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Towards Translating Raw Indoor Positioning Data into
Mobility Semantics

HUAN LI and HUA LU∗, Department of Computer Science, Aalborg University, Denmark

GANG CHEN, KE CHEN, QINKUANG CHEN, and LIDAN SHOU†, Department of Computer

Science, Zhejiang University, China

Indoor mobility analyses are increasingly interesting due to the rapid growth of raw indoor positioning

data obtained from IoT infrastructure. However, high-level analyses are still in urgent need of a concise but

semantics-oriented representation of the mobility implied by the raw data. This work studies the problem

of translating raw indoor positioning data into mobility semantics that describe a moving object’s mobility

event (What) someplace (Where) at some time (When). The problem is non-trivial mainly because of the

inherent errors in the uncertain, discrete raw data. We propose a three-layer framework to tackle the problem.

In the cleaning layer, we design a cleaning method that eliminates positioning data errors by considering

indoor mobility constraints. In the annotation layer, we propose a split-and-match approach to annotate

mobility semantics on the cleaned data. The approach first employs a density based splitting method to divide

positioning sequences into split snippets according to underlying mobility events, followed by a semantic

matching method that makes proper annotations for split snippets. In the complementing layer, we devise

an inference method that makes use of the indoor topology and the mobility semantics already obtained to

recover the missing mobility semantics. The extensive experiments demonstrate that our solution is efficient

and effective on both real and synthetic data. For typical queries, our solution’s resultant mobility semantics

lead to more precise answers but incur less execution time than alternatives.

CCS Concepts: • Information systems → Mobile information processing systems; Spatial-
temporal systems; Data mining.
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1 INTRODUCTION
According to multiple studies [19, 21], people spend about 90% of their daily lives indoors. Human

movements indoors are increasingly captured in indoor positioning data due to the recent advance

in Internet-of-Things (IoT) wireless technologies [1] and high penetration of smartphones [2].

Analyzing indoor positioning data can reveal interesting findings otherwise hard to obtain, e.g.,
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popular indoor locations [25, 26, 29], hot indoor routes [25, 34], useful indoor patterns [22], and

insights for in-store marketing [13].

One class of indoor mobility analysis concerns semantics and asks questions like “Which combi-

nation of shops is most frequently visited by the shoppers in a mall?” or “List out the staff that

meets at the security-sensitive regions after work hours and stays there for more than an hour.”

In order to answer such questions, we need to extract the mobility related semantics from the

underlying indoor positioning data.

In this study, we use a type of data generated by indoor positioning systems based on IoT wireless

technology (e.g., Wi-Fi or Beacon) [17, 18]. In particular, the data for one person (or moving object)

contains a set of raw positioning records that are uncertain and discrete in nature. Each raw record

((x,y, f ), t) means an object is observed at coordinate point (x,y) on floor f at time t . As the raw
data does not give the needed semantics explicitly, we need to translate the raw data into an explicit,

informative data representation. Inspired by the semantic trajectories [16, 33, 44], we use indoor

mobility semantics exemplified as follows:

o1 : (stay,Nike, 1:02pm-1:18pm) → (pass,Adidas, 1:19pm-1:20pm)

→ (stay,Cashier, 1:21pm-1:24pm)

Specifically, object o1’s movements are represented by a line of structured mobility semantics,
which includes a mobility event annotation (a stay or pass event), a spatial annotation (a semantic

region like Nike store), and a temporal annotation (a time period). We use m-semantics1 to refer to

such mobility semantics. As the annotations in m-semantics are related to indoor semantic regions

and mobility events, m-semantics are considerably more comprehensible and useful for relevant

application needs than the raw data [24].

However, translating raw indoor positioning data into m-semantics is still a challenging task

mainly due to three reasons. First, the raw data obtained by wireless technology is extremely dirty

because of unpredictable interferences of wireless signals [17, 18], especially when the infrastructure

uses ordinary sensors, e.g., Wi-Fi access points, for network access [13]. Figure 1 depicts someWi-Fi

Fig. 1. Real-world Indoor Positioning Data Errors

based positioning data obtained in a real-world shopping mall in China. Referring to Figure 1(a),

for a device sampled every 10 seconds, the average positioning error (APE) calculated every 10

minutes fluctuates significantly. Also, there are many false floor values reported for two example

devices d1 and d2 as shown in Figure 1(b). Such data errors must be handled carefully before

m-semantics can be extracted. Second, an indoor space usually has a relatively small extent but

complex topology, leading to a compact distribution of semantic regions and complex movements

under indoor topology. This makes the annotation more difficult. Existing outdoor annotation

techniques make use of POI category [44] or assumptions such as human activity regularity [42].

However, in indoor spaces POIs of the same type often cluster together but object movements are

1
Here, ‘m’ stands for ‘mobility’.
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Towards Translating Raw Indoor Positioning Data into Mobility Semantics 1:3

quite random. Third, indoor positioning data is always discrete as mobile devices tend to turn off

wireless signals for energy-saving needs [18]. It is non-trivial to obtain a complete sequence of

m-semantics from discrete positioning data that at first glance suggests many possibilities.

Example 1. Referring to the floorplan in Figure 2, some semantic regions are pre-defined such as S1
and hw-f. We illustrate an object’s raw positioning data on the floorplan. Note that the location estimates
represented as geometric points (x,y) are barely informative as no semantics can be recognized without
the underlying floorplan provided. When interpreting the positioning data, due to the inherent errors
and the layout of indoor regions, it is hard to make the spatial annotation (i.e., semantic region) for the
object during the time period 9:05am-9:15am. Also, it is hard to construct m-semantics between the
two presences in hallways hw-b at 9:16am and hw-d at 9:19am as no straightforward information is
available by the discrete indoor positioning records.
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Fig. 2. Example of Indoor Floorplan

To address the aforementioned challenges, we propose a three-layer framework for constructing

m-semantics. In the framework, the ultimate task is decomposed and accomplished by three

functional layers in a chained manner. Each layer is equipped with corresponding applicable

techniques to facilitate data processing. The cleaning layer considers the characteristics of indoor

mobility constraints and cleans the raw positioning sequences. Subsequently, in the annotation
layer, each positioning sequence is split into a number of snippets according to the underlying

mobility event. The snippets are then translated into m-semantics by semantic matching. Last, in the

complementing layer, to recover the missing m-semantics in an m-semantics sequence, knowledge

about indoor mobility is constructed from the m-semantics already obtained, and an inference

based method is used to infer the missing m-semantics on top of the constructed knowledge.

Consequently, each object’s m-semantics sequence is complemented. A prototype of the framework

named TRIPS [24] has been built and released online.

To sum up, we make the following contributions in this paper.

• We formulate the problem of translating raw indoor positioning data into m-semantics and

propose a three-layer framework to solve the problem (Section 2).

• We design a cleaning method that eliminates indoor positioning data errors based on indoor

mobility constraints (Section 3).

• We devise a split-and-match approach to annotate m-semantics. It includes a density based

method that splits the positioning sequence according to the underlying mobility event and

a semantic matching method that makes annotations for the split snippets (Section 4).

• We propose an inference method to recover the missing m-semantics with the help of knowl-

edge about indoor mobility, indoor topology, and m-semantics already obtained (Section 5).

• We conduct extensive experiments on both real and synthetic data to evaluate the efficiency

and effectiveness of our proposals. (Section 6).

In addition, Section 7 reviews the related work and Section 8 concludes the paper.

ACM Trans. Data Sci., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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2 PRELIMINARIES
Table 1 lists the notations used throughout this paper.

Table 1. Notations

Symbol Meaning

θ = (l, t) a positioning record

Θo = {(l1, t1), . . . , (ln, tn)} object o’s positioning sequence
r ∈ R an indoor (semantic) region, a spatial annotation

τ = [ts , te ] a temporal annotation

δ ∈ {stay, pass} an event annotation

λ = (r , τ , δ ) an indoor m-semantics

Λo = ⟨λ1, . . . , λm⟩ object o’s ms-sequence

PT = ⟨r1, . . . , rm⟩ region pattern of an ms-sequence

ϕ = rs → . . .→ re an indoor candidate path

distI (ls , le ) minimum indoor walking distance from location ls to location le
distдr (rs , re ) guaranteed reaching distance from region rs to region re

2.1 Problem Formulation
In our setting, an indoor positioning system aperiodically reports a record θ (l, t) for an object o,
where l is a location and t is a timestamp, meaning that object o’s location is estimated to be l at
time t . In most indoor positioning systems [17, 18], θ .l is represented as a triplet (x,y, f ), i.e., a
2D point (x,y) ∈ R2 on a floor f ∈ N. The positioning records are stored in an indoor positioning
table (IPT), as exemplified in Table 2. Given an IPT and a particular time interval TI, we define an
object’s indoor positioning sequence (p-sequence) as follows.

Definition 1 (Indoor Positioning Sequence). An object o’s indoor positioning sequence over
time interval TI is a time-ordered sequence Θo,TI of positioning records of o, denoted as Θo,TI =

⟨(l1, t1), . . . , (ln, tn)⟩ such that [t1, tn] ⊆ TI.

Table 2. Example of IPT

object positioning record

o1 ((2.5, 10.7, 1), t1)
o2 ((5.1, 38.5, 4), t1)
o1 ((2.3, 11.2, 2), t4)

Referring to Table 2, the objecto1’s p-sequence over TI = [t1, t4] is ⟨((2.5, 10.7, 1), t1), ((2.3, 11.2, 2),
t4)⟩. We formally give the definition of mobility semantics (m-semantics).

Definition 2 (Mobility Semantics). An object o’s mobility semantics is a triplet λ(r , τ , δ ), where
the spatial annotation r is an indoor region, the temporal annotation τ is a time period, and the event
annotation δ is a mobility event.

The indoor regions serving as the spatial annotations are usually pre-defined with particular

semantics by data analysts. For example, an indoor region can be a cashier or a shop in a mall.

Essentially, an indoor space can be divided into a set of indoor partitions like rooms and hallways by

walls and doors. For simplicity, we assume that each indoor region is composed of one or more such

ACM Trans. Data Sci., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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indoor partitions
2
. Referring to Figure 2, a semantic region hw-e corresponds to a single partition

p8 while another semantic region S5 contains two partitions, i.e., p17 and p18.
Amobility event refers to some interesting movement pattern. We introduce two generic patterns

in our study, namely stay and pass.3 A stay indicates that an object has been staying in a semantic

region for a sufficiently long time for a particular purpose that is fulfilled in that region. For example,

a stay can be that a user spent half an hour in a shoe shop, selecting and buying a pair of new shoes.

It is noteworthy that since an indoor region itself usually carries some rich semantics determined

by the use or planning of the space, combining the stay event with the corresponding region is

very useful to disclose rich information about user behavior. For example, a stay at a restaurant

usually means a person was dining while a stay at an office room indicates that a person was at

work. In contrast, a pass tells that an object has passed through an indoor region but there is no

particular purpose associated with that pass. For example, a user may pass several other shops

before she reaches the shop where she buys shoes. The distinction between stay and pass is useful

in pertinent indoor scenarios. For example, security managers may only be interested in people

staying in a certain region, while the mall managers may want to know both numbers of staying

and passing customers when analyzing the customer conversion rate in a region.

As to be introduced in Section 4.2.1, we design an event identification function (E-function

for short) to differentiate a stay and a pass. The E-function is a learning based model and semi-

supervised with the spatiotemporal features extracted from the user-recognized mobility events.

An m-semantics annotated with a stay (pass) event is called a stay (pass) m-semantics and denoted

by λq (λ▷), and its associated region is a stay (pass) region denoted as r q (r▷).
Next, we define m-semantics sequence (ms-sequence).

Definition 3 (M-semantics Sequence). An indoor object o’s m-semantics sequence over time
interval TI is a time-ordered sequence Λo,TI of o’s m-semantics: ∀λi , λj ∈ Λo,TI, λi .τ ⊆ TI, λj .τ ⊆ TI,
λi .τ ∩ λj .τ = ∅.

When time context is clear, we use Θo and Λo to denote object o’s p-sequence and ms-sequence,

respectively. We formulate our research problem as below.

Research Problem (IndoorM-semantics Construction). Given an IPT and a full set of indoor
semantic regions, the indoor m-semantics construction translates each object o’s p-sequence Θo =

⟨θ1, . . . , θn⟩ in IPT into the most-likely ms-sequence Λo = ⟨λ1, . . . , λm⟩.

Constructing ms-sequences provides an intuitive, concise way to understand a moving object’s

general indoor behaviors. It serves as the foundation of multiple high-level mobility analyses.

However, the major challenge to the construction is that the input data is of very low quality and

only provides very limited information. To this end, we propose a three-layer framework that

progressively improves the data quality and constructs the m-semantics.

2.2 Framework Overview
As illustrated in Figure 3, our framework takes each object’s p-sequence from the IPT as input and

exports the corresponding ms-sequence. The data is processed through three functional layers.

Cleaning Layer handles the data errors in the p-sequence of each object. It conducts the data

cleaning by considering the indoor mobility constraints captured in a distance-aware model.

