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Optimal Chance-Constrained Scheduling of
Reconfigurable Microgrids Considering Islanding
Operation Constraints

Mohammad Hemmati

Abstract—Microgrid concept is one of the suitable strategies for
increasing resilience and preventing load curtailment, especially
in emergency conditions. Operation in islanded mode is one of
the unique features of microgrids that can provide numerous ben-
efits for both consumers and energy producers. Unlike the con-
ventional distribution networks, reconfigurable microgrids enable
the reconfiguration process to achieve optimal structure. In this
article, a new optimal strategy for scheduling of reconfigurable mi-
crogrids considering islanding capability constraints is presented.
To demonstrate the successful islanding operation, the islanding
capability is considered as a probability of islanding operation
(PIO) index which shows the probability, that the microgrid has
adequate level of spinning reserve to meet the local load. Taking into
account the forecast errors of generated power by renewable energy
resources (PV and wind) as well as load demand, the 13-interval
approximation is used for the simplification of nonlinearity of
PIO. The scheduling of reconfigurable microgrid with islanding
operation constraints is formulated as a chance-constrained goal
optimization problem, where the objective is defined as minimizing
the total operation cost of microgrid in terms of fuel cost, reliability
cost, cost of purchasing power from the mains, and switching
cost. The proposed method is implemented on a 10-bus radial
reconfigurable microgrid test system with photovoltaic (PV) panels,
wind turbines, battery, and microturbines, with different levels of
PIO. The numerical results show the effectiveness of the proposed
scheduling method.

Index  Terms—Chance-constrained goal  programming
(CCGP), microgrid, probability of islanding operation (PIO),
reconfiguration, spinning reserve.
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NOMENCLATURE

Index of battery storage units.

Index of microturbine units.

Index of system buses.

Index of branches.

Index of load.

Index of remotely controlled switches.
Index of time.

Cost of interruption in jth bus.

Maximum current of kth branch.
Minimum up/down time.

Minimum discharging/charging time.
Maximum number of switching actions.
Maximum/minimum power exchanged.
Minimum and maximum charging power
of the bth battery.

Minimum and maximum discharging
power of the bth battery.
Minimum/maximum generated power by
ith micro-turbine (MT).

Target probability for scheduling of mi-
crogrid in islanded mode.

Ramp up/down of the ith MT.
Minimum/maximum state of charge of a
battery.

Minimum and maximum voltage of jth
bus.

Current of the kth branch.

Average load connected to the jth bus.
Number of switching action of the sth
switch.

Exchanged power with upstream network.
Forecasted load demand.

Forecasted wind and PV power genera-
tion.

Battery charge or discharge power.
Generated power by the ith MT at rth time
interval.
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RY/RY Down/up spinning reserve of the ith MT.

RY/RY Down/up spinning reserve of the bth
battery.

SOC State of charge of the bth battery.

St Status of the sth switch at 7th time interval.

Tem )T Number of ON/OFF hours of the ith MT.

Tgehar T Number of charge/discharge hours of the
bth battery.

V; Voltage of the jth bus.

X5/ X gl Binary variable for charge/discharge of
battery.

Xit State of the ith MT at rth time interval.

I. INTRODUCTION

HE need for highly reliable and flexible distribution net-

works is a critical challenge for energy producers and
consumers. This problem can be solved by management and
scheduling of microgrids, which are key players in active distri-
bution networks. Microgrid is a small or medium-scale distribu-
tion network consisting of distributed generation (dispatchable
and nondispatchable unit), energy storage system (ESS), con-
trollable load, and switches [1]. Microgrid is connected to the
upstream network at the point of common coupling (PCC) and
can exchange power with it. One of the significant advantages
of microgrids lies within their islanding capability during the
disturbance and emergency conditions through which they can
secure local loads and improve the system reliability. According
to the IEEE.1547.7 standard, the islanded mode can provide sev-
eral benefits such as reliability and power quality improvement,
cost minimization, and ancillary services [2].

