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Abstract—Indoor mobility semantics analytics can greatly
benefit many pertinent applications. Existing semantic annotation
methods mainly focus on outdoor space and require extra
knowledge such as POI category or human activity regularity.
However, these conditions are difficult to meet in indoor venues
with relatively small extents but complex topology. This work
studies the annotation of indoor mobility semantics that describe
an object’s mobility event (what) at a semantic indoor region
(where) during a time period (when). A coupled conditional
Markov network (C2MN) is proposed with a set of feature
functions carefully designed by incorporating indoor topology
and mobility behaviors. C2MN is able to capture probabilistic
dependencies among positioning records, semantic regions, and
mobility events jointly. Nevertheless, the correlation of regions
and events hinders the parameters learning. Therefore, we devise
an alternate learning algorithm to enable the parameter learning
over correlated variables. The extensive experiments demonstrate
that our C2MN-based semantic annotation is efficient and effec-
tive on both real and synthetic indoor mobility data.

I. INTRODUCTION

The pervasiveness of indoor localization technologies [7]

has been generating unprecedented amounts of mobility data

indoors. Analyzing indoor mobility data can reveal interesting

findings that are otherwise hard to obtain, e.g., popular indoor

locations [13], [14] and frequent indoor patterns [22].

Multiple studies [10], [27], [31] have shown that analyz-

ing semantics can significantly promote knowledge extraction

from mobility data. Many existing works on mobility analytics

require external data such as texts [10] (e.g., user posts)

and contextual geographic information [31] (e.g., home and

working place) in semantics extraction. However, such external

data is often unavailable, which entails methods able to extract

semantics from raw mobility data.

In this paper, we study the semantic annotation problem

on raw indoor mobility data. We intend to understand when-
where-what about user movements. This representation is

comprehensive and informative in that it represents spatial,

temporal and semantic information jointly [19], [26], [31].

Specifically, given an object’s indoor positioning records each

consisting of a location l and a timestamp t, we annotate them

by a sequence of mobility semantics, each of which includes

a semantic region, a time period, and a mobility event. We use

m-semantics to call such mobility semantics.

Indoor semantic regions are often pre-defined with particular

semantics by data analysts. For example, a semantic region

can be a cashier or a shop in a mall. In this paper, we assume

semantic regions do not overlap. A mobility event refers to

some interesting movement pattern. We introduce two generic

indoor patterns, namely stay and pass.1 A stay indicates that an

object has been staying in a semantic region for a sufficiently

long period of time for a particular purpose that is fulfilled in

that region. In contrast, a pass tells that an object has passed by
a semantic region but there is no particular purpose associated

with that pass. We use regions and events to refer to semantic

regions and mobility events, respectively.

Figure 1 gives an example of the m-semantics for a tourist in

Copenhagen Central Station. Suppose we obtain the tourist’s

(120.21,62.94, 1F), 12:21:32
(120.61,63.04, 2F), 12:21:54
(120.54,63.01, 1F), 12:22:15

…

(98.62,48.47, 1F),   12:44:26

(52.89,10.82, 1F),  12:45:18
(53.77,11.01, 1F),  12:45:12

(100.32,50.55, 1F), 12:42:19

…

…

John’s Hotdog Deli, 
12:21:32-12:22:15, stay

Food Market, 
12:42:19-12:44:26, pass
7-Eleven, 
12:45:12-12:58:04, stay

Positioning Records Positioning Records + Contexts Mobility Semantics

John’s 
Hotdog Deli

Food Market

7-Eleven

Floorplan of
Copenhagen Central Station

location, timestamp
John’s 
Hotdog Deli

Food Market

7-Eleven

oorplan of
penhagen Central Station

……

……

Fig. 1: From Positioning Records to Mobility Semantics

indoor Wi-Fi positioning records as a pair of location and

timestamp. Such records are uncertain as the underlying lo-

calization is imprecise. Plotting the positioning records on

the station’s floorplan, we can annotate a sequence of m-

semantics. For example, m-semantics (John’s Hotdog Deli,
12:21:32-12:22:15, stay) means that the tourist stayed in a

snack bar John’s Hotdog Deli during time interval [12:21:32,

12:22:15]. As an indoor region itself usually carries rich

semantics determined by its particular usage, combining a

stay with the corresponding region is useful to disclose rich

information about user behavior. In this example, the tourist

is likely to buy some food in that snack bar. Furthermore,

the distinction between stay and pass is useful in pertinent

scenarios. For example, for the owner of a region Food Market
to estimate the conversion rate of people who have been in his

shop, he needs to know the number of people with pass and

that with stay. In this case, m-semantics like (Food Market,
12:42:19-12:44:26, pass) will be necessary.

In general, m-semantics provide an intuitive understanding

of object behaviors in the physical world, enabling further

semantics-oriented queries and analyses. M-semantics extract

1The outdoor patterns that carry similar meanings are known as stop and
move in other literatures [2], [19], [26].
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from uncertain and redundant positioning records user behav-

ior related semantics, facilitating multiple downstream appli-

cations, e.g., semantic location prediction [31] and activity

recommendation [29] for users. As a unified representation, m-

semantics is independent of underlying localization techniques

that generate different types of mobility data.

Given a sequence of discrete positioning records, we pro-

pose to annotate m-semantics by a label-and-merge method

as illustrated in Figure 2. In particular, we label each record

with a region and an event, and merge the consecutive records

having the same region and event labels to form m-semantics.

For example, the records from time t2 to ti−1 in Figure 2

can be merged as (rD, [t2, ti−1],stay). An advantage of this

method is that the merging can be performed at different

region granularities to meet various application needs. E.g.,

in a large mall we can construct m-semantics according to

different shops or different business areas.

(l1,t1)

pass

(li,ti)

pass

(l2,t2)

stay

(l2,t2)

stay

(li-1,ti-1)

stay

(li-1,ti-1)

stay

(ln-1,tn-1)

pass

(ln-1,tn-1)

pass

(ln,tn)

pass

(li+1,ti+1)

pass

(li+1,ti+1)

pass

positioning 
records

region labels

event labels
merge merge

rA rDrD rD rC rC rB

[t1, t1]
pass

[ti, ti]
pass

[t2, ti-1]
stay

[ti+1, tn-1]
pass

[tn, tn]
pass

mobility
semantics

rA rDrD rC rB

Fig. 2: Label-and-Merge for Annotating Mobility Semantics

However, labeling positioning records with regions and

events is still a challenging task in indoor settings: First,

positioning records obtained by indoor localization often suffer

from various issues such as high positioning errors and low

sampling rates2. Spatial and temporal uncertainties inherent

in the data make it hard to identify an indoor object’s exact

whereabouts and mobility states. Second, an indoor venue

usually has a relatively small extent but complex topology,

leading to a compact distribution of regions and complex

mobility behaviors under indoor topology. This makes the

labeling even more difficult. Existing annotation techniques

for outdoors make use of POI category [26] or assumptions

such as human activity regularity [24]. However, in indoor

spaces the same type of POIs often placed together but object

movements are quite random. Third, moving objects’ under-

lying regions and events are always correlated such that an

object labeled as stay within a time interval should not appear

in multiple regions during that interval. Such correlations over

the sequence significantly increase the complexity of labeling.

To address these challenges, we propose a novel graphical

model named coupled conditional Markov network (C2MN).

Specifically, C2MN captures the joint relationship among the

positioning records, region labels, and event labels by abstract-

ing multiple types of probabilistic dependencies commonly-

seen in spatiotemporal sequences. These dependencies embed

1) the correlation between a record and a label at a single time

instance, 2) the correlation between two consecutive labels,

2Unlike GPS, indoor localization mainly relies on wireless technology is
susceptible to multiple environmental factors.

and 3) the correlation between different types of labels at

consecutive time instances. Such probabilistic representation

learned from historical labeled sequences helps overcome the

spatiotemporal uncertainties. To cope with the unique indoor

setting, a set of feature functions are then carefully designed in

C2MN to incorporate useful knowledge about indoor topology

and indoor mobility behaviors.

