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Abstract

Questions: Temperature and precipitation variation between years may affect plant species 

composition directly or indirectly. We wish to investigate whether salt marsh edaphic conditions 

and plant species composition changed as a result of climatic variation. Further, whether areas 

with the largest edaphic variations also experience the largest change in species composition and 

turnover. Finally, did temperature and precipitation variations change the way the plant 

community was able to respond to natural edaphic gradients? 

Location: Bygholmengen, a shielded salt marsh in Vejlerne, Denmark, Northern Europe.

Methods: Botanical surveys were conducted and soil samples collected from 40 plots during a wet 

and dry summer to register changes in vegetation cover, species richness composition and edaphic 

factors (moisture, nutrients, salinity). These data were used to calculate dissimilarities in species 

composition, temporal turnover and environmental dissimilarity between years. A linear mixed 

effects model was used to link species richness with the measured edaphic factors.

Results: We found that the precipitation and temperature variations altered the edaphic conditions; 

furthermore, the vegetation cover and species richness decreased when conditions were dry 

whereas the number of salt marsh species increased. Further, species composition changed 

significantly between years, and sampling plots that experienced the least edaphic change also 

retained more species between years. Species richness responded more to changes in nutrient 

availability during wet than dry conditions.

Conclusion: Our results pointed towards the climatic variations, and subsequent change in edaphic 

conditions, being responsible for the significant change in species composition as areas with the 

least change in edaphic factors retained most species between years. Dry conditions favored salt 

marsh adapted species and the extent to which increased nutrient levels led to a higher species 

richness decreased in dry compared to wet conditions.

Key words: Salt meadow, vegetation, species richness, biodiversity, temporal turnover, 

environmental dissimilarity, Denmark, coastal habitat
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1 Introduction

The salt marsh, a threatened coastal habitat, is estimated to decline on a global scale due to sea 

level rise (Craft et al., 2009; Blankespoor, Dasgupta, & Laplante, 2014; Crosby et al., 2016; 

Spencer et al., 2016), and is also vulnerable to interannual precipitation and temperature variation 

(Dunton, Hardegree, & Whitledge, 2001; Osland et al., 2016; Hanson et al., 2016). Interannual 

variation in the climate can result in changes in the species composition as abiotic stressors like 

flooding, warming and increased salinity affect the biodiversity, species composition and 

distribution of coastal plant communities (Hook, Buford, & Williams, 1991; McKee, 

Mendelssohn, & Materne, 2004; Gedan & Bertness, 2009). Dunton et al. (2001) showed that an 

increase in precipitation changed the species composition and increased the biomass on a salt 

marsh, while droughts in estuaries are associated with dieback of salt marsh vegetation and a 

decrease in biomass (McKee et al., 2004; Alber, Swenson, Adamowicz, & Mendelssohn, 2008; 

Wetz & Yoskowitz, 2013; Paudel, Milleville, & Battaglia, 2018). Shifts in rainfall regimes can 

cause the vegetation structure to shift between salt flats, mangroves and salt marshes (Osland et 

al., 2016). Further, droughts alter the soil chemistry and result in more saline conditions (Chapple 

& Dronova, 2017; Forbes & Dunton, 2006; Palomo, Meile, & Joye, 2013). Stressful conditions 

not only affect the physical environment but both salt and drought stress impact plant ability to 

utilize nutrients (Bista, Heckathorn, Jayawardena, Mishra, & Boldt, 2018; Hu & Schmidhalter, 

2005). 

Historically, many salt marshes have been shielded by dams and while some dams have been 

removed many still remain (Zedler & Nordby, 1987; St. Omer, 1994). Dams may alter the 

hydrology and vegetation of the marsh area (St. Omer, 1994; Weis & Butler, 2009; Van Loon-

Steensma & Slim, 2013). Despite the long-term presence of dams salt marsh species can still be 

present (St. Omer, 1994) and such salt marsh areas still fall under the protection by the European 

Habitats Directive (Council of the European Commission, 1992). Without regular tidal intrusions, 

dammed salt marshes are even more dependent on water gained through precipitation and a lack of 

precipitation can have large consequences for the vegetation (Zedler, Covin, Nordby, Williams, & 

Boland, 1986; Zedler & Nordby, 1987). Given that interannual climatic variations resulting in 

droughts and floodings are likely to become more frequent (Salinger, 2005; Jongejans, De Kroon, 

