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ABSTRACT 

Emerging demands for autonomous delivery and logistics operations have driven 

researchers to investigate Unmanned Aerial Vehicles (UAVs) as an enabling 

technology. The 3D flexible utilization of airspace, promogulated by UAVs, are a 

potential game changer in solving the urban air mobility challenge by allowing to 

reshape transportation and logistics in the future. UAVs have become the frontiers for 

areas such as defense, search and rescue, agriculture, manufacturing, environmental 

surveillance and especially in materials distribution. Materials distribution using a 

fleet of UAVs was the inspiration for this study as companies are focusing to use large 

UAVs to distribute materials to industrial customers such as delivering materials to 

the windmill farms in Denmark for the maintenance activities of windmills. The 

deployment of UAV systems requires minimum physical modifications to the existing 

infrastructure and are a faster, more cost-effective sustainable alternative for existing 

traditional delivery modes of transportation.  

To cater to this rising demand of utilizing large UAVs to execute operations, in 

particular material deliveries, in outdoor environments and specifically to address the 

technology gaps found in industry and research, this thesis report presents the novel 

problem of UAV fleet mission planning subject to changing weather conditions. Such 

problems and the solution to these is of great interest to companies like Airbus Defence 

& Space, and other major aerospace system providers. From literature, it is easily 

established that there is a lack of contributions reported on this topic with regard to 

fleet mission planning for large UAVs operating in outdoor environments, while 

taking into account energy consumption behavior of the UAVs due to the influence 

of weather (wind speed and wind direction) during operations. This thesis report 

proposes a declarative model for the UAV fleet mission planning problem which 

enables the decision support for UAV fleet mission planning considering the 

characteristics of UAV fleet, characteristics of the weather conditions, characteristics 

of the network and customer locations. Furthermore, this thesis report provides a 

solution approach for the hitherto unformulated UAV fleet mission planning problem 

considering both energy consumption constraints and the impact of weather 

conditions and uncertainty, while ensuring collision free routing of the UAVs. The 

novelty of this research is especially found in the following contributions:  

 A mapping of the current-state of research in terms of a comprehensive literature 

review. 

 A formulation which presents the UAV fleet mission planning problem in 

changing weather conditions. 

 A declarative model to present the UAV fleet mission planning problem in 

changing weather conditions which provides inputs for decision support in UAV 

fleet mission planning.  
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 An extensive of the performance of the declarative model and a study of 

formulations and solution methodologies which can be used as a prototype for 

decision support system of UAV fleet mission planning.  

The thesis report and the appended papers provide the overview of these 

contributions, of which the main ones are briefly highlighted here. Paper A provides 

a published general overview of the current-state and contributions in the domain of 

the UAV routing. Paper B and Paper C presents the different conditions influencing 

the non-linear energy consumption of which are unique to UAVs and analyze how 

those factors affect the routing of UAVs in UAV fleet mission planning. Paper D 

presents the novel problem of UAV fleet mission planning in changing weather 

conditions. Paper E presents a declarative model for the problem of UAV fleet mission 

planning in changing weather conditions. Paper F proposes a method based on a 

decomposition solution approach to solve the problem of UAV fleet mission planning 

in changing weather conditions which provides inputs for decision support of UAV 

fleet mission planning. Paper L presents a declarative model, implemented in the IBM 

ILOG environment that allows designing routes of UAVs that guarantee the maximum 

level of customer demand satisfaction for various weather conditions. Certain 

assumptions considered in the declarative model such as soft delivery time windows 

and the homogenous fleet of UAVs could be excluded and, tested with real-world 

simulations in further research. Furthermore, open problems such as, the problem of 

heterogeneous UAV fleet mission planning with customer time windows could be 

focused as future research domains. 

Furthermore, included in this PhD thesis is a proposal for a UAV fleet planning 

decision support system enabling to prototype alternative mission proposals for 

execution. The implementation of the proposed solution approach as a decision 

support system enables one to determine whether is it possible to find a fleet mission 

plan for a given fleet of UAVs guaranteeing assumed delivery amounts to a given set 

of customers in a given time horizon and evaluates different scenarios of UAV fleet 

mission planning. Investigations on potential approaches and an offline-based system 

are carried out to ensure that only missions suitable to be sent to approval from Air 

Traffic Control are accepted and the results of the study can be directly implemented 

as a technical tool in decision support systems of aerospace companies.  
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DANSK RESUME 

Trends og stigende fokus på systemer til autonome logistik og leverance har drevet 

forskere til at undersøge ubemandede flyvende platforme (Unmanned Aerial 

Vehicles), UAVer, som en mulig løsning på disse udfordringer. Muligheden for på en 

fleksibel måde at udnytte de tre dimensioner luftrummet giver, fremfor de to som er 

mulige ved jordbaseret transport, er en potentiel revolutionerende nytænkende tilgang 

til at løse de udfordringer verdens i stigende grad tungt trafikkerede urbaniserede 

miljøer står overfor. UAV teknologien skaber nye fronter og muligheder indenfor så 

diverse emner som: forsvar, beredskab, landbrug, produktion, miljøovervågning og 

især materialetransport. Materialetransport ved brug af UAVer er inspirationen til det 

arbejde som præsenteres i denne afhandling. Fordelen ved brugen af UAVer til denne 

slags formål, er, at det kræver minimale fysiske ændringer til eksisterende 

infrastruktur, UAVer er hurtige, kosteffektive under de rette vilkår og bæredygtige 

sammenlignet med alternative transportmuligheder.   