Besides the conventional microgrids, reconfigurable micro-
grids (RMGs), which are deemed as the next-generation of
microgrids, have attracted much attention over the past years
[3]-[6]. Generally, RMG is a type of microgrid that is equipped
with remotely controlled switches (RCSs) (i.e., tie switches and
sectionalizers) and is able to provide a flexible structure for
rerouting the power throughout the network. In comparison with
traditional distribution networks, RMG has more control vari-
ables (such as dispatchable units, controllable loads, and RCS)
[7]. The reconfiguration capability can facilitate the microgrid
scheduling for different goals, such as reliability improvement
[8], cost minimization [9], load restoration [10], etc.

Although the microgrid scheduling has been studied widely,
most of the studies focus on the microgrid scheduling in con-
nected mode. In [11], microgrid management is presented in
a grid-connected mode using reconfiguration and unit com-
mitment. In [12], the problem of integrated heat and power
microgrid in the presence of selling/purchasing power price
uncertainty is developed. The proposed microgrid contains var-
ious types of heat and power generation units and the goal
of the article is to find the optimum set points of microgrid
components in order to minimize the operation cost. Likewise,
in [13], the energy management problem, under uncertainties
based on chance-constrained programming for a grid-connected
microgrid, is investigated.

IEEE SYSTEMS JOURNAL

Renewable energy sources (RESs) also have a major role in
microgrids, however, they could cause power fluctuations. To
address the uncertainty caused by these units, the scheduling
problem must be investigated by stochastic methods. Three
methods, namely, chance-constrained programming, stochastic
programming, and robust optimization, are among the most
widely used approaches for uncertainty modeling [14], [15]. A
scenario-based robust energy management is introduced in [16]
for uncertainly handling in worst case. By optimizing the worst
case scenario, the microgrid energy management will become
robust against the possible realizations of the uncertain param-
eters which are simulated by Monte Carlo. Authors in [17] take
advantages of battery ESSs for providing multiple services to
microgrid. Besides introducing an energy management approach
for thermal and electrical sources of the studied microgrid,
a chance-constrained planning is implemented to handle the
load and solar power fluctuations. In [18], a chance-constrained
stochastic model for scheduling of microgrid is presented. The
uncertainties of RESs and load variation, as well as, the provi-
sional islanding causes by external disturbances are handled by
stochastic scenarios and a joint chance-constraint is proposed
for controlling the operational risks.

Due to the intermittent and unpredictable nature of RESs,
a scenario-robust mixed-integer linear programing is presented
for improving the performance of hybrid microgrids [19]. In
[20], a chance-constrained information gap decision theory
(IGDT) model is proposed by considering two categories of
uncertainty for multiperiod scheduling of a microgrid. The
chance-constraints are imposed in the operational stage for
uncertainty modeling, including hourly generated power of
RESs and load variation. In [21], an optimal control strategy
is introduced for power flow management in microgrids. Due to
different types of uncertainties caused by RESs, load demand,
and charging/discharging behaviors of electric vehicles (EVs),
the problem is reformulated as a stochastic chance-constrained
optimization.

Although microgrid scheduling with different types of uncer-
tainty is reported in the literature, there are few research works
which consider the scheduling of microgrids with islanding
capability. In [14], a chance-constrained energy management
model for an islanding microgrid is developed following the
objective of minimizing the generation cost, ESS degradation
cost, and emission cost. Generated power by RES is considered
as an uncertain parameter and a novel ambiguity set is proposed
to capture the uncertainty. In [22], microgrid scheduling with
multiperiod islanding constraints is proposed. To identify the mi-
crogrid capability in operating in islanded condition, the 7-7 cri-
terion is introduced. In [23], mixed-integer linear programming
(MILP)-based splitting method is introduced for islanding op-
eration of power system. However, uncertainties in the forecast
methods may lead to incorrect decision in energy management
system for islanding microgrid. In [24], differences between
the actual and predicted data sequence were used to determine
compensation of uncertainty associated with PV in islanded
microgrid. The probability of successful islanding (PSI) criteria
is proposed in [25] to determine the probability of microgrid
meeting demands and maintaining a sufficient amount of reserve
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TABLE I
COMPARISON OF THE INNOVATIONS OF THIS ARTICLE WITH OTHER WORKS