Tuljapurkar, & Shea, 2010), and as these extreme climatic events have shown negative impacts on 

plants across habitat types including coastal habitats (Ciais et al., 2005; Maxwell et al., 2019), it is A
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important to know how the shielded salt marsh respond to climatic variation in precipitation and 

temperature. While multiple studies have described how salt marsh vegetation cover and biomass 

is affected by drought (McKee et al., 2004; Alber et al., 2008; Wetz & Yoskowitz, 2013; Paudel et 

al., 2018), the effects of precipitation and temperature variation on the shielded salt marsh plant 

communities are not yet explained. It is therefore important to determine whether shielded salt 

marshes respond equally to tidal salt marshes in response to precipitation and temperature 

variations; information, that will be of special interest to salt marsh managers. Here, we studied 

the effect of precipitation and temperature variation on a plant community of a shielded salt marsh 

in a wetter than average year in 2017 followed by a year drier and warmer than average in 2018 

which created an optimal study setting, with the aim of quantifying changes in the vegetation 

(Cappelen, 2018a; Cappelen, 2019). 

By taking advantage of the between-year climatic fluctuations, we wish to investigate how the 

plant community responds to variations in temperature and precipitation. We aimed at answering 

the following questions: 1) Can precipitation and temperature variations between years change the 

edaphic conditions (moisture, salinity, nutrient levels) of a salt marsh? We expected a change in 

the abiotic environment following the drought towards more saline conditions (Chapple & 

Dronova, 2017; Forbes & Dunton, 2006; Palomo et al., 2013). As increased precipitation on salt 

marsh habitats influence plant species composition (Dunton et al., 2001), we expect species 

composition during a year of drought to be different from that of a wet year, leading to the 

questions: 2) Does species composition respond to extremes in precipitation and temperature on a 

year-to-year basis during current climatic conditions? We expected the species composition to 

change towards being adapted to drier and more saline condition during the dry year compared to 

the wet year. 3) Is species turnover linked to environmental dissimilarity? As both salt and drought 

stress impact plant ability to utilize nutrients (Bista et al., 2018; Hu & Schmidhalter, 2005), we 

expect plants to react differently to edaphic gradient during wet and dry years. 

2 Methods

2.1 Study area

This study took place on the salt marsh Bygholmengen (728 ha), in De Østlige Vejler, Denmark, 

that is protected under the European Habitats Directive as a Natura 2000 site (H1330) (Appendix 

S1A) (Miljøstyrelsen, 2005a; Miljøstyrelsen, 2005b; Miljøstyrelsen, 2011). Bygholmengen was A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

created in 1868 in a land reclamation project but due to repeated problems with flooding and 

drainage, the idea of using the land in agriculture was quickly abandoned (Riis, 2009). Today, the 

salt marsh is a scientific reserve (area with no access to the general public) shielded by a dam and 

exempt from regular tidal intrusion. The dam construction together with pump enables water level 

management to some extent in the salt marsh. Though dams may shield salt marshes from sea 

level rise and erosion (Van Loon-Steensma & Slim, 2013), shielded salt marshes may be 

increasingly susceptible to drought events as they do not experience the regular tidal inundations. 

In 2017, 590 cattle grazed the meadow resulting in a grazing pressure of 0.81 cattle ha-1 while the 

number of cattle in 2018 was decreased to 525 corresponding to 0.72 cattle ha-1. 

2.2 Climate data

To quantify the climatic differences between 2017 and 2018, data on the climate of Northern 

Jutland from 2017 and 2018 was obtained through reports from the Danish Meteorological 

Institute (DMI).

2.3 Botanical surveys

Botanical surveys were conducted in order to determine the vegetation cover, vegetation density, 

species richness and biodiversity. A total of 40 non-permanent sampling plots were randomly 

distributed on the marsh, ensuring a distance of at least 200 m between plots and located using a 

GPS (Garmin etrex 10). These sampling plots were examined in both August 2017 and August 

2018. Given the flat terrain, we believe that the plots were relocated with a high accuracy; in a 

different study, the GPS relocated pit fall traps dug into the ground with great accuracy.