Nevertheless, the flexible dependency definition in C2MN

complicates the parameter learning as the target labels are

coupled across time. To this end, a novel alternate learning

paradigm is devised to progressively estimate optimal param-

eters for one label type with the other label type being fixed.

To sum up, this paper makes the following contributions.

• We formulate the problem of indoor mobility semantics

annotation and solve it based on sequence labeling tech-

niques (Section II).

• We design a C2MN model and a set of feature functions

to label the semantic regions and mobility events jointly

for an indoor positioning sequence (Section III).

• We devise an alternate learning algorithm that takes into

account the correlations of region labels and event labels

in parameter estimation. (Section IV).

• We conduct extensive experiments on both real and

synthetic data to evaluate the efficiency and effectiveness

of our C2MN-based annotation method. (Section V)

In addition, Section VI reviews the related work; Section VII

concludes the paper and discusses future work.

II. PRELIMINARIES

Table I lists the notations used throughout this paper.

TABLE I: Notations

Symbol Meaning
Po = 〈(l1, t1), . . . ,(ln, tn)〉 object o’s positioning sequence
r an indoor semantic region
τ = [ts, te] a time period
e ∈ {stay, pass} an indoor mobility event
ms = (r,τ,e) an m-semantics
MSo = 〈ms1, . . . ,msm〉 object o’s m-semantics sequence

A. Problem Definition

In our setting, an indoor positioning system aperiodically

reports a positioning record θ(l, t) for an object o, meaning o
was observed at a location l at timestamp t. In most indoor

positioning systems [7], l is a triplet (x,y, f ), i.e., a 2D point

(x,y)∈R
2 on a floor f ∈N. Given a time period T, we define

an object’s positioning sequence (p-sequence) as follows.

Definition 1 (Positioning Sequence). An object o’s positioning
sequence over time period T is a time-ordered sequence of
positioning records of o, denoted as Po,T = 〈(l1, t1), . . . ,(ln, tn)〉
such that [t1, tn]⊆ T.

Definition 2 (Mobility Semantics). An object o’s mobility

semantics is a triplet ms(r,τ,e), where r is a semantic region,
τ is a time period, and e is a mobility event.

Essentially, an indoor space can be divided into a number of

indoor partitions like rooms and hallways by walls and doors.
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We assume each semantic region consists of one or more such

partitions. We also assume a mobility event refers to either stay

or pass. Nevertheless, more events can be defined by using

ontology like Simple Event Model3, and our learning-based

model can be extended to handle multiple events by designing

specialized cost functions based on the event properties. Due

to space limit, we skip such extensions in this paper.

Definition 3 (M-Semantics Sequence). An object o’s m-

semantics sequence (ms-sequence) over time period T is a
time-ordered sequence MSo,T of o’s m-semantics: ∀msi,ms j ∈
MSo,T, msi.τ ⊆ T,ms j.τ ⊆ T,msi.τ ∩ms j.τ =∅.

When time context is clear, we use Po and MSo to denote

object o’s p-sequence and ms-sequence, respectively. We for-

mulate our research problem as below.

Research Problem (M-Semantics Annotation). Given a p-
sequence Po = 〈(l1, t1), . . . ,(ln, tn)〉, the goal of m-semantics

annotation is to generate the most-likely ms-sequence MSo =
〈ms1, . . . ,msm〉 for Po.

In this paper, we distinguish labeling and annotation in

that labeling is for time instances and annotation is for

time periods. As illustrated in Figure 2, our m-semantics are

annotated after each positioning record on Po has been labeled

with a region and an event. Next, we give preliminaries of

conditional Markov network (CMN) for sequence labeling.

B. Conditional Markov Networks

For typical labeling problems [20], [26], the goal is to con-

figure the optimal target variable Y that maximizes that con-

ditional distribution over the observation X. In a CMN [20],

also known as conditional random field (CRF), the conditional

distribution P(y | x) is defined by a full set C of cliques, each

being a fully-connected sub-graph in the network. Specifically,

P(y ∈ Y | x ∈ X) is factorized into a product of clique
potentials φc(xc,yc), where c ∈ C is a clique and xc,yc are the

observed nodes and target nodes in the clique c, respectively.

Clique potentials are functions that define “compatibility”

among clique nodes, i.e., the larger the potential value, the

more likely the variable configuration for the clique nodes.

To guarantee non-negativeness for optimization, φc(xc,yc) is

often described by log-linear combination of feature functions

fc(xc,yc), i.e., φc(xc,yc) = exp{wT
c · fc(xc,yc)}. Consequently,

the conditional distribution can be written as

P(y | x) =
1

Z(x) ∏
c∈C

φc(xc,yc)

=
1

Z(x) ∏
c∈C

exp{wT
c · fc(xc,yc)}

=
1

Z(x)
exp

{
∑
c∈C

wT
c · fc(xc,yc)

}
(1)

where Z(x) =∑y ∏c∈C φc(xc,yc) is the normalization function.

Unrolled CMNs. To apply CMNs to the sequence data with

different lengths, we can unroll the dependencies of variables

over the sequence while linking every two consecutive nodes

generated for each variable. However, the unrolled net would

3https://semanticweb.cs.vu.nl/2009/11/sem/

be rather complex as thousands of nodes will be involved

over the time. To make it possible to learn a large number

of parameters associated with the probabilistic dependencies,

parameter sharing [21] is used to enable learning the same

parameters for the same clique template in a CMN. In

particular, a clique template specifies a particular relational

structure among a set of nodes. In parameter sharing, each

clique template corresponds to one weight vector and the

gradient of the weight vector is given by the sum of the

gradients computed for all cliques satisfying that template.

Using parameter sharing, we rewrite Equation 1 as

P(y | x,w) =
1

Z(x,w)
exp

{
∑

ct∈CT
∑

c∈C(ct)
wT

ct · fc(xc,yc)
}

(2)

where ct ∈ CT is one of the clique templates, wct ⊆ w is the

part of weight vector associated with template ct, and c∈C(ct)
denotes a clique satisfying ct. As a result, for all the cliques

in C(ct), we only need to design one feature function and

estimate one weight vector. This method significantly reduces

the number of parameters to estimate in an unrolled CMN.

III. MODEL DESIGN FOR M-SEMANTICS ANNOTATION

Given observation P = 〈(l1, t1) . . . ,(ln, tn)〉, our model aims

to jointly infer the most-likely region sequence R= 〈r1, . . . ,rn〉
and event sequence E = 〈e1, . . . ,en〉. Section III-A introduces

the generic labeling framework. Section III-B details the

specific feature design for m-semantics annotation.

A. Coupled Conditional Markov Networks

We use a coupled conditional Markov network (C2MN)

to define probabilistic dependencies among the positioning

records in P, regions in R, and events in E. At each timestamp

ti, we have an observed node θi〈li, ti〉 ∈P and two target nodes,

i.e., a region node ri ∈ R and an event node ei ∈ E. The struc-

ture is unrolled over time as depicted in Figure 3. To abstract

dependencies between observation and target variables, we

recognize four categories of cliques as follows.

• Matching Cliques measure the fitness of an observed node

and a target node at a particular timestamp.

• Transition Cliques capture the label smoothness of two

consecutive target nodes.

• Synchronization Cliques indicate the transitional consis-

tency for two pairs of an observed node and a target node.

• Segmentation Cliques measure the comparability of multi-

ple consecutive pairs of an observed node and a target node,

in which the other type of target nodes have the same label.

Region
Sequence

Event 
Sequence

Positioning 
Sequence

unroll

transition 
clique

matching 
clique

synchronization clique

segmentation clique

t1 t2 t3 t4 t5 tn...

r1 r2 rn

e1 e2 e3 e4 e5 en

θ1 θ2 θ3 θ4 θ5 θn
l1

t1

r3 r4 r5

same label

(observation)

(target variable)

(target variable)

Fig. 3: Coupled Conditional Markov Network for Annotation
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Example 1. Referring to Figure 3, a positioning record
θ1〈l1, t1〉 and its corresponding region r1 at time t1 form a
matching clique, so do θ1 and the corresponding event e1.
Also, two consecutive events e2 and e3 form a transition clique.
Besides, e2 and e3 and their corresponding positioning records
θ2 and θ3 form a synchronization clique. Finally, suppose
regions r3, r4, and r5 have all been labeled as stay, then the
corresponding positioning records θ3, θ4, and θ5 and events
e3, e4, and e5 form a segmentation clique.