Description

e MG scheduling based on chance-constraint programming (CCP)
to ensure the reliable operation in islanded mode

e Proposed PSI index for successful islanding
Ref . . . .
24 | ° 5-1n§erya1 approximation based on forecast error while all
uncertainties are modeled as independent PDFs
e Voltage limitation and upper/lower limits of power exchanged
are neglected
Ref | o PSS index is proposed which shows the probability of self-
125] | sufficiency in grid-connected mode, only for a special case.
e RMG scheduling based on chance-constrained goal
programming (CCGP) to improve the flexibility of CCP
e Proposed PIO denotes the ability of RMG to meet local demand
versus the external disturbance
e 13-intervals approximation of Gaussian PDF based on the net
forecast error considering the correlation between uncertainties
e Considering the limitations of power exchange with the mains,
switching actions and voltages for more realistic scheduling of
RMG in comparison with similar studies

This
paper

capacity in islanded mode. The proposed approach is developed
with chance-constrained islanding capability to guarantee the
successful islanding operation with a specified probability. In
[26], to demonstrate the microgrid capability for operating in
islanded mode, a probability-based concept is proposed. The
proposed method is analyzed in presence of forecast errors of
demand and wind power generation. In [27], by considering the
uncertainties of load demand, price of electricity, and renewable
energy, a risk-constrained stochastic framework for autonomous
microgrids is proposed. In [28], a robust optimization-based
algorithm is developed for optimal scheduling of microgrid
operation with islanding capability constraints. With the proper
robust level, the proposed microgrid scheduling model with
islanding constraints ensures the successful off-grid operation
with minimum load shedding.

The review of the literature shows that the scheduling of
microgrids in islanded mode has attracted the attention of
researchers recently. Nevertheless, the microgrid scheduling
with islanding capability is not studied for RMGs as the next
generation of microgrids. In this article, chance-constrained
goal (CCG) scheduling of an RMG with islanding capability
operation is proposed. The probability of islanding operation
(PIO) as a successful islanding index is formulated based on
the forecast errors of PV and wind power generation as well as
load demand. This criterion guarantees the supply of local loads
in islanded operation and provides much more flexibility and
reliability for microgrid. The main contributions of the article
can be summarized as follows.

1) Introduction of a new index for islanding operation ca-
pability called PIO which represents the capability of
microgrid to meet the local load in autonomous operation.

2) Formulate the RMG scheduling with islanding constraint
as a CCG programming (CCGP).

3) Analyze the proposed RMG scheduling for different lev-
els of PIO considering the limitation on the number of
switching actions.

For further clarification, article’s innovations are compared to

similar works in details, which is given in Table I.

The rest of this article is organized as follows. Section II
provides the microgrid optimal scheduling problem formulation
including objective function and related constraints. The pro-
posed CCG scheduling with islanding capability is introduced
in Section III. Section IV presents numerical results and investi-
gates the performance of the proposed model. Finally, Section V
concludes the article and draws future works.

II. PROBLEM FORMULATION

This section describes the microgrid optimal scheduling for-
mulation. In the examined microgrid with a number of dis-
patchable unit (i.e., microturbine), nondispatchable unit (i.e.,
wind and PV), ESS (i.e., battery), and normally open and close
switches, the objective is to minimize the total operation cost
in terms of generation cost, purchasing cost of electricity from
upstream network, reliability cost, and switching cost. The ob-
jective function is given by

T NG T
Min Y (> (F(pi)Xiw + SUi + SDiy) + > aPFC
t=1 =1 t=1

J T S
+Y La;Crag+ > > NSV M
j=1

t=1 s=1

where (F'(P; ;) is the fuel cost consumption function of the ith
MT at the rth time that is calculated as follows [29]:

F(Pi’t) =a; + biPi,t -+ Ci<Pi,t)2 S N, teflT. )

The second and the third terms of (1) represent the startup
and shutdown cost, respectively. The fourth term represents
the purchasing cost of power from the upstream network. As
mentioned, the microgrid can exchange power with the mains at
PCC.A, is a price of purchasing power at the tth time interval.
To consider the effect of reliability improvement in the problem
formulation, the expected consumer interruption cost as [30]
is considered by the introduction of the fifth term in (1). The
last term of (1) represents the switching cost. A%" is the cost
of each switching action and N ffV is the switching action of
the sth switch at the rth time interval. The state of each switch
can be either O or 1 denoting the open or closed condition,
respectively. Therefore, the total numbers of switching actions
for the sth switch at the end of the examined period (N2") can
be calculated as