Each sampling plot consisted of a circle with a radius of 5 meters (Nygaard, Damgaard, Nielsen, 

Bladt, & Ejrnæs, 2016) in which all plants were determined at the species level to create a 

comprehensive species list using Frederiksen, Rasmussen and Seberg (2006) assisted by 

graminoid literature (Schou, 2006; Schou, Wind, & Lægaard, 2010; Schou, Wind, & Lægaard, 

2014). We determined total species richness as the number of species within the 5 m circle and 

counted the number of salt marsh species within each circular plot to obtain the salt marsh species 

richness. We define salt marsh species as species specific for habitat type 1330 in the NATURA 

2000 framework as well as species listed as characteristic for Danish salt marshes (European 

Commission, 2013; Miljøstyrelsen, 2016) (Appendix S2).A
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At the center of each plot we positioned a pinpoint frame. Within the pinpoint frame of 0.5x0.5 m 

with 16 intersection points (Levy & Madden, 1933) we determined vegetation cover, height and 

density and registered the frequency of plant species. 

2.4 Edaphic factors

To determine whether the abiotic environment changed between years, we tested the soil in both 

2017 and 2018. At the circumference of each 5 m circle, four soil samples were collected. They 

were analyzed for content of total phosphorus (P) by extraction in HNO3 using the ICP-OES 

method (Danish Standards Association, 2003) and available phosphorous (P) using the molybdate 

method after extraction in 1 N KCl (ISO 6878, 2004). Total nitrogen (N) was determined using a 

LECO model 628 (ISO 16948, 2015). Content of ammonium (NH4
+) (Danish Standards 

Association, 1975), nitrite (NO2
-) (Danish Standards Association, 1991) and nitrate (NO3

-) (Danish 

Standards Association, 1991) were determined by spectrometric detection after extraction in 0.001 

M H2SO4. Moisture content was determined by placing a soil sample at 105°C until constant 

weight following the Danish Standard (1980) and organic matter content was determined by 

adding dry samples to a muffle furnace for 4 hours (Dansk Standardiseringsråd, 1980). Soil 

salinity levels were determined in a 1:5 distilled water:soil solution (Hardie & Doyle, 2012). For 

all edaphic factors but total P, the four samples were analyzed separately and the mean was 

calculated, whereas for total P the four soil samples were mixed prior to analysis.

2.5 Data analysis

2.5.1 Edaphic factors

T-tests were conducted to test for between-year differences in the edaphic variables. To avoid type 

1 errors, we further did a Bonferroni correction of the p-values to account for multiple testing. 

2.5.2 Vegetation cover, species richness, species composition and turnover rates

The cover was calculated as the percentage number of pins touched by any vegetation within the 

pinpoint frame, thereby distinguishing between ground covered in vegetation or other (incl. water, 

bare ground and decomposing organic materials). The vegetation density was calculated as the 

number of times the pinpoint pin was touched by the vegetation. 

We calculated Simpson’s diversity (Simpson, 1949), Shannon’s diversity (Shannon, 1948) and 

Pielou’s evenness (Pielou, 1966) as measures of biodiversity for each pinpoint frame using R A
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package vegan (Oksanen et al., 2017). In vegan, Simpson’s diversity is defined as 1- , ∑𝑝2
𝑖

Shannon’s diversity (H) is defined as 1-  and Pielou’s evenness is defined as H/log(S). ∑𝑝𝑖log (𝑝𝑖)

Here,  is the proportional abundance of species i and S is the total species count.𝑝𝑖

For all plant species present in the 5 m circle, Ellenberg values on moisture (F), salinity (S) and 

nutrients (N) were used to calculate average Ellenberg values for each sampling plot (Ellenberg, 

Weber, Düll, Wirth, & Werner, 2001). 

We divided the species lists for each circular sampling plot into three groups. First, we counted 

how many species were present in 2017 only but had disappeared in 2018 (species lost). Second, 

we counted how many species appeared in 2018 that were not present in 2017 (species gained). 

Third, we counted the number of species present on a given sampling plot in both 2017 and 2018 

(the species overlap.) We calculated the recurrence rate as the percentage of plots in which a 

species occurred in 2018, given it had been found in 2017; further, we determined whether the 

plant was annual or perennial using Frederiksen et al. (2006). This was done for the most common 

species (more than 10 occurrences across 2017 and 2018) as well as all species. 

