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A de-oiling system consisting of a set of gravity separators and hydrocyclones

is used to separate oil from water in O&G production, to ensure low OiW

concentration in the discharge. PID is currently used for de-oiling system

control, but it is not always effective to guarantee separation efficiency. ��
control has been verified its effectiveness comparing with PID controllers in

our previous works. However, the current �� control is model-based,

requiring a lot of work for system identification. Therefore, it is difficult to

transfer the developed �� control algorithms into different industrial facilities.

In this work, we aim to develop an automatic control generation method such

that the de-oiling control can automatically learn the optimal control policy

from its behaviour in an online manner, i.e., learning from data without

requiring system identification.
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We consider the combined separator level control and hydrocyclone PDR

control together, where PDR� �����	
/��� � ��
.	From functional point of

view, we formulate the control problem for a cascade system as shown in the

following:

Two subsystems have similar control structure. The objective is to find a

controller such that the influence of the disturbance �� to the tracking error

�� can be attenuated within a desired bound governed by � as follows
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which is equivalent to finding a Nash equilibrium of the following cost function
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This is a zero-sum game problem that %� and �� are the two players want to

maximize their own benefits. Reinforcement learning is applied to solve this

problem because system dynamics are considered to be unknown.

System Description
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Key idea of the RL algorithm

An off-policy RL algorithm is developed for optimal control policy learning. The

system is written into the following form for off-policy learning:
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We use a fixed control policy %� to generate data 3� under disturbance ��.

System matrices 5, 6 and 8 are not required to be known. The data is used to

learn the optimal control policy %�
7

and disturbance policy ��
7

iteratively via

Model-Free ��	Control via RL

Algorithm 1: State feedback control via RL

1. Data generation: give a fixed control policy %� (e.g., PID) to system to collect data

3� , %� , �� .

2. Initialization: Give initial stable policies %�
9 � :�

93� and ��
9 � :�

93� .

3. Policy evaluation: Solve for #7 , ;#7.6, ;7.8 simultaneously through
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using a critic neural network
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4. Policy updating:
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5. Go to step 3 until < reach convergence.

Algorithm 2: Output feedback control via RL (?@ is not measurable)

1. Data generation: give a fixed control policy %� 	(e.g., PID) to system to collect

historical data for state estimation

A� � �B�-4, ⋯ , B�-D, %�-4, ⋯ , %�-D, ��-4, ⋯ , ��-D)                                  (8)

2. Initialization: Give initial stable policies %�
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3. Policy evaluation: Solve for #7 , ;#7.6, ;7.8 simultaneously through
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using a critic neural network
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5. Go to step 3 until < reach convergence.

Simulation Results

Water level subsystem: PDR subsystem:

� Control gains close to the 

theoretical optimal values

� Water level tracking error is within 

the boundaries given by E
>�FGH

||�||
.

� PDR is within the desired boundaries 

1.5—3.
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