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Automated Emergency Landing System for Drones: SafeEYE Project

O. Bektash∗, Jacob Naundrup Pedersen, Aitor Ramirez Gomez and Anders la Cour-Harbo

Abstract— Automated emergency response systems have been
the focus for development of more reliable and robust safety
systems, from simpler ones to the most complex. Such systems
have specific requirements, such as high reliability, real-time
response, and performance. For drones, they can be designed
to allow compliance standards, track safe places for landing
and provide an easier development for operational process. The
automated response for increasing drone safety focuses on the
system health for detecting failures that can lead to vehicle
accidents. Given this outlook, this paper presents the SafeEYE
project, which was initiated to develop and commercialise an
automated emergency landing system for larger (> 7 kg)
drones. The system consists of a small embedded computer,
mounted on a drone, that keeps track of safe places to land, or
even crash, as well as the health state of the drone. When there
is a failure condition, the device can terminate the flight with the
least probability of fatalities. This means a significantly reduced
risk for automated, typically Beyond Visual Line of Sight,
operations. Therefore, SafeEYE has the potential to become
a safety enabler for many applications, including farming,
inspection, transportation, search and rescue. With the risk
mitigation ability, the project aims at achieving formal approval
of the Danish authorities and abroad. SafeEYE is planned to
be manufactured as a standalone unit, provided first through
drone technology suppliers and later to service providers and
manufacturers of autopilots.

I. INTRODUCTION

In 2019 EU regulation [1], [2] has been published to
ensure safe, sustainable, and secure drone operations across
Europe to protect the citizens’ safety and privacy while
enabling the less restricted drone operations. With the new
comprehensive set of regulations including technical, as well
as operational provisions for drones, one can reasonably
expect the difficulties for drone operations. Accordingly,
new drone systems will have to be individually reliable,
allowing the authorities and end-users to prevent particular
drone failures. EU legislation for unmanned aircraft has also
adopted the proposal of Joint Authorities for Rulemaking on
Unmanned Systems (JARUS) for three categories of ”Open”
which is on the limitations and operational rules, ”Specific”
and ”Certified” which are on the risk assessments to be made.
Such categorisation is mainly risk-based and the assessments
must address both air and ground risks, either collision with
another flying object or collision with humans and critical
infrastructures [3] .

As like the other aerospace applications, decision-making
and response systems in drones include the selection of dif-
ferent actions ranging from the lower levels such as selecting
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values in a subsystem or defining the allowable movement
range to the mission level such as changes in vehicle route
[4]. In critical situations where the drone experiences in-flight
anomalies, having an automated response provided by system
prognostics and diagnostics can ensure a safe and reliable
mission outcome. It is also crucial for drone users to manage
the flight risks associated with failures of their operational
assets. As the current technologies are often able to identify
when system degradation starts, it is possible to identify the
way that the drones are failing. Determining how the systems
can no longer perform their intended function can provide
the possibility for drone operators to get permission to make
”Beyond Visual Line of Sight” (BVLOS) flights and thus
create more jobs for drone pilots, inspection companies, and
other businesses.

Similar to other vehicles with safety risks, drones suffer
from uncertainties in operations and hence most flight plans
are highly conservative in their nature. This is combined
with increased societal acceptance and perceptions of risks
as well as the complexity of human behaviour, operational
roles and human machine interface [5]. As a result, reliable
drone response systems, which can estimate in real-time
health status and the remaining useful life (RUL), draws
increasing attention. In the long term, SafeEYE aims to fulfil
this ”missing link” by fully integrating drones as part of the
aviation infrastructure with a safe and reliable operational
profile and increased societal acceptance. The target for
the project is the value inflexion point where SafeEYE has
achieved operational status and formal acceptance as a risk
mitigation device having a strong focus on offering a new
and much needed service to the end-users. This is done by
combining a series of existing and well-proven technologies
on data analysis and processing, where measurements during
flight is fused with pre-flight data to determine in real time
how and where to best descent a malfunctioning drone.

