

Aalborg Universitet

A Hybrid Learning Approach to Stochastic Routing

Pedersen, Simon Aagaard; Yang, Bin; Jensen, Christian S.

Publication date: 2019

Link to publication from Aalborg University

Citation for published version (APA): Pedersen, S. A., Yang, B., & Jensen, C. S. (2019). A Hybrid Learning Approach to Stochastic Routing. Poster presented at Kick-off: AI for the people, Aalborg, Denmark.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

A Hybrid Learning Approach to Stochastic Routing

Simon Aagaard Pedersen, Bin Yang, Christian S. Jensen {sape, byang, csj}cs.aau.dk

Department of Computer Science, Aalborg University, Denmark

Introduction

- Emerging disruptive innovations in transportation, e.g., autonomous vehicles and transportation-as-a-service, will benefit from high-resolution routing, where travel-time uncertainty is captured accurately.
- For example, when an autonomous taxi needs to arrive at an airport within a deadline, having accurate travel-time distributions of candidate paths enables the taxi to choose the best path.
 - Consider the path costs below. If the deadline is 60 minutes, path P_1 is better than path P_2 , since P_1 gives a 0.9 probability of arriving within 60 minutes, which exceeds P_2 's probability of 0.8.
 - If using average travel times, the taxi will choose P_2 that has an average travel time of 51 minutes vs. 53 minutes for P_1 . Thus, the taxi has a higher risk of being late.

Travel Time Distributions of Two Paths to the Airport

Travel time (mins)	[40, 50)	[50, 60)	[60, 70)
P_1	0.3	0.6	0.1

Hybrid Model Overview

- The Hybrid Model consists of two machine learning models:(i) a **distribution estimation model** that estimates the dependent uncertain cost of traversing two edges, and (ii) a **binary classifier** that determines if we should use convolution or estimation at a specific intersection.
- The estimation model is trained on 4000 edge pairs with sufficient data. An instance of the classifier is initialized for each estimation model.
- Following training, we test the model with a set of 1000 edge pairs, measuring the KL-divergence between the output and ground truth trajectories.

Path Cost Computation

- Path cost computation is an iterative process, as the cost of a path is computed by repeatedly combining the cost of the path so far with the cost of the next edge until the last edge is reached.
- We can use the distribution estimation model built for short paths to

P_2	0.6	0.2	0.2
-------	-----	-----	-----

- Traditional road network models often assume spatial independence for adjacent roads.
- This leads to the use of convolution for computing the cost of traversing a path in stochastic road networks.
- We propose a Hybrid Model: a model that combines machine learning and convolution to construct stochastic traversal costs in spatially dependent road networks.

Motivating Example

Observed trajectories			
Observations	e_1	e_2	Total cost
T_1	10	20	30
T_2	15	25	40

Distributions for e_1 and e_2

H_1		H	2
Travel Time	Probability	Travel Time	Probability
10	0.5	20	0.5
15	0.5	25	0.5

Result of convolving distributions for e_1 and e_2

Travel Time	Probability
30	0.25
35	0.50
40	0.25

Ground Truth based on observed trajectories

Tra	vel	Time	Probability
	30)	0.50
	40		0.50

estimate the costs of longer paths by treating the path so far (pre-path) as a "virtual" edge.

Routing

- **Probabilistic Budget Routing**: Given a source, destination, and time budget t, find the path that maximizes the probability of arrival within t.
- A base algorithm uses pruning to run faster, including using (a) an A* inspired optimistic cost of reaching the destination for each vertex, (b) a pivot path representing the most promising return candidate, (c) distribution cost shifting, and (d) stochastic dominance pruning.
- To control the run-time, we also propose an *anytime* extension that limits the total run-time. With this approach, we give an acceptable maximum run-time x as an additional input, and the algorithm returns the pivot path if search has not terminated after x time units.

Convolution vs. Estimation

Empirical Studies

- Experiments done on the Danish road network using OpenStreetMap.
- The graph consists of 667,950 vertices and 1,647,724 edges.
- Approximately 75% of all edge pairs with data are dependent.
- We look at queries in distance categories: [0,1), [1,5), [5,10) km.

QualityDist (km) P_{∞} P_1 P_5 P_{10} [0,1)13%13%13%13%[1,5)53%51%53%53%[5,10)60%54%59%60%

Efficiency

Dist (km)	Mean (sec)
[0,1)	0.06
[1,5)	3.37
[5,10)	9.73

