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Abstract: Photovoltaic (PV) energy has become one of the main sources of renewable energy and is
currently the fastest-growing energy technology. As PV energy continues to grow in importance,
the investigation of the faults and degradation of PV systems is crucial for better stability and
performance of electrical systems. In this work, a fault classification algorithm is proposed to achieve
accurate and early failure detection in PV systems. The analysis is carried out considering the feature
extraction capabilities of the wavelet transform and classification attributes of radial basis function
networks (RBFNs). In order to improve the performance of the proposed classifier, the dynamic
fusion of kernels is performed. The performance of the proposed technique is tested on a 1 kW
single-phase stand-alone PV system, which depicted a 100% training efficiency under 13 s and 97%
testing efficiency under 0.2 s, which is better than the techniques in the literature. The obtained results
indicate that the developed method can effectively detect faults with low misclassification.

Keywords: photovoltaic system; fault classification; feature extraction; wavelet analysis; radial basis
function networks (RBFN); kernels

1. Introduction

The increasing energy demands of modern society raise significant environmental concerns.
Hence, substantial research on renewable energy technologies is important for realizing the potential
of cleaner energy resources [1]. Among the major renewable energy systems, solar energy is the most
abundant, inexhaustible, and cleanest during operation [2]. Moreover, the progress in solar energy
technologies and improving efficiency made photovoltaic (PV) systems a dominant player in the global
electricity production market [3]. However, they have failed under many occasions, due to recurring
undetectable faults [1]. In general, faults in a PV system are classified depending on the location of
the fault, i.e., AC stage or DC stage. The AC faults include gating and switching failures, open and
short circuit switches [4], and filter failure-inducing harmonics in the circuits. Whereas DC faults
include various module-based faults [5], failure of maximum power-point tracking (MPPT) algorithms,
and faults associated with DC-DC converters [6,7]. Also, MPPT systems are responsible for injecting
maximum power into the circuit. During high irradiation intensity, increased power on the input side
may cause false tripping of over-current relays [8,9]. In addition, non-linear characteristics of PV array
makes it difficult to attain a decision boundary for the faulty condition [10]. The faults occurring on
the DC side can have catastrophic impacts on the AC side if they remain undetected, which leads to
fire Hazards or reduction in output power. In order to overcome these effects, continuous real-time
monitoring and fault classification is necessary to improve the life and efficiency of the PV systems.
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Conventionally, many signal processing techniques were adapted by the researchers to observe
the patterns of faults at different levels of PV systems [11]. These techniques involve many steps like
signal conditioning for denoising, input normalization such that the input values exist within the realm
of the capabilities of the selected algorithms, and feature extraction for enhancement of the separability
of the classes. Apart from signal processing techniques, classification algorithms were also considered
for analyzing the anomalies. Over the past years, many fault classification and anomaly detection
algorithms were studied and implemented, but machine learning-based algorithms proved to be more
effective. One of the methods, as introduced in [12], discusses the support vector machine (SVM)
algorithm, which creates a decision boundary to predict whether a certain fault has occurred or not.
However, they face a disadvantage in the selection of features, which, when done by trial and error
method, may lead to the faulty output. An improved method of supervised learning, as discussed
in [13], introduces artificial neural networks (ANN) for predicting outputs and identifying faults in a
PV system. But it has been observed that they undergo problems of overfitting and often fail to predict
under test data. Besides, ANNs are computationally bulky and expensive to train. Certain advanced
versions of ANNs like multilayer perceptron networks (MLPN) and backpropagation algorithms were
introduced to overcome problems of ANNs and for enhanced accuracy.