For at imødekomme det stigende brug af UAVer er der et behov for at udvikle nye 

metoder til at planlægge missioner for flåder af UAVer. Sagens natur gør, at disse 

metoder skal være i stand til at tage vejrforhold i betragtning, noget som især de store 

internationale aktører indenfor feltet, såsom Airbus Defence & Space, er interesserede 

i. Fra litteraturen er det nemt at etablere, at der er en udpræget mangel på bidrag 

relatereret til planlægning af missioner for flåder af store UAVer i udendørs miljøer, 

som tager højde for energiforbrug, vejrforhold og disses indflydelse på eksekveringen 

af missionerne. I denne afhandling foreslås en deklarativ model til 

flådemissionsplanlægning, som understøtter beslutningsstøtte ifbm. 

 flådemissionsplanlægning, samt tager højde for UAV flådens karakteristika, 

vejrforhold, netværket og kundelokationer. Ydermere rapporteres der i denne 

afhandling en løsning på det hidtil uløste problem om planlægning af missioner for 

UAV flåder, under hensynstagen til energiforbrugsbegrænsninger og vejrforholds og 

disses usikkerhed indflydelse på mulighederne for at planlægge og eksekvere en 

mission. Samtidigt er løsningen struktureret på en sådan måde at resultatet er 

konfliktfri planer og ruter til multiple UAVers missioner i begrænset luftrum.  

Hovedbidragene i denne forskning kan opsummeres til i overordnede punkter at 

være: 

 En kortlægning af den nuværende forskning i form af et omfattende 

litteraturstudie. 

 En formulering af problemet, som præsenterer planlægning af missioner for UAV 

flåder under skiftende og usikre vejrforhold.  

 En deklarativ model, der kan fungerer som input til et beslutningsstøttesystem til 

planlægning af missioner for UAV flåder under usikre vejrforhold.  
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 Et omfattende studie af den deklarative models performance, samt et studie af 

potentielle problemformuleringer og løsningsstrategier, der kan fungere som 

prototyper på et beslutningsstøttesystem. 

 

Alle disse bidrag er udviklet på en måde, som understøtte de krav til sikker 

eksekvering af lufttrafik luftfartsmyndigheder må forventes at have. 
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CHAPTER 1. INTRODUCTION 

1.1 INTRODUCTION AND MOTIVATION 
Over the past decade, Unmanned Aerial Vehicles (UAVs) have become 

increasingly popular and have been developed as a part of the solution to such 

challenges as urban mobility, disaster relief efforts, mapping of forest fires, etc. UAV 

technology is viable and applicable in such diverse areas such as defense, search and 

rescue, agriculture, manufacturing, and environmental surveillance (Bolton and Katok 

2004; Avellar et al. 2015; Khosiawan and Nielsen 2016; Barrientos et al. 2011). 

Following recent advancements in UAV technology large companies such as Airbus 

(Airbus 2019), Amazon (Ben Popper 2016), DHL (Bonn 2017) and Federal Express 

(Wang et al. 2016), have begun to investigate the viability of incorporating UAV-

based solutions and invest in including UAVs into their commercial services. A 

critical challenge to achieve effective and efficient exploitation of UAV technology 

for these purposes is to have in place a coordination and monitoring system for the 

UAVs’ operations. For UAV-based activities, it is important to route and schedule 

operations in a safe, collision-free and time-efficient manner (Khosiawan and Nielsen 

2016; Xiang et al. 2016). 

UAVs show high potential for delivery logistics, as it is faster, cost effective 

(Bocewicz et al. 2018; Dorling et al. 2016) and potentially more sustainable than 

traditional delivery modes such as land and sea transportation. Urban Air Mobility 

(UAM) is a new dimension to technological developments, where it will reshape 

transportation and logistics in future. The concept of UAM is proposed by introducing 

next-generation Vertical take-off and landing (VTOL) capable UAVs as a mode of 

transport service (Jeff and Goel 2016; Airbus 2019), where it covers the different 

levels of abstraction including fleet level, platform level and the element level of 

logistics systems (Figure 1). UAVs and UAM systems will provide various novel 

UAVs-related operations to the airspace above metropolitan areas and all across the 

globe. These systems are expected to revolutionize the transportation infrastructure, 

in particular in dense urban areas or hard to reach rural areas.  

 
Figure 1. Overall hierarchical representation of UAM (Paper F). 
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Pilot projects are scheduled to be commenced in cities such as Dubai, Singapore, 

Los Angeles and Dallas in the early 2020s (Holger Lipowsky et al. 2018), with 

technological advancements and it is predicted that by the late 2020s UAV technology 

will spread cost effective services to major metropolitan areas around the globe 

(Holger Lipowsky et al. 2018; Airbus 2019). UAM will be useful for solving the urban 

mobility problem in general (urban traffic pollution and congestion) where the 

increasing two-dimensional capacity in transport networks will not be able to address 

existing traffic situation. As there is a global challenge of reducing emissions due to 

the reasons such as idling motor vehicles causing serious pollution and contribute 

strongly to issues with living in dense urban areas, UAM will be a potential strategy 

to support sustainable transportation.  

 
Figure 2. Graphical representation of real-world industry requirement that 

inspired the study. 

The project Operational Reliability Management System (ORMS) is the initial 

motivation for this PhD project (Figure 2). The project is a joint research initiative 

between Airbus Defence & Space and the Department of Materials and Production of 

Aalborg University. The objective of this project is to create mission plans for a fleet 

of UAVs performing material delivery operations. It therefore should generate 

schedules and routes for a fleet of UAVs at which defined tasks such as material 

deliveries have to be performed by particular fleet of UAVs.  

 
Figure 3. Transitioning from teams of operators managing a single UAV to a single 

operator managing multiple UAVs. 
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As UAVs flight and navigation tasks are increasingly automated to gain 

economies-of-scale and speed of operations and support the large scale operations 

envisioned in UAM, UAV mission planning and execution is transitioning from teams 

of operators managing a single UAV to a single operator managing multiple UAVs 

(Figure 3). Enhancement in the autonomy of UAVs will change the operating 

personals role to one of control supervision where the operator will be primarily 

handling the high-level mission management in contrast to low-level manual flight 

control. Due to this reduction in tasks requiring direct human control, a UAV operator 

will become able to supervise and divide attention across a fleet of UAVs (Cummings 

and Brzezinski 2010). The increasing degree of autonomy and automation creates a 

continuous push for faster, smarter and safer methods for managing complex UAV 

operations. Such systems will naturally require the development of advanced 

prediction, routing and scheduling methods and implementation of various systems to 

support decision makers in handling the complexity of operations. 