Aiming to determine whether species composition in the 5 m circle (presence absence) had 

changed significantly between 2017 and 2018 on both a larger, salt marsh scale and on a plot level 

scale, we followed the approach presented by Finderup Nielsen, Sand‐Jensen, Dornelas, & Bruun 

(2019). First, a turnover matrix based on the binary Jaccard dissimilarity was created using 

betadisper (Oksanen et al., 2017). Next, we used a Principal Coordinate Analysis (PCoA) 

approach to visualize the data with a polygon symbolizing each of the years 2017 and 2018. In 

order to test for differences in species composition between years, we computed a PERMANOVA 

based on the Jaccard metric using Adonis2 in R with 999 permutations (McArdle & Anderson, 

2001; Oksanen et al., 2017). Next, to determine the identity of the species that contributed most to 

the potential difference between years, we did an indicator species analysis using the indicspecies 

package in R with 999 permutations and a significance level of 0.05 (Cáceres & Legendre, 2009).

We further calculated the temporal species turnover to quantify whether the species composition 

had changed as (species gained + species lost)/(total number of species observed on a given 

sampling plot during both years) (Cleland et al., 2013; Diamond, 1969). Linear models were made 

between the species turnover and the total species richness on each sampling plot across years. A
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The environmental dissimilarity is a measure of the variability across all edaphic factors between 

plots (Lloyd, Mac Nally, & Lake, 2005; Qian & Ricklefs, 2012). We calculated the environmental 

dissimilarity between individual plots of 2017 and 2018 using the Canberra distance (Lance & 

Williams, 1967) on a matrix containing information on all edaphic variables. The Canberra 

distance internally standardizes the contributions of each variable thereby accounting for large 

differences in numerical values of the individual variables (Lloyd et al., 2005). We made linear 

models between the environmental dissimilarity and the species turnover.

2.5.4 Correlations between the edaphic factors and species richness and salt marsh richness

To test for correlations between species richness and salt marsh richness of the circular plots and 

the edaphic factors within and between the two years, linear mixed effects models with random 

slope and intercept for year was used. A model was created for each of total species richness and 

salt marsh species richness, each including all edaphic variables. Year was a fixed factor in the 

model. Plot was a random factor to account for the repeated measures. A parameter was 

considered significant at a 0.05 level given the t value exceeded ±1.96.

All statistical analyses described above were performed in R 3.4.1 (R Core Team, 2017). Graphs 

were created using ggplot2 (Wickham, 2016). 

3 Results

3.1 Climate data

Since 1874, only 10 summers have been wetter than that of 2017, while the spring rainfall was 

among the three highest rainfalls during the past 10 years (Cappelen, 2019; Cappelen, 2018a; 

DMI, 2011). Meanwhile, 2018 had the most hours of sun since 1920, with spring temperatures 

being amongst the top ten measured since 1953 and the mean summer temperature being the 

highest since 1953 (Cappelen, 2019; Cappelen, 2018a).

All climatic comparisons presented below are in comparison to the 10-year average (referred to as 

the ‘average’). In 2017, Northern Jutland experienced 7% higher rainfall than average and 12% 

fewer hours of sun (Cappelen, 2018a). In contrast, both spring and summer of 2018 was 

significantly warmer and drier than average (Cappelen, 2018b; Cappelen, 2018c), and overall, 

2018 experienced 11% more hours of sun and 25% less rainfall compared to the average 

(Cappelen, 2019). Comparing spring-summer rainfall of Northern Jutland it was 468 mm vs. 255 A
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mm in 2017 and 2018, respectively (Cappelen 2018a, Cappelen 2019). These differences caused 

visible alterations to the landscape with more bare sand being present in the dry 2018 than in 2017 

(Appendix S1B-E).

3.2 Edaphic factors

Soil moisture levels were significantly lower in 2018 compared to 2017 (Table 1). The soil 

nutrient levels were significantly higher in 2018 compared to 2017 for available P and NH4
+ 

(Table 1). Soil salinity did not change significantly between years, neither did the organic matter 

content, total P or total N. 

3.3 Vegetation cover, species richness, species composition and turnover

Both vegetation cover, height and density decreased significantly from 2017 to 2018 (Table 1). 

The vegetation height was almost halved. Across all 40 plots, total species richness was 

significantly higher in 2017 compared to 2018 (Table 1). In contrast, a significantly higher salt 

marsh species richness was found per plot in 2018 compared to 2017 and a significantly larger 

percentage of species were salt marsh species in the dry compared to the wet year (Fig. 1).