Contrarily, a system can be subjected to a large number of undefined faults that are new to the
system. In such a case, an approach to supervised learning fails to encompass the condition. In order
to overcome the difficulty, a semi-supervised learning algorithm, which not only detects faults but also
identifies possible fault types, was introduced in [14] to speed up system recovery. In this approach,
two known parameters were chosen as a center for clustering and the unknown faults were grouped
based on the vicinity to these clusters. The drawback associated with these systems is that they are
challenging to implement for large PV systems and also face difficulties due to overlapping amongst
different clusters. To overcome this, a comprehensive unsupervised learning technique that manually
assigns weight using a kernel-based approach with only one hidden unit was introduced in [15].
The radial based functions used in the kernel method creates a decision boundary by importing data
into a high dimensional feature space and then converting them back into two-dimensional data.
This is achieved by calculating the Euclidean distance between landmarks and training data set and
operating on parameter kernel radius for deciding the spread of the function. Even this operation
fails to distinguish between two points that are at an equal distance and reasonably gave an error
in the exactness as to where a certain dataset belonged. Further, an improved variant, including a
cosine component, was introduced to supplement and overcome the Euclidean distance problem [16].
Here, the cosine component distinguishes between two similar data sets that were aligned at equal
distances but at different angles. However, manually assigning weights remained a complex task
requiring a lot of human efforts.

From the above discussion, the problem at hand is to develop an enhanced technique over
prevalent practices to classify faults in single-phase PV systems. The literature provided various
techniques to overcome the problem, but each of them tends to be primitive and computationally
complex. Apart from this, the inability of classification approaches to handle large amounts of
data, complex pre-processing steps, and inability to discriminate among the patterns in the data
needs attention.

In this paper, a new classification process, as depicted in Figure 1, is developed. Various faults
associated with PV systems were simulated, and their effect on the voltage and current outputs were
identified. Here, the data acquisition plays a major role in storing all the data corresponding to different
faults and operating conditions of the PV system. Further, the keen points of the identified outputs
were analyzed using wavelet transform, and the corresponding features were extracted. The extracted
features were subjected to classification by developing a new RBFN classifier. The developed algorithm
assigns weights adaptively in the consecutive layers and performs efficient clustering to develop an
efficient fault classifier. The developed classifier is introduced in a feedforward mode with the PV
system to classify the increased number of faults efficiently.
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Figure 1. Proposed fault classification process is standalone PV system.

The further sections of the paper provide a detailed explanation of the fault classification procedure.
Section 2 identifies various faults that affect the operation of a PV system. Section 3 describes the
signal pre-processing and feature extraction process using wavelet analysis. Section 4 explains the
pattern recognition and classification technique by developing a dynamically fused kernel for RBFN.
Finally, the extracted features and the kernel network are adapted together for developing a fault
classifier for a single-phase stand-alone photovoltaic system in Section 5. The final simulation results
and comparison with literature work depicts the feasibility of the developed procedure in classifying
PV system faults within a stipulated time.

2. PV System Faults

PV systems are subjected to a variety of faults, impacting the output power of the system.
In general terms, the faults observed in any system are classified under three categories, early failures,
intrinsic or random failure, and wear out [17].

Figure 2 depicts some very serious faults that occur in PV systems. Generally, these faults can be
classified into three categories: early faults, extrinsic faults, and deterioration stage. The early failures
are observed during the initial stages of the installation and operation of PV systems. Any defect
or flaw in the PV module or the power electronic converters results in a quick degradation; hence,
it decreases the service life of the system. The module faults and the cable failures are observed to
share a major part of the early failure cases. Extrinsic failures are the midlife failures observed in a
PV system [18]. It was predicted that 2% of the PV modules do not comply with the specifications of
the manufacturer after a certain span of operation. Various studies have shown that interconnection
defects and module glass breakage failures are the major causes of extrinsic failures. The deterioration
stage or wear out failure occurs at the end of the life span and is the most common scenario that can be
observed in PV systems. The operation or the life of the PV system is concealed whenever a safety
problem or power drop occurs. There are a lot of studies analyzing different issues present in PV
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systems [19,20], demonstrating an interest in detecting faults to the greatest extent as early as possible.
A brief overview of different faults, their potential causes, and effects were depicted in Table 1.
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Figure 2. Faults in a photovoltaic system.

Table 1. Fault Mode and their potential causes and effects.