In general, transition cliques are defined for a target variable

(either R or E), matching cliques and synchronization cliques

are defined between the observation and a target variable, and

segmentation cliques combine the observation with both target

variables. Unlike the others, segmentation cliques can only

be identified when one target variable has been configured.

Learning model parameters with such segmentation cliques

will be discussed in Section IV.

C2MN differs from existing sequential learning model in

the following aspects. First, it uses undirected edges to connect

consecutive nodes of a variable, allowing for a more compre-

hensive consideration of temporal correlations in a sequence.

In contrast, directed graph models such as Hidden Markov

Models (HMMs) and Dynamic Bayesian Networks (DBNs)

can only define unidirectional dependencies for a variable over

the time. Second, it uses transition cliques and synchronization

cliques to capture temporal correlations for target (hidden)

nodes, while sequential models like linear-chain CRF cannot

model dependencies for hidden nodes. Third, it not only

considers the association between variables in the node-level,

but also captures the coupling of target variables in the label-

level by using segmentation cliques. This is an important

feature of C2MN compared to other CMN-like models.

Our C2MN-based framework only describes potential de-

pendencies among different types of nodes without specific

feature function design. Next, we will consider the unique

characteristics of indoor topology and mobility behaviors,

and incorporate them into the feature functions specified for

annotating indoor mobility data.

B. Feature Function Design for M-Semantics Annotation

As two target variables (R and E) are introduced in C2MN,

we divide the dependencies captured by the clique templates

(see Section II-B) into the region relevant dependencies related

to the region nodes in R, and event relevant dependencies
involving the event nodes in E. Table II lists the corresponding

feature functions, which are explained as follows.

(1) Spatial Matching Function fsm(θi,ri) measures the prob-

ability of matching a region ri given the observed location θi.l.
Due to the indoor positioning errors, the possible location of

an object observed at θi.l can be represented as an uncertainty

region UR(θi.l,v) modeled as a circular region centered at θi.l
with a radius v. The larger the intersection area of UR(θi.l,v)
and a region ri, the higher the likelihood of matching θi.l to

the region ri. The function is thus defined as

fsm(θi,ri) =
UR(θi.l,v)∩Area(ri)

UR(θi.l,v)
(3)

where Area(ri) is the covering area of ri. Referring to a

location estimate l1’s uncertainty region illustrated in Figure 4,

we know that both rA and rB are possible labels of l1, but

rB has a higher probability in fsm. Equation 3 only considers

pure spatial relationship. In some buildings, the regions used

more frequently can have a higher probability of matching.

Possibly, an alternative design is to include the normalized

historical region frequency as a multiplier to the right-hand

side of Equation 3.

rA semantic regions

l1

rB

l2
l4

l5

l6
l7

rC

rF

rD

v

UR
cluster

rE

rH

l8
l9

l3

rG

hallway roomhallway room

location estimatedoors

l’1l’1

l’2l’2

Fig. 4: An Example Indoor Floorplan

(2) Event Matching Function fem(θi,ei) measures the correla-

tion between positioning record θi and event ei. In particular,

the spatiotemporal features corresponding to θi should con-

form to the corresponding mobility event, i.e., stay or pass.

In our observation, positioning records associated with a stay

always have their location estimates and timestamps packed

together. Therefore, a density-based clustering algorithm over

the location and time attributes of positioning records is useful

to distinguish stay and pass. To be specific, the records being

clustered as core and border points are more likely to be

associated with a stay, and the possibility of core points should

be higher than that of border points. In contrast, the noise

points are closer to a pass. Referring to Figure 4, consecutive

reports l4 to l9 in a cluster are likely to correspond to a stay

while the sparsely distributed ones l1, l2, and l3 are likely to

associate with pass. Formally, the function is given as

fem(θi,ei) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if (ei,θi.D) = (stay,core) or (pass,noise);

α, if (ei,θi.D) = (stay,border);

β , if (ei,θi.D) = (pass,border);

0, otherwise.

where 0 < β < α < 1 are two constant values and θi.D ∈
{core, border, noise} indicates θi’s spatiotemporal density

when clustering the whole p-sequence. We employ the st-

DBSCAN algorithm [3] that requires three parameters: 1) εs is

a distance threshold for location attributes; 2) εt is a distance

threshold for time attributes; 3) ptm is a number threshold. A

cluster is formed only if it contains at least ptm data instances

and any two instances in it are within the spatial distance εs
and temporal distance εt from each other. We use st-DBSCAN

instead of the original DBSCAN because time attribute should

be considered to cluster consecutive records.

(3) Space Transition Function fst(ri,ri+1) measures the

coherence between two consecutive region labels. Referring

to Figure 4, for consecutive locations l2 and l3 having a

certain elapsed time, they should more probably be labeled

as 〈rC,rC〉 or 〈rD,rD〉 than being labeled in different regions

4



TABLE II: Feature Functions for Indoor M-Semantics Annotation

Clique Catagory Region Relevant Dependencies Event Relevant Dependencies
Matching Cliques (1) Spatial Matching Function fsm(θi,ri) (2) Event Matching Function fem(θi,ei)
Transition Cliques (3) Space Transition Function fst(ri,ri+1) (4) Event Transition Function fet(ei,ei+1)

Synchronization Cliques (5) Spatial Consistency Function fsc(θi,θi+1,ri,ri+1) (6) Event Consistency Function fec(θi,θi+1,ei,ei+1)

Segmentation Cliques (7) Event-based Segmentation Function fes(c
i: j
es ) (8) Space-based Segmentation Function fss(c

i: j
ss )

(e.g., 〈rD,rC〉). We use the distance between indoor regions to

reflect the extent of label change. In particular, we define the

transition cost from ri to ri+1 as the expectation of minimum
indoor walking distance (MIWD) [17] from a point p in ri to

a point q in ri+1. The larger the distance, the greater the label

change. As a result, the function is given as

fst(ri,ri+1) = exp
{− γst ·Ep∈ri,q∈ri+1

[dI(p,q)]
}

(4)

where dI() computes MIWD and γst is a scale parameter

within (0,1). In the above example, fst(rC,rC) (i.e., 1) is

greater than fst(rD,rC). Another possible design is to add the

effect of elapsed time to region transition cost, i.e., the longer

the elapsed time, the lower the impact of MIWD distance in

transition cost. This can be done by including a time-decaying

multiplier e−γ ′·(ti+1−ti) to Equation 4 where γ ′ is within (0,1).

(4) Event Transition Function fet(ei,ei+1) measures the

smoothness between two consecutive events. Similar to space

transition function, we use the difference of the two event

labels to reflect the smoothness and define the function as

fet(ei,ei+1) =

{
1, if ei = ei+1;

0, otherwise.

(5) Spatial Consistency Function fsc(θi,θi+1,ri,ri+1) mea-

sures the consistency between the distance at the region level

(ri to ri+1) and that at the raw location level (θi.l to θi+1.l).
In our observation, wrong region mapping on the indoor

map will result in a more complex indoor path compared

to that of the reasonable region mapping. The penalty for

such a complex path can be measured by its difference to

the Euclidean distance between the origin and destination.

The more complex the indoor path, the greater the difference.

Referring to Figure 4, possibly we can label l1’s and l2’s

regions as rA and rD and in this case the red dashed line can

be a representative indoor path from some possible location

l′1 in rA to some possible location l′2 in rD. Such a path is

significantly more complex than the straight-line path between

the locations, which indicates that the underlying region labels

rA and rD could be abnormal. Instead, if we label l1’s and

l2’s regions as 〈rB,rC〉, then their indoor path (blue dotted) is

simpler. Compared to 〈rA,rD〉, we think that 〈rB,rC〉 is closer

to the real situation. The function is defined based on the

difference between the two distances at different levels.

fsc(θi,θi+1,ri,ri+1) = exp
{−|Ep∈ri ,q∈ri+1

[dI(p,q)]−dE(θi.l,θi+1.l)|
}

(5)

The time decaying effect can also be considered for spatial

consistency. Similar to extending Equation 4, a multiplier

e−γ ′′·(ti+1−ti) can be optionally used in Equation 5.