The total species richness was 73 in 2017 of which 46 were not seen in 2018. The total species 

richness in 2018 was 66 species and 39 of these species had not been found in 2017 (Fig. 2A). On 

average, 45.7% of the species on a given sampling plot were found in both 2017 and 2018, 

corresponding to 7.6 species reoccurring on any given plot. An average of 6.3 species found in 

2017 had disappeared from the plot in 2018 while an average of 3.7 new species occurred on any 

given plot in 2018 in which it was not found in 2017 (Fig. 2B). The overall most abundant species 

across years were the perennial species Juncus gerardii (recurrence rate 96.2%), Agrostis 

stolonifera (recurrence rate 90.0%), Glaux maritima (recurrence rate 93.8%), Phragmites australis 

(recurrence rate 83.3%) and Potentilla anserina (recurrence rate 94.1%). Of all species found at 

least 10 times across 2017 and 2018, the perennials recurred in 65.0% (SE 8.8%) instances while 

annuals recurred on 50.6% (SE 15.9%) of sampling plots. However, there was no significant 

difference in the recurrence rate of annuals and perennials neither when considering the species 

occurring at least 10 times nor when considering the entire species pool (Mann Whitney U-test, p 

> 0.05). 
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The biodiversity did not change significantly from the wet to dry year (Table 1), but there were 

changes in plant community composition. The plant community had a significantly higher 

Ellenberg S and Ellenberg N value in 2018 than in 2017, while the Ellenberg F value remained 

similar between years (Table 1). Change in species composition was significant on both the small 

sampling plot scale (Fig. 2C, PERMANOVA, p < 0.01) and on the large salt marsh scale (Fig. 2C, 

PERMANOVA, p < 0.01). The indicator species analysis selected six species that were associated 

to either 2017 or 2018. Three were associated with wet 2017: Juncus bufonius (annual), 

Centaurium pulchellum (annual) and Trifolium pratense (perennial) and three with dry 2018: Poa 

annua (annual), Atriplex glabriuscula (annual) and Carex nigra (perennial). This means that J. 

bufonius is more likely to be found in 2017 and that if located on a given site, there is a greater 

probability that the site was surveyed in 2017.

The temporal species turnover ranged from 0.25-1.00 with a mean turnover of 0.54. The turnover 

rate and species richness had a significant positive correlation (Fig. 3, p < 0.001, R2 = 0.316). The 

temporal environmental dissimilarity ranged from 0.02-0.50 and was significantly negatively 

correlated with the species overlap (p < 0.01, R2 = 0.38) (Fig. 4A) while we found no significant 

correlation between the environmental dissimilarity and the turnover rate (p > 0.05) (Fig. 4B).

3.5 Correlations between the edaphic factors and species richness and salt marsh richness

From the linear mixed model, we found species richness to correlate significantly with salinity, 

available P and available N across years as indicated by t > ± 1.96 (Table 2). The response to all 

nutrients were stronger in the wet year compared to the dry year (Table 2). The salt marsh richness 

was not explained well across years by the edaphic factors (Table 2). We did, however, find that 

salt marsh species responded positively to moisture in the wet year and negatively to moisture in 

the dry year (Table 2). Further, the salt marsh species reacted stronger to available N and total P in 

the wet 2017 compared to dry 2018.

4 Discussion

As drought and high rainfall are likely to become more frequent in many regions under future 

climate changes, it is important to know if and how these affect the vegetation in salt marsh areas. 

Here, we found that the climatic variations between wet and dry conditions affected the shielded 

salt marsh vegetation by decreasing the vegetation cover and height in dry as opposed to wet 

conditions as well as altering the species composition. As the study was limited to two years, A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

however, we do not know if the trends observed here will apply in a long-term perspective and as 

such, are limited to make conclusions regarding how current variations in precipitation and 

temperature can affect the plant community within the current climate.

4.1 Edaphic factors

Following a drought, increased soil oxygen penetration may result in changes in soil chemistry 

(Palomo et al., 2013). Indeed, the shielded salt marsh in our study was drier and with a higher 

nutrient availability in low-precipitation 2018 compared to high-precipitation 2017 (Table 1). 