Fault Type Potential Cause Potential Effect

Module Failure
(loss of electrical function)

Open contacts, Short circuit
and arcing No energy output

Impairment of electric function High series resistance, low shunt
resistance, aging, shading, soiling

Reduced energy output,
hot spot damage

Junction box/bypass diode
open contacts

Disconnections, improper
installation, corrosion, No energy output

Short, arc in contacts Damaged insulation, aging,
and lightning.

No energy output, thermal
damages, fire

Inverter fails to transfer
Contact damage, excessive heating
of switches, software failure with

gating pulses
Distorted or No energy output

Degraded output MPPT unbalance, Extreme
weather conditions Reduced energy output

Spurious trip
Bad system configuration,

corrosion, aging,
lack of maintenance

No energy output

3. Feature Extraction Methodology

Every fault condition and operation in a PV system has a specific impact on the output voltage
and current. This causes a difference in the waveform or signal of the outputs when compared to
a normal operating scenario. These changes or disturbances have different features when observed
in the time and frequency domains. Generally, wavelet analysis [21] is known to give benefits with
simultaneous time and frequency localization and has seen recent application to feature extraction in
pattern recognition problems.

Wavelet Transform

Wavelet transform (WT) is a spectral analysis method, which decomposes a signal into a set
of oscillatory functions called wavelets. The wavelets are localized in time, and thus, WT provides
a time-frequency representation. Considering a time-domain signal f (t) in any L2(R) space of
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square-integrable functions [22], which can be formulated using a family of orthonormal wavelet
functions, the wavelet transformation of the signal is given by:

[
Wψ f

]
(s, τ) =

1
√
|s|

∫
R

f (t)ψ∗
( t− τ

s

)
dt (1)

where ψ(t) is the mother wavelet, s = 1, . . . , m and τ = 1, . . . , n are the scale and translation
parameters, respectively;

[
Wψ f

]
(s, τ) is the wavelet transformation of the signal f (t) [23].

There are two basic ways in which a wavelet can be manipulated, the first one is the translation
of the wavelet, and the second one is the scaling of the wavelet. The translation corresponds to
movements along the time axis, and scaling refers to the spreading out of the wavelet. These two basic
manipulations are used in the discrete wavelet transform (DWT) of the signal, which means that the
DWT is implemented at several locations of the signal, and for several scales of the wavelet, with the
purpose to capture features that are local in time and local in frequency. Generally, wavelets are chosen
depending on the nature of the observed signal of interest and the aim of the analysis. For a function
to be transformed into a wavelet, some conditions must be achieved, such as admissibility condition,
integration to zero, and unit energy [24].

The wavelet function at scale a and location b is defined as:

Ψa,b(t) =
1
√

a
Ψ
( t− a

b

)
(2)

where, a and b are the dilation (or scale) and translation (or shifting) parameters, respectively.
If discrete values of parameters a and b are considered, the wavelet function may be rewritten

by using a logarithmic discretization of the a scale and making location b proportional to that a scale.
This modification leads to a discrete version of the wavelet function, which has the form:

Ψm,n(t) =
1√
am

0

Ψ
( t− nb0am

0

am
0

)
(3)

where, m ∈ Z is the discrete dilation parameter; n ∈ Z is the discrete translation parameter; a0: is a
fixed dilation step parameter; b0: is a fixed translation step parameter

Parameters m and n are contained in the set of integers Z. Parameter a0 must be greater than 1
because of the stability of Ψm,n(t) (as m→∞ then am

0 → 0 and Ψm,n(t)→∞ ), and parameter b0 must
be greater than 0 since otherwise no wavelet translations could be performed. In addition, note that the
size of the translation steps is proportional to the wavelet scale am

0 through the relationship ∆b = b0am
0 .

Setting ao = 2 and bo = 1 in (3) leads to an arrangement known as the dyadic grid, which is a
power-of-two arrangement for both the dilation and translation steps, and is given by:

Ψm,n(t) =
1
√

2m
Ψ
(

t− n2m

2m

)
(4)

where, Ψ0,0(t) = Ψ(t) is known as the mother wavelet function.
The DWT of a discrete signal x(t) using discrete wavelets is given by:

Tm,n =
∑N−1

t=0
x(t)

1
√

2m
Ψ
(

t− n2m

2m

)〈
x, Ψm,n

〉
(5)

where, N is the length of the discrete signal x(t); Tm,n are the detailed wavelet coefficients for a
scale-location grid of index m, n.