(6) Event Consistency Function fec(θi,θi+1,ei,ei+1) mea-

sures the consistency of the moving speed between observa-

tions θi,θi+1 and their underlying events ei,ei+1. The faster

the moving speed, the more likely the corresponding labels

are pass than stay. Given the moving speed revealed by

observations, we measure its consistency with the number of

pass in the event labels. The feature function is defined as

fec(θi,θi+1,ei,ei+1) = exp
{− ∣∣min(1,γec · θi+1 .l−θi .l

θi+1 .t−θi .t
)− I�(ei)+I�(ei+1)

2

∣∣}
where I�(ei) is an indicator function which equals 1 if ei =
pass or 0 otherwise, and γec is scale parameter for the moving

speed computed as
θi+1.l−θi.l
θi+1.t−θi.t

. When the speed is high, the

closer the two events are to pass, the higher the consistency is,

and vice versa. For example, when the speed is 0, the function

gets the maximum value 1 when both θi and θi+1 are stay.

(7) Event-based Segmentation Function fes(c
i: j
es ) measures

the compatibility among the clique nodes that have the same

event label. Formally, an event-based segmentation ci: j
es =

{θi, . . . ,θ j,ri, . . . ,r j} is formed if ∀ex,ey, i ≤ x ≤ y ≤ j,ex =
ey and ex 
= ez for z = j + 1 or z = i − 1. Provided that the

clique nodes correspond to a certain event label, the key

features extracted from the positioning records and region

labels should match the event label as much as possible. We

define the feature function as

fes(c
i: j
es ) =

(
2 · I�(ci: j

es .e)−1
) ·

⎛
⎝ DISTNUM(ri, . . . ,r j)

∑ j−1
x=i dE (θx.l,θx+1.l)/(θ j.t −θi.t)
−TURNNUM(θi.l, . . . ,θ j.l)

⎞
⎠

T

where the vector in the right returns three real values extracted

from the nodes in ci: j
es , namely the distinct number of region

labels over {ri, . . . ,r j}, moving speed between θi and θ j, and

number of turns4 between θi and θ j. In our observation, a

stay tends to correspond to fewer regions, lower moving speed

and larger number of turns, whereas a pass should be the

opposite. Therefore, we use 2 · I�(ci: j
es .e)−1 to indicate whether

the feature function is positively or negatively correlated with

the underlying event ci: j
es .e. Referring to Figure 4, if the reports

l4 to l9 have all been labeled as stay, then we expect that the

number of their corresponding region labels is as small as

possible, to be consistent with a stay event. This helps label

some noise points (e.g., l4 in rC and l7 in rF ) in the clique.

(8) Space-based Segmentation Function fss(c
i: j
ss ) measures

the compatibility among the clique nodes that have the same

region label. Formally, a space-based segmentation ci: j
ss =

{θi, . . . ,θ j,ei, . . . ,e j} is formed if ∀rx,ry, i ≤ x ≤ y ≤ j,rx =
ry and rx 
= rz for z = j+1 or z = i−1. Similar to the event-

based segmentation function, we expect the features revealed

4For a location θi.l, if the angle between the line from θi−1.l to θi.l and
the line from θi.l to θi+1.l exceeds 90 degrees, it is considered to be a turn.
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from ci: j
ss to be close to the truth of moving inside the

corresponding region. The feature function is defined as

fss(c
i: j
ss ) =

⎛
⎝ −NUM(ei, . . . ,e j)/(θ j.t −θi.t)
−(∑ j−1

x=i fet(ex,ex+1)/(θ j.t −θi.t)
I�(ei)+ I�(e j)

⎞
⎠

T

where the first two features refer to the number and the event

transition number per second over the sequence 〈ei, . . . ,e j〉,
and the last feature means the number of stay for the first and

last record in that segmentation. Intuitively, the mobility state

does not change very frequently over a period of time inside

the same region, so there should have smaller event number

and event transition number in such a clique. Moreover, given

that the region of the current segmentation is different from

the segmentation before and after, the first and last event labels

in this segmentation are more likely to be pass events. After

extraction, feature values in fes and fss need to be normalized.

In our design, each function evaluates the labeling plausi-

bility in one aspect, and the C2MN framework chooses the

label configuration with the highest overall evaluation as the

final result. The importance of each function in the framework

is determined by the weights learned from training data.

IV. SUPERVISED LEARNING OF C2MN

A. Objective Function

Given fully labeled data in the form of (P,R,E), we need

to estimate the weights wct ⊆ w associated with the feature

functions for each clique template (see Equation 1). To find

the optimal weights w that maximize the conditional distribu-

tion P(R,E | P,w), we rewrite Equation 1 into negative log-
likelihood form, plus a regularization term to avoid overfitting.

The regularization term is a zero-mean Guassian prior with

constant variance σ on each component of w. Consequently,

we have the following objective function for C2MN.

L(w) =− logP(R,E | P,w)+
wTw
2σ2

= ∑
ct∈CT

∑
c∈C(ct)

(
−wT

ct · fc(Pc,Rc,Ec)
)
+ logZ(P,w)+

wTw
2σ2

= ∑
ct∈CT

(
−wT

ct · ∑
c∈C(ct)

fc(Pc,Rc,Ec)
)
+ logZ(P,w)+

wTw
2σ2

= ∑
ct∈CT

−wT
ct · fct(Pct,Rct,Ect)+ logZ(P,w)+

wTw
2σ2

=−wT · f(P,R,E)+ logZ(P,w)+
wTw
2σ2

where function fct(Pct,Rct,Ect) = ∑c∈C(ct) fc(Pc,Rc,Ec) gives a

summation over the extracted features for all cliques satisfying

the template ct, and vector w and feature vector given by

f(P,R,E) are the stacking of wct and fct over all clique

templates, respectively. It can be shown that L(w) is convex

relative to w and has a global optimum that can be searched

using numerical gradient algorithms such as quasi-Newton

method [16]. However, the global optimization of L(w) has

two major challenges. On the one hand, computing Z(P,w)
needs to consider all possible label configurations for unknown

variables R and E, which requires an expensive inference

procedure at each iteration. On the other hand, R and E are

correlated, which further complicates the label configuration

especially when we involve segmentation cliques in.

To reduce the nodes to consider for computing expected

feature values, we assume that each target node is only related

to its immediate neighbors, i.e., the nodes in its Markov blan-
ket [20]. Although this assumption simplifies the dependencies

of random variables, it captures the relationship between non-

neighboring nodes through iterative learning upon the whole

network. Based on the assumption, we are able to optimize

the pseudo-likelihood PL(w) instead of the global likelihood

L(w) that involves all variable nodes, i.e.,

PL(w) =− log ∑
yi∈R∪E

P(yi | MB(yi),w)+
wTw
2σ2

=− ∑
yi∈R∪E

(
wT · f(yi,MB(yi))+ logZ(MB(yi),w)

)
+

wTw
2σ2

(6)

The above pseudo-likelihood is computed as the sum of all

local likelihoods P(yi |MB(yi)) plus the prior term, where yi is

a target node that can be a region r ∈ R or an event e ∈ E, and

MB(yi) is the Markov blanket of yi. Accordingly, the gradient

of PL(w) is given as

∇PL(w) = ∑
yi∈R∪E

(
− f(yi,MB(yi))+EP(y′i |MB(yi),w)[f(y′i,MB(yi),w)]

)
+ w

σ2

(7)

where EP(y′i|MB(yi),w)[f(y′i,MB(yi),w)] is the expected feature
values over the distribution P(y′i | MB(yi),w). Therefore,

∇PL(w) can be regarded as the difference between the em-
pirical feature values given by f(yi,MB(yi)) and the expected

feature values over the possible labels of the region and event

nodes in MB(yi), plus the prior term.