T
N =" S0 — Sapal. 3)
t=1

The objective function is subject to different constraints as
follows:

PPN (t) < Py(t) < PP (t) VteT,ie NG
4)
MUT; (X5 — Xip—1) < TP VteT,ie NG
(5)
MDT; (X, 41 — Xi4) < T VteT,ie NG
(6)
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P (t)—P(t—1) < RU; vteT, ie NG

i i

(7

P(t—1)— P (t) < RD; VteT, ie NG

3

PP X — Py > RY VteT,ie NG

)

Py — P™ X > RY, VteT,ie NG

(10)

PRIMt) Xy, < Po(t) < PREX(1) XY, vteT,be NB

(11)

min () X5, < —Py(t) < PR ()Xg, VteT,be NB

(12)

X+ Xi<1 Vb€ NB

(13)

T > MCy (X5, — X5, ) VteT,be NB

(14)

Tl?iSZMDb(X};{t_X[it_l) thT,bENB

(15)

SOC™n < SOC,, < SOCR™ Vbe NB

(16)

PiaX — Pyy > Ry, VteT,be NB

(17)

X + Py > Ry, VteT,be NB

(18)

Vl'jmin S ij S Vl'jmax VJ (19)

|| < I vy (20)

Nssw S N Sw,max Vs (21)

PER(t) < Ppec(t) < PREX(1) teT (22
NG

ZH,)& + Pw,t + va,t
i=1
NB ND
+ Ppect £ Z Py = Z Py Vt. (23)
b=1 d=1

Constraint (4) represents that generated power by the ith MT
is bounded by an upper and a lower limit. The MT must be
ON/OFF for a minimum time before it can be shutdown/started
up, respectively, as stated in (5) and (6). Constraints (7) and
(8) represent the ramp up and ramp down of the ith MT. To
have a reliable system operation spinning reserve capacities
(both up and down reserves) must be considered. For an un-
expected load demand increase, unpredictable collapse in PV
or WT power output and/or constrained outage of MT, the
up spinning reserve capacity is required to be supplied by the
dispatchable units. Similarly, for sudden load demand decrease

IEEE SYSTEMS JOURNAL

and/or unexpected increases in renewable generation unit power
output, the down spinning reserve has to be activated [31]. To
this end, constraints (9) and (10) represent the up and down
spinning reserves, respectively [25]. The charging/discharging
power of the battery should also be bounded by certain values as
shown in (11) and (12), where X 5{ ,and X lf’tare binary variables
for discharging (“0”) or charging (“1’) modes, respectively. The
operation modes of the battery are separated by (13). The battery
is subject to minimum charging and discharging time limits as
(14) and (15) [22]. The battery state of charge (SOC) is presented
in (16). Similar to MT, up and down spinning reserves limitations
for a battery unit are givenin (17) and (18). After reconfiguration,
the voltage of each bus must be in an acceptable range as stated in
(19). Constraint (20) shows the branch current constraint. The
total number of switching actions during reconfiguration that
is calculated in (3) is limited by (21). The power purchased
is bounded by upper and lower limits as (22). Finally, (23)
denotes the supply—demand power balance constraint, where
NG, NB, and ND are the number of MTs, batteries, and load,
respectively.

III. OPTIMAL SCHEDULING OF RMG WITH PROBABILITY
ISLANDING OPERATION (PIO) CONSTRAINT

The general form of chance-constraint programming (CCP)
is formulated as

Pr{fi(z,§) <b;} < B; (24)

where B; is the confidence level, x is a set of decision vari-
ables, ¢ is a set of uncertain parameters, and b; is a value of
objective function (f). In the CCP, the probability of changes
of uncertain parameters cannot exceed a predetermined level.
Therefore, to improve the flexibility of CCP, it is reformed to the
CCGP as

Pr{fi(,&) = b >df} > Bf
Pr{b; — fi(x,§) <d; } > B;

(25)
(26)

where d; and d; are positive deviations from the value of
target.