Annotation Layer first uses a density based method to split each p-sequence into a number of

snippets, and then translates each snippet into a number of m-semantics by a semantic matching

based on the E-function and the semantic region graph.
2
Assuming regions do not overlap, our techniques allow an indoor region to involve (parts of) an indoor partition.

3
The outdoor patterns that carry similar meanings are known as stop and move in other literatures [4, 33, 44].
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Complementing Layer recovers the missing m-semantics for each original ms-sequence from the

annotation layer. By making use of all the m-semantics already annotated, the mobility knowledge
is obtained by a knowledge construction. Subsequently, each ms-sequence is complemented with a

number of missing m-semantics by using an m-semantics inference with mobility knowledge.

p-sequence

Complementing

Annotation

Cleaning
each moving object

Mobility Constraint 

based Cleaning

Density based Splitting

Semantic Matching

Knowledge 

Construction

M-Semantics Inference

snippets

indoor 

distance-

aware model

semantic 

region graph

Mobility 

Knowledge

original ms-sequence

ms-sequences

IPT

+ missing m-semantics

ε-function

input

output

+
+

Fig. 3. The Construction Framework

The translation framework has been implemented in our prototype system TRIPS [24]
4
.

3 RAW POSITIONING DATA CLEANING
As shown in Figure 1, raw indoor positioning data contains inherent errors due to the limitations

of the wireless based indoor positioning [18]. Typical errors are as follows.

1) Random errors are the small distortions from the true locations. They are caused by the imprecise

measurement of wireless signals, which is easily influenced by factors such as temperature,

humidity, and window opening or closing [23].

2) Location outliers are the significant deviations from the true locations. They occur when a

mobile client suddenly fails to capture the signals from nearby transmitters. The location outliers

discussed here are within the range of a floor.

3) False floor values are usually seen in multi-floor positioning systems. They occur in a case where

a mobile client receives stronger signals from the transmitters on other floors.

These data errors impose serious problems on the subsequent processing of indoor m-semantics

construction. It is necessary to identify and repair them to reduce their negative impacts.

Generally, indoor object movements should comply with underlying mobility constraints. For
example, moving objects (usually people) cannot walk too fast indoors—a significant shift in the

positioning data within a short time interval usually means a location outlier or a false floor value.

Also, objects can move between indoor partitions only through doors or the like. Considering the

moving speed between two positioning locations under indoor topology, we are able to identify

a part of random errors that jump to other indoor partitions. We give an example in Figure 4.

Suppose that an object o’s p-sequence is ⟨(l1, t1), (l2, t2), (l3, t3)⟩, and l1 at time t1 is assumed to be

valid. Given the maximum moving speed vm and the specific indoor topology, o’s position at time

t2 can only be inside the shaded part of the circle centered at l1 with a radius vm · (t2 − t1). As o’s
location report l2 is outside the shaded part at time t2, the reported location l2 is an error.

4
A demo video and relevant materials are available at https://longaspire.github.io/trips/.
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When computing the object moving speed between two positioning locations, we use the indoor
distance-aware model [28] to compute the minimum indoor walking distance (MIWD) between two

indoor locations. In Figure 4, the MIWD from location l1 to location l3, denoted as distI (l1, l3), is
computed as the sum of two Euclidean distances |l1,d1 | and |d1, l3 |, where d1 is the door through
which an object can reach l3 from l1.

Based on the MIWD that integrates both topological and geometrical mobility constraints, we

identify the positioning data error by checking the indoor object speed. Formally, given a maximum

speed vm , for any two consecutive positioning records θi , θi+1, their in-between indoor speed

v = distI (θi .l ,θi+1 .l )
θi+1 .t−θi .t

should not exceed vm . In other words, assuming we check a p-sequence in the

forward direction, a record θi that violates the aforementioned speed constraint should be invalid

if the precedent record θi−1 has already been determined as valid.

When an invalid record θi is identified, the error may occur at its floor part (i.e., false floor value)

and/or its 2D point part (i.e., location outlier or random error). We repair it in two steps. The first

step repairs a potential mistake of floor value. If θi ’s floor value is different from the previous

valid record θp ’s (p ≤ i − 1), we modify θi ’s to the same as θp ’s. Such modification comes into

effect if the violation of speed constraint no longer occurs; otherwise, the potential error is still

in the 2D point part. The second step repairs the wrong location estimate by interpolating a new

one: For the current record θi , we find the previous and next valid positioning record as θp and

θs (s ≥ i + 1), respectively. As no information is provided about the object movement between

the two valid records, we assume that the object moved along the shortest indoor path between

locations θp .l and θs .l at a constant speed. This assumption simplifies the interpolation but still

complies with the mobility constraints. Consequently, given the timestamp θi .t , the corresponding
new location estimate is interpolated as a location l on the shortest indoor path from θp .l to θs .l

such that distI (θp .l, l) =
θi .t−θp .t
θs .t−θp .t

· distI (θp .l, θs .l). Also referring to Figure 4, location estimate l2
(l3) is determined as invalid (valid) based on the speed checking. Moreover, we should further repair

l2 by the second step as the error is in its 2D point part. Precisely, the possible position at time t2
should be inside the blue shaded region provided that l1 and l3 have been determined as valid. For

simplicity, we interpolate the new estimate l ′
2
for o at time t2 on the shortest indoor path from l1

and l3 having distI (l1, l ′2)/distI (l
′
2
, l3) = (t2 − t1)/(t3 − t2). It can be proved that l ′

2
must be inside the

blue shaded region. We omit the details due to the page limit.

vm·(t2-t1)

vm·(t3-t2)

l3

l2'

l2

possible 

positions 

at t2 d1

l1

Fig. 4. Example of Cleaning Raw Indoor Positioning Data

The forward version of cleaning is formalized in Algorithm 1. For simplicity of presentation,

this version assumes that the first record of the p-sequence is valid. Nevertheless, our cleaning can

start with any valid record in the middle such that the remaining ones can be checked forward and

backward from the start record. In particular, a record can be selected as the start record if it has

both the speeds to its precedent and subsequent records not exceed the threshold vm . Similar to

the forward cleaning in Algorithm 1, a backward cleaning can be performed to handle the records

before the start record selected.

ACM Trans. Data Sci., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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Algorithm 1: Mobility Constraint based Cleaning in the Forward Direction
Input: p-sequence Θo , maximum moving speed vm .

Output: cleaned p-sequence Θ′o .
1 time-ordered sequence Aθ ←− ⟨⟩

2 current valid positioning record
ˆθ ←− head(Θo )

3 for each positioning record θ ∈ Θo \ head(Θo ) do
4 valid ←− True

5 if ValidSpeed( ˆθ , θ ) is False then
6 (x,y, f ) ←− θ .l ; (x̂, ŷ, ˆf ) ←− ˆθ .l ; θ .l ←− (x,y, ˆf )

7 if ValidSpeed( ˆθ , θ ) is False then
8 add θ to Aθ ; valid ←− False

9 if valid then
10 A ′θ ←− Interpolation( ˆθ , Aθ , θ )

11 add all positioning records in A ′θ to Θ′o
12 Aθ ←− ⟨⟩; ˆθ ←− θ

13 add
ˆθ to Θ′o

14 return Θ′o
15 Function ValidSpeed( ˆθ , θ )
16 v ←− distI ( ˆθ .l , θ .l ) / (θ .t - ˆθ .t ) // compute the MIWD

17 if v ≤ vm then return True else return False

18 Function Interpolation(θp , Aθ , θs )
19 A ′θ ←− ⟨⟩; add θp to A ′θ
20 compute a shortest indoor path pa from θp .l to θs .l

21 for each positioning record θ ′ ∈ Aθ do
22 find a location l on pa having distI (θp .l, l) =

θ ′ .t−θp .t
θs .t−θp .t

· distI (θp .l, θs .l)

23 θ ′.l ←− l ; add θ ′ to A ′θ

24 return A ′θ

4 MOBILITY SEMANTICS ANNOTATION
In this section, we use a split-and-match approach to annotate the m-semantics on a cleaned

p-sequence. First, we split the p-sequence into a number of snippets, each corresponding to an

underlying mobility event (i.e., stay or pass introduced in Section 2.1). Next, for each split snippet,

we match its m-semantics by making the three annotations (see Definition 2). The overall process is

formalized in Algorithm 2.We give the density based splitting method (called in line 2) in Section 4.1,

and elaborate on the semantic matching method (called in line 5) in Section 4.2.

4.1 Density Based Splitting
In our observation, the positioning records associated with a stay event are likely to have their

location estimates and timestamps packed together. Inspired by this, we propose a density based

clustering method to find a number of clusters and split the p-sequence based on these clusters. In

particular, the positioning records contained in a cluster form a dense snippet, and those consecutive

records between two clusters form a non-dense snippet. ST-DBSCAN [8] is a competent algorithm

to cluster the sequential data instances according to the spatial and temporal attributes. It requires

three parameters: 1) ϵs is a distance threshold for spatial attributes; 2) ϵt is a distance threshold

ACM Trans. Data Sci., Vol. 1, No. 1, Article 1. Publication date: January 2019.



Towards Translating Raw Indoor Positioning Data into Mobility Semantics 1:9

Algorithm 2: Split-and-Match Annotation
Input: p-sequence Θo , event identification function E, semantic region graph GR .
Output: time-ordered sequence of m-semantics Λo .

1 time-ordered sequence Λo ←− ⟨⟩

2 Asnpt ←− DensityBasedSplitting(Θo )

3 for each snippet Θ∗o in Asnpt do
4 Λ∗o ←− SemanticMatching(Θ∗o , E, GR )
5 Λo ←− Λo ∪ Λ

∗
o

6 return Λo

for temporal attributes; 3) ptm is a numerical threshold. A cluster is formed only if it contains at

least ptm data instances and any instance in it is within the spatial distance ϵs and also within

the temporal distance ϵt to another instance in it. Note that the instances in a formed cluster are

continuous on the time attribute. Compared to the traditional speed based methods like SMoT [4]

that use a hard-coded speed threshold to distinguish stay and pass events, our density based method

takes a more comprehensive consideration of the spatiotemporal data distribution of different

mobility events. We experimentally compare different splitting methods in Section 6.1.1.

To enable the density based splitting on p-sequence, we extend ST-DBSCAN in three aspects.

First, we introduce the MIWD as the distance metric for spatial attributes with respect to the

indoor topology. Second, we build the parameter ptm adaptively rather than using a constant value.

In particular, ptm at time ti is associated with the local sampling rate within the time window

[ti − ϵt , ti + ϵt ]. If the local sampling rate is currently low, i.e., only a few positioning records

were observed within the time window, we use a small ptm . In contrast, a large ptm is used when

the local sampling rate is high. This way makes it flexible to form clusters in the context of

dynamically changing sampling rates. Third, we introduce two parameters, namely tolerate time
span ∆t and tolerate spatial distance ∆s , to avoid small, fragmentary dense snippets to be formed.

Formally, any two dense snippets ⟨θi , . . . , θ j ⟩ and ⟨θk , . . . , θl ⟩ are merged if 1) θk .t − θ j .t ≤ ∆t ,

and 2) ∃s ∈ [i, j], ∃t ∈ [k, l], distI (θs .l, θt .l) ≤ ∆s . The pseudo-codes of the procedure are given in

Algorithm 4 in Appendix A.1.

Example 2. Referring to the splitting in Figure 5, the positioning records in a cluster formed
within the time period 9:05am-9:15am are captured as a dense snippet D1. Also, three captured dense
snippets within 9:20am-9:42am are merged together according to the condition defined on ∆s and ∆t ,
resulting in another dense snippet D3. Between D1 and D3, there are two non-clustered records within
9:16am-9:19am; they form a non-dense snippet D2. As a result, the p-sequence is split into three parts.

distI s time span t 
time series

non-dense

snippet D2

9:05am 9:15am 9:16am

9:19am

9:20am9:42am

records in a cluster

record between clusters

(merged) dense snippet D3

dense 

snippet D1

segment mark

Fig. 5. Example of Density based Splitting on a P-sequence

The density information provides a good reference for splitting a p-sequence. However, it is

not sufficient to directly regard a dense snippet as a stay and a non-dense one as a pass. Suppose
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that an object moves steadily and reports its location at a high frequency. Although the reported

locations (and timestamps) can be close to each other and satisfy the clustering conditions, it would

be wrong to consider the object is staying in a place. To verify if a snippet corresponds to a true

stay event, more information, e.g., total travel distance and location estimate variance, needs to be

extracted from its containing positioning records and be checked further. To this end, we introduce

the event identification technique in Section 4.2.1.

4.2 Semantic Matching
4.2.1 Event Identification Function. To determine the underlying mobility event associated with

a snippet, we design an event identification function (E-function) based on a semi-supervised

learning model. In particular, each snippet (i.e., a segment of raw records) is first represented as a

mobility feature vector. Features are extracted from the following aspects.