As a result, the gradient in Equation 7 can be computed

more efficiently based on those local expectations with respect

to f(y′i,MB(yi),w) than based on a global expectation with

respect to all possible region sequences and event sequences.

Still, the empirical feature values f(yi,MB(yi)) are hard to

know if yi is a node in a segmentation clique. This is because

a segmentation clique can only be identified if R or E has been

configured. In Section IV-B, we introduce an alternate learning

paradigm to enable an effective way to learn parameters when

involving segmentation cliques.

B. Alternate Learning with MCMC Inference

We iteratively update the weights w using a quasi-Newton

method L-BFGS [16], which requires evaluating both objective

value PL(w) and its gradient ∇PL(w). The idea of alternate

learning is to configure one type of target nodes and update

weights for another type of target nodes alternately. Specifi-

cally, in each step, we infer one target variable (say A, A can

be either R or E) using the weights from the previous step,

and compute PL(w) and ∇PL(w) to update the weights for

the other target variable (say B). The order of A and B is then

exchanged in the next step. This alternating evaluation stops

until the weights associated with both A and B converge.

Next, we introduce how to compute PL(w) and ∇PL(w)
with one target variable A fixed. For computing PL(w) in

Equation 6, the normalization function Z(MB(yi),w) requires
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a costly summation over all possible label configurations. For

the ease of computation, we use an MCMC (Markov Chain

Monte Carlo) inference to approximate the objective value.

Suppose we have already obtained a weight vector ŵ and a

configured variable Ā from the previous steps5. Then we can

obtain M random samples of B̄( j) = 〈b̄( j)
1 , . . . , b̄( j)

n 〉 (1≤ j ≤M)

by MCMC sampling over the distribution P(bi |MB(bi, Ā), ŵ).
Particularly, bi (1 ≤ i ≤ n) is a target node of B, and MB(bi, Ā)
is the Markov blanket of bi given the currently configured

sequence Ā. Consequently, PL(w) at the current step can be

approximated as

PL(w)≈ PL(ŵ)+ ∑
bi∈B

(
log{ 1

M

M

∑
j=1

exp
{
(w− ŵ)T ·Δf̄( j)(bi, Ā)}

})

+
wTw− ŵTŵ

2σ2

(8)

where Δf̄( j)(bi, Ā) = f(MB(bi, Ā), b̄
( j)
i )− f(MB(bi, Ā),bi) is the

difference between the sampled feature values using ŵ and Ā
and the empirical feature values of training data. Equation 8

only estimates value of PL(w) relative to PL(ŵ), whereas it

is still useful in searching the optimal weights since the best

approximation is met when ŵ is close to the optimal w.

For evaluating ∇PL(w̄) in Equation 7, we need to conduct

an MCMC inference again to get M new samples of B( j) =

〈b( j)
1 , . . . ,b( j)

n 〉 using the updated weights w instead of ŵ from

the previous steps. Accordingly, Equation 7 is adapted as

∇PL(w)≈ ∑
bi∈B

1

M

M

∑
j=1

Δf( j)(bi, Ā)+
w
σ2 (9)

where Δf( j)(bi, Ā) = f(MB(bi, Ā),b
( j)
i )− f(MB(bi, Ā),bi) is the

difference between sampled feature values using new weights
w and Ā and empirical feature values of training data.

C. Parameter Learning Algorithm

The learning algorithm is presented in Algorithm 1, which

receives a random weight vector w0 and searches for the

optimal weights w. In the beginning, we need to first initialize

one variable, either R or E. Here, we choose to configure

E since it only has two possible labels and its initialization

can be quickly done by applying st-DBSCAN [3] on the p-

sequences.6 In particular, all noise points after clustering are

regarded as pass and others are regarded as stay. As a result,

we obtain a configured sequence Ē for each object (line 1).

Next, the algorithm initializes ŵ to store the weights that

achieve the best PL so far (line 2). Afterwards, it calls function

Alternate Learn to estimate new weights using w0 and the

variables Ē configured for all objects (line 3).

In each step, function Alternate Learn receives the weights

w and the configured variable Ā of all objects. For each

object, it samples M sequences B̄( j) and computes the feature

value difference Δf( j)(bi, Ā) (lines 5–8). After the sampling,

it computes ∇PL(w) according to Equation 9 (line 9). It then

5If here A refers to R, then B refers to E, and vice versa.
6An alternative way is to first configure R by applying the nearest-neighbor

region matching to the p-sequences. Using different first-configured variable
(E or R) will be experimentally studied in Section V-B3.

computes PL(w) (lines 10–16). If the function is called for

the first time (i.e., there is no update for ŵ so far), it directly

assigns Δf( j)(bi, Ā) to Δf̄( j)(bi, Ā) (lines 10-11). Otherwise, it

computes PL(w) according to Equation 8 (line 13). If the new

PL(w) is better than PL(ŵ) (line 14), ŵ and the corresponding

Δf̄( j)(bi, Ā) are both updated with w (lines 15–16). In lines 11

and 16, reusing feature value difference sampled by the best

w improves the learning efficiency.
Once the new estimates ∇PL(w) and PL(w) are obtained,

the algorithm runs L-BFGS algorithm to generate new weights

w̄ (line 17). If the Chebyshev distance (i.e., the maximum

element-wise distance) between w̄ and w is smaller than a

given threshold δ (line 18), w̄ is returned as the optimum be-

cause a convergence is met (line 19). Otherwise, the algorithm

updates w with w̄ (line 21) and decides which variable should

be fixed for the next step (lines 22–26). If the partial weights

w̄A associated with A have been convergent (line 22), the next

calling of Alternate Learn will be executed with the previous

Ā (line 23). Otherwise, the calling will be executed with B̄
that is obtained by averaging the M samples B̄( j) obtained at

the current step (lines 24–26). A maximum iteration number

max iter is used as the stopping criterion of Algorithm 1.

Algorithm 1: Alternate Learning with MCMC Inference
Input: inital weights w0

Output: optimal weights w
/* use E as the first-configured variable */

1 run st-DBSCAN to generate sequence Ē for each object;
2 ŵ = w0; PL(ŵ) = PL(w) = 0;
/* at most max_iter iterative calling */

3 Alternate Learn(w0, Ē) on all objects;
4 Function Alternate Learn (w, Ā)
5 for each object do
6 for j = 1 to M do
7 run MCMC with w and Ā to generate B̄( j);

8 compute feature value difference Δf( j)(bi, Ā);

9 compute ∇PL(w) using Equation 9;
10 if first time calling then
11 Δf̄( j)(bi, Ā) = Δf( j)(bi, Ā) for 1 ≤ i ≤ n, 1 ≤ j ≤ M;

12 else
13 compute PL(w) using Equation 8;
14 if PL(w)< PL(ŵ) then
15 PL(ŵ) = PL(w); ŵ = w;

16 Δf̄( j)(bi, Ā) = Δf( j)(bi, Ā) for 1 ≤ i ≤ n, 1 ≤ j ≤ M;

17 run L-BFGS with PL(w), ∇PL(w) to get new weights w̄;
18 if ||w̄−w||∞ ≤ δ then
19 return w̄;

20 else
21 w = w̄;
22 if ||w̄A −wA||∞ ≤ δ then
23 Alternate Learn(w, Ā);

24 else
25 get B̄ by averaging B̄( j) for 1 ≤ j ≤ M for each object;
26 Alternate Learn(w, B̄) on all objects;

V. EXPERIMENTAL STUDIES

C2MN is implemented using CRF++ [1], an open-source

implementation of CRFs in C++. All experiments are done

with a Xeon 10-core 2.20GHz CPU + 128GB memory server.
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A. Compared Methods and Performance Metrics

Methods in Comparison. We introduce several alternatives

to our method denoted as C2MN as follows.

• SMoT [2] uses a speed threshold to distinguish stay and

pass events on a sequence, and the nearest-neighbor regions

as region labels for the representative locations in an event.