As mentioned, PV and WT power output, as well as load
demand forecast, are prone to errors. The forecast error of WT
power output (AP, ), PV power output (AP,,), and forecast
error of load demand (AP;) can be characterized as indepen-
dent Gaussian distributed random variables. All three uncertain
parameters are the result of real value and a prediction error. The
value of net forecast demand is the result of subtracting the load
consumption and total power generated by the renewable units,
which can be represented as

P, =P —Phy, — Py, +Ae) (27)

t t t :
where PPVA, PWA, and PdA are actual PV, wind power output,
and load demand, Aeﬁv is a net error which is a combination of
PV and wind, as well as, load demand forecast errors. Given that
the forecasted errors of all uncertain parameters are unrelated,
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the standard deviation of net error can be calculated as

2 2 2
o =\ (05) + (4, ) + (o)
As [32], the standard deviation of load forecasted error is a

percentage of actual load demand in whole forecasting horizon

k t
Ipy = WO da

(28)

(29)

where k is a function of the predication accuracy percentage.
The standard deviation of wind and PV power output forecast
errors can be approximated as

1
Ok, = £ Ppve + 55 PPy (30)
1
op = 5P;F + 50P5,I (31)

where I and F symbol represent the total installation capacity
and forecasted value of wind and PV unit.

According to the above description, the net forecast error can
be represented by Gaussian distribution

ACAR(TANCADD

To guarantee adequate spinning reserves for an islanding
operation, the following constraint should be considered:

(32)

NG NB

d d t

- § Ri,t - § Rb,t - PPCC,t < Ae
i=1 b=1

(33)

NG NB
<Y R+ RY, — Ppees
1=1 b=1

Based on (25) and (26), the reserve CCGP constraints con-
sidering up and down spinning reserves are reformed as

Pr{Y RY+ D RS-
{ Z Rdown Z Ry —

et 2 A} 2 BP (34)

Pyecs < Ael } > plovn,
(35)

The amount of required reserve that guarantees the operation
of RMG in the islanded mode and represents the successful
islanding operation can be approximated by dividing the net
error probability distribution to the 13 intervals. Fig. 1 depicts
the Gaussian distribution function of net error which consists of
13 intervals. Each interval is associated with a probability like
7.. The probability of a scenario occurrence in the cth interval
with the upper and lower bands can be assessed as

up 1 7% 1 T — UN>
e = — ¢ ¥ dx=—erf| =L
‘ /lb alN\/2m 2 ! ( 20N

Up

where [, and wu; are the lower and upper band of each interval,
respectively. For 13-interval approximation (see Fig. 1), {; and

i NG VB
-;R ZR B ZR" +ZR" »

G

u=-So A u-do X p-30A p-do A p-c A g A

KW
R P T TR 5 R T O NS O TR S AT AT NV

6075 76 82 97

wta A psdot p+doh prdo ptSo* ptbot

Fig. 1. Thirteen-interval Gaussian distribution approximation based on net
forecast error.

upare calculated as

- 1
I = <M§V (CJN7)> — oM c=12...13
t

e (w20

It should be noted that the larger number of intervals increases
the accuracy while demanding a larger computational require-
ment. Whenever the probability of net error, which is a function
of up and down spinning reserve as well as a power exchanged
with the upstream network, is between the negative and positive
changes (25-26), a sufficient reserve for successful islanding
operation is guaranteed. In other words, the area between d~
and d* axes (which are determined by the value of reserves
and exchanged power) indicates the PIO. To recognize intervals
which denote the islanding capability, binary variable v! is
introduced. Then

N.
_ t, t
PIO = E v, X T,
c=1
where vl = ¢!, — ¢!, . ¢!, and ¢! are auxiliary binary vari-

ables which are associated with realization of net forecast error
and calculated as

(37)

2
1
3 (38)

o c=1,2,...13.

and  PIO > PIO"™=t  (39)

: 1 if Up,, < Z Rup + Z Rup pu, t (40)
“e ) 0 otherwise

¢t _ 1 ifl, < —ZRZ ZR Ppee,t @1
be 0 otherwise.

The proposed PIO index based on CCGP provides the micro-
grid operator with an opportunity for scheduling after temporary
islanding with definite probability.