 Rising expectations for UAV technology to solve a number of societal challenges 

(e.g. UAM) requires the creation of seamless flow, while practical constraints such as 

weather conditions and energy consumption make the problem highly complex and 

potentially intractable. UAV technologies, on one hand, give the potential for more 

flexible transfer of goods between locations, while on the other hand, they generate 

new problem types related to the organization and maintenance of the planned routes 

and schedules. UAVs mission planning is essential in any operation of UAV fleets. 

To support autonomous operations UAV fleets, fleet mission planning must be 

enabled. UAV fleet mission planning problems are an extension of the well-known 

Vehicle Routing Problem (VRP), but with the added complexity of three dimensional 

operations and combined routing and scheduling (Zhen et al. 2019). While the 

classical VRP is well-studied, the methods and approaches found within this domain 

are still very much applicable for the advancement of new technology in the area of 

UAV operations (Chandran and Raghavan 2008). Typically the mission planning for 

UAVs must consider constraints on UAV range (dependent on UAV characteristics 

and weather conditions), airspace regulations and restrictions as well as congestion 

(collision avoidance, safety distance, etc.) and UAV characteristics (air speed, 

maximum payload, energy capacity, physical dimensions, etc.) (Thibbotuwawa et al. 

2019).  

 
Figure 4. Influence of weather in energy capacity and energy consumption. 
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In outdoor UAV mission planning, as shown in Figure 4, it is necessary to address 

changes in weather conditions that influence energy consumption and energy capacity 

of UAVs (Kinney et al. 2005; Yu and Lin 2015). These weather conditions can 

potentially strongly influence the solution strategy for the UAV mission planning, 

especially with regards to the wind in the form of both wind direction and speed that  

impacts the energy consumption either through head or tail wind influences (Tseng et 

al. 2017).  

The challenge is to close the gap between the real-world application needs and the 

existing technologies. To enable large scale UAM, several key gaps and challenges 

must be managed. The current-state of research to address these gaps is fragmented 

and existing studies fall short of providing a unified answer to all the challenges. This 

PhD project aims to close several of the larger gaps and act as a significant step 

towards achieving autonomous UAVs based UAM. 

Specifically, this research addresses the current gap in state-of-the-art mission 

planning for a UAV fleet, by taking into account the changing weather (wind speed 

and directions) conditions and generating alternative robust mission plans. 

Furthermore, the aim of the research is to propose solutions of collision-free mission 

plans for a fleet of UAVs providing the maximum satisfaction of all given customers’ 

orders in a manner that enables decision support for an operator of a UAV fleet.  

In other words, this research answers the following question: Is it possible to find 

a fleet mission plan using the given fleet size to deliver the required amount of 

deliveries to customers within a given time period with the given weather forecast, 

while ensuring collision avoidance between the UAVs (Paper F)? Furthermore, there 

are other relevant related questions that can be answered such as: 

- Is it possible to determine the fleet mission plan for a given UAV fleet, which 

delivers the maximum demanded volumes to all the customers within a time period 

under the given weather conditions?  

- What is the appropriate fleet size needed to deliver with a certain service level 

under the given forecasted weather conditions?  

- What are the system parameters (describing the network, UAV fleet, weather 

conditions) that guarantee to deliver the required amount of material to the 

customers (Paper F)? 

Answers to these questions are used in a Decision Support System (DSS) to make 

the decisions regarding utilizing a given UAV fleet size in delivering a required 

amount of demands to the customers with in a time period. Furthermore, answering 

these questions enables the mission planner in obtaining the fleet mission plans that 

can be conveyed to aviation authorities to get the approval for execution.  
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1.2 RESEARCH QUESTIONS  
The research questions are formulated concerning the following objectives, which 

hypothetically give the corresponding answers to the motivation of the study 

mentioned in section 1.1. 

 Review the state-of-the-art of UAV fleet missions planning in an outdoor 

environment and the challenges beyond. 

 Identify the gap in the existing literature to address the energy consumption of 

UAVs in outdoor environments. 

 Identify and formulate the problem (constraints, parameters and decision 

variables) of UAV fleet mission planning problem in outdoor environments 

considering changing weather conditions and ensuring collision avoidance. This 

study has not considered the mission risk assessment as the study focuses on 

offline mission creation where the mission plans are created ensuring collision 

avoidance between the UAVs in the UAV fleet. However, the mission risk factors 

with regards to loss of control of the UAVs and fault handling mechanisms are not 

considered. 

To ensure that these objectives are addressed in a structured manner following 

research questions are composed.  

RQ1 What is the current-state of UAV fleet mission planning in the existing 

literature and what are the gaps?   

RQ2 What are the conditions influencing the UAV fleet mission planning, which 

are unique to UAVs?    

RQ3 What are the factors, which affect the energy consumption of UAVs, and 

how do those factors affect the energy consumption of UAVs?  

RQ4 Is it possible to solve the UAV fleet mission planning problem for a fleet of 

UAVs delivering materials to maximize the customer demand satisfaction ensuring 

collision avoidance and considering the behavior of energy consumption of UAVs?  

 RQ1 is answered by contributions found in Paper A. 

 RQ2 is answered by contributions found in Paper B. 

 RQ3 is answered by contributions found in Paper C. 

 RQ4 is answered by contributions found in Papers D, E, F, G and L. 

A description of the papers and the link between the papers is presented in section 

1.5. 
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1.3 RESEARCH METHODOLOGY  
To address the research questions, a research methodology is needed. The purpose 

of the methodology is to guide the creation of knowledge in a structured manner. The 

methodology has two main purposes. The first is to ensure that the studied topic is 

tackled in an appropriate manner, where the knowledge creation method matches the 

topic, so that the problem under consideration provides a strong link to the solution to 

the problem. The second aspect the methodology should address is to ensure internal 

coherence in the work (Checkland 2000). Specifically, the research questions are 

answered in a structured and similar manner, thereby ensuring that the answers to one 

question can be used to build upon for answering the next question. Without this 

internal coherence, it is difficult to utilize the knowledge created in subsequent steps. 

In this sense, the research methodology serves to ensure coherence between the 

research problem and solutions.  