• HMM+DC uses an HMM for region labeling in which

semantic regions are hidden states and positioning records

(distributed to corresponding grids) are observations. Pa-

rameters are estimated via frequency counting and regions

are inferred by Viterbi decoding. For event labeling, an st-

DBSCAN Clustering (abbreviated as DC) is used in which

the core and border points are regarded as stay and noise

points as pass. The method was previously applied to our

indoor trajectory translation system TRIPS [12].

• SAP (Semantic annotation platform [26]) is the state-of-

the-art layered framework for trajectory annotation. It first

divides stay (stop) and pass (move) segments according to

some segmentation algorithm. Next, it labels each stay seg-

ment with a region using an HMM, in which the observation

probability between the segment (its locations) and a region

is modeled as their intersection ratio over the Gaussian

density distribution of the locations; it labels each location

in the pass segment with its nearest region. We selected the

dynamic-velocity-based and density-area-based algorithms

for segmentation (see [26]), and the corresponding overall

methods are denoted as SAPDV and SAPDA, respectively.

• CMN decouples the region and event variables by removing

the two types of segmentation cliques from C2MN. Assum-

ing the two variables are independent, CMN infers region

sequence and event sequence asynchronously.

• We also introduce four variants that removes parts of de-

pendencies in C2MN, namely C2MN/Tran without transi-

tion cliques, C2MN/Syn without synchronization cliques,

C2MN/ES without event-based segmentation cliques, and

C2MN/SS without space-based segmentation cliques.

All methods were provided with the same labeled data but

they work with data differently: HMM+DC and CMN label

regions and events in two independent, asynchronous ways;

SMoT, SAPDV, and SAPDA annotate events and regions in

two sequential steps. These five methods cannot model the

correlation of regions and events such that their two annotation

procedures cannot be integrated but are separated. In contrast,

all C2MN-based methods infer regions and events jointly.

Performance Metrics. We define labeling accuracy as the

fraction of positioning records that receive correct labels. As

each record has two labels, we implement region accuracy
(RA ) and event accuracy (EA ) that measure accuracy in

terms of region labels and event labels, respectively. We then

define combined accuracy (CA ) that combines RA and EA
by a tradeoff parameter λ such that CA= λ ·RA+(1−λ ) ·EA.

Usually, RA ’s requirement is stricter than EA ’s since an event

label makes no sense if the region label is wrong. On the

contrary, analysts can still know a user’s whereabouts with a

correct region label. In the evaluation, we use a large λ = 0.7

for CA. We also define perfect accuracy (PA ) as the fraction

of records having both region and event labels correct.

B. Experiments on Real Data

1) Settings: Dataset. We collected real data from a Wi-

Fi positioning system in a seven-floor shopping mall in

Hangzhou, China from Jan 1 to Jan 31, 2017. The average

daily number of devices (i.e., MAC addresses) and positioning

records were around 7,647 and 2,907,904, respectively. Since a

device may leave the mall that causes a long-time-interval dis-

continuity in its p-sequence, we performed data preprocessing

as follows: i) We divided a p-sequence with large time intervals

into multiple p-sequences. In particular, if the time difference

of two consecutive records θi,θi+1 exceeds a threshold η , we

regarded θi as the end of the current p-sequence and θi+1

as the start of a new p-sequence. ii) We filtered out the p-

sequences with the duration not exceeding a threshold ψ . In

our experiments, we set η to 3 minutes and ψ to 30 minutes.

Consequently, we obtained 5,218,361 positioning records for

44,863 p-sequences. The characteristics of the final dataset are

summarized in Table III.
TABLE III: Statistics of Real Dataset

average number of records per sequence 116.32
average duration per sequence 2227.9 sec.
positioning data error based on MIWD 2 ∼ 25 meters
average sampling rate ∼ 1/15 Hz

Indoor Space. Based on the decomposition algorithm in [25],

we divided the mall space into 3,742 regular indoor partitions

and obtained 6,534 (virtual) doors that connect these partitions.

202 shops in the mall were selected as semantic regions

according to application needs, each consisting of a number

of partitions. To facilitate spatial computations in feature

extraction, we used an accessibility base graph [17] to maintain

indoor topology and an R-tree to index all partitions and

their corresponding semantic regions. Their total size is 12.6

MB. The shortest indoor distances between doors were pre-

computed to speed up computations on MIWD, which resulted

in an additional 990.8 MB memory consumption.

Model Training. We used the Event Editor7 in TRIPS [12] to

annotate the positioning sequences rendered on the indoor map

as we were unable to know a device’s exact whereabouts. In

particular, we asked two reviewers familiar with the mall space

to go through the m-semantics suggested by a computer-aided

tool of Event Editor, adjust the time range for an event, and

edit the corresponding region if they think it is wrong. The tra-

jectory visualization helped identify those obvious positioning

errors and the reviewers’ double-checking helped eliminate

ambiguity. For the visually annotated sequences, we used

10-fold cross-validation with a 70/30 train/test split. Though

third-party annotated data cannot ensure 100% validity, the

cross-validation on large datasets can reflect a model’s ability

to learn the human-annotated data for semantic annotation.

The performance in different split settings will be reported in

Section V-B2. We used a Gaussian prior σ2 = 0.5 for pseudo-

likelihood in Equation 6 and pseudo-likelihood all converged

7More details of the Event Editor are available at longaspire.github.io/trips/
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in experiments. We set δ = 1e−3 for the convergence criterion

of Algorithm 1, the maximum training iteration max iter = 90,

and the MCMC instance number per step M = 800. We applied

st-DBSCAN with parameters (εs = 8m, εt = 60s, ptm = 4) to

configure the inital E in Algorithm 1. We tuned v = 15m in

fsm, α = 0.8, β = 0.6 in fem, γst = 0.1, and γec = 0.2 for the

best evaluation performance of C2MN. Labeling a p-sequence

with around 100 positioning records takes less than 600ms,

acceptable even for online services.
2) Labeling Accuracy: Comparison of Different Meth-

ods. Table IV reports the labeling accuracy for different

methods listed in Section V-A. First, C2MN performs best

TABLE IV: Results of Labeling Accuracy

Methods RA EA CA PA
SMoT 0.7254 0.8125 0.7515 0.6687
HMM+DC 0.7443 0.8769 0.7841 0.6780
SAPDV 0.7028 0.8296 0.7408 0.6485
SAPDA 0.7394 0.8781 0.7810 0.6943
CMN 0.8860 0.8983 0.8897 0.6684
C2MN/Tran 0.8994 0.9109 0.9026 0.7474
C2MN/Syn 0.9332 0.9073 0.9254 0.8268
C2MN/ES 0.9222 0.9495 0.9304 0.7387
C2MN/SS 0.9014 0.9525 0.9167 0.7616
C2MN 0.9492 0.9691 0.9552 0.8866

in all measures. Its region accuracy RA is around 0.95 and

event accuracy EA is higher than 0.96. Moreover, over 88.6%

of C2MN’s labeled records have both their regions and events

correct, as indicated by the perfect accuracy PA. Next, we com-

pare the best achieved results of SMoT, HMM+DC, SAPDV,

SAPDA, and CMN. Among them, SMoT is the worst in

both region and event labeling. HMM+DC outperforms SMoT
especially for a significant lift in EA. The advantage of the

density-based method over speed-based method in our setting

can also be verified by EAs of SAPDA and SAPDV. In our

problem, the location uncertainty and complex indoor topology

formed by rooms and doors altogether make it imprecise to

compute the speed between consecutive records. Compared

to finding a distinguishable speed threshold, the density-based

methods consider the spatiotemporal distribution from a global

view and therefore achieve better segmentation results.

As the segmentation results affect subsequent region annota-

tions, SAPDA is also higher than SAPDV on RA. HMM+DC
and SAPDA perform almost equally. They both use HMMs,

but HMM+DC is for record level while SAPDA is for stay

segments only. SAPDA has higher EA but lower RA than

HMM+DC. Through analysis we find that SAPDA’s lower RA
is mainly because it uses the nearest regions to annotate pass

segments. CMN is better than all above methods as it better

captures probabilistic dependencies among nodes. However,

PA of CMN is slightly lower than the others, probably because

CMN cannot ensure the coupling of region and event labels.