IV. NUMERICAL SIMULATION

The proposed chance-constrained RMG scheduling with is-
landing capability, which was introduced in Sections II and III,
is implemented on a 10-bus test system [7]. The single-line
diagram of the examined system is depicted in Fig. 2.
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]
Load 1 Load 2
— ] - l
|
S10
S4 | Load 3
| [ |
o —COD- . =
] |""'@T1‘“"~j | l
20 Kv /400
v v S7 | Load 5
| I Load 4
————— - S8
Normally opened switch ——— Load 6 SO | Load 7
Normally closed switch
S Switch
Fig. 2. Structure of the 10-bus RMG test system.
TABLE II 120 50
PARAMETERS OF BATTERY-BASED ESS [25] g 10F Has s
= 100F 40 2
2 g
Capacit Min- Max Min g or i
SOC™ 1S0C™ (%) g{m)y char(dis) char(dis) 5 sof 0 2
power (kW) time (h) g wr 15y
Value 15-85 100 50 2 2 wf 12 g
§ sof 1152
Z aof H0 3
TABLE III g wr 15 5
PARAMETERS OF MICROTURBINES [26] 200 5 m = = 5
Time (h)
Min Max Startup/shut
Unit | power | power down cost a(S) | b($kW) | c(8/kw?) Fig. 3. Forecasted power generation of a 120-kW wind turbine and 150-kW
(kW) (kW) $) PV panel.
MT1 30 100 45 1.3 0.0304 0.000104
MT2 75 150 2.5 0.38 0.0267 0.00024
MT3 75 150 2.5 0.38 0.0267 0.00024

As can be seen, the modified test system includes multiple
resources, such a PV farm, a wind turbine, a battery-based ESS,
and three microturbines. There are 11 switches in the network,
and due to the radial structure, two of them should be open at
any time. To establish this limitation, the bus incidence matrix
is implemented.

The characteristic of battery and MTs are given in Tables II
and III, respectively.

The 120-kW WT is considered according to [33]. Based
on forecast results of wind speed, the corresponding power
generated by WT is calculated, which is shown in Fig. 3. Also, as
in [34], the irradiation and temperature data are used to calculate
the generated power of a 150-kW PV farm which is shown in
Fig. 3.

The forecast error of renewable sources (WT and PV) power
output are modeled by independent normal distributions with
zero mean and 10% standard deviation. The forecasted load
demand is given in Table IV. As another uncertain parameter, the
forecast error of load demand is subject to the normal distribution
with 2% standard deviation and zero mean. The day-ahead
market price is also given in Table IV.

The maximum number of switching action for each switch
is considered to be ten actions per day. Also, the cost of each
switching action is $1. Computer simulations and required cod-
ing are carried out in MATLAB software and using CPLEX 11.2
solver. To find the optimal topology of the system, time-varying
acceleration coefficients particle swarm optimization (TVAC-
PSO) algorithm is used [7], [35].

To conduct the stochastic study, 1000 scenarios are generated
by using Monte Carlo simulation for PV, WT, as well as, load
demand. For each scenario, the power exchange at PCC is



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HEMMATI et al.: OPTIMAL CHANCE-CONSTRAINED SCHEDULING OF RECONFIGURABLE MICROGRIDS

TABLE IV
FORECASTED LOAD DEMAND AND DAILY MARKET PRICE

Time Load Power price | Time Load Power price
(h) (kW) (cent/kWh) (h) (kW) (cent/kWh)
1 260.731 9.36 13 397.74 27.12
262.059 7.59 14 400.863 25.89
3 279.805 6.99 15 391.64 26.41
4 288.317 7.02 16 374.25 18.501
5 280.921 8.51 17 362.569 16.23
6 307.804 8.96 18 379.042 12.96
7 319.723 9.01 19 389.85 15.62
8 322.903 10.68 20 425.492 21.56
9 328.745 11.27 21 447.642 29.65
10 340.357 14.52 22 399.201 31.175
11 379.24 18.23 23 370.856 18.7
12 387.974 23.61 24 281.421 10.23
430 4
uMT1
400
EMT3

300
230
200
130 |
100 4
30

Power generation by MTs (kW)

0 o
1234567 89101112131415161718192021222324
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Fig. 4. MTs power dispatch for 24 h with PIO = 0.999.

calculated based on forecast error of PV, WT, and load demand
and the islanding condition is examined.