• Dense Level. As the positioning records of stay events usually fall in the formed clusters, it is

useful to indicate whether the snippet is dense or not. We represent the dense level of the snippet

as a binary value.

• Variance of Location Estimates. As the variance of location estimates is usually small in stay

events but large in pass events, we compute the location variance of the snippet as a feature.

• Sampling Conditions. Since the indoor positioning data is usually sparser when the object (wireless
device) is moving, we compute the record number and the sampling rate in the snippet as two

features.

• Covering Range. As a larger covering range tends to be a pass event, we compute the area and

the longest distance from the centrum to a vertex of the geometric shape (i.e., convex hull or its

simplified minimum boundary rectangle) that covers all location estimates of the snippet.

• Overlapping Regions. Considering the effect of different indoor places, we compute the dummy

encoded IDs of the neighboring regions that contain or intersect with the covering range, together

with each such region’s relevant record number. Four nearest regions are considered and the

empty dimensions (happened when there’re no enough overlapping regions) are filled with zero.

• Walking Distance. As a snippet with a larger walking distance tends to be a pass event, we

compute the sum and average of the MIWDs between every two consecutive location estimates

as two features.

• Walking Speed. As a snippet with a larger walking speed tends to be a pass event, we compute the

maximum, minimum and average of the instant speeds between every two consecutive records

as three features.

• Number of Turns. Studies reveal that people only make a very small number of turns when they

are walking indoors [34]. Therefore, we compute the ratio between the number of turns and the

walking distance to help identify pass events. Particularly, for any location estimate θi .l , a turn is

identified if the angle between the line from θi−1.l to θi .l and the line from θi .l to θi+1.l exceeds
90 degrees.

The logistic regression model [3] is employed to classify stop and pass events. To train the model,

a feature set is extracted from the snippets labeled with stop or pass and then normalized. Logistic

regression is efficient to train and it produces a probability value of being one class on the sigmoid

curve. Such an advantage enables us to use a co-training method [9] that constructs additional

labeled data to overcome the lack of training data. Particularly, the predicted snippets with very

high or very low probability values can be added as positive and negative samples, respectively.

Consequently, given a snippet Θ∗o , its mobility event returned by E(Θ∗o) corresponds to either
stop or pass predicted by the classifier. Once the mobility event is determined, in Section 4.2.2 we

determine the annotations for stay and pass m-semantics, especially the spatial annotation.
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hw-b

8m

5.5m

l

l'
d1

S1 hw-a

Fig. 6. GRD Example

4.2.2 Determining Annotations. For a snippet Θ∗o that has E(Θ∗o) = stay, a stay m-semantics is

generated with the temporal annotation made as τ = [head(Θ∗o).t, tail(Θ
∗
o).t]. In contrast, Θ∗o should

be matched to one or more pass m-semantics as the corresponding object may move through

different regions. In such a case, each positioning record θ ∈ Θ∗o is mapped to a pass m-semantics

with its temporal annotation made as τ = [θ .t, θ .t].
Next, we need tomake the spatial annotations for the aforementioned stay or pass m-semantics. In

the following, we introduce a semantic region graph GR that facilitates accessing the indoor semantic

regions. Specifically, GR is a labeled, directed graph represented in a five-tuple (R, E,Gdist, R2P, P2R):
1) R is the vertex set and each vertex in it corresponds to an indoor region r .
2) E is the edge set {⟨ri , r j ,R⟩ | ri , r j ∈ R} and each directed edge gives the guaranteed reaching

distance (GRD) from an indoor region ri to another directly connected5 indoor region r j .
3) Gdist is the associated distance-aware model [28] that involves with indoor entities like doors

and partitions.

4) R2P : R → 2
P
maps an indoor region (vertex) to the set of indoor partitions in Gdist it covers.

5) P2R : P → R maps an indoor partition in Gdist to the indoor region that covers it.

The mappings R2P and P2R are maintained by two hash tables. They can be automatically

constructed based on the topological computations between regions and partitions.

The guaranteed reaching distance (GRD) from a region ri to a region r j is defined as

distgr (ri , r j ) = max

l ∈ri ,d ∈P2D⊐(R2P(r j ))
distI (l,d) (1)

where R2P(r j ) gives the covering partitions of region r j and the mapping P2D⊐ [28] gives the

enterable doors for a given indoor partition. Generally, the GRD from ri to r j is the walking

distance an indoor object needs to reach (an enterable door of) r j from the farthest position in

ri . In other words, any object currently in ri can reach r j within the distance distgr (ri , r j ). Note
that distgr (ri , r j ) , distgr (r j , ri ). Referring to Figure 6, regions S1 and hw-b are directly connected,

while S1 and hw-a are not as their in-between walking path must go through another region hw-b.
Suppose that l ∈ S1 is the farthest position from the enterable door d1 of hw-b. Thus, GRD from S1
to hw-b equals to distI (l,d1) = 8m. In contrast, GRD from hw-b to S1 is distI (l ′,d1) = 5.5m where

l ′ ∈ hw-b is the farthest position from the enterable door d1 of S1. The two GRDs indicate that

it usually costs more time to walk out from a larger region like S1 than from a smaller one like

hw-b. This property of GRDs can be used to allocate the time periods for the regions that have been

inferred in recovering the missing m-semantics. The details are to be given in Section 5.2.2.

Figure 7 gives the graph GR corresponding to Figure 2. With the R2P and P2R mappings, region

hw-f is mapped to two partitions that it contains (i.e., partitions p11 and p12 shown in Figure 2) and

region hw-e is mapped to a single partition p8. In contrast, partition p17 in Figure 2 is mapped to its

covering region S5. Also, it can be seen that any object currently in S2 can reach hw-c by a distance

distgr (S2, hw-c) = 9.5m, consistent with the precise drawing in Figure 2.

To speed up the spatial searching that involves the geometric location estimates and indoor

regions, we index the regions’ associated partitions in Gdist by an R-tree. When a given location

5
Two regions are directly connected if an object can move from one to the other without getting into a third region.
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S1 hw-b
8m

5.5m

hw-a

4.5m
4.5m

S2 hw-c
9.5m

5.5m

4.5m
4.5m

hw-f
5.5m

9m

S3
5.5m

5.5m
hw-e

5.5m
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3.5m

S4
5.5m

5.5m
hw-g

hw-d

4.5m
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S5
12.5m
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7.5m

3.5m

12.5m

3.5m4.5m

12m

hw-e p8

hw-f {p11, p12}

... ...

region partition

R2P mapping

hw-e p8

hw-f {p11, p12}

... ...

region partition

R2P mapping

p11 hw-f

p17 S5

p18 S5

partition region

P2R mapping

... ...

p11 hw-f

p17 S5

p18 S5

partition region

P2R mapping

... ...

Fig. 7. Example of Semantic Region Graph GR

estimate’s intersected partition is found via the R-tree, the relevant covering region can be obtained

via the P2R mapping defined in GR . Note that these mappings allow users to specify the indoor

regions without getting to the underlying spatial searching conducted on the level of indoor

partitions. Consequently, we can use GR to find the best-matched spatial annotation for an m-

semantics according to its corresponding positioning record(s).

We differentiate the spatial annotation matching for pass and stay m-semantics. For a pass

semantics and its corresponding positioning record θ , we simply consider the indoor region that

contains θ .l as the spatial annotation. The consecutive pass m-semantics that are matched with the

same spatial annotation should be merged together such that their time periods are combined. This

helps reduce possible redundancy in the semantics.

The matching for stay m-semantics is more complex as it involves multiple location estimates.

We find that an object staying in a place usually incurs small displacements between its consecutive

location estimates. Therefore, an estimate fairly far away from its neighboring estimates should be

affected by positioning errors and is less reliable. In this light, different from the matching methods

that use the centroid of location estimates or voting results, we assign each estimate different

importance in determining the stay region. We define location estimate confidence as follows.

Definition 4 (Location Estimate Confidence). Given a snippet ⟨θs , . . . , θe ⟩ associated with a
stay event, the confidence of a location estimate θi .l (s ≤ i ≤ e) is defined as

conf (i) =
(∑θ j ∈N(i ) distI (θi .l, θ j .l)

|N (i) |

)−1
/ Z (2)

where N (i) is the set of θi ’s k nearest neighbor location estimates from other positioning records in the
snippet and Z is a normalization parameter making the maximum confidence be 1.

In the definition, we evaluate each estimate’s confidence by making use of its average MIWDs to

the neighboring estimates. Enabled by the evaluated confidence, we compute each estimate θi .l ’s

importance as β (i) =
conf (i )∑e
j=s conf

(j ) and infer the underlying stay position as
ˆl =

∑e
i=s β

(i) · θi .l . As a

result, the spatial annotation for a stay m-semantics is made as a region that contains
ˆl .

The whole procedure of semantic matching is formalized in Algorithm 5 in Appendix A.2.

Example 3. Referring to Figure 5, suppose that the split snippets D1, D2, and D3 have been de-
termined by the E-function as stay, pass, and stay, respectively. Referring to the snippet D1 within
9:05am-9:15am, its included location estimates are pointed out by a dashed circle in Figure 2. Based
on the spatial annotation matching introduced above, D1 is mapped to an m-semantics (S1, 9:05am-
9:15am, stay). Similarly, D3 within 9:20am-9:42am is translated into (S5, 9:20am-9:42am, stay) as can
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be referred in Figure 2. Besides, the two records in D2 (within 9:16am-9:19am) is translated into two
pass m-semantics, i.e., (hw-b, 9:16am-9:16am, pass) and (hw-d, 9:19am-9:19am, pass).

5 COMPLEMENTING MS-SEQUENCES
Anms-sequence obtained from the annotation layer can still be incomplete in that somem-semantics

are missing between the consecutive pass m-semantics. Next, we present an inference method to

recover those missing m-semantics.

Multiple studies [22, 34] have discovered that people often make similar movements between

two indoor destinations within a relatively small range, regardless of the walking purposes (e.g., to

find something or just to look around somewhere). This inspires us to make use of such similar

movements to infer the missing m-semantics between two relevant regions. Specifically, each

stay region r q in an annotated m-semantics can be considered as an indoor destination, and those

annotated pass m-semantics between two destinations can be grouped to capture the similar

movements in-between. By further considering indoor mobility constraints, we are able to infer

the unobserved movements given an ms-sequence we already annotated.

The complementing consists of two phases, as formalized in Algorithm 3. The first phase (line 2)

constructs the mobility knowledge (i.e., similar movements) between each two stay regions (i.e.,

destinations). Using the constructed knowledge, the second phase (lines 3–5) infers the missing

m-semantics for each ms-sequence. The two phases are detailed in Sections 5.1 and 5.2, respectively.

Algorithm 3: Inference based Complementing
Input: set of ms-sequences SΛ, semantic region graph GR .
Output: set of complemented ms-sequences S′Λ.

1 set S′Λ ←− ∅
2 hash tableMK ←− ConstructMobilityKnowledge(GR , SΛ)
3 for each original ms-sequence Λo in SΛ do
4 Λo ←− MSemanticsInference(Λo ,MK , GR )
5 add Λo to S′Λ

6 return S′Λ

5.1 Mobility Knowledge Construction
Given two stay regions r qs , r

q
e , the mobility knowledge about the similar movements from r qs to r

q
e

consists of two parts. The first part is a set of candidate paths that accommodate those similar

movements, and each path is represented as a sequence of directly connected regions in the semantic

region graph GR . The second part is the transition probabilities between the directly connected

regions in the candidate paths. Next, we elaborate on constructing the candidate path set and the

transition probabilities, respectively.

5.1.1 Candidate Path Set. We first define indoor candidate path.

Definition 5 (Indoor Candidate Path). Given a start region r qs and an end region r
q
e , a candidate

path from r qs to r
q
e is a region sequenceϕ = r

q
s → r▷i → . . .→ r▷j → r qe , each pass region r▷k (i ≤ k ≤ j)

contained in ϕ is unique, and each two consecutive regions in ϕ are directly connected. Path ϕ’s path
length L(ϕ) is given by

distgr (r qs , r
▷
i ) +

j−1∑
k=i

distgr (r▷k , r
▷
k+1) + distgr (r

▷
j , r

q
e ) (3)
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where distgr is the GRD kept in GR .

The path length L(ϕ) is an upper bound of the minimum distance to ensure that any object can

reach r qe from r qs along the path ϕ. The proof is given in Lemma B.1 in Appendix B.1.

To find a set Φ of candidate paths from r qs to r
q
e , we perform an A*-Search [48] on GR . As the

number of such candidate paths can be very large, we use a path length threshold γ to filter out

the paths whose length is extremely long as the similar movements are within a relatively small

range [22]. The threshold γ should be determined according to the statistics on the path lengths

between two stay regions. In our experiments, we set γ to the double of the length of the shortest

candidate path from r qs to r
q
e as a path length in the experiments never exceeds this value.

Computing path lengths by using the sum of GRDs between directly connected regions can

avoid more complex computations on the underlying distance-aware model Gdist . Moreover, it

facilitates pruning the irrelevant regions (e.g., those whose sum of GRDs to r qs or r qe exceeds γ )
when searching candidate paths on GR .

