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Abstract: Fleet mission planning for Unmanned Aerial Vehicles (UAVs) is the process of creating
flight plans for a specific set of objectives and typically over a time period. Due to the increasing focus
on the usage of large UAVs, a key challenge is to conduct mission planning addressing changing
weather conditions, collision avoidance, and energy constraints specific to these types of UAVs.
This paper presents a declarative approach for solving the complex mission planning resistant to
weather uncertainty. The approach has been tested on several examples, analyzing how customer
satisfaction is influenced by different values of the mission parameters, such as the fleet size, travel
distance, wind direction, and wind speed. Computational experiments show the results that allow
assessing alternative strategies of UAV mission planning.

Keywords: Unmanned Aerial Vehicles; UAV routing and scheduling; UAV fleet mission planning

1. Introduction

Unmanned Aerial Vehicles (UAVs) are a promising maturing technology to support delivery
operations due to their potential for fast, cost-effective, and more sustainable nature than traditional
delivery modes such as land and sea transportation [1–3]. Urban Air Mobility (UAM) is an emerging
solution to the challenge of congestion and pollution from transportation means increasingly found
in large urban environments. UAM will reshape transportation and logistics in the future through
reducing the load on land-based transportation means [3,4] and depends on the introduction of
next-generation Vertical Take-Off and Landing (VTOL) vehicles capable UAVs as a mode of transport
service [3]. UAM systems will introduce new innovative UAVs-related operations to the airspace
across the world [3] and are expected to revolutionize the transportation infrastructure, mainly in
urban areas or hard to access rural areas. To fulfill these visions requires developing technology
supporting very large-scale autonomous deployment of fleets of UAVs. As a consequence, flight and
navigation tasks for UAV fleets are increasingly automated to gain economies-of-scale, increase the
speed of operations, and support the large-scale operations envisioned in UAM. Another aspect of
UAM systems is to support monitoring, e.g., traffic conditions using UAVs to move between points of
interest. Alternatively, the same methods can be used to coordinate surveillance missions where UAVs
act as sensor platforms to monitor specific events such as sporting events and concerts. Enhancement
in the autonomy of UAVs has changed the role of the operating personal to one of control supervision
where the operator will be primarily handling the high-level mission management in contrast to
low-level manual flight control. Likewise, UAV mission planning and execution is transitioning
from teams of operators managing a single UAV to a single operator managing multiple UAVs [3,4].
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The increasing degree of autonomy and automation has made a demand for faster and safer systems to
handle complex UAV operations.

In using UAV technology to address the societal challenges through the making seamless flow
of transport operations, practical constraints such as weather conditions and energy consumption
make the problem highly complex and intractable [3]. Even though UAV technologies provide the
more flexible transfer of goods between locations, these generate new challenges in the organization
and maintenance of the planned routes and schedules [5,6]. UAVs mission planning is vital to the
operations of UAV fleets and, to support autonomous operations of UAV fleets, new approaches for
fleet mission planning must be developed. UAV fleet mission planning problems are by their nature an
extension of the well-known Vehicle Routing Problem (VRP). However, these problems have the added
complexity of combining routing and scheduling, three-dimensional operations, and non-linear fuel
consumption [3,4,7]. The classical VRP is well-studied and the methods and approaches found within
this domain are still very much applicable for the advancement of new technology in the area of UAV
operations. However, mission planning for UAV fleets must consider a number of constraints and
operating conditions rarely seen in the traditional VRP and operating conditions and limitations not
found in other transportation means [3]. Some central examples of this are the constraints on UAV range
that depend on weather conditions, airspace regulations and restrictions, as well as congestion in terms
of collision avoidance and safety distance, and the UAV characteristics such as airspeed, maximum
payload, energy capacity, physical dimensions, etc. [3,4,7,8]. In UAV mission planning, it is necessary
to address weather conditions [9,10] and changes to these weather conditions can potentially strongly
influence the solution strategy for the UAV mission planning, especially wind direction and speed as
they directly impact energy consumption and flight characteristics [3,11]. Thus, UAV mission planning
strategies must estimate energy consumption to identify the set of all reachable destinations [3,4].
As weather is by its nature uncertain, delivery services should accommodate this uncertainty through
planning UAV fleet missions as a sequence of repeatedly executed UAV routes and schedules [4].
This will tend to increase delivery satisfaction by spreading risk and stabilizing deliveries.

This research presents an extension of the work presented previously [8] and presents an expanded
solution approach for mission planning problems taking into account the UAV energy capacity and
flight characteristics, weather uncertainty, payload weight, number of customers, customer demand,
fleet size, distribution network structure, and time horizon. Special attention is devoted to the UAVs
flying mission planning following the delivery strategies assuming either that each UAV travels at a
constant ground speed or constant airspeed throughout the mission.

The solutions provide answers to whether a given level of customer satisfaction is achievable
within a given time horizon. Similar problems have been considered in previous studies [12–14] and
the focus of this study is on solutions that allow one to find a collision-free plan of delivery missions
composed of a sequence of UAV multi-trip missions maximizing order fulfillment. This research further
proposes a declarative framework that allows one to formulate a reference model for the analysis
of the relationships between the structure of a given UAV-driven supply network and its resistance
to weather as a result of the sequence of UAVs’ routes and schedules. The presented computational
experiments and simulations provide the requirements for a solvable class of UAV-driven mission
planning problems resistant to weather uncertainty and energy consumption constraints. The results
fall within the scope of research previously reported in [4] and [12] and extend the work in [14].

The remainder of the article is structured as follows: Section 2 provides an overview of the literature.
A motivation example introducing the considered problem is presented in Section 3. A reference model
for a UAV fleet routing and scheduling problem is presented in Section 4. The problem is formulated
in Section 5, which also presents a Constraint Satisfaction Problem-based method for planning UAV
delivery missions. An example illustrating the approach proposed is given in Section 6. Conclusions
are formulated and directions of future research are suggested in Section 7.
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2. Literature Review

In contrast to traditional routing problems, the UAV fleet mission planning problem addresses
multiple decision layers including both the fleet level where the fleet is managed in terms of task
assignment and availability management and the platform level where the individual missions of
the UAVs are created [3,4]. The current state of research into the area is fragmented and neglects
that different types of decisions are addressed at different abstraction levels of UAV fleet mission
planning [4,8,14,15]. In general, the accomplishments in the field are focused on UAV routing for
transporting materials and surveillance [2,16–18] without considering the changing conditions in
weather and non-linear energy consumption of UAVs [19].