To demonstrate the effectiveness of the proposed chance-
constrained scheduling, simulation results are presented for two
cases. In the first case, the microgrid scheduling is analyzed with
PIOtreet — ().999. In the second case, RMG scheduling is done
with different levels of probability of islanding operation.

A. Chance-Constrained Scheduling of RMG With
PIO = 0.999

In this case, the microgrid scheduling is done with
PIOr8et = ().999, this value equals 120;.The optimal schedul-
ing of MTs is depicted in Fig. 4. As can be seen from Fig. 4, MT
1 is committed only in pick-load hours (12-16 and 20-22 p.M.)
due to its higher cost of operation.

Table V shows the normally open switches (NO) at any hour.
It can be seen that to satisfy the radial structure of the system,
two switches should be open at any hour.

Also, Table V shows the battery state for 24 h. It should be
noted that charging, discharging, and idle states of battery are
represented by —1, 1, and 0, respectively.

Fig. 5 shows the total amount of up/down spinning reserve
of dispatchable units (MTs and battery). As can be seen, up

TABLE V
RESULT OF RECONFIGURATION WITH PIO = 0.999
Time Open Battery Time Open Battery
(h) switches state (h) switches state
1 $4.8; -1 13 S5.8y4 +1
2 S48 -1 14 S5-S1, +1
3 S48 -1 15 S5.84 +1
4 S48 -1 16 S48 0
5 Ss:Sy -1 17 S4-57 -1
6 Ss-Sy 0 18 8457 -1
7 S5.5, 0 19 S48, +1
8 Ss-Syy 0 20 S4-S10 +1
9 S4-S10 0 21 S4-510 +1
1001 5,5 0 22 S4-S10 0
11 S4-S10 0 23 S4-S10 0
121 84,5 +1 24 S4-S10 1
g 300 (== Up spinn{ng reserve _1_‘_;__ i
& 250 - | == Down spinning reserve 1 | |
% 200 1
) [
 150F | el = s 1
2 100} | L , |
g sl ._] , 1 .
o
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Time (h)
Fig. 5.  Amount of up/down spinning reserve with PIO = 0.999.
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Fig. 6. Power exchanged between RMG and upstream network at PCC with
PIO = 0.999.

and down spinning reserves have different behaviors. Up spin-
ning reserve is considered for compensation of unexpected load
increase. Therefore, when microgrid imports more energy from
upstream network, up spinning reserve should be at higher values
to secure the operation in case of an unintentional islanding
event.

Also, the down spinning reserve, which is considered for
compensation of fluctuation in PV and WT power generation,
should be equal to its high value when there is surplus power
and the microgrid can sell power to the upstream network.
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TABLE VI
RESULT OF RECONFIGURATION AND BATTERY OPERATION FOR
DIFFERENT LEVELS OF PIO

PI0=70% PI0=80% PI0=90%
Hour NO Battery NO Battery NO Battery
state state state

1 S,.Ss -1 S5.81, -1 S5.8;, -1
2 S,.Ss -1 S5.81, -1 S5.8;, -1
3 S,.Ss -1 S5.Sq, -1 Ss.S, -1
4 S10-511 0 S4-Ss 0 Ss5-S5 -1
5 S10-511 0 S4-Ss 0 Ss5-S5 -1
6 S10-511 0 S4-Ss 0 Ss5-S5 0
7 S10-511 0 S5.S1 -1 Ss5.S, 0
8 S10-511 -1 Ss5-S10 -1 S7-S11 -1
9 S10-511 -1 Ss-S10 0 S7-511 -1
10 S10-511 -1 Ss-S10 0 S10-511 0
11 S10-511 0 S5-S10 0 S10-511 0
12 S10-511 0 S5-S10 +1 S4-514 +1
13 S10-511 +1 Ss-S10 +1 S4-S11 +1
14 S10-511 +1 Ss-S10 +1 S4-511 +1
15 S10-511 +1 S5-S;0 +1 S48, +1
16 S4-Ss 0 S4-Ss 0 S4-S11 0
17 S,-Ss 0 S, -Ss 0 S5-S10 -1
18 S4-Ss 0 -Ss -1 Ss5-S10 -1
19 S4-Ss 0 S4-Ss -1 Ss-Si0 0
20 S,.S1, 0 S5.S0 +1 S5-S10 0
21 S5.81, +1 S10-511 +1 S5.8, +1
22 S5.81, +1 S10-511 S5.8, +1
23 S,.S1, 0 S10-S11 S,.8,; 0
24 S5.81, 0 S10-511 S5.8,