Example 4. Given the start region r qs = S1 and end region r qe = S5, the path length threshold γ is
set to double of 29.5m, the shortest path length from S1 to S5. As a result, four indoor candidate paths
can be searched from the GR shown in Figure 7.

S1
8m
→



1.hw-b
4.5m
→ hw-c

4.5m
→ hw-d

2.hw-b
4.5m
→ hw-c

5.5m
→ S4

4.5m
→ hw-d

3.hw-b
5.5m
→ hw-f

7.5m
→ hw-g

3.5m
→ hw-d

4.hw-b
4.5m
→ hw-a

5.5m
→ S3

5.5m
→ hw-e

3.5m
→

hw-f
7.5m
→ hw-g

3.5m
→ hw-d


12.5m
→ S5

5.1.2 Transition Probabilities. Next, we compute the transition probability between each two

directly connected regions on a path from the candidate path set. Specifically, given a set of ms-

sequences, a start region r qs and an end region r qe , we first obtain their region patterns through the

following steps.

1) For each ms-sequence, we find all its subsequence that starts with λqs and ends with λqe , where
the m-semantics λqs (λ

q
e ) corresponds to the region r qs (r

q
e ).

2) For each such subsequence represented as ⟨λqs , λ
▷
i , . . . , λ

▷
j , λ

q
e ⟩, we obtain its region pattern as

PT = ⟨r▷i , . . . , r
▷
j ⟩

6
.

We iterate through all ms-sequences and record each obtained region pattern and its count

number in a hash tableHPT . Subsequently, we compute the transition probability that an object

leaves a region ri for a directly connected region r j as follows.

1) For each region pattern PT = ⟨ri , . . . , r j ⟩ inHPT , we find a subset Φ′ of candidate path set Φ, in
which all paths hold PT .

2) For each pathϕ ∈ Φ′, we compute its path length L(ϕ) according to Equation 3. As moving objects

tend to choose a shorter path on move [34], each path ϕ’s weight ωϕ among all possible paths is

considered to be inversely proportional to L(ϕ) and computed as ωϕ = L(ϕ)−1/
∑

ϕ∈Φ′(L(ϕ)
−1).

3) For each pair of directly connected regions ⟨rk , rk+1⟩ in path ϕ, its score is incremented by ϕ’s
weighted score so far. Formally, score(⟨rk , rk+1⟩) += PT .count ∗ωϕ , where PT .count is PT ’s count
number inHPT .

6
We omit the start and end regions r qs and r qe when the context is clear.
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4) After each PT has been processed, we compute the transition probability from ri to r j as

Pt (ri , r j ) =
score(⟨ri , r j ⟩)∑

r ∈Out(ri ) score(⟨ri , r ⟩)
(4)

where Out(ri ) is the set of all directly connected regions in GR that an object can enter after

leaving ri .

The mobility knowledge construction receives a full set of annotated ms-sequences, and returns

a hash table that stores the candidate path set and transition probabilities for each stay region pair
7
.

The detailed algorithm is given in Algorithm 6 in Appendix A.3.

Example 5. Figure 8 gives an example of mobility knowledge construction with respect to Example 4.
We organize all candidate paths in a sub-graph of GR for the sake of presentation. For a region pattern
PT = ⟨hw-b, hw-c, hw-d⟩, two candidate paths ϕ1 and ϕ2 that support PT are found, with respective
weight 0.54 and 0.46. Subsequently, each pair of directly connected regions in ϕ1 (e.g., ⟨S1, hw-b⟩ and
⟨hw-b, hw-c⟩) is added with PT .count ∗ 0.54 = 41 ∗ 0.54 and each pair in ϕ2 is added with 41 ∗ 0.46.
After all region patterns inHPT have been processed, we compute the transition probability for every
two directly connected regions. As indicated by the numbers (on the edges) in Figure 8, an object
currently seen in hw-b has a probability 0.65 to enter hw-c and only a probability 0.12 to enter hw-f.

S3hw-a hw-e

S1 hw-b hw-f

hw-c S4 hw-g

hw-d S5

hw-b , hw-c , hw-d

count is 41

ϕ1

ϕ2
S1  hw-b  hw-c  S4  hw-d  S5

S1  hw-b  hw-c  hw-d S5 +0.54*41

 +0.46*41
(path length=35m, weight = 0.46)

(path length=29.5m, weight = 0.54)

8

8

12.5

12.5

4.5 4.5

4.5 5.5 4.5

1.0

1.0

0.23

0.65

0.12

0.49

0.51

1.0
1.0

1.0

1.0

1.01.0
transition 

probability

Fig. 8. Example of Mobility Knowledge Construction

Note that the mobility knowledge can be updated when batches of m-semantics from the anno-

tation layer are available. We evaluate using such a continuous updating paradigm in Section 6.1.4.

5.2 Missing M-Semantics Inference
Given the incomplete observations in an ms-sequence, we infer its missing m-semantics in two

steps, namely a most-likely path inference (Section 5.2.1) and a time period inference (Section 5.2.2).

The algorithm is formalized as Algorithm 7 in Appendix A.4.

5.2.1 Most-likely Path Inference. Without loss of generality, we consider a simple problem form:

Given an observed ms-sequence Λ(o)o = ⟨λ
q
s , λ
▷
q , λ

q
e ⟩, our path inference aims to find the mostly-like

path that supports its region pattern PT (o) = ⟨r qs , r▷q , r
q
e ⟩.

Given the candidate path set Φ constructed for ⟨r qs , r
q
e ⟩, each path ϕ ∈ P that supports PT (o) can

be denoted as r qs → r▷a → . . . → r▷b → r▷q → r▷c → . . . → r▷d → r qe , where r
▷
a → . . . → r▷b

and r▷c → . . .→ r▷d are the missing sub-paths between two consecutive observed regions in PT (o).
Note that two consecutive regions in PT (o) are usually not directly connected since the raw indoor

positioning records are usually discrete.

7
In fact, mobility knowledge is only constructed for a small fraction of region pairs, as we set an upper limit to the path

length threshold γ to constrain the candidate path generation.
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Following the literature [30, 37] in human mobility predicition, we assume the object movement

between regions is a first-order Markov stochastic process, i.e., a region where an object is currently

in is only related to the previous region it went through. Given an observed pattern PT (o), a path
ϕ’s posterior probability P(ϕ |PT (o))8 satisfies the expression below.

P(ϕ |PT (o)) ∝ P(r▷q |r
▷
b )

b−1∏
x=a

P(r▷x+1 |r
▷
x )P(r

▷
a |r

q
s ) · P(r

q
e |r
▷
d )

d−1∏
y=c

P(r▷y+1 |r
▷
y )P(r

▷
c |r
▷
q ) (5)

where P(r▷x+1 |r
▷
x ) is equivalent to our captured transition probability Pt (r▷x , r

▷
x+1) in Equation 4. To

find a most-likely path, we formulate it as a maximum a posteriori problem:

argmax

ϕ
P(ϕ |PT (o)) = argmax

r▷a→...→r▷b ⊆ϕ
Pt (r qs , r

▷
a )

b−1∏
x=a

Pt (r▷x , r
▷
x+1) Pt (r

▷
b , r
▷
q )

argmax

r▷c→...→r▷d ⊆ϕ
Pt (r▷q , r

▷
c )

d−1∏
y=c

Pt (r▷y , r
▷
y+1) Pt (r

▷
d , r

q
e )

(6)

The max-product algorithm [15] is used to solve this problem. By taking the transition proba-

bilities from mobility knowledge as input, it finds an optimal sub-path between two consecutive

observed regions in the observation PT (o) (e.g., r qs , r▷q or r▷q , r
q
e ) as the one with the maximum

probability. By assembling the optimal sub-paths it finds, we can obtain a most-likely path for Λ(o)o .

If no candidate path ϕ is found to support the region pattern PT (o), we attribute it to the random

errors that jump to another partition. In such a case, we modify PT (o) as follows. For any region r ′

in PT (o) that is not contained by any path in the candidate path set Φ, we change it to the most

adjacent region r ′′ from those contained by any path in Φ.

Example 6. Referring to the ms-sequence in Example 3, we obtain its observed region pattern
PT (o) = ⟨S1, hw-b, hw-d, S5⟩. To infer the most-likely path, we use the mobility knowledge to find
the optimal sub-path between every two consecutive regions in PT (o) (c.f. Equation 6). Suppose that
the optimal sub-paths between S1 and hw-b, hw-b and hw-d, hw-d and S5 are found as S1→ hw-b,
hw-b → hw-c → hw-d, and hw-d → S5, respectively. The most-likely path is then assembled as
S1→ hw-b→ hw-c→ hw-d→ S5.

5.2.2 Time Period Inference. The most-likely path inference finds an optimal sub-path for every

two consecutive m-semantics in an observed ms-sequence. Next, we make each region rx ∈ ϕ
∗
a

temporal annotation to form the missing m-semantics between λp and λq .
For each such region rx , its temporal annotation should be divided from the time period between

λp and λq , i.e., MTp,q = [λp .τ .te , λq .τ .ts ]. However, it is hard to determine the time period that the

object is in rx as the object movement is unobserved duringMTp,q . Also, the temporal annotations

already made in other observed ms-sequences can hardly be used to infer the time period for rx as

the walking speed is variable and different across different objects. To ease computation, we assume

that the moving object moves along its path with constant speed during MTp,q . Consequently, we
can use the GRD between two regions as the reference

9
to divide rx ’s time period from MTp,q .

Formally, for a region rx in ϕ∗ = rp → . . .→ rq , its time period is inferred as τx = [t
(x )
s , t

(x )
e ] where

t (x )s = λp .τ .te + ∆t ·

∑x
i=p distдr (rp, ri )∑q
i=p distдr (rp, ri )

; t (x )e = λp .τ .te + ∆t ·

∑x+1
i=p distдr (rp, ri )∑q
i=p distдr (rp, ri )

(7)

8
Detailed derivation is given in Appendix B.2.

9
As discussed in Section 4.2.2, a larger region costs more time to go out as indicated by its GRDs to its connected regions.
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and ∆t = λq .τ .ts − λp .τ .te in Equation 7 is the duration of MTp,q .
When the time period τx is inferred for rx , we differentiate two cases. If rx has already appeared

in an observed m-semantics, the time period is added to the corresponding m-semantics. Otherwise,

we should generate a missing m-semantics as (rx , τx , pass), which means the object has passed

through region rx within the time period τx . We add each generated m-semantics to the observed

ms-sequence and finish the complementing.

Example 7. Continuing with Example 6, we process one of the optimal sub-paths hw-b→ hw-c→
hw-d. For the regions hw-b, hw-c and hw-d it contains, we divide the time period 9:16am-9:19am into
three slices according to Equation 7, i.e., 9:16am-9:18am, 9:18am-9:19am, and 9:19am-9:19am. As hw-b
and hw-d have appeared in the observed ms-sequence, their time periods are added to the corresponding
m-semantics. Moreover, we generate a missing m-semantics (hw-c, 9:18-9:19am, pass). Likewise, we
process other sub-paths and obtain a complete ms-sequence:

(S1, 9:05am-9:16am, stay) → (hw-b, 9:16am-9:18am, pass) → (hw-c, 9:18am-9:19am, pass)

→ (hw-d, 9:19am-9:20am, pass) → (S5, 9:20am-9:42am, stay)

6 EXPERIMENTAL STUDIES
All programs are in Java and run on an Intel Xeon E5-2660 2.20GHz machine with 8GB memory.

6.1 Experiments on Real Data
Setting.We collected the real data from a Wi-Fi based positioning system in a 7-floor shopping

mall in Hangzhou, China from Jan 1 to Jan 31, 2017. The daily numbers of objects (i.e., device MAC

addresses) and positioning records in the operating hours (10AM – 10PM) were around 7,647 and

2,907,904, respectively. As a result, we obtained a total of 237,057 p-sequences. According to our

survey, the positioning data error based on MIWD varied from 2 to 25 meters; the average sampling

rate was around 1/18 Hz, i.e., a device can be observed about once every 18 seconds. As the indoor

partitions divided by walls and doors may be non-convex or imbalanced (long in one dimension but

short in the other), we employed an existing decomposition algorithm [43] to divide those irregular

partitions into regular ones. As a result, we obtained 3,742 indoor partitions and 6,534 doors. In the

mall, 202 shops were selected as semantic regions based on the application needs. The semantic

region graph and its associated partition R-tree were kept in memory as they together are only

12.6 MB. The shortest indoor paths between doors were pre-computed to speed up computations

on MIWD and GRD. Their maximum memory consumption was 990.8 MB.