The DWT may be viewed as the convolution of the signal x(t) with dilated and translated versions
of the mother wavelet, by which the wavelet coefficients Tm,n at all scale-location indices m, n can be
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obtained. Likewise, the original signal x(t) can be reconstructed through the wavelet coefficients Tm,n,
using the inverse discrete wavelet transform, which is defined as:

x(t) =
∑M

m=1

∑2M
−1

n=0
Tm,nΨm,n(t) (6)

where, M =
ln(N)
ln(2) is the number of iterations that can be computed and N = 2M is the length of the

discrete input signal x(t).
Equations (5) and (6) may be described as a decomposition-reconstruction process summarized

as follows:
Decomposition process:

x(t)→
〈
x, Ψm,n

〉
→ Tm,n (7)

Reconstruction process:

x(t)←
∑M

m=1

∑2M
−1

n=0

〈
x, Ψm,n

〉
Ψm,n(t)← Tm,n (8)

In general, Orthonormal dyadic discrete wavelets are associated with scaling and wavelet functions,
which are related to smoothing of a signal and the extraction of high signal frequencies. Analogously
to the process to obtain the wavelet coefficients Tm,n (5), the signal x(t) can be convoluted with dilated
and translated versions of the father wavelet, to obtain the approximation coefficients Sm,n at all
scale-location indices m, n as follow:

Sm,n =
∑2M

−1

t=0
x(t)

1
√

2m
∅

(
t− n2m

2m

)〈
x, ∅m,n

〉
(9)

where, Sm,n is the approximation coefficient for a scale-location grid of index m, n.
Once the signal is discretized, it is decomposed based on the mother wavelet chosen. The process

of decomposition, reconstruction, and feature extraction were carried out to develop a feature matrix.
The developed feature matrix is further subject to the classification process, which is explained in the
next sections.

4. Pattern Classification Using RBFN

The RBFN [25] architecture is formed by combining three layers: the input layer, the non-hidden
layer, and a linear output layer. Figure 3 represents the architecture of different layers in RBFN where
Z ∈ Rn0 } is an input vector. Considering the input vector, the overall mapping m : Rn0 → R1 , of RBFN
is depicted as:

f (u) =
n1∑

i=1

xiθi(||z− zi||) + b (10)

where n1 is the total neurons in the hidden layer, Zi ∈ Rn0 are the centers of RBFN, xi is the synaptic
weights connecting hidden and output layer, b represents bias output layer, and the bias function is
given by θi for ith hidden neuron.

Conventional RBFN’s employ multiple kernels like Gaussian [26], multiquadric [27], and inverse
multiquadric [28]. The Gaussian kernel is the most commonly used kernel due to its versatility.

θi(||z− zi||) = exp
(
−
||z− zi||

2

σ2

)
(11)

where, σ is the kernel radius of Gaussian.
In general, kernels measure the distance from clusters of the network. In the literature, Euclidean

distance [29] is widely used as an efficient distance measurement technique. But the present-day
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researchers argue that the distance of the cosine kernel has more efficiency and complimentary
properties when compared to the Euclidean distance measure.

θi1(z.zi) =
z.zi

||z||||zi||+ ξ
(12)

where, ξ > 0 is an insignificant constant in the denominator, which avoids the indeterminant form of
(12) in any case of ||Z|| or ||Zi|| is zero. Accordingly, a new approach is developed by combining the
Euclidean and cosine distances.

θi(z, zi) = ω1θi1(z.zi) +ω2θi2(||z− zi||) (13)

where θi1(z.zi),θi(||z− zi||) are the cosine and Euclidean kernels, respectively, with corresponding
weights ω1 and ω2.