Fig. 6 shows the exchanged power at PCC between RMG and
upstream network. Comparing the results shown in Figs. 5 and
6 proves the relationship between up/down spinning reserve and
power exchanged at PCC. For example, at 20-23 P.M. when the
high power is injected from the upstream network, up spinning
reserve reaches its highest value. Also, at 12-16 P.M., when
the microgrid sells the high amount of power to the upstream
network, the value of down spinning reserve reaches its highest
value.

B. Chance-Constrained Scheduling of RMG With Different
PIO Levels

To demonstrate the effect of islanding criterion (PIO) on
microgrid scheduling, RMG scheduling with different levels of
PIO are analyzed and compared in this section.

Fig. 7 shows the generated power by MTs. In scheduling
with high level of PIO [see Fig. 7(c)], MTs are committed
more frequently than the situations with lower levels of PIO
[see Fig. 7(a) and (b)]. Obviously, at higher PIOs, to maintain
a suitable level of reliability, local units should be committed at
more times and generate more power compared to the scheduling
with PIO = 70 and 80%. Table VI represents the normally
open switches for three different values of PIO. As can be seen,
with increasing PIO, the change in topology of the microgrid is
increasing. In other words, at higher PIOs, where the probability
of interruption of local load is nearly one, the microgrid should
have an optimal structure. By applying appropriate switching

IEEE SYSTEMS JOURNAL
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Fig. 7.  MTs power dispatch for 24 h with (a) PIO = 70%, (b) PIO = 80%,

and (c) PIO = 90%.

actions, it is possible to minimize power losses through optimal
power rerouting. However, it should be noted that with the
increasing PIO value, the number of switching action is also
increasing. Also, Table VI illustrates the battery state for the
different levels of PIO. As can be seen, with the increasing PIO
value, variation in the amount of energy stored in battery also
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different levels of PIO.

increases. At higher levels of PIO, when the microgrid needs
more energy supplement, the battery discharges more frequently
compared to cases with lower levels of PIO. In this regard, the
idle time of battery is less once the PIO is higher.

Figs. 8 and 9 show the amount of up/down spinning reserve
and exchanged power at PCC for the different levels of PIO,
respectively. As can be seen, with increasing P1O, the amount
of up/down spinning reserve is increasing. Also, with increasing

V. CONCLUSION

In this article, a new strategy for scheduling of RMGs with
related constraints was presented. A new islanding operation
index named PIO was considered to measure the probability of
successful islanding operation and show that microgrid has an
adequate level of spinning reserve to meet the local loads during
the off-grid operation. The proposed scheduling was formulated
as a chance-constrained global optimization problem and using
the 13-interval approximation method, taking into account the
forecast errors of PV and wind power generation, as well as, load
demand. Simulation results were presented for different levels
of PIO. Numerical results showed that by increasing the value
of PIO, power generated by dispatchable units, the value of up
and down spinning reserves and changes in microgrid structure
are increased. Also, at the high value of PIO when microgrid
transacts high amount of power with upstream network, the
values of reserves are increased. At these times, the value of up
and down spinning reserve reaches the highest values. Monetary
results showed that by increasing the value of PIO, the total cost
increases. The percentage increase of total cost is greater once
the value of PIO is higher. This represents that a small increase
of reliability level demands a remarkable increase in total system
costs while the reliability is already high.

In this article, it is assumed that the electricity price is already
known and does not include the uncertain parameters. The
efficiency of the proposed method will be further improved
by considering the uncertainty of power price and integration
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of demand response program in regional RMGs. Moreover,
reliability assessment from different reliability index points of
view is left to future work.
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