Where we found NH4
+ levels to increase and NO2

--NO3
- levels to decrease, Palomo et al. (2013) 

found the opposite response in an experimental salt marsh experiencing drought. The increased 

soil available N and available P might, however, partly be a result of the plants’ decreased ability 

to acquire nutrients during a drought (Bista et al., 2018). Soil salinity levels are known to increase 

during a drought (Chapple & Dronova, 2017; Forbes & Dunton, 2006), as was also the case in this 

study, although not significantly (Table 1). 

4.2 Vegetation cover, species richness, species composition and turnover

A decrease in biomass and vegetation height is a common vegetation response to drought (Zedler 

et al., 1986; Tilman & El Haddi, 1992; McKee et al., 2004; Forbes & Dunton, 2006; Paudel et al., 

2018) corresponding to the decrease in plant cover, height and density we found during dry 

conditions (Table 1). Despite the increased nutrient content of the salt marsh, which commonly 

result in an increase in the above-ground biomass (Crain, 2007; Darby & Turner, 2008), the 

vegetation height and cover decreased in connection with the drought indicating that the drought 

stress was stronger than the increased nutrient availability. Further, as grazing pressure was lower 

during the dry year compared to the wet, the decreased cover, density and height cannot be 

ascribed to the altered grazing pressure; if anything, the lowered grazing pressure could even have 

confounded the effect of the drought on the vegetation cover, density and height. 

Salt marsh species are adapted to coping with stressors including salt stress (Veldhuis, Schrama, 

Staal, & Elzenga, 2018), and the distribution of salt marsh vegetation is primarily limited by 

competition (Veldkornet, Adams, & Potts, 2015). At increasingly extreme edaphic conditions, 

abiotic stressors, such as an increased salinity, will limit the distribution of non-salt marsh 

vegetation due to their decreased competitive advantage compared to salt marsh species 

(Veldkornet et al., 2015). This could explain the increase in the number of salt marsh species A
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during the dry conditions despite the general decrease in species richness. Further, salinity is 

generally known to limit species richness (García, Marañón, Moreno, & Clemente, 1993; Li et al., 

2013); thus, the drop in species richness could also be caused by an increased salinity.

Salt marsh plant communities can shift in response to drought (Wetzel & Kitchens, 2007), as seen 

in our results by a shift towards more salt marsh species. The change in species composition and 

identity across the two years (Figs. 1, 2) as well as the change in Ellenberg values of the plant 

community (Table 1) indicate that the decline in species richness could not simply be explained by 

the species of 2018 being a subset of those found in 2017. Indicator species analysis found that 

most of the species that were linked only to one year were annuals rather than perennials. The 

perennial Carex nigra appeared more frequently during the dry year. As C. nigra has a seed 

longevity of 15-20 year, often delay germination and exploit gaps in the vegetation (Schütz, 2000), 

seeds in the ground were likely able to grow the altered conditions altered conditions hindered the 

growth of other plants. However, we did not find perennials to have a higher recurrence rate 

compared to annuals. Meeks (1969) found that the earlier during the spring season a marsh 

community was drained of water, the more rapidly perennial species would be replaced by 

annuals; further, that multiple years of early water drawdown would result in a plant community 

dominated by annuals. Therefore, the lack of water during spring might have propagated more 

annuals to germinate. 

As individual species frequently disappear and reappear locally, the annual species turnover can be 

high (van der Maarel & Sykes, 1993) and several studies have found correlations of varying 

degrees between overall species turnover and climatic variations between years (Letten, Ashcroft, 

Keith, Gollan, & Ramp, 2013; Hallett et al., 2014; Noto & Shurin, 2017). Regardless of climatic 

conditions, the species retention is generally lower and species gain higher on salt marshes 

compared to other habitats (Pakeman & Lewis, 2017). The increasingly dry and saline conditions 

might further have made competition between species on the salt marsh harsher (Pennings & 

Callaway, 1992). We found temperature and precipitation variation to coincide with a significant 

change in species composition and a high species turnover (0.54), in accordance to Noto and 

Shurin (2017) who also linked the species turnover of salt marshes to precipitation. Though we did 

not find a significant correlation between the species turnover rate and the environmental 

dissimilarity, results point towards climatic variations in precipitation and temperature leading to 

high species turnover as more species were retained where the environment changed the least. A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

While a higher species richness has been associated with a higher community stability in 

grasslands (Tilman, 1996), the same might not apply for salt marshes (Noto & Shurin, 2017) in 

agreement with our results. Here, a high species richness did not increase the stability on the salt 

marsh given as we found no evidence that areas with more species were less prone to species loss 

under extreme circumstances (Figs. 3 and 4). 