As this research study is related to a real-world implication of a material 

distribution system using a fleet of UAVs, a research methodology was chosen which 

was adopted based on the work done by Checkland, Ulrich, Coghlan and Brydon-

Miller (Ulrich 1988; Coghlan and Brydon-Miller 2014; Checkland 2000). The 

research methodology shown in Figure 5 explains systems thinking in relation to real-

world context and it consists of seven stages. Each stage of the research methodology 

is explained below.  

 
Figure 5. Research methodology. 

Stage 1 is focused on the emergence of the problem and the state-of-the-art related 

to the problem. Stage 2 is related to the gap identification in state-of-art to address the 

problem. This stage expresses the problem situation in terms of bridging the gaps for 

real-world implications. Stage 3 recommends systemic thinking about the situation of 

the problem. Problem formulation with defining the relevant systems are stated in this 
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stage. Aspects are identified that might offer insight into the problem situation and to 

fill or reduce the gap in current-state to solve the problem. Stage 4 elaborates on 

problem definitions by coming up with models that could describe the actions of the 

solution strategies. In stage 5, the conceptual models, which are the results of systemic 

thinking about the real-world, are transferred into the real-world and compared to the 

problem situation expressed in stage 2. In stage 6, the feasibility of the solutions are 

evaluated in the context of the problem situation and changes are made to obtain 

desired outputs. Stage 7 seeks to explore possible ways of improving the problem 

situation with regards to the enhancement of the technology. 

The proposed research methodology matches with the RQs as Stage 1 is related to 

RQ1 and Stage 2 relates to RQ2 and RQ3, while Stage 3, Stage 4 and Stage 5 cover 

RQ4. Stage 6 and Stage 7 are related with the future studies where the outputs of the 

research should be checked for feasibility in terms of real-world implications and 

improving the problem situation. The problem formulation and the declarative 

modeling approach presented in this report are capable of reducing the gap between 

the real-world applications and this research methodology supports in bridging the 

gap in the current-state to solve the problem of UAV fleet mission planning subject 

to weather conditions (Paper F). 

1.4 STRUCTURE OF THE THESIS 
This thesis consists of two distinct parts. The first part of the thesis presents the 

research results achieved through the PhD study in a comprehensive manner. This part 

is structured as follows. First, a literature study (Chapter 2) is presented. This is 

followed by the problem of UAV mission planning with experiments and results 

(Chapter 3 and Chapter 4) where the problems are described, a mathematical model 

is formulated and solution approaches are developed (often in the form of heuristic 

algorithms) to solve the problem. Furthermore, results from computational 

experiments are presented to demonstrate the performance of the proposed approach. 

Finally, concluding remarks and a discussion of future works into the research area 

are presented (Chapter 5). The second part of the thesis is a collection of papers 

submitted and published as a part of the research.  

1.5 PUBLICATIONS AND SUBMISSIONS DURING PHD STUDY 
The papers published and submitted during the PhD period including the main 

contributions are presented in the following Table 1. 

Table 1. Papers published and submitted during the PhD. 

Paper Reference 

A Thibbotuwawa A. & Nielsen P. Unmanned Aerial Vehicle Routing 

Problems: A literature review. Submitted to the journal of Logistics 

Research (Under review – second revision). 
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B Thibbotuwawa A., Nielsen P., Zbigniew B., Bocewicz G. (2019) 

Energy Consumption in Unmanned Aerial Vehicles: A Review of 

Energy Consumption Models and Their Relation to the UAV 

Routing. In: Świątek J., Borzemski L., Wilimowska Z. (eds) 

Information Systems Architecture and Technology: Proceedings of 

39th International Conference on Information Systems Architecture 

and Technology – ISAT 2018. ISAT 2018. Advances in Intelligent 

Systems and Computing. Springer. 

C Thibbotuwawa A., Nielsen P., Zbigniew B., Bocewicz G. (2019) 

Factors Affecting Energy Consumption of Unmanned Aerial 

Vehicles: An Analysis of How Energy Consumption Changes in 

Relation to UAV Routing. In: Świątek J., Borzemski L., Wilimowska 

Z. (eds) Information Systems Architecture and Technology: 

Proceedings of 39th International Conference on Information Systems 

Architecture and Technology – ISAT 2018. ISAT 2018. Advances in 

Intelligent Systems and Computing. Springer. 

D Thibbotuwawa A., Nielsen P., Bocewicz G., Banaszak Z. (2020) UAV 

Fleet Mission Planning Subject to Weather Fore-Cast and Energy 

Consumption Constraints. In: Szewczyk R., Zieliński C., 

Kaliczyńska M. (eds) Automation 2019. AUTOMATION 2019. 

Advances in Intelligent Systems and Computing. Springer 

E Thibbotuwawa A., Bocewicz G., Nielsen P., Banaszak Z. (2020) 

Planning deliveries with UAV routing under weather forecast and 

energy consumption constraints. In: IFAC-PapersOnLine. Elsevier. 

F Thibbotuwawa A., Bocewicz G., Nielsen P., Banaszak Z. A solution 

approach for UAV fleet mission planning in changing weather 

conditions. Applied Sciences.  

G Thibbotuwawa A., Bocewicz G., Nielsen P., Banaszak Z. (2020) UAV 

mission planning subject to weather forecast constraints. In: 

Rodríguez S. et al. (eds) Distributed Computing and Artificial 

Intelligence, Special Sessions, 16th International Conference. DCAI 

2019. Advances in Intelligent Systems and Computing. Springer. An 

extended version of this paper is invited to be submitted for a special 

issue of the journal of Sensors. 

H Bocewicz G., Nielsen P., Banaszak Z., Thibbotuwawa A. (2019) 

Routing and Scheduling of Unmanned Aerial Vehicles Subject to 

Cyclic Production Flow Constraints. In: Rodríguez S. et al. (eds) 

Distributed Computing and Artificial Intelligence, Special Sessions, 

15th International Conference. DCAI 2018. Advances in Intelligent 

Systems and Computing. Springer. 