We used the Event Editor module in TRIPS [24] to visually annotate m-semantics on the p-

sequences as we were unable to know a device’s exact whereabouts. Among the ms-sequences we

annotated, 1,004 ms-sequences (including 17,322 m-semantics) obtained from Jan 1 were used to

initialize the E-function, and the other 9,687 ms-sequences (including 125,544 m-semantics) from

Jan 2 to Jan 31 formed the ground truth for evaluation. The purpose of this setting is to study the

case when the initial training data is insufficient. Particularly, an individual stay m-semantics or a

sequence of pass m-semantics formed a snippet, and each snippet was extracted as a 28-dimensional

feature vector for the model training. From Jan 2 to Jan 30, E-function was continuously enhanced

by a co-training paradigm [9] in which the most confident predicted snippets (with posterior

probability ≥ 0.9 or ≤ 0.1) were added to the training set at the end of each day. The mobility

knowledge was initially constructed for Jan 1 and also updated daily. The candidate path sets

were generated for 10,682 directed region pairs, and the average path set size was 7.7. We kept the

mobility knowledge in memory as it only needs around 36.1 MB.
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Performance Metrics. In our framework implementation, we used one thread for each object.

Therefore, we study the efficiency of our proposed techniques in terms of average running time for
processing an individual object’s data.

We use two metrics to measure construction effectiveness. On the one hand, we define point-wise
accuracy (PA) as the fraction of positioning records that receive correct annotations. As spatial

and event annotations are involved for each record, we implement spatial PA (SPA) and event PA
(EPA) that measure the point-wise accuracy in terms of spatial annotations and event annotations,

respectively. We then define combined PA (CPA) that linearly combines SPA and EPA by a tradeoff

parameter α such that CPA = α · SPA + (1 − α) · EPA. Usually, the SPA requirement is stricter than

EPA, as an event annotation makes no sense if the spatial annotation is wrong. On the contrary,

analysts can still know a user’s whereabouts provided the region is annotated correctly. Therefore,

we use a large α = 0.7 in the evaluation.

On the other hand, we note that sometimes the observed records are distributed unevenly, making

some long-period m-semantics not get enough attention in accuracy evaluation. To this end, we

segment each constructed ms-sequence at uniform intervals and measure the accuracy of each

segment. The metric is called the segment-wise accuracy (SA). Similar to PA, we also implement

the spatial SA (SSA), event SA (ESA), and combined SA (CSA). As the sampling rate of real data

is relatively low, we set a segment length of 10 minutes. Note that if there is a cross of different

m-semantics within a 10-min interval, we choose the one with a longer duration as the annotations

of that segment. The process also applies to the ground truth. In general, PA can be used to assess

the accuracy of annotations at a particular time, while SA measures the consistency between the

annotation and ground truth from a global perspective.

6.1.1 Comparison of Annotation Methods. Our annotation method, denoted as Dense-E+LEC, was
implemented as two key modules. One is the temporal-event annotator depending on the density

based splitting method (Section 4.1) and E-function (Section 4.2.1). The other is the spatial annotator

that mainly uses the location estimate confidence to match semantic regions for stay m-semantics

(see Section 4.2.2). We designed several alternatives to compare with Dense-E+LEC by modifying

its modules. On the one hand, we implemented the SMoT method [4] (described in Section 4.1)

for the temporal-event annotator. On the other hand, we used two different matching methods

in the counterpart of the spatial annotator. The first called CTRD computes the centroid of all

location estimates and selects the covering region as the spatial annotation. The second called

VOTE counts the location estimates falling in each region and matches the one with the highest

count. By combining these modifications, we obtained five alternative methods, i.e., Dense-E+CTRD,
Dense-E+VOTE, SMoT+LEC, SMoT+CTRD and SMoT+VOTE. All alternatives are equipped with a

cleaning layer and a complementing layer. Their performances are reported in Figure 9.
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Fig. 9. Performance of Annotation Methods on Real Data

Referring to Figure 9(a), all methods based onDense-E require more time to annotate m-semantics

than those with SMoT. Despite the minor time spent in event identification, the time complexity is

O(n · logn) for the density based splitting and only O(n) for SMoT, where n is the record number

of a p-sequence. Comparing the three methods that use the same temporal-event annotator (i.e.,
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Dense-E or SMoT), the method using LEC costs the most in making spatial annotations as it has to

evaluate the confidence for each location estimate. The cost is slightly higher if a method uses VOTE

other than CTRD, as VOTE needs to rank all involved regions and select the best. Nevertheless, our

Dense-E+LEC method can process a p-sequence within 350 milliseconds, which is very efficient

for most analysis applications.

Figure 9(b) reports the three PAs for all annotation methods. The methods with Dense-E have

the same EPA of 0.968, which outperforms 0.816 for those with SMoT. This shows that the spa-

tiotemporal density information is more useful than the speed information in splitting p-sequences

and identifying mobility events. Looking at the SPA, the spatial matching method LEC always

outperforms VOTE and CTRD when combining with either Dense-E or SMoT. The CPA performs

the best at 0.9264 with the method Dense-E+LEC. The SAs reported in Figure 9(c) exhibit similar

trends with the PAs but are lower in the testing. When a large number of records are observed in

a short period, the PA tends to give a higher accuracy as each matched record count one for the

hits. In contrast, the SA is only processed for each 10-min segment and thus is less affected by such

uneven data distribution. Similarly, Dense-E+LEC performs the best with the highest SSA, ESA,

and CSA at 0.912, 0.949, and 0.923, respectively.

To sum up, our proposed method Dense-E+LEC achieves a very good balance between efficiency

and effectiveness, and therefore it is very useful in annotating m-semantics.

6.1.2 Effect of Cleaning and Complementing. We compared our complete three-layer framework

IMS-CAC (C denotes cleaning and C denotes complementing) with several alternatives. Specifically,

IMS-A only contains a single annotation layer, two-layer method IMS-CA uses a cleaning layer before

annotation, whereas another two-layer IMS-AC adds a complementing layer after the annotation

layer. Note that the annotation layer is necessary for constructing m-semantics. We report the

construction results on the number of m-semantics per ms-sequence, PA and SA for these four

methods in Table 3.

Table 3. Effect of Cleaning and Complementing on Real Data

Method # of M-Semantics SPA EPA CPA SSA ESA CSA

IMS-A 11.94 0.8682 0.9005 0.8779 0.3941 0.4333 0.4059

IMS-CA 10.23 0.9390 0.9684 0.9264 0.4883 0.4543 0.4781

IMS-AC 14.51 0.8682 0.9005 0.8779 0.7459 0.7539 0.7483

IMS-CAC 14.12 0.9390 0.9684 0.9264 0.9122 0.9487 0.9232

IMS-A is the worst as it directly annotates m-semantics on the raw data. Its CPA and CSA are

0.8779 and 0.4059, respectively. Due to the low sampling frequency in the data, SA measures of

those methods without data complementing (i.e., IMS-A and IMS-CA) are rather low. In comparison,

IMS-CA with a cleaning layer significantly outperforms IMS-A; its CPA is increased at 0.9264

with improvement on both SPA and EPA measures, and all its SA measures also improve much.

Correspondingly, the number of m-semantics per ms-sequence is decreased from 11.94 to 10.23.

These results indicate that our cleaning method repairs many positioning data errors and removes

their resultant wrong m-semantics. Therefore, the cleaning layer can improve the input data for

subsequent layers. This effect of cleaning is also observed when we compare the PA of IMS-CA

and IMS-AC. Although the latter produces more m-semantics, many of them are problematic as

they result from uncleaned data. Therefore, all PA measures of IMS-AC are considerably lower

than their counterparts of IMS-CA.

IMS-CAC is always the best among all. Both its CPA and CSA are greater than 0.92. Note

that the complementing layer takes no effects on PA measures as the hits are counted only over
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those observed positioning records. Therefore, the PA measures of IMS-CA equal to those of IMS-

CAC. However, the SA gap between them is distinguishable. These results show that IMS-CAC

can produce reliable m-semantics highly consistent with the ground truth. With the help of our

inference based complementing, IMS-CAC can recover the missing m-semantics that IMS-CA is

unable to produce. As a result, the number of m-semantics per ms-sequence is increased from

10.23 to 14.12. More importantly, because of the combined effects of cleaning and complementing,

IMS-CAC’s accuracies improve clearly compared to IMS-CA and the others. In summary, the

m-semantics construction on real data remarkably benefits from using our complete framework.

We also measure the average running time of processing an object’s relevant data for each layer.

The time costs in cleaning, annotation and complementing layers are around 42.6ms, 321.8ms, and

11.8ms, respectively. As the cleaning and complementing layers incur relatively very low time

cost while improving the construction effectiveness significantly, it is beneficial and necessary to

include them in our framework.

6.1.3 Comparison of Complementing Methods. As existing data repairing techniques [14, 38] are
used for data instances and cannot directly support the tuple-form m-semantics, we designed

several alternatives to verify the effectiveness of our complementing method. Recall that we used

the max-product inference (denoted asMAX-P) in Section 5.2.1 to decode the most-likely indoor

path to recover the spatial annotations of the missing m-semantics. We listed several comparable

strategies as follows. First, aMIN-L strategy searches for a path with the shortest length between

the observed regions as the most-likely path. Different from searching for the optimal path with

the shortest length (i.e., MIN-L) or the highest product of transition probabilities (i.e., MAX-P),
we can also randomly sample a path among all candidate paths based on their possibilities. The

possibility of each candidate path can be measured by either the reciprocal of path length or the
product of transition probabilities. The two strategies are denoted as Random-L and Random-P,
respectively. In general,MIN-L and Random-L consider only static space information whileMAX-P
and Random-P use the transition probability computed upon both space information and historical

mobility data. Besides, Random-P and Random-L output stochastic results while the other two

give deterministic results. Combining with the time period inference presented in Section 5.2.2, we

obtained four complementing methods correspondingly.

With the same cleaning and annotation layers we proposed, wemeasured the four complementing

methods’ SAs in the m-semantics construction. Referring to the SSAs reported in Figure 10,MAX-P
performs the best while the other deterministic methodMIN-L is clearly. Surprisingly, the stochastic
method Random-P also slightly outperforms MIN-L, showing that the transition probabilities

are more powerful in capturing the similar movements between regions than the path lengths.

Compared to the path length, our transition probability considers both space information and

historical object movements. Besides, Random-L is the worst of all. On the other hand, the ESA

changes very slightly as the path inference methods have an impact on the boundary values. In

general, our complementing based on the captured mobility knowledge is effective for the missing

data recovery. Note that the above methods all select the most-likely path from a candidate set

found by the A* algorithm. In this sense, their running time costs are very close.

6.1.4 Effect of Daily Updating Paradigm. We also study the effect of using a daily updating paradigm

in constructing m-semantics. In the daily updating case, m-semantics annotated from the previous

day were accumulated for re-training E-function and updating mobility knowledge. In the case

without daily updating, E-function and mobility knowledge were only built with the data obtained

from Jan 1. We measured the CSA for the IMS-CA and IMS-CAC methods in each day from Jan 2

to Jan 31. The methods without daily updating are marked with ‘w/o DU ’. Referring to Figure 11,

the measures of the methods without daily updating fluctuate a lot and in general decrease as
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Fig. 11. Effectiveness vs. Daily Updating on Real Data

the day goes on, whereas those of the methods with daily updating improve and stabilize as time

goes by. When the daily updating paradigm is employed, E-function and mobility knowledge are

continuously enhanced by more annotated m-semantics. Note that IMS-CAC increases more rapidly

than IMS-CA as it exploits an additional complementing layer where the mobility knowledge can

be periodically updated. The results show it is very helpful to update E-function and mobility

knowledge when raw positioning data is continuously streamed in.

6.1.5 M-Semantics’ Ability to Answer Queries. We also evaluated our constructed m-semantics’

ability to answer typical queries. Given a query set Q of indoor semantic regions and a query time

interval QT, we introduce two top-k queries.

1) A Top-k Popular Region Query (TkPRQ) finds k semantic regions from Q that have the most

number of visits10 within QT.
2) A Top-k Frequent Region Pair Query (TkFRPQ) finds k most frequent pairs of semantic regions

from Q ×Q that both have been visited by the same object within QT.
TkPRQ and TkFRPQ are very useful in studies like popular indoor location discovery [25, 26]

and frequent pattern mining [22]. Other than m-semantics constructed by the four methods in

Table 3, we use the corresponding raw data and cleaned raw data to answer the two queries. The

two corresponding methods are denoted as RAW and RAW-C, respectively. We introduce a naive

strategy to each method, i.e., we compute the visits for all query regions (or region pairs) and return

the top-k results by a full ranking. As no semantics is provided in the raw positioning data, the

interpretation of a visit to a semantic region is done for the RAW and RAW-C methods. In particular,

if an object’s reported locations have been falling in a region over a time interval, the object is

considered to have visited that region for once. We set the corresponding time interval to 1.5 min

in RAW and 3 min in RAW-C for an optimized tuning.

We compared all methods’ efficiency in terms of query execution time. Besides, we evaluated their

effectiveness with respect to the ground truth results computed from the ground truth m-semantics

described in the experimental setting. In particular, we used the metric precision that measures the

ratio of the true top-k regions (or region pairs) in the returned top-k results. We issued 20 random

queries for each query type and report the average efficiency and effectiveness measures. We fixed

k = 60 and randomly pick 101 (50% of all) semantic regions to the query setQ . We varied the query

time interval QT as 60, 120, 180, 240 min.