Mission planning aims to find a sequence of points that connect the starting location to the
destination location and differs from trajectory planning where the solution path is expressed in terms
of the degrees of freedom of the vehicle [3,18,20]. In general vehicle routing problems, the standard
objective function is typically time minimization for visiting a set number of nodes. In UAV fleet
mission planning, several variants of objective functions such as reducing individual UAV costs,
increasing safety in operations, reducing lead time, and increasing the load capacity of the entire
system are considered [3,21–24]. Furthermore, the problem can be considered an extension of the
vehicle routing and scheduling problems and belongs to the class of NP-hard problems [2,4]. The UAV
fleet mission planning problem differs from the traditional time-dependent VRP as it simultaneously
addresses both fleet and individual vehicle management [4].

From the literature, it is evident that the decision criteria in UAV mission planning are many
and complex in nature [3,4,14]. Specifically, the decision space comprises aspects related to routing
and scheduling [1,25], changing weather conditions (wind speed, wind direction, air density) [26],
UAVs’ specifications [16,27], energy consumption affected by weather conditions [16], and the payload
carried by the UAVs [2] as well as collision avoidance with respect to both moving objects and fixed
obstacles [3,25]. Together, these elements emphasize the potential intractability of mission planning as
it is highly challenging to develop models considering all these influencing aspects concurrently [3].

From the literature, one can identify that there are several aspects that necessitate treating the
problem differently from traditional transportation problems. UAVs are limited by their loading
capacity as well as their flight duration, which is linked to the energy capacity of the UAV [2,3,14,28].
These constraints are typically addressed in transportation problems. However, UAVs have the
additional complexity that the flight duration heavily depends on the payload carried which requires
these characteristics to be taken into consideration in UAV mission planning [29,30]. Weather is critical
for energy consumption as it affects the travel speed of the UAV (and thus total energy consumed),
and the ambient temperature affects the energy capacity [2,3,28] of batteries used in UAVs. Cold
temperatures may adversely affect battery performance until the batteries warm up [2,15]. Air density
at the same time provides air resistance and lift and directly affects energy consumption. Air density is
a function of humidity, air pressure, and temperature [3,15]. The current state of research has yet to
consider weather factors and assumes the weather has a negligible impact on performance [2,16,31,32].
Rarely has research included consideration of wind conditions’ impact on energy consumption while
concurrently using that information in planning the missions of UAVs [2,33,34], with only a few
contributions identifiable in current state. A number of studies have assumed constant wind speed
and wind direction [33] and used linear approximations for energy consumption [2]. The technical
parameters of UAVs including the UAV dimensions, battery capacity and payload limits, and the aspects
of changing weather conditions, including wind speed, wind direction, and air density, all influence the
search for possible UAV mission planning solutions [3,12]. As the linear approximations reported in the
current state are insufficient in terms of finding acceptable energy calculations for the UAVs considered
in this research study [10], non-linear models proposed are used to calculate energy consumption in
relation to weather conditions [4,15].

A number of contributions have proposed to subdivide the mission area taking into account UAVs’
relative capabilities and to cluster the subsequent smaller areas to reduce the problem size [3,4,31,35,36].
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Certain studies in the current state have used strategies to cluster the network to reduce the problem
complexity [31,35–37]. Utilizing this as the foundation, this study proposes to cluster customer nodes
and for each customer cluster a set of feasible weather-resistant UAV fleet schedules with routes are
created. Further complexity to finding a solution is added by the challenge of collision avoidance with
both fixed and flying objects [38]. Collision avoidance can be achieved by predicting potential collisions
in offline planning or by reacting to collisions registered by sensors in online planning [39–41].

Recent studies have proposed heuristics-based decomposed solution approaches to solve the UAV
fleet mission planning problem [3,4,10] and provide solutions for relatively large UAVs considering
weather-dependent non-linear energy consumption. It is worth emphasizing a number of large
multinational companies are today pursuing the development of UAVs on the scale addressed in this
research (payload of several dozen kilograms). Among these, such companies like Airbus and Amazon
stand out as significant actors. Airbus has, e.g., already commenced scale demonstrations in Singapore
for cargo drones with a lift capability of 4 kg [42] and many such initiatives are underway. A number
of UAVs with the Vertical Take-Off and Landing (VTOL) and lift capability described in this research
already exist as functioning prototypes. For example. the Korean Aerospace Research Institute [43]
has demonstrated fully functioning VTOL UAVs (e.g., TR-100) in a scale even exceeding the ones used
in the example in this research (e.g., UAV with a payload of 90 kg and a flight duration of 5 h).

Furthermore, studies have formulated the mission planning problem for a fleet of UAVs as a
mixed-integer non-linear programming problem and then approximated it as a mixed-integer linear
programming problem and used the Gurobi environment for solving this reduced problem without
considering the weather uncertainty [44]. Furthermore, in recent studies, the problem has been
formulated as an extension of the VRP with time windows and solved in a constraint programming
environment (IBM ILOG). This approach only enables us to provide solutions for relatively small
networks [14]. Thus, there is a clear lack of methods and approaches able to provide solutions
considering the resistance of mission planning to the changing weather conditions and accommodating
the effects of changing weather conditions on energy consumption.

3. A Motivational Example

Consider a company that provides air transport services using a fleet of UAVs. The transportation
network covers 200 km2 and contains 13 nodes (one base: N1 and 12 customers: N2 −N13; see Figure 1).
The fleet consists of three homogeneous UAVs with the technical parameters presented in Table 1.
The horizon time and goods delivery demand of individual customers is known in advance and the
goods are transported under any weather conditions where the UAVs are capable to operate. In that
context, the problem under consideration can be reduced to answering the following question: Is the
available UAV fleet able to guarantee the delivery of the required quantity of goods using the given transport
network within the assumed time horizon under the forecasted weather conditions?

In other words, what one is striving to identify is a proactive flight mission plan (UAV routes
and schedules) that will allow the particular fleet of UAVs, flying under given weather conditions, to
deliver the required quantity of goods to customers.