4.4 Correlations between the edaphic factors and respectively species richness and salt marsh 

richness

Both salt and drought stress alter plant ability to utilize nutrients (Bista et al., 2018; Hu & 

Schmidhalter, 2005). Nitrogen is a main limiting factor for salt marsh vegetation (Kiehl, Esselink, 

& Bakker, 1997; van Wijnen & Bakker, 1999) and in agreement with results by Morgan and 

Adams (2018), total species richness in our study was limited by the availability of nitrogen. Our 

results also showed that N availability has less influence on total species richness during dry and 

more saline conditions, which could be explained by results of Ryan and Boyer (2012) who found 

that overall species richness decrease while the dominance of a few salt marsh species increased 

when salinity and nitrogen levels increased simultaneously. Soil moisture affect the salt marsh 

plant community (Alvarez-Rogel, Ariza, & Silla, 2000) and Theodose and Roth (1999) found that 

species richness was highest in the most moist areas of a salt marsh.

4.5 Conclusions

As expected, the climate variations resulted in significant differences in several edaphic factors on 

the shielded salt marsh; often, but not always, responding in the same direction as edaphic factors 

on tidal influenced salt marshes in relation to drought. Equivalently to tidal influenced salt 

marshes, the drought event on the shielded salt marsh decreased vegetation cover and density 

compared to wet conditions and changed the overall species composition. While total species 

richness decreased when going from wet to the dry extreme, the salt marsh species richness 

increased. Perennials did not recur significantly more often than annuals. We saw a high temporal 

species turnover in connection with the climatic variations and found that more species recurred 

when the edaphic conditions changed the least. Finally, we found species richness to be better able 

to respond to increased nutrient availability during wet conditions. These results show that 

shielded salt marsh plant communities are likely to respond swiftly to a change in the edaphic 

conditions due to variation in precipitation and temperature; further, that extreme drought on A
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shielded salt marshes might actually promote salt marsh species and cause a setback in the 

distribution of non-salt marsh adapted species.
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Table 1. The mean, standard error (SE) and range for each edaphic and biotic factor measured in 2017 and 

2018 on Bygholmengen. A t-test with Bonferroni correction was conducted to test for significant 

differences between the two years and the p-values for the test are provided. P > 0.1; n.s. (not significant), 

P < 0.01; m.s. (marginally insignificant), P < 0.05; *, P < 0.01; **, P < 0.001; ***

2017 2018

mean ± SE [min ; max] mean ± SE [min ; max] p-value

Moisture (%) 75.7 ± 1.7 [38.5 ; 89.9] 59.3 ± 2.1 [27.8 ; 84.0] ***

Organic matter (%) 41.3 ± 2.8 [2.7 ; 83.5] 31.7 ± 2.8 [1.1 ; 68.8] m.s.

Salinity 1.34 ± 0.13 [0.17 ; 4.40] 1.42 ± 0.15 [0.1 ; 4.83] n.s.

Available P (mg/100g) 0.92 ± 0.10 [0.10 ; 2.94] 1.30 ± 0.10 [0.35 ; 3.51] *

NH4
+ (mg/kg) 33.19 ± 1.67 [17.45 ; 73.3] 61.58 ± 5.80 [23.55 ; 289.4] **

NO2
--NO3

- (mg/kg) 1.24 ± 0.06 [0.80 ; 2.73] 1.02 ± 0.07 [0 ; 2.5] n.s.

Total P (mg/kg) 742 ± 47 [150 ; 1700] 543 ± 42 [100 ; 1400] n.s.

Total N (g/kg) 14.34 ± 0.92 [1.3 ; 26.7] 12.40 ± 0.99 [0.83 ; 25.98] n.s.

Ellenberg N 4.83 ± 0.04 [4.14 ; 5.64] 5.41 ± 0.05 [4.5 ; 6.11] *

Ellenberg F 7.07 ± 0.09 [5.86 ; 8.29] 7.17 ± 0.08 [6.25 ; 8.57] n.s.