By adapting the distinctive properties of cosine and Euclidean kernels, the developed system
exhibited a significant improvement when compared to conventional RBFN kernel. But its observed
that there is a manual fusion between the two kernels, and the weights ω1 and ω2 are adjusted using
trial and error method. In general, while dealing with trial and error method, weights are equally
assigned to the kernels. In order to overcome this drawback, a new framework is developed to optimize
the weights with adaptive methods like the steepest descent method [30].

Let’s consider ω1 and ω2 to be dynamically adaptive variables:

ω1 ≡

∣∣∣ω1(u)
∣∣∣∣∣∣ω1(u)

∣∣∣+ ∣∣∣ω2(u)
∣∣∣ (14)

ω2 ≡

∣∣∣ω2(u)
∣∣∣∣∣∣ω2(u)|+|ω1(u)

∣∣∣ (15)

where the normalization of mixing the weights ensure that ω1(u) +ω2(u) = 1, the developed kernel
can be formulated as:

θi(z, zi) =

∣∣∣ω1(u)
∣∣∣θil(z.zi) +

∣∣∣ω2(u)
∣∣∣θi2(||z− zi||)∣∣∣ω1(u)

∣∣∣+ ∣∣∣ω2(u)
∣∣∣ (16)

The overall mapping at nth learning linked to a specific epoch, can now be written as:

f (u) =
n1∑

i=1

xi(u)θi(z, zi) + b(u) (17)

where xi(u) depicts the synaptic weight and b(u) is the bias adapted at each iteration.
The cost function j(u) is given by:

j(u) = j(ω1(u), ω2(u)) =
1
2
(d0(u) − f (u))2 (18)

where d0(u) is the desired output at uth iteration, ε(u) is the instantaneous error between the desired
output and actual output as defined in (18).

ε(u) = d0(u) − f (u) (19)

The updated rule for weights of the kernel is given by:

∆ω1(u) = −η
∂ j(u)
∂ω1(u)

(20)
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By applying the chain rule differentiation for cost function analysis,

∂ j(u)
∂ω1(u)

=
∂ j(u)
∂ε(u)

∂ε(u)
∂ f (u)

∂ f (u)
∂θi(z, zi)

∂θi(z, zi)

∂ω1(u)
(21)

By simplifying (19),

∂ j(u)
∂ω1(u)

= −ε(u)xi(u)

∣∣∣ω1(u)
∣∣∣∣∣∣ω2(u)

∣∣∣
ω1(u)

[∣∣∣ω1(u) +ω2(u)
∣∣∣2] × [θi1(z.zi) − θi2(||z− zi||)] (22)

From (18) and (20), the updated rule for ω1(u) is depicted as:

ω1(u + 1) = ω1(u) + ηε(u)xi(u)

∣∣∣ω1(u)
∣∣∣∣∣∣ω2(u)

∣∣∣
ω1(u)

[∣∣∣ω1(u)
∣∣∣+ ∣∣∣ω2(u)

∣∣∣]2 ×
[θi1(z.zi) − θi2(||z− zi||)] (23)

For ω2(u)

ω2(u + 1) = ω2(u) + ηε(u)xi(u)

∣∣∣ω1(u)
∣∣∣∣∣∣ω2(u)

∣∣∣
ω2(u)

[∣∣∣ω1(u)
∣∣∣+ ∣∣∣ω2(u)

∣∣∣]2 ×
[θi2(||z− zi||) − θi1(z.zi)] (24)

xi(u + 1) = xi(u) + ηε(u)θi(z, zi) (25)

bi(u + 1) = bi(u) + ηε(u) (26)

Finally, the updated weights and bias are obtained from (24) and (25). It is observed that the
developed approach does not require the prior assignment of weights due to its dynamic nature.
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Figure 3. Structure of the Radial Basis Function Neural Network.