Two main strategies for delivering goods under changing weather conditions have been proposed
in the literature [14,45,46]. Their principles are illustrated in Figure 2. The first strategy (Figure 2a)
assumes that a drone travels at a constant ground speed of vgi, j = 20 m/s. In addition, it is assumed
that the drone moves along route π1 = (N1, N2, N3, N4, N1) and carries 90 kg of goods. To be able to
maintain the ground speed for each route segment under the given weather conditions (vw = 10 m/s),
the UAV must generate the proper airspeed (vector

→
vai, j) to compensate for changes in wind direction

and speed.
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Table 1. Technical parameters.

Technical Parameters of UAVs Value Unit

Payload capacity (Q) 90 kg

Battery capacity (CAP) 8000 kJ

Airspeed (va) 20 m/s

Drag coefficient (CD) 0.54 -

Front surface of UAV (A) 1.2 m

UAV width (b) 8.7 m
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This results in variable energy consumption, which depends on drone speed
→

vai, j and the weight
of the freight fi, j transported by the drone. Power Pi, j, which defines the amount of energy consumed
along segment (i, j) is described by the formula below [16]:

Pi, j =
1
2

CDAD
(
vai, j

)3
+

(
ep + fi, j

)2

Db2vai, j
, (1)

where CD, A, D, b, and ep are, respectively, the following constant parameters: drag coefficient, front
surface of UAV, air density, UAV width, and UAV weight. The parameters fi, j and vai, j are the weight
of the payload transported along segment (i, j) and airspeed, respectively.

Airspeed vector
→

vai, j should compensate for the effects of the wind in such a manner that the drone

can move between nodes at the speed 20 m/s. The value of parameter vai, j =
∣∣∣∣ →vai, j

∣∣∣∣ is determined from
the following relationship:

vai, j =

√(
vgi, jcosϑi, j − vw cosθ

)2
+

(
vgi, jsinϑi, j − vw sinθ

)2
, (2)

where ϑi, j is the angle of inclination of the ground speed vector
→

vgi, j and θ is the angle of inclination of

the wind speed vector
→

vw .
The approach presented graphically in Figure 2a guarantees a constant ground speed and hence

a constant flight time along a specific route (T = 1268 s). However, to maintain this speed, it is
necessary to continuously adjust the flight to the current weather conditions (energy consumption
varies depending on weather conditions, in particular the strength and wind direction). For this
complex strategy, the energy consumption associated with delivering goods along route π1 is E = 89%
(battery capacity CAP = 8000 kJ).

The approach illustrated in Figure 2b, in turn, assumes that airspeed is constant throughout the
mission (vai, j = 20 m/s). This results in different ground speeds (vgi, j) for different segments of the
route and a different total flight time (T = 1605 s). When the airspeed is constant, power Pi, j (1) for
each route segment is independent of weather conditions (vai, j is constant). The energy consumption is
then dependent on flight time ti, j and the weight of the freight fi, j. With this strategy, to fly the entire
route π1, a drone has to use up E = 72% of all (pre-stored) energy.

As is easily seen, the second strategy ensures a lower energy consumption at the expense of
longer flight time, and it is this strategy that is widely used in flight mission planning [3,26,45,46].
A characteristic feature of the first strategy is that flight time remains constant independent of weather
conditions. This feature is particularly important in situations where goods must be transported within
specified time windows and/or when they are to be delivered to customers just-in-time. There are few
contributions [20,24] for UAV mission planning that consider this type of delivery strategy.

It is also worth emphasizing that most of the models encountered in the literature assume that
the weight of a drone does not change during flight [16,18]. Figure 3a,b presents such a situation in
which the total weight of the UAV remains unchanged during flight along route π1 where energy
consumption is E = 96%. Figure 3c,d illustrates situations in which the weight of a UAV changes as
the cargo is successively unloaded at sequential delivery points (the UAV delivers 30 kg of goods each
to nodes N2, N3, N4). It should be emphasized that, in this case, the energy consumption depends on
the direction of flight and is E = 89% when the drone flies counterclockwise and E = 81% when the
drone flies clockwise.

This example shows that models in which additional features, such as the variability of UAV weight,
have been taken into account can be used to generate routes (and route directions) with a lower energy
consumption than the models proposed in the current state [34,37]. The introduction of new features,
however, involves the need to take into account additional decision variables, which significantly
increases the computational complexity of the problem.
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In the next section, we present a declarative model for UAVs flying missions planning following the
above-mentioned strategies assuming either constant ground speed or constant airspeed. The variability
of UAVs’ weight, e.g., weight reduction during travel is also taken into account.
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4. Modeling

4.1. Assumptions

The concept of the considered approach is presented in Figure 4. Given is a set of customers
located at different points of a transportation network that are to be serviced by a fleet of UAVs during
a specified time horizon, under changing weather. In this context, the following assumptions are taken
into account:

- The weather forecast is known in advance with sufficient accuracy to specify the so-called weather
time windows Wl.

- The weather time windows can be subdivided into flying time windows Fl.

- The weather (which is known in advance) is specified by vector
→

Wl = [vwl,θl] where vwl is the

wind speed and θl is the direction of wind for each Fl. Vector
→

Wl is constant for a given weather
time window.

- Every route traveled starts and terminates within a given flying time window.
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- All UAVs are charged to their full energy capacity before the start of a flying time window, and a
UAV can only fly once during a flying time window.

- The same kind of cargo is delivered to different customers in different amounts (kg).
- The weight of a UAV is decreased as the cargo is successively unloaded at customers located

along its route.
- The network consists of customer locations (delivery points) and flying corridors.
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The goal is to fulfill all customer demands, such that each customer is at a required service
level before the end of the time horizon, and all constraints related to energy limits and congestion
avoidance are satisfied. The proposed approach assumes that the process of finding solutions takes
place at two levels: Mission and Sub-Mission Planning (see Figure 1). At the Mission Planning Level,
the transportation network is divided into a set of clusters (covering the base and several customers)
for which the size of the UAV fleet is determined. At the Sub-Mission Planning Level, the UAV
sub-missions (specified by UAV routes and schedules) are calculated for each cluster. The UAV
sub-missions may be calculated according to one of the following strategies:

- Strategy 1—which assumes that a UAV travels at a constant ground speed. The airspeed must
compensate adverse changes in wind direction and speed.

- Strategy 2—which assumes that the UAV airspeed is constant throughout the mission. The ground

speed is different for different segments and depends of the wind parameters specified by
→

Wl.
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It is assumed that there exists a sequence of sub-missions that fulfills all customer demands within
the given time horizon.

