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Sean Bin Yang and Bin Yang

Department of Computer Science, Aalborg University, Denmark
{seany, byang}@cs.aau.dk

Introduction
A routing service quality study shows that local drivers often choose
paths that are neither shortest nor fastest, rendering classic routing
algorithms often impractical in many real world routing scenarios.

In addition, commercial navigation systems, such as Google Maps and
TomTom, often follow a similar strategy by suggesting multiple candidate
paths to drivers, although the criteria for selecting the candidate paths
are often confidential.

Challenges:
I Constructing an appropriate training path set PS is non-trivial.
I Effective training models often rely on meaningful feature representa-

tion of input data–how to learning path representation.

Our approach:
I Training Data Generation: A compact set of diversified paths using

trajectories as training data.
I Path Representation: An end-end deep learning framework is pre-

sented to solve the regression problem.
? A spatial network embedding is proposed to embed each vertex to a

feature vector by considering the road network topology.
? Since a path is represented by a sequence of vertices, recurrent

neural network is applied to model the sequence.
I The RNN finally outputs an estimated similarity score, which is com-

pared against the ground truth similarity.

Solution Overview
I We propose a data-driven ranking framework PathRank, which ranks

candidate paths by taking into account the paths used by local drivers
in theirs historical trajectories.

I Most importantly, PathRank models ranking candidate paths as a “re-
gression” problem—for each candidate path, PathRank estimates a
ranking score for the candidate path.

I Solution Overview.
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Training Data Generation
I We proceed to elaborate how to generate a set of training paths for a

trajectory path P from source s to destination d .
I We propose the strategy using the diversified top-k shortest paths.
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: PathRank Overview.

Vertex Embedding:
I Node2vec is used to embed road network and initialize vertex embed-

ding layer.

Recurrent Neural Network (RNN):

Experiments
Experiments Setup
I Road Network and Trajectories: North Jutland, Denmark, 180 million

GPS records from 183 vehicles.
I Ground Truth Data: For each trajectory PT . We generate two sets

of training paths: Top-k shortest paths (TkDI) and diversified top-k
shortest paths (D-TkDI).
? For each training path P, we employ weighted Jaccard similarity

WeightedJaccard(P, PT ) as P ’s ground truth ranking score.
I Evaluation Metrics:
? Mean Absolute Error (MAE) and Mean Absolute Relative Error

(MARE)
? Kendall Rank Correlation Coefficient (τ ) and Spearman’s Rank Cor-

relation Coefficient (ρ)
Experiments Results
I Table 1 shows that (1) when using the diversified top-k paths for train-

ing, we achieve higher accuracy compared to when using top-k paths;
(2) a larger embedding feature size M achieves better results.

I Table 2 shows the results. In addition, PR-A2 achieves better accuracy
than does PR-A1, meaning that updating embedding matrix B is useful.

Table 1: Training Data Generation Strategies, PR-A1

Strategies M MAE MARE τ ρ

TkDI 64 0.1433 0.2300 0.6638 0.7044
128 0.1168 0.1875 0.6913 0.7330

D-TkDI 64 0.1140 0.1830 0.6959 0.7346
128 0.0955 0.1533 0.7077 0.7492

Table 2: Training Data Generation Strategies, PR-A2

Strategies M MAE MARE τ ρ

TkDI 64 0.1163 0.1868 0.6835 0.7256
128 0.1130 0.1814 0.7082 0.7481

D-TkDI 64 0.0940 0.1509 0.7144 0.7532
128 0.0855 0.1373 0.7339 0.7731
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