A. Related Work

As there has been an increasing number of regulations and
a need to allow the safe operation of unmanned aircraft [8],
[9], [10], [11], there is an effort to address the challenge of
risk assessment for unmanned aircraft flights. Even though
much has been borrowed from the manned aviation [12], the
later studies acknowledge the fundamental risk differences
for unmanned aircraft, and define safety objectives by us-
ing historical analysis of human-piloted aviation accidents.
In [13], a simple ground fatality expectation model is intro-
duced with an attempt to define the safety objective variations
on the design and operation of unmanned aircraft flight.
Other works also refer to the concepts and definitions of



preliminary steps of risk analysis to define the meanings and
characteristics, as well as the main causes and consequences.
To define hazards, risks, and associated classifications of
UAS (unmanned aircraft systems), the techniques in these
works used functional hazard assessment (FHA) and/or fail-
ure modes and effects analysis (FMEA) [14], [15], [16].
These concepts and definitions for hazard classifications were
applied in preliminary assessments for UAS with the purpose
of conducting the preliminary analyses to explore potential
risks unique to unmanned aviation and how those could be
classified.

While some studies in the literature mainly address safety
challenges by focusing on aircraft and their associated
components required for the deployment, other approaches
consider third-party risk associated with UAS operations. In
particularly, the risk to people on the ground, who are not
involved in the operations [17], [18]. Similarly, efforts have
been devoted to integrate UAS by removing the threats to
human safety from mid-air collisions, as well as the ground
impacts [19]. Within the same context, the methodologies
proposed by [20] assess the risk of operating UAS in
populated areas by allowing users to estimate bystander
collisions based on data, such as satellite imagery and
census information, as well as the potential aircraft failure
rates from manufacturer specifications and experimentally
provided data.

In [21] introduces similar methods to enable safety for
UAS operations in civilian airspace, and also validated their
model using fatality rates caused by crashes monitored from
historical data. This work also revealed that several studies
have tried to predict the bystander casualty rate caused by
UAS operations. Clearly obvious in the initial considerations
were those explicitly relating to third party risks around
airports such as crash, individual risk, and societal [24]. In
the following studies, [23] introduced the risk management
of unmanned flights over inhabited areas and outlined the
need for an objective awareness of the related risks, and [22]
presented a point-based tool that evaluates small UAS by re-
warding practices considering complex flights over populated
areas for extended time and BVLOS operations.

In order to determine if any fault is occurring or about
to occur, some sort of prediction must be made. This
could be done by Predictive Maintenance and Prognostics
and Health Management (PHM) methods. These could be
tripping some safety threshold such as a simple univariate
limit like pressure, temperature limits, current, or even a
setting to any physical quantity that is regarded critical for
safe operations [25]. An example might be time to critical
event conditions such as remaining time to battery depletion
in drone, or a set of features from condition monitoring data
with no obvious physical meaning, but correlated with unsafe
conditions. Such methods have been the subject of a number
of publication, such as [27] that introduced a novel end-of-
discharge estimation framework for electric UAS based on a
Bayesian inference driven prognostic model. In fact, there are
numerous UAS prognostic works in the literature on how to
conceptually approach the challenge of safety. In a following

work, [26] presented such a prognostic model with a model
parameter augmented Particle Filtering framework to explore
UAS battery behaviour under the potential load uncertain-
ties. Further, [28] dealt with prognostic decision making
problems with complex dynamics and non-linear degradation
processes, and applied their model to UAS mission planning.
In [29], an approach was proposed for estimating component
degradation as exemplified on a battery of an UAS electric
propulsion. Their work was model-based in which the tech-
nique was linked to the internal operation of the battery and
validated by data. For the similar problems of battery state
health estimation, [30] addressed diagnostics and prognostics
challenges of Lithium-Polymer (Li-Po) batteries for UAS by
utilising several discharge voltage histories information for
a data-driven approach of a Hidden Semi Markov model
variant.

Even though the literature on UAS prognostics has primar-
ily focused on battery state estimation, the health manage-
ment carries the potential risk of failing to identify the overall
safety risks of drones. Without accurately understanding the
inclusive health pattern, the detection and diagnosis of UAS
degradation would be unfeasible. Alternatively, the drone
safety could be realised as a complex set of operational fea-
tures that are derived using advanced analytic from condition
monitoring data. An example of this is a set of features from
a vibration power spectrum [25].

