of
candidate facilities.

Randomised local search (RLS). This algorithm also
starts with all facilities open. Let y be the current bit
string and let y′(i) be the bit string obtained by flipping
bit yi in y. Then, RLS chooses 1 ≤ i ≤ n at random in
each time step. The new bit string y′(i) is accepted if the

objective value of y′(i) is not higher than the objective
value of y. In terms of the number of bit flips attempted,
each iteration of LS corresponds to n iterations of RLS.
RLS will therefore be terminated after n2 iterations in our
further experiments.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the experimental results ob-
tained. We first describe the experimental settings and
then present the results for the four problem instance
models.

4.1 Experimental Settings

For each of the facility cost and distance models, we
generated 10 instances and ran LS and RLS 1000 times
for each instance.

To determine actual optima or near-optimal solution we
use the CBC mixed-integer programming branch-and-cut
solver from the COIN-OR package (Bonami et al., 2008;
Linderoth and Lodi, 2011). We use a precompiled 64-
bit Windows binary of CBC compiled by the Intel 11.1
compiler. The time limit for CBC solution search was set
to 24 hours per instance.

The experiments were performed on a machine with an
Intel Core i7-6820 CPU @ 2.70 GHz, 32 GB RAM and
Windows 10 operating system. LS and RLS were imple-
mented in C++ using Qt, compiled by the MinGW 32-bit
compiler.

Each run of LS was stopped after n iterations, as in each
iteration, a flip of each bit separately is attempted. For
RLS, n2 local search iterations were allowed, since a single
bit is always flipped in each iteration.

4.2 Results for the Four Facility Cost and Distance Models

The experimental results are presented for each model
separately using box-whisker plots to illustrate the distri-
bution of solutions found by LS and RLS. The distribution
of optimal or near-optimal solutions and lower bounds will
also be presented.

Model 1: Flat Facility Cost, Moderately Varied Random
Distances. Figure 1 presents the box-whisker plots ob-
tained for the instances generated by Model 1. For these
instances, RLS outperforms LS. This can be explained by
the possibility that closing or opening a facility, which
leads to a higher objective value at the moment, could not
necessarily lead to the best moves in the future. CBC was
able to find optima for instances with up to 60 customers,
as well as for most instances with 70 customers. One can
observe that the gaps between the typical performances
tend to widen with growing instance size. This suggests
that more advanced techniques could offer some improve-
ment in this model, including tabu search (Sun, 2006) or
evolutionary algorithms (Jaramillo et al., 2002).

While the numerical differences observed here are not
that large, it is worth mentioning that more pronounced
differences between LS and RLS are obtainable. This is
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Fig. 1. Box-whisker plots and plots depicting the relation of the performance of LS, RLS and the actual optimal or
near-optimal solutions obtained for 10 problem instances generated according to Model 1. LS and RLS were used
1000 times per instance, while the results for CBC represent optimal or near-optimal reference solutions obtained
by the corresponding ILP solving procedure.
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Fig. 2. Box-whisker plots and plots depicting the relation of the performance of LS, RLS and the actual optimal or
near-optimal solutions obtained for 10 problem instances generated according to Model 2. LS and RLS were used
1000 times per instance, while the results for CBC represent optimal or near-optimal reference solutions obtained
by the corresponding ILP solving procedure.

possible by changing the value we have fixed to 10 for
simplicity of this study. We have picked this approach for
simplicity and to obtain results that are easy to interpret
in a broader context.

Figure 1 also sheds more light on the relations between
the performances of different techniques, grouped by in-
stances. Each line in the plot connects results for the
corresponding runs of LS, RLS and CBC, linking the
solutions found by the local search algorithms to the actual
optimal or near-optimal solutions. The aim of these plots
is to explore the variability of the results obtained on a
per-instance level, in addition to the overall aggregation
explored in the box-whisker plots.

One can observe an overall “downward” trend from LS
to RLS, confirming the better performance of RLS also
on the per-instance level. This needs to be interpreted in
context: the fact that the performance of an individual run

of LS or RLS is inferior does not necessarily mean that a
multi-start variant of the algorithm cannot succeed.

Model 2: Binary Facility Cost, Bimodal Distribution of
Distances. Figure 2 illustrates the results obtained for
Model 2 as box-wisker plots. These reveal a contrasting
pattern to the one obtained for Model 1. LS outperforms
RLS for these instances. At this point, it is worth noting
that we have only changed the cost and distance structure.
Such a change already leads to a very different result to
the one observed for the previous instances. Observing the
distributions of results found by LS and RLS, one can see
that the gap even widens with growing number of facilities.
However, Figure 2 does not seem to indicate a pronounced
slope in the relations between objective values observed
for high-quality runs of LS and the results found by CBC.
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Fig. 3. Box-whisker plots and plots depicting the relation of the performance of LS, RLS and the actual optimal or
near-optimal solutions obtained for 10 problem instances generated according to Model 3. LS and RLS were used
1000 times per instance, while the results for CBC represent optimal or near-optimal reference solutions obtained
by the corresponding ILP solving procedure.
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Fig. 4. Box-whisker plots and plots depicting the relation of the performance of LS, RLS and the actual optimal or
near-optimal solutions obtained for 10 problem instances generated according to Model 4. LS and RLS were used
1000 times per instance, while the results for CBC represent optimal or near-optimal reference solutions obtained
by the corresponding ILP solving procedure.