As introduced in Section V-A, the two-way methods (CMN
and HMM+DC) and two-step methods (SMoT, SAPDV, and

SAPDA) cannot learn the interaction between regions and

events from labeled data and use them for labeling. This leads

to a labeling accuracy lower than our C2MN method.

Finally, we compare C2MN to its variants trained in the

same setting. Specifically, C2MN/Tran performs the worst

among all C2MN structures, showing that the transition de-

pendencies have a significant impact on sequential models.

C2MN/Syn achieves the highest RA but lowest EA among all

variants. This shows that the synchronization cliques removed

from C2MN/Syn have a minor effect on region labeling but

are useful for event labeling. Compared to C2MN, RA of

C2MN/ES and EA of C2MN/SS both decrease. Moreover,

their PAs are relatively low, even much lower than C2MN/Syn
that still retains two types of segmentation cliques.

In general, those separated annotation methods perform

poorly, and C2MN with a complete structure outperforms all

its variants. The results show that the joint labeling on regions

and events can significantly improve the overall accuracy.

Effect of Training Data Fraction. We vary the fraction of

training data from 40% to 80%, and report CA and PA in

Figures 5 and 6, respectively. With more training p-sequences,

both measures of each method increase moderately. When

the ratio of training data increases to 70%, the improvement

tends to be flat as the parameter learning becomes saturate. A

slight increase at this time mainly comes from the reduction

of testing data. Besides, C2MN/ES and C2MN/SS without

segmentation cliques stabilize more rapidly, implying that they

can learn no more from larger training datasets.

Effect of MCMC Instances. We vary the number M of

MCMC instances per step from 400 to 1000. The RA and

EA of different C2MN-based methods are shown in Figures 7

and 8, respectively. As M increases, more sequences are

sampled in each step, which improves the parameter learning

efficiency. In Figure 7, RAs of most methods remain stable

when M is up to 800. This shows that M=800 can well ap-

proximate the distribution of region variable by inference over

observations and the current learned parameters. Differently,

most methods’ EAs reported in Figure 8 change slightly for

different M values. As the event variable has only two label

values, an M over 400 is large enough for its MCMC inference.

3) Training Efficiency: This section studies the effect of

different model parameters on the training time cost.

Comparison of Different Structures. We report the training

time of different C2MN-based methods in Figure 9 in different

max iter settings. Since CMN trains the region and event

parts separately, we only report the longest training time

of the two parts to make a fair comparison. CMN takes

the least time in all tests because it does not consider the

complex parameter learning for segmentation cliques. This

greatly reduces the overall computational cost. Likewise, the

costs of C2MN/ES and C2MN/SS are also clearly lower than

other methods. C2MN has the highest costs in most max iter
settings. However, it can still finish the training within 4 hours

when max iter increases at 120. Considering its improvement

in labeling accuracy, such an offline training cost is acceptable.

Effect of Training Data Fraction. Figure 10 reports the

training time with different fractions of training data. With

more training p-sequences, the parameter learning needs to

consider the features extracted from more positioning records.

Thus, the training time for each method increases accordingly.

Nevertheless, as parameter sharing is introduced in C2MN that
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Fig. 9: Training Time vs. max iter
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Fig. 11: First-Configured Variable

60 120 180
0.5

0.6

0.7

0.8

0.9

Tk
PR

Q
 P

re
ci

si
on

QT

 CMN
 C2MN/Tran
 C2MN/Syn
 C2MN/ES
 C2MN/SS
 C2MN
 SAPDV
 SAPDA
 HMM+DC
 SMoT

Fig. 12: Precision for TkPRQ
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Fig. 15: TkPRQ Precision vs. T
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Fig. 16: TkFRPQ Precision vs. T
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Fig. 18: TkPRQ Precision vs. μ
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Fig. 19: TkFRPQ Precision vs. μ

can aggregate the same type of feature vectors at each step,

C2MN’s training is efficient. When 80% of training data is

used, C2MN can still converge within 4 hours.
Effect of First-Configured Variable. As mentioned in Sec-

tion IV-C, we study the difference of choosing E or R as

the first-configured variable in the alternate learning. Differing

from the original C2MN, we denote the variant that first

configures R by nearest-neighbor matching as C2MN@R.

Clearly, C2MN has less training time in different max iter
settings whereas C2MN@R’s cost increases rapidly. When

max iter = 90, the training takes nearly 6 hours to finish.

Considering the two models work equally well, in our problem

setting we suggest using E as the first-configured variable.
4) Quality of M-Semantics in Query Answering: Sec-

tion V-B2 evaluates the accuracy of labels at the record

level. However, the final m-semantics are obtained by merging

those labeling results. Therefore, the quality of m-semantics

cannot be directly measured by the labeling accuracy. Consider

two labeled region sequences 〈rA,rB,rA〉 and 〈rA,rA,rB〉 both

having the labeling accuracy 2/3 with respect to the ground

truth 〈rA,rA,rA〉. The former forms three m-semantics, whereas

the latter forms only two assuming the corresponding events

are labeled the same. For practical use, the latter is of better

quality because it is closer to the ground truth. Therefore, we

measure the quality of annotated m-semantics in terms of their

performance in answering typical queries. Given a query set

Q of indoor semantic regions, we introduce two top-k queries.

1) A Top-k Popular Region Query (TkPRQ) finds k regions

from Q that have the most number of visits8.

2) A Top-k Frequent Region Pair Query (TkFRPQ) finds k
most frequent pairs of regions from Q×Q that both have

been visited by the same object.

8In the query context, a visit is equivalent to a stay event.

TkPRQ and TkFRPQ are useful in studies like popular location

discovery [13], [14] and frequent pattern mining [22].

We compare the query results of different methods’ m-

semantics with that computed from the ground truth m-

semantics described in Section V-B1. In particular, we use

precision to measure the ratio of true top-k regions (or region

pairs) in the returned top-k results. We issue 10 random queries

for each query type and measured the average precision. We

fix k = 60 and randomly picked 101 (50% of all) semantic

regions to the query set Q. We test the queries within a time

interval QT varied as 60, 120, 180 minutes from one day.

As shown in Figures 12 and 13, for both types of queries,

the precision of all methods decreases with an increasing QT.

When a longer QT is used, more relevant data should be

considered in the query processing, which involves more data

errors and makes the results less effective. Nevertheless, most

C2MN-based methods decrease very slowly. Still, the two-

way annotation methods (HMM+DC and CMN) and two-step

annotation methods (SMoT, SAPDV, and SAPDA) perform

poor for both queries. When QT increases to 180 minutes,

C2MN can achieve a precision 83.6% for TkPRQ and 78.6%

for TkFRPQ. This shows that the m-semantics annotated by

C2MN is of high quality for semantics-relevant queries.

C. Experiments on Synthetic Data

We used synthetic data to further verify the performance

of our method when different levels of temporal sparsity and

positioning errors are presented in the mobility data. We used

the indoor simulator Vita [11] to generate a ten-floor building

environment with 4 staircases, 1,410 partitions and 2,200

doors. A total of 423 semantic regions were decided upon

the partitions at random. We generated 10K moving objects

for a period of 4 hours, each having a lifespan varied from 10
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seconds to 4 hours. Object maximum speed was set to 1.7m/s
and object movements followed the waypoint model [9]. In

particular, each region is considered as a destination, an object

moves towards its destination along a pre-planned path. It stays

at the destination for a random period from 1 second to 30

minutes after arrival, and moves to the next randomly-decided

destination. We recorded an object’s location and region every

second as the ground truth, and generated its true event labels

according to the simulated behavior, i.e., staying at (moving

towards) a destination was regarded as a stay (pass) event.

The synthetic datasets are generated according to the ground

truth trajectories as follows. After an object has reported an

estimate, it keeps silent for at most T seconds. The maximum
positioning period T refers to the maximum value of the

time interval between two consecutive records of an object.