B. Current Method

The focus of SafeEYE project is developing, demonstrat-
ing, and commercialising an automated emergency landing
system for larger (>7 kg) drones. Thus, tracking of safe
landing zones, along with the health state of the drone,
will be the primary methods in the development of the
framework. The project will conceptually be divided into
three steps as

1) Detection of malfunction (Detect),
2) Find a good landing spot (Find), and
3) Planning and guidance for landing (Land)

This is visualised in Figure 1. These steps can be consid-
ered chronological in terms of how they are applied when
SafeEYE is in action on a drone operation.

The first step (Detect) mainly focuses on both monitoring
the health status and estimating the time at which the drone
can no longer perform its desired function. During flight,
SafeEYE monitors the ground below the drone and when
it is estimated the flight cannot be continued with sufficient
safety margins, one of the previously found useful ground
locations is selected for landing or crashing (Find). The third
step is then to either guide the drone to a quick landing, or
in severe cases, to terminate the flight by shutting down the
motors to initiate a ballistic descent into the selected crash
area (Land). The three steps are described in more detail in
the following section.

II. METHODS

This section first provides background information on
the SafeEYE framework. Then the applied methods are



Fig. 1: SafeEYE functionality during an operation: The aircraft takes off, and monitors the ground during flight. If a minor
fault is detected, a landing is attempted, and if a severe fault is detected, a motor shutdown and crash is conducted. In
both cases the decision is taken based on the health monitoring and the knowledge of the ground area in the vicinity of the
aircraft.

described, and the development of a comprehensive approach
for safe operations is laid out. These approaches fall under
three main categories: vibration analysis and time series
estimation for predictive maintenance (Detect), convolutional
neural networks designed to recognise visual patterns for
appropriate landing areas (Find), and mathematical mod-
elling for landing spot optimisation and the guidance system
(Land).

The SafeEYE project has been running for about 18
months, and the effort has primarily been on Find, which is
almost completed (and presented in a separate publication),
while the Detect and Land stages are currently in develop-
ment. For the Detect step, initial algorithm development is
made with a subset of historical vibration data monitored
from flights from a concurrent project, where high vibration
data represents a potential failure condition. Although the
proposed models are framed by monitored data from pre-
vious projects and artificially created data with the help of
algorithms, it is planned that there will be access to some
hours of flight data prior to first installation of SafeEYE
on the drone, and these stages will be validated by actual
condition monitoring information and data. The Find step
is far in development and verified with drone operations. A
brief review of these results for this step and the relevance
to the safety objectives are presented below. The third step,
Land, has been assumed to take the outputs from the two
first steps to build two decision-making algorithms. On the
one hand, a mathematical function is first proposed in order
to select the most suitable spot to land among the ones
identified and stored by Find. On the other hand, a simple
rule based only on the output of Detect is initially made to
choose the proper descent method. Planned flight tests are

Information 
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Signal Processing
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Decision Making

Diagnosis and 

Remaining Useful Life 

Estimation

Fig. 2: Major steps in predictive maintenance stage

expected to provide insight on the performance and viability
of these algorithms, as well as for the two emergency descent
methods which are still in ongoing research.

A. Detection of Malfunction

The output of the Detect step is a recommendation on
emergency actions based on the data monitored through
operations. To properly establish the malfunction detection,
the procedure is first to deal with data acquisition by process-
ing sampling signals obtained from real world operations,
which is processed to obtain useful relevant information
to drones’ operational health status. This practice mainly
involves monitoring historical data of condition in machinery
with an attempt to identify a major change which may
be indicative of a developing failure or fault. This is a
significant component of predictive maintenance, diagnosis
and prognosis to estimate both the current health status and
the failure time, at which the drone cannot complete its
desired functions. In general, the estimations can be made by
realising the current and the historical system conditions that
will have direct affect on the future behaviour of the system
[31]. Thereupon, data acquisition is directly associated with
signal processing and decision making (see Figure 2). Since
the estimations for malfunction detection are statements
about an uncertain events (mostly in the future), the main
approach in this step is concerned with basic acceptance



regarding the characteristics of degradation. The following
assumptions for the predictive maintenance and diagnosis
parts of the program.

• SafeEYE will be developed on the same drone as the
test environment where the framework is controlled
with regard to the performance and checked that the
project requirements are met with reference to func-
tionality, along with other requirements by the team
developing the framework before the it meets the end
user. However, the project has assumptions that planned
malfunctions will be tested on lab environment and
disposable devices.