Model 3: Binary Facility Cost, Binary Distances. Figure
3 reveals the results obtained for Model 3. These paint a
more complex picture than those obtained for the previous
instances. This is further supported by the results of CBC,
which was able to find proven optima only for the instances
with 50 facilities. For these instances, LS has a very
intriguing performance. One can observe that the median
solution quality is better than for RLS. The distribution
of solution quality for LS seems to be estimated relatively
well in terms of its shape. However, one can also observe
a consistent bias in this estimate. The results obtained by
LS are heavily concentrated around the median, similarly
to the distribution of the actual optimal or near-optimal
solutions.

A surprising observation is that while RLS often has
inferior performance, it can actually outperform LS at
times due to its randomised nature. Model 3 therefore
represents an instance type, for which LS is a good choice

to rapidly obtain a good but not necessarily optimal
solution. If one needs to obtain a near-optimal solution,
then RLS might be a better choice of an algorithm due to
its randomised nature and better robustness.

Model 4: Flat Facility Cost, Poissonian Distribution of
Distances. Figure 4 presents the results for the last model
in the form of box-whisker plots. This model seems to be
the most intriguing one out of the four models investigated.
In contrast to Model 3, it is RLS, for which the results are
concentrated around the median. However, RLS still seems
to perform better than LS in most cases, even though the
results indicate that it also has a tendency to get stuck in
local optima.

The patterns presented in Figure 4 also reveal that in
most cases, LS and RLS produce solutions of comparable
quality. RLS is therefore likely to sample solutions with
better objective values more frequently. However, for the
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Fig. 3. Box-whisker plots and plots depicting the relation of the performance of LS, RLS and the actual optimal or
near-optimal solutions obtained for 10 problem instances generated according to Model 3. LS and RLS were used
1000 times per instance, while the results for CBC represent optimal or near-optimal reference solutions obtained
by the corresponding ILP solving procedure.
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Fig. 4. Box-whisker plots and plots depicting the relation of the performance of LS, RLS and the actual optimal or
near-optimal solutions obtained for 10 problem instances generated according to Model 4. LS and RLS were used
1000 times per instance, while the results for CBC represent optimal or near-optimal reference solutions obtained
by the corresponding ILP solving procedure.

Model 3: Binary Facility Cost, Binary Distances. Figure
3 reveals the results obtained for Model 3. These paint a
more complex picture than those obtained for the previous
instances. This is further supported by the results of CBC,
which was able to find proven optima only for the instances
with 50 facilities. For these instances, LS has a very
intriguing performance. One can observe that the median
solution quality is better than for RLS. The distribution
of solution quality for LS seems to be estimated relatively
well in terms of its shape. However, one can also observe
a consistent bias in this estimate. The results obtained by
LS are heavily concentrated around the median, similarly
to the distribution of the actual optimal or near-optimal
solutions.

A surprising observation is that while RLS often has
inferior performance, it can actually outperform LS at
times due to its randomised nature. Model 3 therefore
represents an instance type, for which LS is a good choice

to rapidly obtain a good but not necessarily optimal
solution. If one needs to obtain a near-optimal solution,
then RLS might be a better choice of an algorithm due to
its randomised nature and better robustness.

Model 4: Flat Facility Cost, Poissonian Distribution of
Distances. Figure 4 presents the results for the last model
in the form of box-whisker plots. This model seems to be
the most intriguing one out of the four models investigated.
In contrast to Model 3, it is RLS, for which the results are
concentrated around the median. However, RLS still seems
to perform better than LS in most cases, even though the
results indicate that it also has a tendency to get stuck in
local optima.

The patterns presented in Figure 4 also reveal that in
most cases, LS and RLS produce solutions of comparable
quality. RLS is therefore likely to sample solutions with
better objective values more frequently. However, for the
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1000 × 50 instances, one can also observe that while
CBC consistently produced solutions with objective value
1010, RLS was able to provide a better solution with
objective value 1009. These results have indeed painted a
very complex picture of problem difficulty landscape and
algorithm performance.

5. CONCLUSIONS

We proposed four cost and distance models for the unca-
pacitated facility location problem instances. These mod-
els enabled us to uncover a complex relation between the
numerical properties of a problem instance and efficiency
of the optimisation algorithms used to solve the problem.
An investigation of the efficiency of two metaheuristic
algorithms was presented, namely systematic local search
(LS) and randomised local search (RLS). An out-of-the-
box mixed-integer linear programming solver has also been
used to obtain reference results. In the experimental re-
sults, one can observe a rich variety of behaviours. RLS
outperformed LS for Model 1, while this was reversed
in Model 2. Models 3 and 4 show even more intricate
landscape properties and behaviours of LS, RLS, as well
as the exact solver.

Based on the results obtained by LS and RLS, one can
conclude that the choice of the right local search strategy
for a particular model is closely related to its internal
numerical properties. This strengthens the case for design
of hybrid metaheuristics for this type of problems, but also
highlights the intriguing need for the numerical properties
of a particular instance to be taken into account in such a
design.

Further theoretical insights may also be of a high interest,
particularly into the reasons behind the relation between
the instance scale, structure, and the behaviour of opti-
misation algorithms. Such an understand may open the
way to new results and generalisations to other related
assignment problems and combinatorial problems in gen-
eral, such as job shop and flow shop scheduling, knapsack
problems or pallet stacking.
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