I Bocewicz G., Nielsen P., Banaszak Z., Thibbotuwawa A. (2019) A 

Declarative Modelling Framework for Routing of Multiple UAVs 

in a System with Mobile Battery Swapping Stations. In: Burduk A., 

Chlebus E., Nowakowski T., Tubis A. (eds) Intelligent Systems in 
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Production Engineering and Maintenance. ISPEM 2018. Advances in 

Intelligent Systems and Computing. Springer. 

J Bocewicz G., Nielsen P., Banaszak Z., Thibbotuwawa A. (2018) 

Deployment of Battery Swapping Stations for Unmanned Aerial 

Vehicles Subject to Cyclic Production Flow Constraints. In: 

Damaševičius R., Vasiljevienė G. (eds) Information and Software 

Technologies. ICIST 2018. Communications in Computer and 

Information Science. Springer. 

K Kłosowski, G., Gola, A., & Thibbotuwawa, A. (2018). 

Computational Intelligence in Control of AGV Multimodal 

Systems. In: IFAC-PapersOnLine. Elsevier. 

L  Radzki G., Thibbotuwawa A., Bocewicz G. (2019) UAVs flight 

routes optimization in changing weather conditions – constraint 

programming approach, Applied Computer Science.  

 

 
Figure 6. The link between the papers. 

Figure 6 shows the overall positioning and link of the appended papers in the 

thesis. Paper A covers the literature study. Research gaps found in relation to non-

linear energy consumption models and their relationships to UAV routing, which were 

obtained in Paper A were addressed in Paper B and C. Paper A, B and C provide the 

foundation to clearly identify the research gaps in current-state UAV fleet mission 

planning under changing weather conditions which is formulated and presented in 

Paper D. A declarative model of the problem presented in Paper D is elaborated in 

Paper E, F, G and L. With the distinction between the four contributions that:  

- Paper F focuses on determining UAV fleet mission plans providing the maximum 

customer delivery satisfaction.  
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- Paper E determines a sequence of sub-missions that ensures delivery to customers, 

satisfying the requested amount of demands.  

- Paper G presents a Constraint Optimization Problem (COP) approach to solve the 

problem which is solved in a constraint-programming environment (IBM ILOG). 

This paper which was selected as a best paper from 16th International Conference 

Distributed Computing and Artificial Intelligence. An extended version of this 

paper is invited to be submitted for a special issue of the journal of Sensors.  

- Paper L determines solutions to the Vehicle Routing Problem with Time Windows 

(VRPTW) formulation of the problem.  

The additional supporting papers, which were written during the time of the PhD 

study are presented in Paper H, I, J and K. These papers are related to explore various 

aspects of the routing and scheduling of UAVs and serve as an inspiration to address 

the problem focused on this research. Paper H, I and J address various related aspects 

of production systems in which material handling operations are carried out by a fleet 

of UAVs. Paper K focuses on in-plant transportation control with Automated Guided 

Vehicles (AGVs). 

The research objectives for each of the papers from A to K are presented in the 

Table 2. 

Table 2. Overview of the objectives of the appended papers. 

Paper Objectives 

A -Provide an overview of the current-state and contributions to the area 

of the UAV routing and a general categorization of the VRP followed 

by a UAV routing classification based on the analysis of existing 

literature.  

-Analyze the existing research contributions and identify the gaps in 

the current- state to address the specific nature of the routing of UAVs 

in outdoor environment, these are critical in UAV fleet mission 

planning. 

B -Identify the factors affecting the energy consumption of UAVs during 

execution of missions and examines the general characteristics of the 

energy consumption, as these are critical constraining factors in UAV 

routing.  

-Provide an overview of the current-state of and contributions to the 

area of UAV energy consumption followed by a general 

categorization of the factors affecting UAV energy consumptions  

C -Analyze the different parameters that influence the energy 

consumption of the UAV routing through an example scenario of a 

single UAV multiple delivery mission, and based on the analysis, 

present the relationships between UAV energy consumption and the 

influencing parameters. 
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D -Present a declarative framework enabling to state a model aimed at 

the analysis of the relationships between the structure of a given UAVs 

driven supply network and its behavior resulting in a sequence of sub-

missions following a required delivery.  

-Provide an illustrative example of an approach leading to sufficient 

conditions guaranteeing solutions existence for a solvable class of 

UAV driven mission planning problems. 

E -Propose a depth-first search strategy to cope with the problem of 

multi-trip UAV fleet mission planning with the objective to get a 

sequence of sub-missions that ensures delivery to customers satisfying 

the requested amount and demands within a given time period.  

-Provide a methodology, which offers solutions to questions related to 

the multistage mission planning that could be applied to solve 

problems such as: minimizing energy consumption and conducting the 

mission in the shortest possible time.  

F -Present a decision support driven declarative decomposed solution 

approach to solve the problem of UAV fleet mission planning under 

changing weather conditions for a fleet of multi-trip UAVs 

considering factors such as UAVs specifications, weather 

dependencies, collision avoidance and addressing non-linear energy 

consumption behavior of UAVs. The proposed model supports the 

selection of the UAV mission planning scenarios subject to variations 

on different configurations of the UAV system and changing weather 

conditions. 

-Provide solution methodologies to assists fleet mission planners in 

aerospace companies to select and evaluate different mission 

scenarios, for which fleet mission plans are obtained for a given fleet 

of UAVs, while guaranteeing delivery according to customer 

requirements in a given time horizon.  

G -Present a solution for the UAV fleet mission planning problem as a 

sequence of sub-missions, which are created through a constraint 

optimization approach that will ensure delivery of requested amounts 

of goods to customers, satisfying their demands within a given time 

period under the given weather forecast constraints.  

-Establish the relationships between the decision variables such as 

wind speed and direction, battery capacity and payload weight using 

computational experiments, which allow assessing alternative 

strategies of UAV mission planning. 

H -Present solutions for a production system in which material handling 

operations are carried out by a fleet of UAVs, which will reduce to a 

minimum UAV downtime and the takt time of the cyclic production 

flow in which operations are performed by the UAVs.  
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-Present a declarative model of the analyzed case, which allows to 

view the problem as a constraint satisfaction problem and to solve it 

in the Oz mozart constraint programming environment.   