• Initial algorithm development will be made with a
subset of data previously taken from another project.
These data contains high vibration and represent a
potential failure condition.

• SafeEYE will be able to store flight data and features
regarding malfunction detection.

• For the developed algorithms to work properly on a
drone, it needs to have a few hours of flight data before
it becomes operational.

• It is accepted that SafeEYE might be prone to uncertain-
ties and reduced performance on first hours of flights.

SafeEYE continuously monitors the flight with the goal of
finding initial failures and taking necessary actions before
a catastrophic failure occurs. Therefore, its main function of
the first step is to determine any potential system degradation.
In general, the assessment of system health, criticality and
reliability is performed to determine significant failure modes
by using sensors to monitor specific components for degra-
dation and the initiation of potential failure modes. Sensor
data can demonstrate the changes in system components and
provide feature vectors (time series).

Vibration sensors are often credited for sensing the me-
chanical degradation of system components in advance of
a catastrophic failure. Common to all degradation models
is the exponential characteristics and behaviour of the fault
evolution such as exp(atb), where a and b are model param-
eters which are case specific [32]. Accordingly, the health is
written as h(t) = 1− exp(atb). However, each system starts
at a distinct operational performance level “d” which is a
case specific initial wear degradation point in the wear-space
(each operational case is observed with some non-zero initial
wear degradation that is unique for each observation), and
maintains a distinctive “h” pattern, h(t) = 1−d− exp(atb).

For better understanding and interpretation of the collected
data, the fault detection stage is concerned with this health
degradation by analysing the monitored signals, diagnosing
when an initial fault has occurred, pinpointing the fault type
with a lower probability, and finally estimating remaining
useful flight time. Here, the decision-making steps in to
recommend efficient policies of diagnostics and prognostics.
While diagnostics deal with the detection, isolation and
identification of the fault, prognostics are concerned with
the prediction of future failures and the remaining life time
of the system. The main difference between the two is the

nature of their analyses. Diagnostics focus on the posterior
and current health, whilst prognostic applications are based
on remaining service life referring to the time left before
observing a fault given the current system condition, and the
past operational profile [33], that is,

RUL = tf − tc | tf > tc, Z(tc) ,

where RUL is the remaining useful life up to the failure
time tf , and Z(tc) is the condition profile (past operational
profile) up to the current time tc. For the remaining useful
life estimate we have

E[tf − tc | tf > tct, Z(tct)] .

For diagnostic and remaining useful life estimate, two dif-
ferent potential approaches are to be used:

• A pattern recognition technique that indicates a failure,
and

• an analysis of the discrepancy between sensor readings
and tolerable limits.

Such methods can be broadly classified into three main
categories according to the way that they participate in
estimation and prediction: physics-based, knowledge-based
and data-driven approaches. Since SafeEYE is mainly de-
signed to process monitoring data, a data-driven approach
is used that proposes the determination of precursors to
fault and remaining time by considering historical records
and estimation outputs from operational data. This will
also provide solutions for the long term decision making
challenges such as ”System Health Check Prior to Mission
(or also go/no go poll)”. Therefore, this step is planned to
deal with flight controllers monitoring drone systems that are
queried for operation and readiness status before a flight can
proceed.

Another subject of this step is the confidence of predictive
maintenance that relies on the accurate processing of histor-
ical training data. This is a state of being certain either that
the estimation is correct or most effective. In practice, the
capability would be used to schedule maintenance or assist
in assets management. End users will perform management
of the individual drones; therefore, they might require an
intuitive, basic display that conveys information on: Current
system health, remaining service life, and ”confidence” in the
RUL estimation. When the model used for RUL prediction, it
is planned to be both consistent and indicative of a satisfying
estimation. Along with developing the basics of confidence
estimations, the predictive maintenance application will call
for fielded usage towards its maturation. This is where a
stringent performance evaluation comes in to exploit the sig-
nificance of confidence concept. Currently, SafeEYE project
proposes the standard predictive maintenance definitions and
consistent interpretations

B. Landing Recognition

The landing recognition method proposed in the project
is a machine vision approach for the detecting areas of
interest that can facilitate a landing or a crash without



our human injury or fatality. Since this method will be
running on a small embedded computer, the chosen method
is a convolutional neural network model that is trained to
recognise landing spots in images captured by an built-in
camera.