4.2. Declarative Model

The mathematical formulation of the model dedicated to the Sub-Mission Planning Level employs
the following parameters, variables, sets, and constraints:

Parameters
Network
G = (N, E) graph of a transportation network: N = {1 . . . n} is a set of nodes,

E =
{{

i, j
}∣∣∣ i, j ∈ N, i , j

}
is a set of edges

CLm,l =
(
Nm,l, Em,l

)
subgraph of G representing the mth cluster in the lth flying time window: Nm,l ⊆ N
and Em,l ⊆ E

zi demand at node i ∈ N, z1 = 0
pri priority of the node i ∈ N, pr1 = 0
di, j travel distance from node i to node j
ti, j travel time from node i to node j
w time spent on take-off and landing of a UAV
ts time interval at which UAVs can take off from the base
b
{i, j};{α,β} binary variable corresponding to crossed edges

b
{i, j};{α,β} =

1 when edges
{
i, j

}
and

{
α, β

}
are crossed

0 otherwise.
UAV Technical Parameters
K size of the fleet of UAVs
Q maximum loading capacity of a UAV
CD aerodynamic drag coefficient of a UAV
A front facing area of a UAV
ep empty weight of a UAV
D air density
b width of a UAV
CAP maximum energy capacity of a UAV
Environmental Parameters
H time horizon H = [0, tmax]

WT weather time window T: WT = [WST, WET], WST/WET is a start/end time of WT
Fl flying time window l: Fl = [FSl, FEl], FSl/FEl is a start time of Fl
vwl wind speed in the lth flying time window
θl wind direction in the lth flying time window
val

i, j airspeed of a UAV traveling from node i to node j in the lth flying time window

ϕi, j heading angle, angle of the airspeed vector when the UAV travels from node i to
node j

vgl
i, j ground speed of a UAV travelling from node i to node j in the lth flying time window

ϑi, j course angle, angle of the ground speed vector when the UAV travels from node i to
node j

Decision Variables
xk

i, j binary variable used to indicate if the kth UAV travels from node i to node j

xk
i, j =

1 if kth UAV travels from node i to node j

0 otherwise.
yk

i time at which the kth UAV arrives at node i
ck

i weight of freight delivered to node i by the kth UAV
f k
i, j weight of freight carried from node i to node j by the kth UAV

Pk
i, j energy per unit of time, consumed by kth UAV during a flight from node i to node j

sk take-off time of the kth UAV
cpi total weight of freight delivered to node i
πk

m,l route of the kth UAV in the mth cluster in the lth flying time window
πk

m,l =
(
v1, . . . , vi, vi+1, . . . , vµ

)
, vi ∈ Nm,l, xk

vi,vi+1
= 1
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Sets
Yk set of times yk

i —schedule of the kth UAV
Y family of Yk—schedule of UAV fleet
Ck set of ck

i —payload weight delivered by the kth UAV
C family of Ck

Π set of UAV routes πk
m,l

Sm,l sub-mission in the mth cluster in the lth flying time window Sm,l = (Π, Y, C)

Constraints
Routes. Relationships between the variables describing drone take-off times/mission start times

and task order:
sk
≥ 0, k = 1 . . .K (3)

(k , q)⇒
(∣∣∣sk
− sq

∣∣∣ ≥ TS
)
, k, q = 1 . . .K (4)

n∑
j=1

xk
1, j = 1, k = 1 . . .K (5)

(
xk

1, j = 1
)
⇒

(
yk

j = sk + t1, j
)
, j = 1 . . . n; k = 1 . . .K (6)(

k , q ∧ yk
i , 0 ∧ yq

i , 0
)
⇒

(∣∣∣yk
i − yk

i

∣∣∣ ≥ w
)
, i = 1 . . . n; k, q = 1 . . .K (7)(

xk
i, j = 1

)
⇒

(
yk

j = yk
i + ti, j + w

)
, j = 1 . . . n; i = 2 . . . n; k = 1 . . .K (8)

yk
i ≥ 0, i = 1 . . . n; k = 1 . . .K (9)

n∑
j=1

xk
i, j =

n∑
j=1

xk
j,i, i = 1 . . . n; k = 1 . . .K (10)

yk
i ≤ H ×

n∑
j=1

xk
i, j, i = 1 . . . n; k = 1 . . .K (11)

xk
i,i = 0, i = 1 . . . n; k = 1 . . .K (12)

Collision avoidance. Intersecting edges (b{i, j};{a,b} = 1) cannot be occupied by more than one UAV

at the same time
(
xk

i, j = 1, xq
i, j = 1

)
.

(
block{i, j}{a,b} ∧ xk

i, j = 1 ∧ xq
a,b = 1

)
⇒

(
yq

b ≤ yk
j − ti, j

)
∨

(
yk

j ≤ yq
b − ta,b

)
(13)

i, j = 1 . . . n; k, q = 1 . . .K; k , q

Delivery of freight. Relationships between the variables describing the amount of freight delivered
to nodes by UAVs and the demand for goods at a given node:

ck
i ≥ 0, i = 1 . . . n; k = 1 . . .K (14)

ck
i ≤ Q×

n∑
j=1

xk
i, j, i = 1 . . . n; k = 1 . . .K (15)

n∑
i=1

ck
i ≤ Q, k = 1 . . .K (16)

(
xk

i, j = 1
)
⇒ ck

j ≥ 1, k = 1 . . .K; i = 1 . . . n; j = 2 . . . n (17)
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K∑
k=1

ck
i = cpi, i = 1 . . . n (18)

cpi ≤ z, i = 1 . . . n (19)
n∑

i=1

ck
i = csk, k = 1 . . .K (20)

(
xk

1, j = 1
)
⇒

(
f ck

j = csk
)
, j = 1 . . . n; k = 1 . . .K (21)(

xk
i, j = 1

)
⇒

(
f ck

j = f ck
i − ck

i

)
, i, j = 1 . . . n; , k = 1 . . .K (22)(

xk
1, j = 1

)
⇒

(
f k
1, j = csk

)
, j = 1 . . . n; k = 1 . . .K (23)(

xk
i, j = 1

)
⇒

(
f k
i, j = f ck

j

)
, i, j = 1 . . . n; k = 1 . . .K (24)

Energy consumption. The amount of energy needed to complete tasks performed by an UAV
cannot exceed the maximum capacity of its battery.

batk
≤ CAP, k = 1 . . .K (25)