The efficiency results for TkPRQ and TkFRPQ are reported in Figure 12(a) and (b), respectively.

In each test, the four IMS methods are faster than RAW and RAW-C by almost two orders of

magnitude. When QT increases, more data (positioning records in RAW/RAW-C and m-semantics

in IMS methods) should be loaded, and both queries incur more time to return the results. As the

scale of raw data is much greater than that of m-semantics, RAW’s and RAW-C’s execution time

increases more rapidly than all IMS methods. In fact, raw positioning data collected in a month

was around 3.44 GB, whereas m-semantics constructed by IMS-CAC was only 220.1 MB. Moreover,

10
In the query context, a visit is equivalent to a stay event.
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IMS-CAC can return the results for both TkPRQ and TkFRPQ within one second for a four-hour

query. These results verify that our constructed m-semantics are very efficient in answering the

two top-k queries.
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Fig. 12. Query Answering Efficiency vs. QT on Real Data

We also measured the effectiveness in each aforementioned setting. As shown in Figure 13(a) and

(b), for both types of queries, the precision of all methods decreases with an increasing QT. When a

longer QT is used, more relevant data should be considered in the query processing, which involves

more data errors and makes the results less effective. Nevertheless, all methods with cleaning

(i.e., RAW-C, IMS-CA, and IMS-CAC) decrease very slowly. Among them, IMS-CA and IMS-CAC

always outperform RAW-C, showing that the brief information kept in m-semantics can capture

the underlying object movements very well. Moreover, when QT increases to 240 min, m-semantics

constructed by IMS-CAC can still achieve a precision 82.8% for TkPRQ and 79.1% for TkFRPQ.
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Fig. 13. Query Answering Effectiveness vs. QT on Real Data

We also studied the effectiveness by varying other parameters. In general, the precision results on

varying k and |Q | also verify that the m-semantics constructed by IMS-CAC are highly effective in

answering both queries than other methods. Such additional results can be found in Appendix C.1.

6.2 Experiments on Synthetic Data
We used synthetic data to further verify our proposals’ effectiveness when different levels of

temporal sparsity and positioning errors are present in the raw indoor positioning data.

By using the indoor mobility data generator Vita [23], we simulated a 10-floor building environ-

ment with 4 staircases, 1,410 indoor partitions and 2,200 doors. A total of 423 semantic regions

were decided upon the partitions at random. We generated moving objects in the environment for

four hours. Specifically, 10K objects were distributed to the floors, each having a lifespan varied

from ten seconds to four hours. Object maximum speed was set to Vmax = 1.7m/s and object

movements followed the waypoint model [20]. In particular, each semantic region is considered as

a destination, an object moves towards its destination along a pre-planned indoor path, it stays at

the destination for a random period from 1 second to 30 min after arrival, and it moves again to the

next destination that is decided randomly. We recorded an object’s location every second as the

ground truth trajectory, and generated its true m-semantics according to the simulated behavior,

i.e., staying at (moving towards) a destination was regarded as a stay (pass) event. We obtained

998,618 ground truth m-semantics from the 10K objects’ ms-sequences.
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The synthetic IPT is maintained according to the ground truth trajectories as follows. After an

object has sent an update to IPT, it keeps silent for at most T seconds. The maximum positioning
period T refers to the maximum value of the time interval between two consecutive positioning

records of an object. A location update is randomly within µ meters from the true location. False

floor values and location outliers are added to the updates with certain probabilities (3% and 3%,

respectively). In particular, a false floor value is produced within two floors up or down, and an

outlier is randomly within 2.5µ-10µ meters from the true location. The positioning error factor µ
measures the average distance between the positioning location and its true location. To test the

effects of temporal sparsity and positioning error, we varied T and µ, respectively. The synthesized
IPT instances as listed in Table 4.

Table 4. Synthetic IPT Instances

IPT Instance Parameter Setting # of Generated Records

T 5µ3 T = 5s, µ = 3m 15,231,971

T 5µ4 T = 5s, µ = 4m 15,230,508

T 5µ5 T = 5s, µ = 5m 15,218,742

T 10µ3 T = 10s, µ = 3m 7,416,906

T 15µ3 T = 15s, µ = 3m 4,945,824

The memory consumptions for GR , shortest indoor paths between doors, and mobility knowledge

were 13.6 MB, 458 MB, and 48 MB, respectively. We randomly selected 3% of the ground truth

ms-sequences to train E-function, and the rest (including 968,660 m-semantics) were used as testing

data in the evaluation.

M-Semantics Construction Effectiveness.We tested the four methods in Table 3 on different

IPT instances. Here we use the SA with a segment length of 10 min to measure the consistency

between constructed m-semantics and the ground truth described above. First, we fixed µ = 3m and

vary T . The SSA and ESA are reported in Figure 14(a) and (b), respectively. When varying T from

5s to 15s, i.e., the observed data becomes sparser (see Table 4), and all methods’ two SA measures

decrease but IMS-CAC’s decreases the slowest. Also, the performance gap between IMS-CAC and

IMS-CA tends to expand when a largerT is involved, showing that our data complementing is very

effective at recovering the missing m-semantics when the positioning data becomes sparser. When

T=15s, IMS-CAC can still have an SSA of 0.91 and an ESA of 0.90. Still, IMS-A’s accuracy is the

worst and decreases rapidly when T increases. IMS-CA and IMS-CAC equipped with a cleaning

layer clearly outperform the other two in all tests.
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Fig. 14. Effectiveness of M-Semantics Construction on Synthetic Data

We also fixed T to 5s and tested with different µs. Refer to the two SA measures reported in

Figure 14(c) and (d). When µ increases, the SSA of both IMS-CAC and IMS-CA stay stable while

the others without cleaning decrease rapidly. This demonstrates that our raw data cleaning is very

useful to reduce the negative impact of positioning errors. Besides, IMS-CAC outperforms IMS-CA
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in all tests due to the benefits of the complementing. On the other hand, the ESA of all methods is

insensitive to µ and our method’s ESA can still be higher than 0.95.

The results reported in different T and µ values show that the IMS-CAC framework works very

effectively at constructing m-semantics even the raw data quality is relatively low.

With the ground truth trajectories in synthetic data, we also studied the effectiveness of our raw

data cleaning method alone. The additional results in Appendix C.2 demonstrate that our raw data

cleaning method is still effective for different T and µ values.

M-Semantics’ Ability to Answer Queries. For each IPT instance, we answered the TkPRQ and

TkFRPQ queries with the six methods introduced in Section 6.1.5. In the experiments, the time

interval that indicates a visit to a region was tuned to 2 min in RAW and 3.5 min in RAW-C. A total

of 212 (50% of all) semantic regions were picked to form query setQ , k was set to 60, and QT to 120

min. The precisions of different methods are reported in Figure 15.
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Fig. 15. Query Answering Effectiveness on Synthetic Data

Referring to the results of T 5µ5, T 5µ4 and T 5µ3 in Figure 15(a) and (b), precisions of all methods

decrease when µ increases in both queries. All methods with data cleaning outperform the others

in the tests. When µ increases to 5m, our proposed IMS-CAC can still have a precision of 91.06%

for TkPRQ and 88.84% for TkFRPQ, showing very high effectiveness in answering the two queries

when the raw data contains many errors.

Referring to the results of T5µ3, T10µ3 and T15µ3 for the two queries in Figure 15(a) and

(b), the precision of each method decreases with an increasing T . However, IMS-CAC using the

complementing decreases very slightly, while RAW-C and IMS-CA deteriorate more rapidly. These

results show that our complementing is very useful to improve the constructed m-semantics,

especially when the raw data is temporally sparse. IMS-A performs very poorly for both queries—

sometimes it is even worse than directly using the raw data. Thus, it is very necessary to employ

all three layers in constructing reliable m-semantics for query use.

7 RELATEDWORK
Semantic Trajectory Representation. Parent et al. [33] propose the concept of semantic trajec-

tory as a (GPS) data trace enhanced with annotations and/or complementary segmentations. Güting

et al. [16] generalize this concept to symbolic trajectory, a sequence of pairs of a time interval

and a label that refers to some particular user semantics. Marketos et al. [31] design a trajectory

reconstruction method to transform raw trajectories into key movement features needed by specific

warehousing applications. Zheng et al. [47] describe a trajectory only by some stay points where the

moving objects stop for a relatively long time. Su et al. [39] propose a partition-and-summarization

approach, in which a raw trajectory is segmented according to moving object’s behavior, and the

characteristics of each trajectory segment are summarized by a short text. Nogueira et al. [32]

propose a framework with ontology to enrich GPS traces with Linked Open Data (LOD). Compared

to these works, the m-semantics proposed in this study provide a structured representation about

where-when-what of indoor users, which facilitates mobility analytics applications like semantic

location prediction [37] and activity recommendation [47].
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Semantic Annotation. Zhang et al. [46] derive fined-grained sequential patterns by a top-down

splitting of the coarse-grained patterns obtained from POI grouping. Alvares et al. [4] extract

stop and move events from trajectory points based on geographical information. Cao et al. [10]

propose techniques for extracting from GPS data semantically meaningful geographical locations

visited by users. Teng et al. [36] identify indoor stop-by pattern as a sequence of occurrence

regions from uncertain RFID data. Different from the sequential patterns [46] and visiting location

patterns [4, 10, 36], our work annotates two generic mobility patterns stay and pass, which are

flexible for analyzing user behaviors by combining relevant information from indoor regions.

Liao et al. [27] extract activity types and significant places from a person’s GPS traces using a

hierarchical CRF. Yan et al. [44] propose an HMM based annotation method to infer stops and POI

category for raw GPS records. Wu et al. [42] annotate location records with keywords extracted

from geo-referenced social media data by kernel density estimation. By analyzing spatiotemporal

regularity, Wu et al. [41] study the personalized annotation that enriches personal GPS records with

the POI category. Our work differs from these works in several aspects. First, our work searches

for a particular region as spatial annotation while other works focus on inferring textual [42] or

categorical [27, 41, 44] information for location records. Second, our work uses the spatiotemporal

characteristics of a positioning sequence under indoor topology to make annotations, while other

works demand additional knowledge in geographic spaces, e.g., human activity regularity [27, 41]

and POI category [44]. However, such priors are difficult to meet in indoor spaces with relatively

small extents but complex topology. Third, our work makes use of historical mobility knowledge

to recover the missing annotations, while none of these studies consider the data complementing

after annotation. Unfortunately, the data sparsity in a compact indoor space poses even greater

challenges than the wider-range geographical space.

Mobility Data Cleaning and Repairing. Mobility data can be in the form of a sequence of

geometric locations (e.g., GPS or Wi-Fi positioning data) or symbolic locations (e.g., RFID reader

or Bluetooth hotspot). Smoothing based methods [14, 38] are commonly used for handling noisy

geometric locations by mathematically interpolating the points on the time series. In contrast,

constraint based methods use additional information such as route structure [35] or other sensory

data [12] to mitigate the positioning error. Differently, our cleaning method utilizes the indoor

topology that is neither embedded in the smoothing based methods [14, 38] nor considered by

the existing constraint based methods [12, 35]. The interpolation methods [14, 38] require inputs

captured as points, and thus such methods fall short in complementing m-semantics for which the

inputs are regions and three-tuple events.

Similar to the most-likely path inference in our m-semantics complementing, Zheng et al. [45]

andWei et al. [40] study the possible route inference for road networks and free spaces, respectively.

However, these techniques are different from our proposal. First, the routable graph built in [40]

regards that each two adjacent geospatial grids are connected, unable to model the topological

constraints dominated in indoor spaces. Second, the graph based inference and the nearest neigh-

bor based inference in [45] models transition probabilities using only the frequency of relevant

historical trajectories. In contrast, region transition probabilities defined in our study considers

both movement pattern frequency and distance weights between regions. In Section 6.1.3, we have

demonstrated that the mobility knowledge that combines both movement and distance information

significantly enhances our path inference.

Using indoor topology to clean and/or repair symbolic location sequences has been studied.

Chen et al. [11] clean RFID readings by a Bayesian inference approach that makes use of duplicate

RFID readings and prior knowledge about the environment and readers. Baba et al. clean RFID

tracking data by utilizing either the integrity constraints [6, 7] implied by RFID reader deployment

or the relevant knowledge [5] learned from historical data. In their early solutions, distance-aware
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graph [7] and probabilistic graph [6] are designed to handle the false positives and false negatives,

respectively. Their learning based approach [5] uses an indoor RFID Multi-variate HMM to build

the correlation of indoor object locations and RFID readings to handle both false positives and

false negatives. Compared to the RFID data captured as discrete states at different timestamps, the

Wi-Fi positioning locations in our setting are continuous coordinates that can hardly be optimized

with unlimited possible values. Also, our cleaning method identifies and repairs three types of

data errors in one pass, while works [6, 7] can only handle one specific type of data error in a

separate and specialized process. Moreover, our inference method for recovering missing data is

different from the state detection model [11], probabilistic graph [6], and multi-variate HMM [5] in

three aspects. First, our inference is based on the mobility constraints captured at the m-semantics

level. Second, we model the similar movements between each pair of semantic regions, while

works [5, 6, 11] build prior knowledge in a global scope. Third, unlike other works, our transition

probability computation considers the effect of the corresponding path’s walking length.