5. Methodology

5.1. System Layout and Data Collection

A simulation model of the single-phase two-stage standalone PV system [31] operating under
standard test conditions of 1000 W/m2 irradiance and 25

◦

C temperature is developed using
MATLAB/Simulink. The system includes a 1 kW PV array, a DC-DC boost converter, and an inverter
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fed from a 400 V dc obtained at the DC link [32]. The output of the PV system corresponds, 230 V RMS,
50 Hz AC, which is feeding a constant load and is isolated from the grid. For this study, the boost
converter is operated with perturbation and observation MPPT algorithm, and the pulses to inverter
switches are fed from a PWM generator operating at 10 kHz switching frequency [33]. The measured
voltage and current are tabulated after each simulation run for every fault and operating condition.

The critical faults of the PV system, which are simulated in this experiment are depicted in Figure 4
and summarized in Table 2, and their description and effects are also detailed.
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Table 2. Faults analyzed in the simulated PV system.

Component Operating Condition Description

PV System (1 kW) Normal Operation (N. O) Operated under standard test conditions.

PV Module
Partial Shading (Fault 1) Low power output from the modules

cell bypass (Fault 2) Low power output from the modules

PV Array
Line to Line Fault (Fault 3) Negative current from the faulted string (back-fed current)

Ground Faults (Fault 4) Undesirable condition of current flowing through the equipment
grounding conductor in the circuits carrying DC power

Boost converter

Inductance open circuit (Fault 5)
Inductor is disconnected from the boost converter circuit
resulting in a maximum DC component of the VI (voltage
current characteristic) curve.

DC link capacitance open (Fault 6) The positive point of the DC link capacitor is disconnected,
which results in a highly abnormal DC component.

Diode open (Fault 7) One terminal of boost converter diode is disconnected, which
results in a nullified frequency of the component.

Diode short circuit (Fault 8) Boost converter diode is short-circuited by using a cable, which
results in a change of voltage magnitude.

Switch open (Fault 9) The MOSFET is disconnected or open-circuited due to bond
wire lift off, resulting in a nullified frequency of the component.

Switch short circuit (Fault 10) The MOSFET is shorted, which results in the minimum DC
component of the IV curve.

Switches (s1, s2, s3, and s4) open
(Fault 11)

The switches of inverter were disconnected one at a time along
with the diode, and the corresponding effects were observed.

Inverter

Switches (s1, s2, s3, and s4) short
circuit (Fault 12)

The power switches and diode of inverter were short-circuited
one at a time, and the corresponding effects were observed.

Combination of open and
short-circuit switches (Fault 13)

Open and short circuit combinations of switches in both the
converter circuits were tested, and the corresponding system
operation is observed.
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In this test, Daubechies ‘db5′ mother wavelet [34] has been chosen, and the fifth level of wavelet
transform has been used to analyze due to its robustness, and it is least affected by the noise. The absolute
value of wavelet coefficients and corresponding energy values are calculated by (27) show large change
for every fault.

E =

√[∑i=N

i=1

abs2(dm(i))
N

]
(27)

where, E is the energy, N is the number of wavelet coefficients for every power cycle, and dm(i) is the
detailed wavelet coefficient at level i.

Apart from the energy feature of the signals, many other features like entropy (H(Rs)), peaks
(Rspp), power spectral density (PSD), total harmonic distortion (THD), signal to noise ratio (SNR),
skewness (s) and kurtosis (K) were obtained from (28)–(34).

Skewness and Kurtosis of the reconstructed signal is given by:

Skewness (S) =
1
n
∑n

i=0(Rs − µ)
3(√

1
n
∑n

i=0(Rs − µ)
2
)3 (28)

where, n = number of samples, Rs is the reconstructed signal, andµ is the mean of the reconstructed signal

Kurtosis (K) =
1
n
∑n

i=0(Rs − µ)
4(√

1
n
∑n

i=0(Rs − µ)
2
)4

(29)

Peak to peak value of the reconstructed signal is given by:

Rspp = 2
√

2σ (30)

where, Rspp is the standard deviation of the reconstructed signal.
Power spectral density of the reconstructed signal is given by:

PSD = lim
N→∞

1
2T

T∫
−T

∣∣∣∣Rs(t)
2
∣∣∣∣dt (31)

Entropy, defined as a major tool in information theory. It is also used to estimate the type of
wavelet suitable for decomposing and reconstructing a given signal. The entropy of a given signal is
found by equation:

H(Rs) = −
N∑

i=1

p(Rs) log10 p(Rs) (32)

where p(Rs) is given by the probability of the reconstructed signal.
Equation (33) estimates the total harmonic distortion and noise of a sinusoidal signal in the

time domain:

THD + N =

∑
∞

n=2 harmonics + noise
f undamental

(33)

where, n = order of harmonics. The signal to noise ratio for a given signal is determined by the ratio of
reconstructed signal to the original signal:

SNR =
Rs

Original Signal
(34)



Energies 2020, 13, 308 11 of 17

5.2. Classification Algorithm

A total of 7182 samples are tabulated for eight different features and 14 different faults. Each class
has a matrix of 513× 8 samples, which will help in developing the classification data. Once the required
features of all the faults and operating conditions of PV systems were extracted, we apply principal
component analysis to minimize the feature set. The v number of cells of length l are grouped to form
an (l× ν) data matrix, which is the input to the RBFN classifier.

The RBFN has 14 target classes (1 normal operation and 13 faults), and the centers were chosen
based on the subtractive clustering method [35–37] with 0.1 influence factor. Initially, the weights xi and
bias bi were considered zero. The Gaussian spread is initiated at 0.2 and the value of ξ is set to be very
small (< 1e− 50) for the purpose of cosine kernel. The values of mixing parameters are considered 0.5
for testing the conventional kernel methods, and the corresponding results were depicted in Figure 5.
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Figure 5. Mean Square Error curves of the training phase (a) Cosine Kernel, (b) Euclidean Kernel,
(c) Manual fusion of Cosine and Euclidean Kernel.

Figure 5a–c, depicts the cosine kernel RBFN, Euclidean kernel RBFN and manual fusion of kernels
RBFN for the given input data and assigned parameters. It can be observed that the Euclidian kernel
outperforms the cosine kernel and the manual fusion of the kernels by achieving minimum mean
square error (MSE). This represented the case of overfitting, where the training performance of the
system is better, but the testing performance of the system fails with the test data. These drawbacks are
overcome by varying the mixing parameters of the kernel with respect to the epochs. Hence, dynamic
fusion of the kernels is performed considering all the parameters mentioned previously.

The variation of weights ω1 & ω2 with respect to the number of iterations is given in Figure 6.
It can be observed that after 70 epochs, there is a corresponding flip in the mixing parameters of
the kernel, and further after 400 epochs, the mixing parameters become stable. Further, the mean
square error curve for the dynamic fusion of cosine and Euclidean kernels to train the input data with
RBFN is depicted in Figure 7. The MSE of the kernel is observed to be around −150 dB when trained
for 2500 epochs which exhibited better performance than the manual fusion and cosine kernel but
trailed behind the Euclidian kernel. This is explained by plotting a comparison between MSEs of all
the kernels.
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Figure 8 depicts the mean square error for all the approaches adapted for developing this algorithm.
From Figure 8, it can be observed that the cosine kernel is outperformed by the Euclidean kernel by
achieving a minimum mean square error of around −280 dB. It can also be observed that the mean
square error of the dynamic fusion of kernels is −150 dB, which is below the Euclidean kernel error.
This is due to the fact of overfitting during the training process. This condition merely provides
Euclidean kernel with high training efficiency and least mean square error but fails in the phase of
implementation and testing. Further, the dynamic fusion of kernel-based RBFN has a decreasing cost
function or loss function, which depicts the performance of the classifier. The cost function from (22)
associated with calculating the mixing parameters with a dynamic fusion of kernels is depicted in
Figure 9.
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The results in Table 3 support the argument of why Euclidean kernel cannot be adopted for
training and testing of RBFN. Further, a comparative analysis regarding the weights assigned for every
kernel and their effect on training and testing efficiency of the fault data is depicted in Table 3.

Table 3. Results of the training and testing process for different kernels.