I∑
i=1

I∑
j=1

xk
i, j × ti, j × Pk

i, j = batk, k = 1 . . .K (26)

Pk
i, j =

1
2

CD ×A×D×
(
val

i, j

)3
+

(
ep + f k

i, j

)2

D× b2 × val
i, j

, (27)

where val
i, j and ti, j depend on the assumed strategies for goods delivering:

- Strategy 1—ground speed vgl
i, j is constant and airs peed val

i, j is calculated from:

val
i, j =

√(
vgl

i, j × cosϑi, j − vwl × cosθl

)2
+

(
vgl

i, j × sinϑi, j − vwl × sinθl

)2
(28)

ti, j =
di, j

vgl
i, j

(29)

- Strategy 2—air speed val
i, j is a constant and time ti, j is calculated due to Formula (29) where

ground speed vgl
i, j is [45,47].

vgl
i, j =

√(
val

i, j × cosϕi, j + vwl × cosθl

)2
+

(
val

i, j × sinϕi, j + vwl × sinθl

)2
(30)

ϕi, j = ϑi, j − arcsin

 vwl

val
i, j

sin
(
θl − ϑi, j

) (31)

Customer satisfaction. Customer satisfaction should be equal to or higher than CSL. Customer
satisfaction is expressed by the following formula:(∑n

i=1 pri × cpi
)(∑n

i=1 pri × zi
) × 100% ≥ CSL (32)
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5. Problem Formulation

To find a solution to this type of problem, one has to answer the following question:
Consider a UAVs fleet of size K servicing, in the lth flying time window (Fl), customers belonging to the

m-th cluster of the delivery distribution network (i.e., the subgraph CLm,l). Does there exist a set of sub-mission
Sm,l (determined by variables Π, Y, C) guaranteeing customers satisfaction CSL (31) under the constraints
related to energy consumption (Formulae (25)–(31)), collision avoidance (Formula (13)), etc.?

The investigated problem can be seen as a Constraint Satisfaction Problem (CSP) [18] given by
Formula (33):

CP = (V,D,C), (33)

where:

V = {Π, Y, C}—a set of decision variables determining sub-mission,
Sm,l : Π—a set of UAV routes,
Y—a schedule of a UAV fleet,
C—a set of payload weights delivered by the UAVs,
D—a finite set of decision variable domain descriptions,
C—a set of constraints specifying the relationships between UAV routes, UAV schedules,
and transported materials Formulae (3)–(32).

To solve the CP in Formula (33), one has to determine the values of the decision variables for which
all the constraints are satisfied. By implementing CP (Formulae (33)) in a constraint programming
environment, such as IBM ILOG, one can answer the above formulated question.

6. Computational Experiments

Consider the case shown in Figure 1, where the fleet consists of three homogeneous UAVs specified
by technical parameters collected in Table 1. All customers’ demands (i.e., 30 kg for each node) should
be satisfied within the time horizon 5000 s. Utilizing the proposed approach (Figure 5), the set of
delivery points is subdivided into two clusters: Cluster #1 and Cluster # 2 (see Figure 1). The time
horizon is divided into two flying time windows: F1 = [0, 2500] [s], F2 = [2500, 5000] [s]. For each
time window, corresponding to periods of stable weather and arbitrarily selected delivery points,
the corresponding sub-missions S1,1 and S2,2 are determined. Two kinds of weather conditions specified

by vectors
→

Wl = [vwl,θl] are considered: vw1 = 10 m/s, θ1 = 110◦ and vw2 = 12 m/s, θ2 = 150◦.
The problem under consideration can be reduced to seeking the answer to the following main question:
Does there exist flying mission composed from sub-missions S1,1 and S2,2 (determined by variables Π, Y, C),
following the sequence of two flying time windows while ensuring 100% customer satisfaction (CSL = 100%)
within the given time horizon?

6.1. Cluster #1

In Cluster #1 (see Figure 5), covering an area of 100 km2, three UAVs deliver goods to six customers.
Node N1 represents the location of the company (i.e., the base from which the UAVs take off from/land)
and nodes N2 −N7 representing the locations of individual customers. Known is the demand of the
individual customers for the goods transported by the UAVs, which is the same for each customer and
equals 30 kg: z1 = 0, z2 = . . . = z7 = 30. It is assumed that the UAVs must deliver to each customer
the exact quantity of goods they demand.

The flying time window is equal to F1 = [0, 2500] [s]. The goods are transported under various
weather conditions, which affect the rate of battery discharge; so, it is assumed that the wind speed is
equal to vw1 = 10 m/s and its direction is equal to θ1 = 110◦.

To answer the main question, the assumptions that describe delivery strategies are: (1) a constant
ground speed and (2) a constant airspeed. In each case, the decreasing (along with the increasing
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length of distance traveled) UAV weight was taken into account. Appropriate formulations of the
problem (Formula (33)) were implemented and solved in the declarative programming environment
IBM ILOG (Intel Core i7-M4800MQ 2.7 GHz, 32 GB RAM).
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The solution providing sub-missions S1,1 following Strategy 1 (i.e., constant ground speed) was
obtained in 12.5 s. Figures 6a and 7a show the computed flight routes and schedules. The obtained
following routes π1

1,1 = (N1, N3, N5, N6, N1), π2
1,1 = (N1, N4, N1) and π3

1,1 = (N1, N2, N7, N1) guarantee
that the required quantity of goods are delivered to customers.

As seen in Figure 7a, the corresponding flight times of individual UAVs participating in the
sub-missions are, respectively: T1

1,1 = 1742, T2
1,1 = 860, T3

1,1 = 1200. Customer satisfaction at all
delivery points is 100% while the battery consumption of the UAVs travelling along routes π1

1,1, π2
1,1,

and π3
1,1 under given weather conditions is 81%, 46%, and 50%, respectively (battery capacity for each

UAV is equal to: CAP = 8000 kJ).
In turn, Figures 6b and 7b show the computed sub-missions S1,1

′ (flight routes and schedules)
following Strategy 2 (i.e., assuming constant airspeed). The obtained routes of UAVs are:
π1

1,1′ = (N1, N6, N5, N2, N1), π2
1,1′ = (N1, N4, N1) and π3

1,1′ = (N1, N7, N2, N1). Similarly, as before,
this solution guarantees that the required quantities of goods are delivered to customers under the
given weather conditions. The missions shown in Figure 7a have corresponding flight times of for the
individual UAVs of, respectively: T1

1,1′ = 2048, T2
1,1′ = 1027, and T3

1,1′ = 1450.
Customer satisfaction at all delivery points is 100% while the battery consumption of the UAVs

traveling along routes π1
1,1′, π

2
1,1′, and π3

1,1′ are, respectively, 61%, 30%, and 38% of CAP = 8000 kJ.
In comparison, the solution obtained with Strategy 2 is less energy-consuming than the solution
obtained with Strategy 1. However, this comes at the cost of extended flight times of the UAVs
participating in the sub-mission, i.e.: T1

1,1
′ > T1

1,1, T2
1,1
′ > T2

1,1, and T3
1,1
′ > T3

1,1. The total flight time for
Strategy 2 is 19% higher than is the case with Strategy 1.