The data set used to trained neural network is a collection
of images taken from the camera mounted on SafeEYE
lab. These images are from various test flights where the
primary purpose was to provide images of a variety of
surfaces. In Figure 3 a sample image is shown. Such images

Fig. 3: An image taken by SafeEYE showing a variety of
surfaces. See section III for details on the test flight.

require a categorisation process in which objects and features
are recognised, differentiated, and understood. To classify
landing locations, a script is used to split up these images
into smaller frames as shown in Figure 4. These frames will
then be classified in two classes, suitable for landing and not
suitable for landing. Each images gives 78 frames of 180 x
180 pixels. For the initial training of the neural network, 2850
different frames are used to define the classification problem,
1011 landing locations and 1839 no-landing locations. This
data set has been deemed sufficient at this time, and is
therefore used in the following classification applications.

The convolutional neural network consists of an input
layer of split images and an output layer of ”landing fields”
and ”not landing fields”, as well as multiple hidden layers.
To form the output layer, the criteria for deciding whether
a landing site is good or not is based on a manual visual
inspection of the frames. It has been chosen to determine
green areas like grass fields as a landing site where variations
in colour are limited. Therefore images with rocks, shadows,
trees, houses etc. are excluded, thus labelled as ”not landing
fields”. Examples of both categories from the same test flight
are shown in Figure 5.

(a) (b)

(c) (d)

Fig. 4: Image parts (frames) taken from the image in Figure
3.

Fig. 5: Frames showing examples of (top row) ”landing
locations”, and (bottom row) ”not landing locations”.

The most essential building block in neural networks is
the single-input neuron structure which is formed by three
definite functional operations of input (x), weight (w) and
the transfer function (f ). For such a single-input neuron, the
general equation is denoted by [6]

f(net), where net =

n∑
i=1

wixi (1)

In classical feed-forward neural networks, the neurons in
the input layer are connected to output neurons in the next
layer. This forms a fully-connected layer. Nevertheless, in
a convolutional neural network model the fully-connected
layers are not employed until the very last layer(s) in
the network. Therefore, they form a neural network model
that swaps in a specially designed “convolutional” layer in
exchange for “fully-connected” layer for at least one of the



layers in the structure [34]. A nonlinear activation function
is then applied to the output of the convolutions. The process
of convolution continues until the end of the network and the
application of one or two fully-connected layers in which the
output classifications are obtained.

In SafeEYE, such a convolutional model, namely LeNet
architecture [35], is used due to its computationally efficient
structure. It is straightforward and small (in terms of memory
footprint), making it perfect for teaching the basics of the
proposed model. LeNet consist of multiple layers of convo-
lution, pooling and activation followed by a fully-connected
layer, activation function and another fully-connected layer,
and at the end, a soft max classifier.

In⇒ Conv⇒ Act⇒ Pool⇒ Conv
⇒ Act⇒ Pool⇒ FC⇒ Act⇒ FC (2)

For the activation, the LeNet architecture in SafeEYE uses a
unit employing the rectifier, also called a rectified linear unit
(ReLU) [36], defined as f(x) = max(0, x). ReLU tends to
outperform alternative activation functions and it is widely
acknowledged in deep neural network applications [37].

C. Planning and Guidance for Landing

The last phase of SafeEYE’s operations is to actually
perform landing. Hence, the procedures described in this
section conceptually take place after a fault has been detected
by the Detect step. The primary goal is to bring an emergency
situation to a landing (or crash in the worst case) of the drone
in a desired location. Areas recognised and classified by the
Find step as a ”landing field” are stored in the SafeEYE’s
computer, and subsequently analysed as described in the
following.

In order to land the drone, two decisions need to be made:
Where to land and how to land. To keep the framework
simple, the questions are considered independently. First a
solution for the problem of where to land is proposed, and
subsequently, a solution for how to descend is proposed.
Different approaches can be tackled to select between ap-
propriate landing locations, such as if/else control commands
and/or another neural-network. The simplicity of using if/else
commands can easily lead to undesired emergency landing
performances, whereas a neural network model may require
data for training that are not easily available. Rather, the
choice of landing location is based on a cost function that
optimally selects among the stored landing areas based on
three parameters.