8 CONCLUSION AND FUTUREWORK
This paper tackles the problem of translating mobility semantics from raw indoor positioning data.

We propose a three-layer framework with a set of novel techniques. In the cleaning layer, we design

a mobility constraint based cleaning method that eliminates indoor positioning data errors. In

the annotation layer, we design a density based method to split the cleaned data sequence into

snippets according to the spatiotemporal densities of the data, and a semantic matching method to

make proper annotations and decide mobility semantics for the snippets. In the complementing

layer, we devise an inference method to recover the missing mobility semantics with the mobility

knowledge captured from historical data. The experiments on real and synthetic data verify that

our framework is efficient and effective in constructing mobility semantics, and the constructed

mobility semantics are able to answer typical queries efficiently and effectively.

For future work, it is useful to incorporate the temporal annotations of mobility semantics in

inferring the missing data. It is also interesting to model and learn the probabilistic dependencies

among the attributes of mobility semantics, in order to annotate the most-likely semantic regions

and mobility events for the positioning sequences. In addition, it is useful to enrich the mobility

semantics by making use of other user behavior data such as transaction logs or check-ins.
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Appendix A ALGORITHMS
A.1 Density based Splitting Algorithm
Algorithm 4 divides a cleaned p-sequence Θo into a sequence of data snippets. It mainly consists of

a procedure of density based clustering (lines 2–19) and a procedure of p-sequence partitioning

(lines 20–33).

First, a time-ordered sequenceAsnpt is initialized to hold the split snippets (line 1). Subsequently,

the density based clustering is conducted on the positioning records in the p-sequence Θo (lines 2–

19). In particular, the function RetrieveNeighbors (lines 5 and 17) issues a range query on Θo to find

a set N of neighboring records, each having its spatial distance to θ smaller than ϵs and temporal

distance to θ smaller than ϵt . Besides, the function GetAdaptivePtm (lines 6 and 18) computes an

adaptive ptm associated with the current record.

To be specific, GetAdaptivePtm works as follows (lines 35–38). It first retrieves a setNt of records

within the time window [t − ϵt , t + ϵt ] by a temporal range query on Θo (line 36). Note that |Nt |

is proportional to the local sampling rate stlocal such that |Nt | = 2 ∗ ϵt ∗ stlocal . Afterwards, a
round-down sigmoid function ⌊ e |Nt |−N

1+e |Nt |−N ∗ 2P + B⌋ is used to obtain the adaptive ptm (line 37).

Particularly, N , P , B are three integer parameters, and ptm increases monotonically with |Nt | from

B to 2P + B and equals to P + B when |Nt | = N . The optimal values of parameters ϵs , ϵt , N , P , and
B can be determined by a grid search. The adaptive function here can be replaced with another

design, e.g., an one that considers both the sampling rate and potentially located region.

When the clustering is done, each a cluster is converted into a dense snippet snpt and added

to Asnpt (lines 20–23). After that, the algorithm iterates through each consecutive dense snippets

⟨snpti , snpti+1⟩ in Asnpt (lines 24–33). It first checks if the two dense snippets snpti , snpti+1 can
be merged in the sense of the merging conditions defined on ∆t and ∆s (line 25). If it is, they

are removed from Asnpt (line 26), merged into one (line 27), and added back to Asnpt (line 28).

Otherwise, it further checks if there exists any positioning record labeled with noise between the

two snippets (lines 29–30). If any of such record can be found, a non-dense snippet is formed

by retrieving all such records in-between, and then added to Asnpt (lines 31–33). At the end, the

time-ordered sequence Asnpt is returned (line 34).

A.2 Semantic Matching Algorithm
Algorithm 5 uses the E-function and the semantic region graph to translate a snippet Θ∗o into a

sequence Λ∗o of m-semantics. At the beginning, a time-ordered sequence Λ∗o is initialized to hold

the matched m-semantics (line 1). If the snippet is classified as stay by the function E(Θ∗o) (line 2),
it is matched to a stay m-semantics (lines 2–9). In particular, the event and temporal annotations

are made at first (line 3). Subsequently, the algorithm iterates through each positioning records θi
and computes its location estimate confidence conf (i) (lines 4–6). As a result, the stay position is
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Algorithm 4: DensityBasedSplitting
Input: p-sequence Θo , temporal distance threshold ϵt , spatial distance threshold ϵs , tolerate time span

∆t , tolerate spatial distance ∆s .
Output: sequence of split snippets Asnpt .

1 time-ordered sequence Asnpt ←− ⟨⟩

2 cluster_id ←− 0

3 for each record θ ∈ Θo do
4 if label(θ ) is null then
5 N ←− RetrieveNeighbors(θ , ϵt , ϵs )
6 ptm ←− GetAdaptivePtm(Θo , θ .t , ϵt )

7 if |N | ≤ ptm then
8 label(θ ) ←− noise

9 else
10 cluster_id ←− cluster_id + 1
11 label(θ ) ←− cluster_id
12 seed set S ←− N \ θ

13 for each record θ ′ ∈ S do
14 if label(θ ′) is noise then label(θ ′) ←− cluster_id
15 if label(θ ′) is null then
16 label(θ ′) ←− cluster_id
17 N ′ ←− RetrieveNeighbors(θ ′, ϵt , ϵs )
18 pt ′m ←− GetAdaptivePtm(Θo , θ

′.t , ϵt )

19 if |N ′ | > pt ′m then S ←− S ∪N ′

20 for each cluster id cluster_id do
21 time-ordered sequence snpt ←− ⟨⟩
22 add all records labeled with cluster_id to snpt
23 mark snpt as dense; add snpt to Asnpt

24 for any consecutive dense snippets ⟨snpti , snpti+1⟩ in Asnpt do
25 if CanBeMerged(snpti , snpti+1, ∆t , ∆s ) then
26 Asnpt ←− Asnpt\ ⟨snpti , snpti+1⟩
27 snpt ′ ←− snpti ∪ snpti+1
28 mark snpt ′ as dense; add snpt to Asnpt

29 else
30 if exists a record labeled with noise between the snippets then
31 time-ordered sequence snpt ←− ⟨⟩
32 add all records labeled with noise in-between to snpt
33 mark snpt as non_dense; add snpt to Asnpt

34 return Asnpt
35 Function GetAdaptivePtm (Θo , t , ϵt )
36 Nt ←− range query on Θo within [t − ϵt , t + ϵt ]

37 ptm ←− ⌊
e |Nt |−N

1+e |Nt |−N
∗ 2P + B⌋

38 return ptm
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inferred as
ˆl (line 7) and the spatial annotation r is matched by searching on GR (line 8). Afterwards,

the matched m-semantics λ is added to Λ∗o (line 9).
Otherwise, if the snippet is corresponding to a pass event, we conduct the matching as follows

(lines 10–20). First, an event annotation pass is made for each m-semantics to be matched, and a

variable λ′ is used to control the merge of consecutive pass m-semantics (line 11). The algorithm

then iterates through each positioning record θi (lines 12–20). Specifically, the temporal annotation

is generated (line 13) and the spatial annotation is determined as the region that contains θi .l
(line 14). If the current θi ’s spatial annotation is the same as λ′.r , they are merged together (lines 15–

16). Otherwise, λ′ can no longer be merged with any subsequent m-semantics and it is added to Λ∗o ,
and the current matched annotations (r , τ , δ ) is assigned to λ′ (lines 17–19). Note that λ′ should be

added to Λ∗o in the last loop of iteration (line 20). Finally, Λ∗o is returned as a sequence of matched

m-semantics (line 21).

Algorithm 5: SemanticMatching
Input: split snippet Θ∗o , event identification function E, semantic region graph GR .
Output: sequence of m-semantics Λ∗o .

1 time-ordered sequence Λ∗o ←− ⟨⟩

2 if E(Θ∗o ) = stay then
3 δ ←− stay; τ ←− [head(Θ∗o ).t, tail(Θ

∗
o ).t]

4 for each positioning record θi in Θ∗o do
5 N (i) ←− find the k nearest neighboring records of θi

6 conf (i) ←−
(∑θj ∈N(i )

distI (θi .l ,θ j .l )

|N(i ) |

)−1
7 sum_conf ←−

∑
θi ∈Θ∗o conf

(i)
;
ˆl ←−

∑
θi ∈Θ∗o

conf (i )

sum_conf · θi .l

8 r∗ ←− search GR for a region that contains
ˆl

9 λ←− (r∗, τ , δ ); add λ to Λ∗o

10 else
11 δ ←− pass; λ′ ←− null
12 for each positioning record θi in Θ∗o do
13 τ ←− [θi .t, θi .t]

14 r∗ ←− search GR for a region that contains θi .l

15 if r∗ = λ′.r then
16 λ′.τ ←− λ′.τ ∪ τ ;

17 else
18 if λ′ is not null then add λ′ to Λ∗o
19 λ′ ←− (r∗, τ , δ )

20 if θi = tail(Θ∗o ) then add λ′ to Λ∗o

21 return Λ∗o

A.3 Mobility Knowledge Construction Algorithm
Algorithm 6 takes GR and a set of ms-sequences as input and returns the mobility knowledge in a

hash tableMK . At the beginning, the hash tableMK is initialized to store the path set Φ as well

as the corresponding transition probabilities TP for each directed pair of stay regions (line 1). For

each such pair ⟨r qs , r
q
e ⟩, a function ConstructForOnePair is called to obtain the corresponding Φ and

TP (lines 2–3).
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Function ConstructForOnePair works as follows (lines 5–24). First, it performs an A*-Search to

find a set Φ of candidate paths (line 6) and constructs the transition probabilities TP for each two

directly connected regions in the candidate paths (lines 7–23). In particular, a hash tableHPT that

records the region patterns is constructed by processing each ms-sequence Λo ∈ SΛ (lines 8–12).

Afterwards, it records the score for each pair of directly connected regions in a candidate path

such that a hash tableHs is constructed (lines 13–19). Consequently, the transition probabilities

TP is computed with the scores recorded inHs (lines 20–23). At the end, the candidate path set Φ
is returned along with TP (line 24).

Algorithm 6: MobilityKnowledgeConstruction
Input: semantic region graph GR , set of original ms-sequences SΛ.

Output: hash tableMK to store the mobility knowledge for each pair of stay regions.

1 hash tableMK : ⟨R × R⟩ → ⟨Φ, TP⟩
2 for each directed pair of stay regions ⟨rqs , r

q
e ⟩ do

3 MK[⟨rqs , r
q
e ⟩] ←− ConstructForOnePair(GR , SΛ, ⟨r

q
s , r

q
e ⟩)

4 returnMK
5 Function ConstructForOnePair (GR , SΛ, ⟨r

q
s , r

q
e ⟩)

6 candidate path set Φ←− A*-Search(GR , r
q
s , r

q
e )

7 transition probability TP : (R × R) → probability

8 hash tableHPT : PT → count

9 for each ms-sequence Λo in SΛ do
10 for each matched segment ⟨λqs , λ

▷
i , . . . , λ

▷
j , λ

q
e ⟩ in Λo do

11 PT ←− ⟨r▷i , . . . , r
▷
j ⟩

12 HPT [PT ] ←− HPT [PT ] + 1

13 hash tableHs : (R × R) → score

14 for each entry ⟨PT , count⟩ inHPT do
15 Φ′ ←− find a subset of paths that hold PT
16 for each path ϕ ∈ Φ′ do
17 ωϕ ←− L(ϕ)−1/

∑
Φ′ L(ϕ)

−1

18 for each directly connected regions ⟨rk , rl ⟩ in ϕ do
19 Hs [⟨rk , rl ⟩] ←− Hs [⟨rk , rl ⟩] + count ∗ ωϕ

20 for each region ri covered by path set Φ do
21 Out(ri ) ←− find the enterable regions when leaving ri
22 for each region r j in Out(ri ) do
23 TP[⟨ri , r j ⟩] ←−

Hs [⟨ri ,r j ⟩]∑
r ∈Out(ri ) Hs [⟨ri ,r ⟩]

24 return ⟨Φ, TP⟩

A.4 M-semantics Inference Algorithm
Algorithm 7 gives the procedure of inferring the missing m-semantics for an original ms-sequence,

by utilizing the mobility knowledgeMK and the indoor mobility constraints captured in GR .