Both solutions were analyzed in terms of sensitivity to the amount of energy consumption under
various weather conditions. In the conducted analysis, it is assumed that the wind direction may
change in the range from θ1 = 0◦ to θ1 = 360◦ and that the wind speed in a range from vw1 = 0 to
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vw1 = 20 m/s. Figure 8 shows radar charts illustrating the contour lines that determine the maximum
value of the wind speed function (i.e., function parameterized by the wind direction) guaranteeing the
fulfilment of all planned deliveries using the specified battery capacity limit in the range from 50% to
100% of CAP = 8000 kJ. The contour lines connect the points of equal value of energy consumption.
In that context, the blue contour lines determine the area of weather conditions for which execution of
the sub-mission from Figure 6 can be fulfilled within the 50–100% range of the battery capacity limit
CAP = 8000 kJ. In turn, the red contour line determines the weather conditions enabling the execution
of feasible sub-missions from Figure 6. Crossing this line means that at least one of the UAVs exceeds
its battery capacity limit.Sensors 2019, 19, x FOR PEER REVIEW 14 of 24 
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In other words, the charts in Figure 8 illustrate how the obtained sub-missions are resistant to
various weather conditions. For example, vector

→
vY (distinguished inside the yellow area in Figure 8a)

shows that the permissible (i.e., guaranteeing energy consumption less than 60% of initial value
CAP = 8000 kJ) speed of wind blowing at 120◦ for the sub-mission following Strategy 1 (i.e., assuming
constant ground speed; see Figure 6a) is 5.9 m/s; but, in the case of the sub-mission following Strategy 2
(i.e., assuming constant airspeed; see Figure 6b) is 10 m/s. That means the sub-mission from Figure 6b
following Strategy 2 is more resistant to changing weather conditions.

Radar charts indicate the wind speed vMIN (minimum radius of red contour line) at which the
given deliveries can be completed regardless of the direction of the wind. The wind speed vMIN for the
sub-missions from Figure 6a,b is vMIN = 11.5 and vMIN = 14.6 m/s, respectively. It is easy to see that the
sub-mission of Figure 6b is the most robust to changing weather conditions, i.e., the permissible wind
speed at which the execution of orders is guaranteed is 14.6 m/s. As already mentioned, increased
resistance of such schedules is obtained at the expense of extending flight times leading to untimely
delivery of planned deliveries.

Note that the contour lines of the second radar charts are spread out at different intervals.
This means small changes in wind speed results in large changes in energy consumption. In that
context, the sub-mission from Figure 6b is more resistant to changing weather conditions, than
sub-mission from Figure 6a, but also more sensitive to their changes. The strategies highlight the
tradeoffs encountered in mission planning between, timing, energy consumption, and equipment wear.

6.2. Cluster #2

Let us consider Cluster #2 from Figure 9. As before, the UAVs deliver goods to six customers
located in an area covering 100 km2. Nodes N8 −N13 represent the locations of the individual customers.
The demand of the individual customers is equal to: z1 = 0, z8 = . . . = z13 = 30. The flying time
window is equal to F2 = [2500, 5000] [s]. The weather conditions are changed, whereby the wind
speed is higher, i.e., vw2 = 12 m/s and the direction of wind is equal to θ2 = 150◦.
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The solution providing sub-missions S2,2 following Strategy 1 was obtained in 11.4 s by solving the
problem (Formula (33)) in IBM ILOG. Figures 10a and 11a show the computed routes and flight schedules.
The obtained routes: π1

2,2 = (N1, N13, N12, N1), π2
2,2 = (N1, N9, N8, N10, N1), and π3

2,2 = (N1, N11, N1)

guarantee that the required quantities of goods are delivered to customers under the given weather
conditions i.e., vw2 = 12 m/s and θ2 = 150◦. Due to Figure 11a, the corresponding flight times
of the UAVs participating in the sub-mission are, respectively, equal to: T1

2,2 = 1122, T2
2,2 = 1721,

and T3
2,2 = 632. Customer satisfaction at all delivery points is equal to 100%, while the battery

consumption of the UAV traveling along routes π1
2,2, π2

2,2, and π3
2,2 is at the level of 60%, 98%, and 27%

of its initial capacity, respectively.
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In turn, Figures 10b and 11b show the computed sub-missions S2,2 (routes and flight schedules)
following Strategy 2, i.e., assuming constant airspeed. The obtained routes: π1

2,2′ = (N1, N12, N13, N1),
π2

2,2′ = (N1, N10, N8, N9, N1), and π3
2,2′ = (N1, N11, N1) guarantee that the demanded quantity of goods

are delivered to customers under the given weather conditions. As seen in Figure 11b, the corresponding
flight times of individual drones participating in the sub-mission are: T1

2,2′ = 1473, T2
2,2′ = 2146,

and T3
2,2′ = 763, respectively. Customer satisfaction at all delivery points is equal to 100%, while the

battery consumption of the UAVs traveling along these routes under the given weather conditions is
46%, 71%, and 20% of initial battery capacity.

The obtained solutions are analyzed in terms of energy consumption sensitivity for various
weather conditions. It is assumed that the wind direction may change in the range from θ2 = 0◦ to
θ2 = 360◦ and the wind speed may change in the range from vw2 = 0 to vw2 = 20 m/s. Figure 12
provides radar charts illustrating the contour lines (that can be treated as a function of wind direction),
which determine the borders within which all planned sub-missions (shown in Figure 10) are fulfilled
within the range from 50% to 100% of battery capacity limit.Sensors 2019, 19, x FOR PEER REVIEW 18 of 24 

 

 
Figure 12. Radar charts of resistance to changes in wind speed: (a) Strategy 1; (b) Strategy 2. 