• Current urgency level (from Detect step): µ ≥ 0,
• Safeness of the landing area (from Find step): λ ∈ [0, 1]
• Normalised distance to landing area: R̄ ∈ [0, 1]

A function, Jp : R3 → R, is proposed as a cost function
to quantify the suitability of landing a faulty drone in the
landing area p, where p ∈ N is an index used to identify a
landing area from the ones stored. The function Jp provides
a cost for each of the areas recognised and stored, by relating
the three parameters µ, λp and R̄p for each landing area p.

Fig. 6: Sensitivity of Jp to the parameters λp and R̄p while
increasing the urgency level µ from 0 to 1.

Note that all three parameters are independent from each
other, and are bounded differently, as listed.

The intention is to have a function that provides a certain
cost to an arbitrary landing area p based on its balanced
quality. Subsequently, the cost given to spot p changes
according to the emergency level µ, i.e. the urge to land. For
instance, if a malfunction is associated with a low urgency
level, it is assumed that forcing the drone to travel further to
reach a safer landing spot is not considered critical. Whereas
a high urgency level would prioritise a closer spot, at the
expense of a lower safeness to land at that spot. This is
motivated by the concept that with a high urgency level, a
failure occurring during a traversal to the best, perhaps far
away, landing spot is considered high risk.

Following the criteria described above, the general struc-
ture of the proposed function Jp is

Jp(µ, λp, R̄p) = wλ(µ)Jλp (λp) + wR(µ)JRp (R̄p) (3)

Since λp and R̄p are independent parameters, a cost is
associated to each of them by means of individual functions,
Jλp (λp) and Jλp (R̄p). Each tackles only one parameter, and
then is introduced linearly to the general function Jp. Sub-
sequently, two weights, wλ(µ) and wR(µ), multiply each
individual cost in order to increase or decrease the value
of the individual costs to prioritise safeness or closeness.
The value of these weights change with the severity of the
situation, and henceforth, are defined as functions of µ.

A way to visualise Jp is imagining a 1×1 manifold,
initially shaped by the individual functions Jλp (λp) and
Jλp (R̄p). The manifold is then softly reshaped from its
initial configuration according to the urgency level of the
emergency situation, i.e. according to the weight functions,
wλ(µ) and wR(µ). It is assumed, thus, that in a nominal
state (µ� 1) the weights are not affecting the value of the
cost function Jp, i.e. wλ(0) = wR(0) = 1. And when the
level of urgency rises the weights modify the cost Jp in a
manner corresponding to the criteria that has been previously
described. To illustrate this, the sensitivity of an example
of cost function Jp has been taken as a function of the
urgency level µ, which looks like shown in Figure 6. It can
be seen that the value of Jp associated to a low urgency



situation is provided mostly by the safety parameter λp,
whereas the distance of the landing area provides low values
to the general function Jp. However, this relation is swapped
by increasing enough the urgency level µ, which matches
with the desired behaviour described before. Henceforth,
functions Jλp (λp), Jλp (R̄p), w

λ(µ) and wR(µ) will be sought,
such that (3) behaves like, or similar to, Figure 6. The
selected area to land is, therefore, the one which gives the
lowest cost value of Jp, meaning it is the most suitable
location to land given the current emergency level.

In order to perform the landing procedure towards the
selected area, three methods will be considered (the first
being the least aggressive to perform and the last the most
aggressive).

• Auto-pilot landing procedure.
• SafeEYE automated descend.
• Ballistic descend.

The choice of which procedure to choose depend strictly
on the severity of the situation, namely, on µ. Therefore,
thresholds on the value of µ will be studied in subsequent
research in order to determine exactly when is it appropriate
to choose either method.

III. TESTING AND RESULTS

SafeEYE has been mounted, integrated, and flown in a
number of test setting on a DJI Matrice 600. This section
briefly describes some of the results from these test flights.

A. Test flights

A number of test flights have been conducted with the
SafeEYE, primarily to collect data and to test the Find step.
Most prominently, three campaigns have been conducted
with a total of approximately 12 hours of flight. Two sites in
Denmark have been used, one is an emergency responders
training facility at Rørdal, Aalborg (which is where the
images in Figures 3, 4, and 8 are from), and the other is
a military training compound consisting of about 30 empty
houses. This areas was also used for test flights with home
guard personnel acting as city residents. These sites have
been used, because they have both urban and rural ground
textures with legally being an urban area, and because they
can reasonably be closed for public access. In addition, the
military area has an airspace restriction zone, which allowed
for operations up to 150 m. The images in Figure 5 is from
this site.