A location estimate is randomly within μ meters from the

true location. False floor values and location outliers are

added to the reports with certain probabilities (3% and 3%,

respectively). In particular, a false floor value is produced

within two floors up or down, and an outlier is within 2.5μ-

10μ meters from the true location. The positioning error
factor μ controls the average distance between the positioning

location and its true location. To test the effect of temporal

sparsity and positioning error, we varied T and μ , respectively.

The generated datasets as listed in Table V.

TABLE V: Synthetic Mobility Datasets

Datasets Parameter Setting # of Generated Records
T 5μ3 T = 5s,μ = 3m 15,230,759
T 5μ5 T = 5s,μ = 5m 15,291,495
T 5μ7 T = 5s,μ = 7m 15,238,702

T 10μ7 T = 10s,μ = 7m 7,695,623
T 15μ7 T = 15s,μ = 7m 4,525,429

The total memory costs for accessibility graph, partition R-

tree, and shortest door-to-door paths are 470MB. For training

parameters, we set σ2 = 0.2, max iter = 50, M = 500, v= 10m
in fsm, and the others are the same as the counterparts in the

experiments on real data. We investigate the perfect accuracy

and query precision for alternatives in Section V-A and our

method C2MN. All are tuned to the best performance.

Effect of T . Figure 14 reports PA for different T values with

μ fixed to 7 meters. When varying T from 5s to 15s, i.e., the

observed data becomes sparser (see Table V), all methods’ PAs

decrease but C2MN’s decreases in the slowest pace. When

T =15s, C2MN can still have a PA of 0.88. In contrast, the PAs

of other five methods are never higher than 0.9. CMN performs

the worst, which we attribute to the lack of correlations defined

for region and event labels.

Given a TkPRQ with k= 60, query region set size |Q|= 212,

and TQ = 120 minutes, we measure the precision of con-

structed m-semantics for different T s. Referring to Figure 15,

the TkPRQ precision of each method decreases with an

increasing T . However, C2MN decreases slightly, while others

deteriorate more rapidly. For a TkFRPQ with k = 60, query

region set size |Q|= 25, and TQ= 120 minutes, the precision

in Figure 16 shows a similar trend with the TkPRQ precision

but has lower measures due to a larger ranking space. The

results show that our C2MN-based method is very useful for

improving the constructed m-semantics, especially when the

raw data is temporally sparse.

Effect of μ . We also fixed T to 5s and tested with different

μs. Referring to PA reported in Figure 17, μ only has a

slight effect on the measures of each method except SMoT
and SAPDV. This is because those two speed-based methods

are more susceptible to positioning errors. Still, C2MN always

outperforms the other methods clearly, and its PA is always

higher than 0.92. With different μs, Figures 18 and 19 report

the precision for TkPRQ and TkFRPQ (the same query settings

as above), respectively. Similar to the results of PA, C2MN
performs the best in both queries. SAPDA is slightly better

than HMM+DC, and SMoT and CMN are the worst. These

results demonstrate that our C2MN-based approach works very

effectively at constructing m-semantics even when the mobility

data quality is low.

VI. RELATED WORK

Semantic Trajectory Representation. Parent et al. [19] define

semantic trajectory as a (GPS) data trace enhanced with anno-

tations and/or complementary segmentations. Güting et al. [6]

generalize this concept to symbolic trajectory, a sequence of

pairs of a time interval and a label referring to any particular

term pre-defined by user semantics. Zheng et al. [29] describe

a trajectory only by some small regions where moving objects

stop for a relatively long time. Such representative regions are

called stay points. Nogueira et al. [18] propose a framework

with ontology to enrich GPS traces with Linked Open Data

(LOD). Compared to these works, the mobility semantics

proposed in this paper provide a unified where-when-what

view of general user behaviors. Such a structured represen-

tation facilitates mobility analytics applications like semantic

location prediction [31] or activity recommendation [29].

Semantic Annotation. Giannotti et al. [5] define T-pattern as

an ROI sequence with temporal annotations. Zhang et al. [30]

derive fined-grained sequential patterns by a top-down splitting

of the patterns obtained by POI grouping. Alvares et al. [2]

extract stop and move events from trajectory points based on

geographical information. Cao et al. [4] propose techniques

for extracting semantically meaningful geographical locations

visited by users from GPS data. Teng et al. [22] identify indoor

stop-by pattern as a sequence of occurrence regions from

uncertain RFID data. Different from the sequential patterns [5],

[30] and visiting location patterns [2], [4], [22], our work

annotates two generic mobility patterns stay and pass, which

are flexible for analyzing user behaviors by combining relevant

information from semantic regions.

Liao et al. [15] extract activity types and significant places

from a person’s GPS traces using a hierarchical CRF. Yan et

al. [26] propose an HMM-based annotation method to infer

stops and POI category for raw GPS records. Wu et al. [24]

annotate location records with keywords extracted from geo-

referenced social media data by kernel density estimation. By

analyzing spatiotemporal regularity, Wu et al. [23] study the

personalized annotation that enriches personal GPS records
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with POI category. Our work differs from these works in

several aspects. First, our work searches for a particular region

as spatial annotation while other works focus on inferring tex-

tual [24] or categorical [15], [23], [26] information for location

records. Second, our work annotates both regions and events

by considering their mutual association, whereas works [23],

[24] are limited to the inference of spatial information. Third,

our work uses the characteristics of positioning sequence

under indoor topology to capture hidden dependencies among

positioning and semantic nodes, while other works demand

additional knowledge in geographic spaces, e.g., human activ-

ity regularity [15], [23] and POI category [26]. However, such

priors are difficult to meet in indoor spaces with relatively

small extents but complex topology.

Semantic annotation has been widely studied in Named En-

tity Recognition (NER). Recently, the BiLSTM-CRF architec-

ture [8] has become de facto standard in which Bi(directional)

LSTM encodes the sequence context and CRF decodes the

most-likely named entity tags. Compared with NER techniques

that use distributed word representations as input, our pro-

posed model handles positioning records directly such that

timestamps and uncertain locations must be considered in

feature design. By feeding positioning records to the BiLSTM-

CRF, its nonlinear transformation and intricate feature learning

capabilities may be utilized to ease mobility feature design.

Semantics-rich Spatiotemporal Data Mining. Extracting

knowledge from semantics-rich spatiotemporal data [28] (e.g.,

geo-tagged posts) has attracted great research attention re-

cently. Zhang et al. [31] propose an urban activity model that

jointly embeds spatial, temporal, and textual units from geo-

tagged social media data based on cross-modal representation

learning. Aiming at identifying users’ mobility behaviors from

geo-tagged tweets, Yuan et al. [27] propose a probabilistic

model that considers the factors of user, geographic informa-

tion, time, and activity. By time series analysis of geo-tagged

tweets from localized regions, Krumm et al. [10] propose tech-

niques for extracting local events as something that happens

at some specific time and place. These works discover user

mobility knowledge based on mobility data enhanced with

semantics such as POI category, texts, and tweets. In contrast,

our work builds a generic, semantic representation of user

mobility using positioning records only. Our model works well

for indoor venues where semantics-rich spatiotemporal data

are usually hard to acquire.

VII. CONCLUSION AND FUTURE WORK

This work studies the annotation of indoor mobility data

with a semantic region, a time period, and a mobility event.

To infer optimal sequences for regions and events, a C2MN

is proposed to capture probabilistic dependencies among posi-

tioning records, regions, and events. Next, a set of feature

functions are designed to incorporate indoor topology and

mobility behaviors. Finally, an alternate learning paradigm is

proposed to enable parameter estimation over the coupling of

regions and events. The experiments verify that our method is

efficient and effective, and our method’s resultant m-semantics

lead to precise answers for typical queries.
For future work, it is useful to define more diverse mobility

events for annotation. It is also useful to adapt C2MN to

outdoor scenarios, especially when mobility data is sparsely

sampled. Moreover, it is interesting to explore how to apply

NER techniques (e.g., BiLSTM-CRF) to mobility annotation.
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