6.3. Mission Planning 

The combined solutions obtained for Clusters #1 and #2 serve as a mission plan to serve the 
customers of the network in Figure 1. Figure 13 presents an example of the mission obtained from 
the sub-missions 𝑆 ,  and 𝑆 ,  presented in Figures 6a and 10a. It should be noted that within the 
time window 𝐹 = (0, 2500), goods are delivered to customers in Cluster #1: 𝑁 − 𝑁 . In turn, in time 
window 𝐹 = [2500, 5000], goods are delivered to customers in Cluster #2: 𝑁 − 𝑁 . During the 
mission, none of the UAVs exceeds the permitted level of battery capacity. In Figure 13c, radar charts 
illustrating the zones of permitted weather conditions are presented. The green zone delimits the 
conditions under which the mission can be realized regardless of the wind direction. The size of the 
zone is determined by the value of 𝑣 , which for Clusters #1 and #2 are 11.5 and 12 m/s, 
respectively. The orange zone, 11.5–14.6 and 12–14.9, defines weather conditions at which the mission 
is threatened during implementation, i.e., there exist conditions such as 𝑣𝑤 = 12 m/s and 𝜃 =330° at which UAVs exceed the set CAP limit. The red zone defines weather conditions (𝑣𝑤  > 14.6 
and 𝑣𝑤  > 14.9) at which the mission is not feasible due to excessive energy consumption. Figure 13c 
shows the vectors 𝑊 = [𝑣𝑤 , 𝜃 ] describing the weather conditions considered in previous sections, 
i.e., 𝑣𝑤 = 10 m/s, 𝜃 = 110°, and 𝑣𝑤 = 12 m/s, 𝜃 = 150°. 

Figure 12. Radar charts of resistance to changes in wind speed: (a) Strategy 1; (b) Strategy 2.



Sensors 2020, 20, 515 18 of 24

In this case, vector
→
vY (distinguished inside yellow area; see Figure 12a) determines the permissible

(i.e., guaranteeing lees than 60% usage of battery capacity limit) speed of wind blowing at 120◦ for
the sub-mission following Strategy 1 (Figure 10a), which is equal to 8 m/s and for the sub-mission
following Strategy 2 (Figure 10b) is equal to 10 m/s.

Similarly, to the results obtained for Cluster #1, the contour lines of the second radar charts are
not spread out at the same intervals. This means the sub-mission from Figure 10b is more resistant to
weather changing conditions than sub-missions assuming a constant ground speed (see Figure 10a)
though more sensitive to their changes.

6.3. Mission Planning

The combined solutions obtained for Clusters #1 and #2 serve as a mission plan to serve the
customers of the network in Figure 1. Figure 13 presents an example of the mission obtained from the
sub-missions S1,1 and S2,2 presented in Figures 6a and 10a. It should be noted that within the time
window F1 = (0, 2500), goods are delivered to customers in Cluster #1: N2 −N7. In turn, in time
window F2 = [2500, 5000], goods are delivered to customers in Cluster #2: N8 −N13. During the
mission, none of the UAVs exceeds the permitted level of battery capacity. In Figure 13c, radar charts
illustrating the zones of permitted weather conditions are presented. The green zone delimits the
conditions under which the mission can be realized regardless of the wind direction. The size of the
zone is determined by the value of vMIN, which for Clusters #1 and #2 are 11.5 and 12 m/s, respectively.
The orange zone, 11.5–14.6 and 12–14.9, defines weather conditions at which the mission is threatened
during implementation, i.e., there exist conditions such as vw2 = 12 m/s and θ2 = 330◦ at which UAVs
exceed the set CAP limit. The red zone defines weather conditions (vw1 > 14.6 and vw2 > 14.9) at
which the mission is not feasible due to excessive energy consumption. Figure 13c shows the vectors
→

Wl = [vwl,θl] describing the weather conditions considered in previous sections, i.e., vw1 = 10 m/s,
θ1 = 110◦, and vw2 = 12 m/s, θ2 = 150◦.

Both vectors
→

W1 = [10, 110] and
→

W2 = [12, 150] are located in the green zone, which means that
the occurrence of such conditions during the mission will not interrupt it. That means the obtained
mission guarantees 100% customer satisfaction (delivery of all required goods to all customers) in the
given horizon time (5000 s) under the given weather conditions.

6.4. Quantitative Results

In addition to the experiments reported above, we compared the effectiveness of the proposed
model. The results of this analysis are shown in Table 2. The experiments included mission planning in
distribution networks with four to ten nodes serviced by fleets consisting of four to ten homogeneous
UAVs equipped with batteries capacity equal to CAP = 16,000 kJ while specified by parameters
collected in Table 1.



Sensors 2020, 20, 515 19 of 24

1 
 

 
Figure 13. Example of the flying mission for the network from Figure 1.



Sensors 2020, 20, 515 20 of 24

Table 2. Results of selected experiments.

n1) K Assumptions
vw=10 m/s vw=11 m/s vw=12 m/s

NDV NCΘ=30◦ Θ=130◦ Θ=230◦

E TC vMIN vMAX E TC vMIN vMAX E TC vMIN vMAX

4

2
Strategy 1 29.80 3.73 24.8 28.1 19.17 3.71 24.6 28.2 29.8 3.74 24.8 28.1 828 356
Strategy 2 19.1 3.82 18.1 19.0 19.18 3.78 18.1 19.1 19.1 3.76 18.1 19.0 828 356

3
Strategy 1 13.59 3.89 29.4 33.9 13.59 3.97 29.4 33.9 13.59 3.95 29.4 33.9 1774 654
Strategy 2 13.57 3.75 18.5 19.2 13.57 3.96 18.5 19.2 13.57 3.81 18.5 19.2 1774 654

4
Strategy 1 13.59 4.24 29.4 33.9 13.59 4.17 29.4 33.9 13.59 4.35 29.4 33.9 3076 1036
Strategy 2 13.57 4.31 18.5 19.2 13.59 4.28 18.5 19.2 13.57 4.36 18.5 19.2 3076 1036

6

2
Strategy 1 35.67 4.44 23.6 25.6 22.62 4.23 23.6 25.6 22.62 4.60 23.6 25.6 3014 910
Strategy 2 22.59 4.31 17.9 18.6 22.59 4.38 17.9 18.6 22.81 4.12 17.9 18.6 3014 910