Given an observation ⟨λqs , . . . , λ
q
e ⟩ between stay m-semantics λqs and λ

q
e (line 1), the corresponding

candidate path set Φ is loaded fromMK[⟨r qs , r
q
e ⟩] (line 2), and a function InferMostLikelyPath is

called to infer a most-likely path
ˆϕ ∈ Φ for the observation between λqs and λ

q
e (line 3). Furthermore,
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the algorithm makes use of the GRDs between directly connected regions to infer the time period

for each region rx contained in
ˆϕ (lines 4–10). In particular, a function InferDurationTime is called

to infer the time period τx for each rx (line 5). If the current rx has been observed in an m-semantics

λx in Λo (line 6), its inferred time period is merged with λx to form a new m-semantics, and the new

m-semantics is added back to Λo (lines 7–8); otherwise, the algorithmmaps rx to a pass m-semantics

and adds it to Λo (line 10). At the end, the complemented ms-sequence Λo is returned (line 11). The

technical details of function InferMostLikelyPath and function InferDurationTime have been given

in Section 5.2.1 and Section 5.2.2 of the paper, respectively.

Algorithm 7: MSemanticsInference
Input: an observed ms-sequence Λo , hash tableMK , semantic region graph GR .
Output: a complemented ms-sequence Λo .

1 for each observation ⟨λqs , . . . , λ
q
e ⟩ ⊆ Λo do

2 ⟨Φ, TP⟩ ←−MK[⟨rqs , r
q
e ⟩]

3 ˆϕ ←− InferMostLikelyPath(Φ, TP , ⟨λqs , . . . , λ
q
e ⟩)

4 for each region rx in
ˆϕ do

5 τx ←− InferDurationTime(rx , ˆϕ, GR )
6 if rx has been observed in an m-semantics λx then
7 Λo ←− Λo \ λx ; τx ←− τx ∪ λx .τ

8 Λo ←− Λo ∪ (rx , τx , λx .δ )

9 else
10 Λo ←− Λo ∪ (rx , τx , pass)

11 return Λo

Appendix B FORMALIZATION DETAILS OF M-SEMANTICS INFERENCE
B.1 The Length of an Indoor Candidate Path
Lemma B.1. Given an indoor path ϕ = ri � . . . ,� r j , its path length L(ϕ) =

∑j
k=i distgr (rk , rk+1)

is an upper bound of the minimum distance required to ensure any object can reach r j from ri through
the path ϕ.

Proof. Suppose that a region r1 connects with region r2 and the path corresponding to the GRD

from r1 to r2 begins at a position l (s)
1
∈ r1 and ends at a position l (e)

2
∈ r2. Also, r2 connects with

region r3 and the path corresponding to the GRD from r2 to r3 begins at a position l
(s)
2
∈ r2 and ends

at a position l (e)
3
∈ r3. Provided that an object o at the farthest position l ′

1
∈ r1 from region r3 can go

through r2 to reach r3 at a position l
′
3
∈ r3, and the corresponding traveling distance is distI (l ′1, l

′
2
)+

distI (l ′2, l
′
3
), where l ′

2
∈ r2 is a position where o went out of r1 and entered into r2. According to

the definition of GRD, we have ∀l1 ∈ r1, distI (l1, l
(e)
2
) ≤ distI (l

(s)
1
, l (e)
2
) and ∀l2 ∈ r2, distI (l2, l

(e)
3
)

≤ distI (l
(s)
2
, l (e)
3
). Consequently, we have distI (l ′1, l

′
2
) + distI (l ′2, l

′
3
) ≤ distI (l ′1, l

(e)
2
) + distI (l ′2, l

(e)
3
) ≤

distI (l
(s)
1
, l (e)
2
) + distI (l

(s)
2
, l (e)
3
) = distgr (r1, r2) + distgr (r2, r3).

In a more general case, given an indoor path ri � . . . ,� r j , we have the minimum required

distance that ensures an object can reach r j from ri through the path is no greater than∑j
k=i distgr (rk , rk+1). The lemma is proved. □
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B.2 Posterior Probability of an Indoor Candidate Path
Given an observed region pattern PT (o) and a candidate path ϕ = r qs � r▷a � . . . � r▷b � r▷q �
r▷c � . . . � r▷d � r qe , we have the posterior probability P(ϕ |PT (o)) in the context of a first-order

Markov stochastic process [30] as

P(ϕ |PT (o)) = P(r qs , r
▷
a , . . . , r

▷
b , r
▷
q , r
▷
c , . . . , r

▷
d , r

q
e |r

q
s , r
▷
q , r

q
e )

= P(r qs , r
▷
a , . . . , r

▷
b , r
▷
q |r

q
s , r
▷
q ) · P(r

▷
q , r
▷
c , . . . , r

▷
d , r

q
e |r
▷
q , r

q
e )

=
P(r▷q |r

▷
b )

∏b−1
x=a P(r

▷
x+1 |r

▷
x )P(r

▷
a |r

q
s )P(r

q
s )

P(r qs )P(r▷q )
·
P(r qe |r▷d )

∏d−1
y=c P(r

▷
y+1 |r

▷
y )P(r

▷
c |r
▷
q )P(r

▷
q )

P(r▷q )P(r
q
e )

=
P(r▷q |r

▷
b )

∏b−1
x=a P(r

▷
x+1 |r

▷
x )P(r

▷
a |r

q
s )

P(r▷q )
·
P(r qe |r▷d )

∏d−1
y=c P(r

▷
y+1 |r

▷
y )P(r

▷
c |r
▷
q )

P(r qe )

∝ P(r▷q |r
▷
b )

b−1∏
x=a

P(r▷x+1 |r
▷
x )P(r

▷
a |r

q
s ) · P(r

q
e |r
▷
d )

d−1∏
y=c

P(r▷y+1 |r
▷
y )P(r

▷
c |r
▷
q )

Appendix C ADDITIONAL EXPERIMENTAL RESULTS
C.1 AnsweringQueries using M-Semantics on Real Data
In addition to the query time interval QT we evaluated in Section 6.1.5, we also investigate the

effects of other parameters related to the two top-k queries, namely k and the query set size |Q |.
The parameter settings are shown in Table 5, where default values are in bold. We test each pa-

rameter with others fixed to defaults. The experimental evaluations focus on the search effectiveness

in terms of the metric precision (see Section 6.1.5).

Table 5. Parameter Settings on Real Data

Parameters Settings

Query Type TkPRQ, TkFRPQ
QT (minutes) 60, 120, 180, 240

k 20, 40, 60, 80
|Q | (% of semantic regions) 30%, 50%, 70%

Effect of k .We fix |Q | = 202 × 50% = 101 and QT = 120 min, and vary k from 20 to 80. The results

for TkPRQ and TkFRPQ are reported in Figure 16(a) and (b), respectively. As shown in Figure 16(a),

the precisions of all search methods increase moderately with an increasing k . Since |Q | is fixed in

our test, a larger k tends to include more query regions in the top-k search results and therefore

the precision improves in all the methods. Clearly, IMS-CAC performs the best in each k values; its

precision stays higher than 0.84 with k up to 60. The results also verify the effectiveness of our

cleaning method as the search methods with the cleaning (i.e., RAW-C, IMS-CA, and IMS-CAC)

clearly outperform other alternatives.

On the other hand, when we increase k , the precisions of all search methods stay very stable

in processing the TkFRPQ query. Different from the TkPRQ, TkFRPQ needs to find k frequent

region pairs from |2Q | candidate region pairs, whose number is significantly larger than that of the

candidate regions in TkPRQ. In such a case, increasing k from 20 to 60 does not affect the precisions

in all methods as k is relatively small compared to |2Q |. Nevertheless, the m-semantics constructed

by IMS-CAC are still the best in answering the TkFRPQ in different Q settings.
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Fig. 16. Query Answering Effectiveness vs. k on Real Data

Effect of |Q |. We also very |Q | from 30% to 70% with other parameters fixed by default. The

results are reported in Figure 17. Referring to Figure 17(a), increasing |Q | deteriorates the TkPRQ’s
precision in all the methods as more query regions need to be computed and ranked. However, the

precision of our overall framework IMS-CAC decreases slightly compared to other alternatives.

This shows that its constructed m-semantics are very effective to answer the top-k frequent region

query. When increasing |Q |, the precisions of those methods without data cleaning decreases more

rapidly than the alternatives that process on the cleaned data.

On the other hand, TkFRPQ’s precision in each method is also insensitive to an increasing |Q |. In
the shopping mall where our data was collected, the most frequent region pairs are always among

the most popular stores visited by the shoppers. Hence, involving more semantic regions will not

affect the returned results when k is fixed in the TkFRPQ query.
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Fig. 17. Query Answering Effectiveness vs. |Q | on Real Data

In general, the precision results on varying k and |Q | demonstrate that the m-semantics con-

structed by our framework IMS-CAC are very effective in answering the two indoor top-k queries.

C.2 Effectiveness of Raw Data Cleaning on Synthetic Data
According to the ground truth trajectory recorded for each object, here we study the effectiveness

of our proposed raw data cleaning method on the synthetic data.

Alternative Methods. To verify the effectiveness of using the indoor mobility constraints, we

consider two alternatives, namely the ED method that uses the Euclidean distance to represent the

speed constraint as well as interpolate the new location estimates, and the MIWD method that

uses theMIWD instead. We apply different speed threshold vm to ED andMIWD, and compare

them with the original raw p-sequence without the cleaning (denoted as Original).
Performance Metrics.Wemeasure the effectiveness of ED andMIWD in two aspects. On the one

hand, given a p-sequence Θ and its ground truth Θд , we define Θ’s floor accuracy as the fraction

of its records having a correct floor value with respect to the ground truth. On the other hand,

excluding those records that have false floor values, we define Θ’s average location error (ALE) as

ALE =
∑

θ ∈Θ,θд ∈Θд ,θ .t=θд .t ,θ .l .f =θд .l .f

distI (θ .l, θд .l)
|Θ|

For each synthetic IPT instance (see Table 4 in the paper), we measure the average value of floor

accuracies and ALEs of all p-sequences. We vary and test different settings of the maximum

positioning period T and the positioning error factor µ.
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Effect ofT . First, we fix µ = 3m and varyT from 5s to 15s. Referring to Figure 18(a), in each setting

of T , the floor accuracy staying around 0.7 in the original p-sequence is improved significantly by

theMIWD based methods. When increasingT , both methods’ floor accuracy decreases, butMIWD’s
decreases slower than ED’s. The decline is due to that the time difference between consecutive

records becomes larger and the speed checking tends to be less reliable. Nevertheless, whenT = 15s ,
MIWD still achieves a floor accuracy of around 0.9. On the other hand, MIWD beats ED in all tests

when they use the same vm . Interestingly, when we set vm to 1.9m/s and vary T from 10s to 15s,

both methods’ floor accuracies increase, showing that a tighter speed constraint is better to capture

object movements when data is sparser.
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Fig. 18. Cleaning Effectiveness vs. T on Synthetic Data

Referring to Figure 18(b), the ALE of the original p-sequence is also reduced clearly by our

cleaning methods. The reduction decreases but at a slow pace when a larger T is involved. Still,

MIWD beats ED in all tests when we vary T .
The results reported on both measures verify that our mobility constraint based onMIWD is

very effective in cleaning the raw indoor positioning data even when the data is temporally sparse.

Effect of µ. We vary and test the positioning error factor µ from 3m to 5m with T fixed to 5s.

Referring to Figure 19(a), the floor accuracy is always improved significantly in different settings of

µ. Also,MIWD’s improvement only decreases slightly when µ increases. As reported in Figure 19(b),

the ALE is also reduced clearly by the cleaning methods with different µs, and the reduction is

more significant when µ increases. In both two measures,MIWD performs better than ED, showing
it has a better capability to identify the errors and interpolate new location estimates.
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Fig. 19. Cleaning Effectiveness vs. µ on Synthetic Data

To sum up, the results in different settings of T and µ verify that our indoor mobility constraint

based cleaning method usingMIWD is still effective when the temporal sparsity and positioning

errors are involved in the raw positioning data.

Received Aug 2019; revised Nov 2019; accepted Jan 2020

ACM Trans. Data Sci., Vol. 1, No. 1, Article 1. Publication date: January 2019.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Framework Overview

	3 Raw Positioning Data Cleaning
	4 Mobility Semantics Annotation
	4.1 Density Based Splitting
	4.2 Semantic Matching

	5 Complementing MS-Sequences
	5.1 Mobility Knowledge Construction
	5.2 Missing M-Semantics Inference

	6 Experimental Studies
	6.1 Experiments on Real Data
	6.2 Experiments on Synthetic Data

	7 Related Work
	8 Conclusion And Future Work
	Acknowledgments
	References
	A Algorithms
	A.1 Density based Splitting Algorithm
	A.2 Semantic Matching Algorithm
	A.3 Mobility Knowledge Construction Algorithm
	A.4 M-semantics Inference Algorithm

	B Formalization Details of M-Semantics Inference
	B.1 The Length of an Indoor Candidate Path
	B.2 Posterior Probability of an Indoor Candidate Path

	C Additional Experimental Results
	C.1 Answering Queries using M-Semantics on Real Data
	C.2 Effectiveness of Raw Data Cleaning on Synthetic Data