I -Present a flow production system with concurrently executed supply 

chains providing material handling/transportation services to a given 

set of workstations by a fleet of UAVs are considered, where the 

workstations have to be serviced within preset time windows and can 

be shared by different supply chains. The batteries on-board the UAVs 

are replaced at mobile battery swapping stations. 

-Present a solution to the problem of routing UAVs and mobile battery 

swapping stations fleets, through determining the routes travelled by 

the UAVs servicing the workstations and the routes travelled by the 

mobile battery swapping stations servicing the battery swapping 

points, such that the total length of these routes is minimized. 

J -Focus the problems of split delivery-vehicle routing problem with 

time windows and deployment of battery swapping depots.   

-Determine the number of UAVs and the routes they fly to serve all 

the workstations periodically, within a given takt time, without 

violating constraints imposed by the due time, pickup/delivery 

operations and collision-free movement of UAVs. 

-Present a declarative model which allows viewing the problem under 

consideration as a constraint satisfaction problem. The problem is 

solved in the Oz Mozart programming environment. 

K -Present a model for the problem of in-plant transportation control 

with AGVs. The controlling part is performed with the use of software 

constituting a hybrid information system employing fuzzy logic and 

genetic algorithms.  

-Present an approach of segmentation of workspace into zones and 

switching stations to resolve the problem of multimodality in 

transportation and potential collisions between AGVs.  

L -Formulate the UAV fleet mission planning problem as an extension 

of the VRPTW and formulated as a COP. 

-Propose a declarative model (implemented in the IBM ILOG 

environment) which allows to design routes of UAVs that guarantee 

the maximum level of customer demand satisfaction for various 

weather conditions.  

-Present computational experiments illustrating the impact of weather 

conditions on route determination. 
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CHAPTER 2. LITERATURE STUDY 
As it is important to identify gaps between real-world requirements to perform 

mission planning for a fleet of UAVs, the current-state of research into this domain 

should be deeply studied. In the following, the nature the gaps are elaborated and 

details leading to the research questions addressed in this PhD thesis, which are 

presented addressing RQ1 RQ2 and RQ3. 

  

2.1 SURVEY OF LITERATURE  
The problems of material delivery mission planning for UAV fleets have gained 

significant attention in research in recent years (AbdAllah et al. 2017; Bekhti et al. 

2017; Thibbotuwawa et al. 2019). UAV mission planning can be treated as an 

extension of the VRP (Dorling et al. 2016) and belongs to the class of planning 

problems (AbdAllah et al. 2017; Kambhampati and Davis 1986). 

UAV routing relates to a fleet of UAVs that has to visit a set of nodes to deliver 

demands and it solves the question of: what is the set of routes for a fleet of UAVs to 

traverse in order to deliver to a given set of customer demands which satisfy the 

energy capacity constraints of UAVs (Paper F)? The UAV fleet mission planning 

problem relates to the creation of collision-free mission plans, which consists of routes 

and schedules for a fleet of UAVs to deliver a set of customer demands. The UAV 

fleet mission planning problem solves the question of: what are the fleet mission plans 

of a fleet of UAVs to deliver a given set of customer demands? 

 
Figure 7. Overall hierarchical representation of the system related to the UAV 

fleet mission planning problem (Paper F). 

 

Unlike the traditional routing problems, the fleet mission planning problem 

addresses different decision layers in the system architecture. This includes the fleet 

level where the fleet is managed to provide delivery services using the UAV fleet and 

the platform level where it focuses on the individual functioning of the UAVs (Paper 

F). The current-state of research is fragmented as shown in the layers illustrated in 

Figure 7 and neglects that different types of decisions are addressed at different 

abstraction levels. For this reason, comprehensive studies covering all the three layers 

are seldom found in the literature. To address this gap, the research presented in this 
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thesis cover both fleet and platform level decisions as shown in Figure 7. Mission 

planning consists of finding a sequence of waypoints that connects the start to the 

destination waypoint which differs from trajectory planning where the solution path 

is expressed in terms of the degrees of freedom of the vehicle (LaValle 2006; Paper 

F). While mission control addresses the updating of such missions during execution, 

due to e.g. changes in environment (weather).   

Limited research has been published in the area of UAV routing in 3-D 

environments (Guerriero et al. 2014; Sundar et al. 2016; Goerzen et al 2010). In 

general the accomplishments in the field are focused on UAV routing for transporting 

materials and surveillance (Dorling et al. 2016) without considering the changing 

conditions in weather and non-linear energy consumption (Wang et al. 2016). In 

general vehicle routing problems, the standard objective function is typically 

minimizing time spent on achieving goals. In contrast, several individual objective 

functions can be used in UAV routing such as reducing individual UAV costs, 

enhancing its profit, increasing safety in operations, reducing lead time, and 

increasing the load capacity of the entire system (Coelho et al. 2017; Enright et al. 

2015; Paper F). Furthermore, the problem can be seen as an extended case of the 

vehicle routing and scheduling problem, where the UAV fleet mission planning 

problem is NP-hard (Dorling et al. 2016; Paper E; Paper F). This problem differs from 

the traditional time dependent VRP as it must address both the fleet management as 

well as the individual vehicle management as shown in Figure 2. In contrast to the 

typical routing problems in existing literature due to various influencing parameters 

and constrains unique to UAVs, the decision criteria in UAV fleet mission planning 

shows a complex behavior. 

From literature one can identify the decision criteria in UAV mission planning and 

that these include numerous parameters and constraints. Specifically we note that the 

decision space comprises of the following aspects: 

 Routing and scheduling in 3D environment (Khosiawan et al. 2016).  

 Changing weather conditions (Wind speed, wind direction, air density) 

(Thibbotuwawa et al. 2019). 

 UAVs specifications (Cho et al. 2015). 

 Energy consumption affected by weather conditions (Thibbotuwawa et al. 2019). 

 Carrying payload of UAVs (Dorling et al. 2016). 

 Collision avoidance with respect to: 

o Moving objects (including other UAVs) (Khosiawan et al. 2018). 

o Fixed objects (Khosiawan et al. 2016). 