3
Strategy 1 19.4 7.12 25.8 27.7 19.40 5.25 25.8 27.7 19.4 8.08 25.8 27.7 7476 1902
Strategy 2 19.37 6.34 18.2 18.7 19.38 5.24 18.2 18.7 19.37 9.32 18.2 18.7 7476 1902

4
Strategy 1 19.4 9.98 25.8 27.7 19.40 6.44 25.8 27.7 19.4 13.67 25.8 27.7 13,910 3528
Strategy 2 19.37 8.19 18.2 18.7 19.38 9.46 18.2 18.7 19.37 8.08 18.2 18.7 13,910 3528

8

2
Strategy 1 22.62 46.04 20.9 25.6 24.21 7.93 18.8 25.1 22.62 8.63 23.6 25.6 9552 2248
Strategy 2 22.59 102.93 17.9 18.6 24.18 281.67 17.7 18.6 22.59 9.43 17.9 18.6 9552 2248

3
Strategy 1 22.62 t >

300 23.6 25.6 20.62 19.94 25.3 26.9 25.15 231.63 18.8 24.2 25,898 5358

Strategy 2 25.13 59.49 17.8 18.2 23.79 71.73 17.8 18.6 25.13 126.89 17.8 18.2 25,898 5358

4
Strategy 1 22.55 t >

300 23.6 25.6 20.62 128.00 25.3 26.9 25.15 105.18 18.8 24.2 49,960 9800

Strategy 2 25.13 110.94 17.8 18.2 21.33 95.87 18.0 18.7 25.49 115.29 17.7 18.2 49,960 9800

10

2
Strategy 1 27.54 t >

300 18.9 22.9 28.59 183.53 18.2 22.8 29.46 t >
300 17.8 21.7 21,402 4530

Strategy 2 24.18 t >
300 17.9 18.4 25.65 t >

300 17.5 18.0 29.35 t >
300 19.5 20.6 21,402 4530

3
Strategy 1 28.38 t >

300 18.7 22.5 23.83 t >
300 20.0 25.1 24.29 t >

300 18.9 25.3 59,920 11,502

Strategy 2 24.23 t >
300 17.5 18.5 24.23 t >

300 17.5 18.5 24.23 t >
300 17.5 18.5 59,920 11,502

4
Strategy 1 26.21 t >

300 19.5 23.2 24.29 t >
300 18.9 25.3 26.2 t >

300 18.4 24.3 116,98621,622

Strategy 2 26.18 t >
300 17.6 18.3 26.19 t >

300 17.3 18.4 26.19 t >
300 17.3 18.4 116,98621,622

n1)—number of nodes; K—size of the UAV fleet; E—maximum consumed energy (%); TC—time of computation (s);
NC—number of constraints; NDV—number of decision variables

The missions’ designation was carried out for three different weather conditions: vw = 10 m/s,
θ = 30◦; vw = 11 m/s, θ = 130◦; and vw = 12 m/s, θ = 230◦ following the two delivery strategies:
Strategy 1, assuming a constant ground speed (i.e., vgl

i, j = 20 m/s); and Strategy 2, assuming a constant

airspeed (i.e., val
i, j = 20 m/s). Experiments were conducted in the environment IBM ILOG (Intel Core

i7-M4800MQ 2.7 GHz, 32 GB RAM).
The obtained results lead to the following observations:

- Interactive (i.e., online: t < 300 s) support can be provided for networks consisting of no more
than eight nodes. In practice, this means limiting decision making supported by DSSs to the
distribution networks not exceeding eight nodes.

- An increase in the number of UAVs increases the route resistance (i.e., increasing of vMIN and
vMAX) to changes in weather conditions. For example, in a network of four nodes, the change
from two to four UAVs increases value vMIN from 24.8 to 29.4 and vMAX from 28.1 to 33.9 for
Strategy 1 (see yellow cells), as well as changing vMIN from 18.1 to 18.5 and vMAX from 19.0 to
19.2 for Strategy 2 (see green cells).

- The vMIN and vMAX values for route resistance in Strategy 2 are limited by the value of the
airspeed (val

i, j = 20 m/s). This type of restriction does not exist in Strategy 1. This means that
in situations where the wind speed exceeds the value vw > 20 m/s, it is recommended to use
Strategy 1 (for this strategy, it is possible to get vMIN and vMAX above 20 m/s).
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7. Conclusions

The declarative model proposed here (implemented in the ILGO IBM environment) allows one to
determine UAV missions such that customer satisfaction levels are maximized under various weather
conditions. The permissible size of the distribution network (12 nodes and 3 UAVs), for which such
missions can be determined, makes the proposed model particularly suitable for application within
an approach in which a network is decomposed into clusters, each covering a part of the set of all
customers serviced during one flying time window. It is worth emphasizing that the possibility of
taking into account the influence of weather conditions on energy consumption, and hence on the
customer-servicing route and schedule, provides the basis for the construction of a model that allows
identifying missions robust to specific weather changes.

As the considered UAVs routing problems are NP-hard, their solutions in real-life cases are
only approximate. This means that approximate calculation techniques derived from artificial
intelligence methods have to be used, especially employing a declarative representation following
constraints programming paradigm. While the formulation of the problem is rather complex and not
straightforward to simplify, the formulation arrived at in this research is validated in [4] and performed
computer experiments. The experiments performed in the present study confirmed the efficiency
of the proposed modeling concept implemented in UAV mission planning. Two policies aimed at
minimizing total travel time at the cost of saving battery power were considered. Special attention was
paid to research focused on the sensitivity of energy consumption due to wind speed and direction
changes. Real-life implementations of these types of systems tend to be exceedingly complex due to
the very nature of the complex decision problem addressed and the cost of operating UAVs in this
class. Future work will focus on reducing the complexity of the formulation. However, in the current
work, the focus is on validating that several strategies are viable and that it is feasible to create and
evaluate such alternatives for realistic scale problem instances.

In our future research on resistant UAV mission planning, we plan to explore the relationships
linking the total distance traveled with the total travel time and the cost of saving the battery power of
a UAV fleet. Particular attention will be paid to the pick-up delivery problem with time windows and
to planning the size of fleets composed of heterogeneous UAVs. Efforts aimed at practical verification
of the results obtained, conditioned by the authorities allowing access to areas where Beyond Visual
Line of Sight aircrafts could be tested will play a pivotal role.
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