Kernel Type Training Process Testing Process ω1 ω2

Cosine 100% 94.11% 0.57 0.429
Gaussian Euclidian 100% 58.82% 0.573 0.426

Manual Fusion 100% 94.16% 0.5 0.5
Dynamic Fusion 100% 97.05% 0.576 0.426

5.3. Fault Detection Results

The effectiveness of the developed fault classification algorithm was analyzed by integrating it
with the PV system layout discussed in section VI A. The voltage and current measurements obtained
from the system were provided as an input to the signal processing unit. The signal processing
unit extracts the features of the signal in real-time and inputs them to the classification algorithm.
The classification algorithm matches the input data with the trained algorithm to detect the type of
fault and localize it.

Figure 10 depicts the short circuit fault in the diode of the boost converter. The system is initially
allowed to operate normally, and at t = 0.4 s, the boost converter diode is shorted. The effect of injecting
short circuit fault on the boost converter diode is observed on the load current of the PV system.
A threshold of 25 A for load current is set for fault detection using the trained classifier. The trained
classified continuously monitors the 50 Hz component of load current is. Once the fault is injected,
the trained classifier takes 0.01 s to classify the fault.
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Figure 10. Boost converter diode short circuit fault.

Figure 11 depicts the open circuit fault in the inverter. Initially, the system operates normally,
and at t = 0.4 s, switch s1 of the inverter is opened. This creates an open circuit fault in the inverter.
The effect of creating an open circuit fault is observed by continuously monitoring the load current is.
The threshold is set around 1A, and the trained classifier detected the fault in less than 0.01 s.
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Figure 11. Inverter switch open circuit fault.

To test the robustness of the developed classification algorithm, different noise conditions were
generated in the simulated system. The error of signal measurement sensors and environment noise
were considered as additive white Gaussian noise (AWGN) in this research. In order to examine the
robustness of the fault locating algorithm for different noise conditions, the fault location performance
was tested with input signals containing various signal-to-noise ratio (SNR) values between 20 and
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50 dB. In general, a typical SNR value of 30 dB is equivalent to a peak noise magnitude of nearly 3.5%
of the voltage signal [38].

The performance of the fault locator for various PV faults in noisy conditions was analyzed in this
research. However, only the results of the converter faults are discussed. Results of the fault location
algorithm for converter faults using the voltage and current waveform contaminated with various
levels of noise are presented in Table 4.

Table 4. Testing efficiency for various faults under different noise ratios.

Fault Location
Testing Efficiency

20 dB 30 dB 40 dB 50 dB

No Fault 100% 98.84% 97.61% 97.59%

Boost
Converter

Fault 1 98.72% 98.68% 97.28% 97.52%
Fault 2 98.63% 96.23% 98.39% 98.25%

Inverter
Fault 1 99.16% 96.35% 97.28% 96.94%
Fault 2 96.44% 97.22% 96.47% 97.34%

It is noted that although the accuracy decreases with the noise level, a satisfactory fault locating
success rate can be achieved even though the input signals contain different levels of noise. Table 4
shows that overall accuracy of 97.52% could still be obtained even with a high noise level of 50 dB.
Thus, it is clear that the proposed fault location algorithm has a robust performance.

6. Conclusions

This paper builds a generalized approach for fault classification of the photovoltaic system.
The developed methodology performs feature extraction utilizing a wavelet-based approach and
classification using an RBFN classifier. Further, the classifier is enhanced by performing manual
fusion between the distinctive properties of cosine and Euclidean kernels for RBFN, which depicted a
significant improvement when compared to the conventional kernels. During the manual fusion process,
the weights are arbitrarily assigned using the trial and error method without any prior information
about the system. Further, the problem with the manual fusion of these kernels is overcome by
developing a new framework to optimize the weights. The developed approach depicted training
efficiency of 100% and testing efficiency of 97.05%, which is better than conventional methods. At this
level, the trained classifier is tested with short circuit and open circuit faults, which depicted a very less
detection time. In order to check the real-time performance of the developed algorithm, a single-phase
standalone PV system along with additive white Gaussian noise is considered. The experimental
results depicted an overall accuracy of 97.52%, even with a high noise level of 50 dB.
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