Together, these elements emphasize the potential intractability of mission 

planning as it is highly challenging to develop models considering all these 

influencing aspects simultaneously (Paper F).  
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2.1.1 Collision avoidance strategies  
Concerning collision avoidance, solutions differ with fixed obstacles vs moving 

flying obstacles and single obstacle vs many obstacles (Paper F). As the solution space 

becomes large, prevention of collisions can be achieved by heuristics that guarantee 

collision free mission planning. However, these come at the cost of higher quality 

solutions as the solutions require covering both fleet level and individual flight 

planning of each UAV (Figure 7). In the context of mission planning, w.r.t. fleet and 

platform level, collision avoidance constraints should be considered. In platform level, 

constraints related to individual UAV such as payload constraints and energy 

constraints should be focused which are important for the routing of each UAV. 

Current-state methods for UAV mission planning have predominantly focused on 

finding paths that satisfy vehicle dynamics assuming linear fuel consumption 

(Rathbun et al. 2010; Yang and Kapila 2002). A number of the existing models have 

put less emphasis on the majority of the physical properties particularly related to 

UAVs. As a consequence the problem has been reduced in complexity to a VRPTW, 

which includes a large number of targets and UAVs (Pohl and Lamont 2008; 

Adbelhafiz et al. 2010; Tian et. al 2006; Weinstein and Schumacher 2007). The 

existing approaches fall into the categories of offline mission planning and online 

mission control.  

Table 3. Strategies to avoid collisions in different contexts. 

 Moving obstacles Fixed obstacles 

Predicting/offline 

planning 

Mission organizing 

satisfying collision 

avoidance constraints 

(Hall and Anderson 

2011). 

Planning the missions avoiding 

the fixed obstacles (Su et 

al.2009). 

Reacting/online 

planning 

Detection by sensors 

(Geyer et al. 2008), 

Avoiding using 

collision avoidance 

constraints (Belkadi et 

al. 2017). 

Detection by sensors (Zhan et 

al. 2014). 

Free space Detection by sensors 

(Geyer et al. 2008). 

Detection by sensors (Geyer, et 

al. 2008). 

Dedicated corridors Mission organizing 

satisfying collision 

avoidance constraints 

(Belkadi et al. 2017). 

Mission organizing satisfying 

collision avoidance constraints 

(Thibbotuwawa et al. 2020). 

 

Collision avoidance is seldom considered in UAV routing literature. In mission 

planning, studies have assumed that the UAVs can detect obstacles to avoid collisions 

(Belkadi et al. 2017). Collision avoidance consists of two aspects; the physical 

avoidance of objects that are detected by sensors near the UAV during its flight and 

that the routes of the UAVs are planned such that all known obstacles (e.g. routes of 
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other UAVs) are avoided in the plan. The majority of recent studies regarding routing 

problems in communication networks do not explicitly avoid collisions between 

UAVs during the routing (Paper F). Rather it is assumed that recent advances in 

collision avoidance technology allows most small UAVs to sense the air traffic and 

alter flight altitudes or turn in order to avoid collision (Shetty et al. 2008; Paper F). 

Collision avoidance can be conducted by predicting potential collisions in offline 

planning, whereas in online control it is achieved by reacting to potential collisions. 

In most of the reactive planning systems, collisions are avoided using the detection of 

sensors, where the UAVs in the system communicate via wireless networks (Geyer et 

al. 2008). In addition, the approaches to collision avoidance differ when the fleet of 

UAVs are flying in free space vs dedicated corridors (Paper F). Table 3 illustrates 

some of the common strategies pursued in literature.  

2.1.2 Constraining factors particular to UAVs and UAV fleet mission 
planning 

UAVs are subject to a number of constraints, some are typical and often addressed 

in VRP or related problems (e.g. energy constraints). However, there are a number of 

aspects that necessitates to treat the problem in a manner separate from the traditional 

transportation problems. UAVs are limited by loading capacity as well as flight 

duration, which is related to the energy capacity. These constraints are typically 

addressed in transportation problems. However, UAVs have the additional complexity 

that the flight duration depends on the payload carried which requires these 

characteristics to be taken into consideration in UAV mission planning (Song et al. 

2018, Maza and Ollero 2007). A number of contributions have proposed to divide the 

whole mission area taking into account UAVs relative capabilities and to cluster the 

subsequent smaller areas to reduce the problem size (Habib et al. 2013; X. F. Liu et 

al. 2014; Xu et al. 2001; Sung and Nielsen 2019). Figure 8 illustrates the relationships 

between different factors linked to energy consumption of UAVs. Weather in various 

forms is critical for energy consumption, as it affects the travel speed of the UAV, and 

the temperature in the atmosphere affects the energy capacity (Dorling et al. 2016; 

Paper F) of batteries used in UAVs. Air density affects the energy consumption, but 

that is a function of humidity, air pressure and temperature. Cold temperatures may 

adversely affect battery performance until the batteries warm up (Dorling et al. 2016). 

 
Figure 8. Factors that affect energy consumption of UAVs (Paper B). 
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The current-state of research has yet to consider weather factors and assume the 

weather has a negligible impact on performance (Guerriero et al. 2014; Habib et al. 

2013; Sundar and Rathinam 2014). Rarely has research focused on considering wind 

conditions on energy consumption while simultaneously using that information in 

planning the missions of UAVs (Rubio and Kragelund 2003; Nguyen and Tsz-Chiu 

2017; Dorling et al. 2016), with the work of being the few contributions currently 

found. Certain studies have assumed constant wind speed and wind direction (Rubio 

and Kragelund 2003) and used linear approximations for energy consumption 

(Dorling et al. 2016; Paper F).  

 

2.1.3 Summary of current-state of literature 
Existing work does not adequately address the requirements for UAV fleet mission 

planning considering organizing delivery networks to deliver customer demands 

during a time period with changing weather with the goal of maximizing the customer 

demand satisfaction before the end of time period. Literature status with the gaps in 

terms of addressing the problem studied in this thesis are further discussed in detail in 

Paper A and the research gaps found in relation to non-linear energy consumption 

models and their relationships to UAV routing were addressed in Papers B and C. For 

the class of UAVs considered in this research linear approximations are not reasonable 

as the weight of the UAV is larger than the UAVs used in existing research (Paper F). 