The data collected during operations consists of 10,000’s
of images, vibration data, attitude and flight trajectories, and
on-the-fly estimation results.

B. Results

As the project has completed the Find step, the image
recognition module has been tested with imagery from
flights, and results are briefly presented in this section. The
initial image data set is from the test flight at Rørdal in
Aalborg, Denmark. From the first tests using the model from
Section II-B, it is concluded that the model is over-fitting due
to the gap between training and validation loss which means

Fig. 7: Illustration of the learning curves for the LeNet
classifier with a dropout layer.

that the network has over-memorised the training examples.
Thus, it has not been adequately trained to generalise to the
new situations. It is acceptable to have a gap between the
training loss and validation loss curves, however the valida-
tion loss should not be constantly increasing as witnessed in
the testing. Therefore, a dropout layer has been added and
the new training loss and the accuracy has been increased as
seen in Figure 7. Here, the gap between train- and val- loss is
reduced. The results of classification test is shown in Figure
8 in which the classifier is able to correctly classify all the
frames. As seen by the high accuracy of the classification in
Figure 8, the proposed method performs well at classifying
correct landing locations. A further point to be mentioned is
that the model is able to classify the frames in a reasonable
time which is intended for the small computer mounted on
drone. The LeNet model built in the training script only takes
up 15 MB of memory. Therefore, it is a rather small model
which is a very desired as it will not fill up the RAM on the
device.

IV. CONCLUSION

In this work, an automated emergency landing system
for larger drones is proposed for flight safety. SafeEYE
is designed to be an external attachable device capable of
working on any larger drone, no matter what its physical
characteristics are. The project is planned take control of
the guidance tasks to perform a fast and safe autonomous
landing when a fast emergency landing is required. Being
in charge of such actions means that the responsibility for
casualties lies on SafeEYE, hence a high degree of certainty
and safeness regarding the landing is required.

The preliminary test outcomes show that the algorithm
developed for landing recognition has been effective for
detecting areas of interest for the development of project.
Therefore, it has been demonstrated that the framework has a
potential to overcome uncertainties in operations with a safe
profile and increased acceptance. Additionally, the proposed



Fig. 8: Results from the classifier. The green text shows if it
is considered a landing spot or not, and the percentage the
confidence in the classification.

stages of ”fault detection” and ”landing guidance” show that
a strategic implementation of subsystems can improve the
overall operational reliability. The framework, therefore, has
a great potential of improvement in drone safety.

ACKNOWLEDGEMENT

We would like to thank Jesper Andersen (CEO & Founder
at SenseAble) for his support and assistance. We would also
like to extend our thanks to Simon Jensen (Assistant Engi-
neer, Department of Electronic Systems, Aalborg University)
for his help in drone operations.

REFERENCES

[1] EU, Commission Implementing Regulation (EU) 2019/947 of 24 May
2019 on the rules and procedures for the operation of unmanned
aircraft (Text with EEA relevance.), Official Journal of the European
Union, vol. 2019, May, 2019.

[2] EU, Commission Delegated Regulation (EU) 2019/945 of 12 March
2019 on unmanned aircraft systems and on third-country operators of
unmanned aircraft systems, Official Journal of the European Union,
vol. 2019, March, 2019.

[3] la Cour-Harbo, Anders. ”The value of step-by-step risk assessment
for unmanned aircraft.” 2018 International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE, 2018.

[4] Balaban, Edward, and Juan J. Alonso. ”A modeling framework for
prognostic decision making and its application to UAV mission plan-
ning.” Annual conference of the prognostics and health management
society. 2013.

[5] Susini, Alberto. ”A technocritical review of drones crash risk proba-
bilistic consequences and its societal acceptance.” Lnis 7 (2015): 27-
38.

[6] Lippmann, Richard P. ”An introduction to computing with neural
nets.” Artificial neural networks: theoretical concepts. IEEE Computer
Society Press, 1988.

[7] Hagan, Martin T., Howard B. Demuth, and Orlando De Jesús. ”An
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