Ellenberg S 2.18 ± 0.08 [1.07 ; 4] 3.05 ± 0.13 [0.17 ; 5.40] **

Species richness 14 ± 0.74 [6 ; 33] 11.69 ± 0.66 [0 ; 23] *

Salt marsh species richness 5.76 ± 0.20 [2 ; 9] 7.05 ± 0.30 [0 ; 11] *

Cover (%) 0.81 ± 0.04 [0 ; 1] 0.63 ± 0.05 [0 ; 1] *

Vegetation density 73.8 ± 5.9 [0 ; 163] 42.5 ± 4.8 [0 ; 150] *

Vegetation height (cm) 6.5 ± 0.9 [0.1 ; 35.5] 3.5 ± 0.5 [0 ; 21.0] *

Simpson’s diversity 0.44 ± 0.04 [0.02 ; 1] 0.54 ± 0.04 [0 ; 1] n.s.

Shannon’s diversity 0.63 ± 0.03 [0.00 ; 1.38] 0.70 ± 0.04 [0 ; 1.85] n.s.

Pielou’s evenness 0.48 ± 0.02 [0.08 ; 0.84] 0.61 ± 0.03 [0 ; 1] n.s.
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Table 2. The results of the linear mixed model with random slope and intercept for year. 

Regression coefficients are provided for each year for the correlations between species richness 

and salt marsh species richness and all edaphic factors, accordingly. Further, t-values are provided; 

a value above ±1.96 indicate a significant correlation. The significance level is noted with n.s. 

being not significant and * corresponding to a significant correlation. 

Species richness Salt marsh species richness

2017 2018 t-value 2017 2018 t-value

Intercept 8.87       7.11       2.87 (*) 3.98 5.71  2.82 (*)

Moisture -0.029 0.0035      -0.25 (n.s.) 0.0015 -0.0018 -0.009 (n.s.)

Organic matter 0.098      0.089      1.30 (n.s.) 0.043      0.081      1.57 (n.s.)

Salinity -2.019 -2.007 -3.75 (*) 0.26      0.26      0.98 (n.s.)

Available P -2.079          -1.54         -2.00 (*) -0.30 -0.29 -0.70 (n.s.)

Available N 0.20 0.048 1.97 (*) 0.016 0.0067 0.93 (n.s.)

Total P -0.0040       0.0026          -0.19 (n.s.) 0.0015 0.00044 0.79 (n.s.)

Total N 0.27            0.16            0.96 (n.s.) -0.13 -0.14 -1.35 (n.s.)
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Figure 1. Box-plot of the ratio between the number of salt marsh species (Appendix S2) and the 

total species richness in 2017 (green) and 2018 (grey), respectively. A value of 1 indicate that all 

species were salt marsh adapted species while 0 indicate that none were salt marsh adapted 

species. The medians are plotted together with the 25 and 75 % quantiles while the whiskers show 

the maximum and minimum. **** = p-value < 0.0001. 
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Figure 2. The species composition of Bygholmengen across 40 plots sampled in both 2017 and 2018. In A 

and B, the species overlap (species occurring in both 2017 and 2018) is depicted in black, the species 

present in 2017 only in green (species lost), those of 2018 only in grey(species gained). In A, the total 

number of species found across all plots on Bygholmengen is shown including both all occurrences and 

when excluding species that only occurred once (more than once). In B, the species distribution is shown 

per sampling plot, where the boxplot depict the median and the 25 and 75 % quantiles, minimum, 

maximum and outliers. Here, all occurrences are included. In C, species compositional change between 

years 2017 (green, squares) and 2018 (grey, triangles) is illustrated based on the PCoA using the Jaccard 

dissimilarity on binary data for 40 plots. When a line connects a green square and a grey triangle, they 

represent the same sampling plot in 2017 and 2018. Eigenvalues for PCoA axis 1 and 2 are 3.89 and 2.36, 

with 16.71% of variance explained on axis 1 and 9.49% on axis 2.
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Figure 3. The temporal turnover rate plotted against total species richness. R2 = 0.31.
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Figure 4. The environmental dissimilarity between years was significantly negatively correlated with the 

species overlap (p < 0.01, R2 = 0.38) (A). No significant correlation was found between the species 

turnover and the environmental dissimilarity (B). 
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eTOC

Fluctuations in temperature and precipitation between two years resulted in a change in the edaphic 

environment as well as a significant change in species composition of a salt marsh flora. We linked the 

change in species composition to change in the edaphic environment as areas with the least edaphic 

change retained more species between years. 
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