In existing research considered weight of UAVs are less than 4 Kgs whereas in this 

study considered weight is more than 40 Kgs and the models used in existing literature 

are not reasonable when the weight of UAVs increases (Dorling et al. 2016). Hence, 

the non-linear models proposed in Paper B are used to calculate energy consumption 

considering weather conditions and carrying payload in this research. This research 

focuses on mission planning of UAVs, where the collisions with known obstacles are 

addressed in advance and missions are planned ensuring collision avoidance (between 

the UAVs). Furthermore, in this research, customers are clustered and for each cluster 

a set of feasible UAV fleet routings and accompanying schedules taking into account 

the weather conditions imposing the energy consumption constraints are calculated 

(Papers E and F). 
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CHAPTER 3. UAV FLEET MISSION 

PLANNING 
In this chapter, the general form of the overall decision problem addressed in the 

thesis is presented. The problem of UAV fleet mission planning is presented and the 

solution approach is proposed where it answers RQ4. 

 3.1 PROBLEM DESCRIPTION 
The identification of goals and criteria related to the UAV fleet mission planning 

problem form the foundation of determining what constitutes a satisfactory outcome 

of the planning process. Based on the overall goal, one should identify the criteria 

associated while keeping in mind that those criteria should be satisfied during the 

solution process. A criterion can be associated with available resources, time period 

within which the mission needs to be completed, etc. The problem addressed in this 

research concerns that a set of customers are to be served during a time period subject 

to changing weather conditions by a fleet of UAVs (Paper F). In general, the problem 

focused is presented as follows:  

 

Given: Weather forecast data, network data, Customer demand data, UAV 

specifications.   

Focus question: Is it possible to create a fleet mission plan, which consists of routes 

and schedules that provide the maximum customer demand satisfaction? 

The goal is to maximize the customer demand satisfaction, such that each 

customer is serviced before the end of the time period while respecting the energy 

consumption constraints and ensuring conflict and collision-free routes. The output 

should provide a sequence of sub-missions as illustrated in Figure 13, which 

maximizes customer demand satisfaction for all customers. 

3.1.1 Understanding the context of the problem 
In order to better understand the problem, objective function, decision variables 

and constraints should be identified based on the specifications. The objective 

function formulated using variables reflects a goal and criteria that relates to the 

perceived quality of a given mission plan. The decision variables represent the state 

of the overall system ensuring the achievement of the desired outcome. The objective 

function is then maximized or minimized by determining the decision variables 

subject to a set of constraints representing operational conditions and restrictions that 

must be respected during mission execution. Thus, it is important to know in which 

context the problem is tackled (requirements, desired outcomes, etc.).  

The overall representations of the proposed structure to understand the nature of 

the problem addressed in this thesis w.r.t. the overall goal, criteria, objectives, 

constraints, decisions and outcome are illustrated in Figure 9. The illustration in 

Figure 9, shows how some decisions, within the red border, are critical for achieving 
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the overall goal of the decisions and outcomes shown as central (denoted by the red 

border). The decisions shown as supporting in green border implies to the supporting 

decisions, which reduces the complexity of the problem. 

 
Figure 9. Overview description of the problem. 

There are several potential approaches based on the literature to address the 

considered problem as mentioned below. 

 Developing a new hybrid meta-heuristic able to solve the problem (Duan et al. 

2010; Khosiawan et al. 2018; Zhang et al. 2016) . 

 Multi agent approach to solve the problem (Casbeer and Holsapple 2011; Tso et 

al. 1999; Chen et al. 2013).  

 Developing a COP approach (Paper L). 

 Decomposition based heuristic approach (Paper E and F). 
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Figure 10. Meta-heuristic based approach to solve the problem. 

 
Figure 11. Multi agent approach to solve the problem. 

 
Figure 12. COP based approach to solve the problem. 

     Figure 10 represents a meta-heuristic approach to solve the problem in a UAV 

routing problem approach, concerning the problem focused in this study with its input 

and output. Figure 10 illustrates how the implementation of a dedicated search 

strategy implemented in the form of a hybrid meta-heuristic would be used to address 
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the problem. In that context, one hybrid meta-heuristic needs to be formulated 

combining all the aspects of UAV fleet mission planning together but such approaches 

are better in finding solutions for only specific instances as they have less flexibility 

and adaptability (Khosiawan et al. 2018). Thus, extensive parameter tuning is required 

in meta-heuristics. Furthermore, adaptation to changes in the problem specifications 

potentially require the development of a completely new solution approach. Due to 

the complexity and interdependency of the influencing parameters involved in this 

research study that includes UAV specifications, network complexity and weather 

complexity which affect the energy consumption of UAVs, such hybrid meta-heuristic 

approaches are not able to provide solutions for the large scale problems (Duan et al. 

2010; Zhang et al. 2016). Such solution approaches are found broadly in literature and 

have been applied to various topics and problems over the last decade (Duan et al. 

2010; Khosiawan et al. 2018; Zhang et al. 2016). 

Figure 11 illustrates an approach where a multi agent approach is used to tackle 

the problem. In that context each UAV in the fleet is considered as an individual agent 

and the agents are assigned separately to deliver materials to customers. The collision 

avoidance is ensured between the agents through a control rule determining which 

agent to be executed in a given time. In such an approach the agents need to 

communicate to each other to address mission control issues but the UAVs used in 

this problem are not capable of this. Such multi agent approaches lack of potential 

solution quality when the relations between tasks, resources and weather conditions 

is as complex as it is in the problem focused in this study. These approaches provide 

sub-optimal results and are neither able to guarantee high quality solutions to the 

considered problem when the number of agents increases nor supports UAV fleet 

mission prototyping (Casbeer and Holsapple 2011; Tso et al. 1999; Chen et al. 2013).  

Among these potential approaches to address the problem considered in this 

research, Figure 12 illustrates a COP approach to solve the problem and this approach 

is presented in detail in Paper G. The problem is formulated as an extension of 

VRPTW and solved in a COP approach in Paper L. The results obtained from the 

presented COP approaches have limitations in generating solutions for large instances. 

As these COP based approaches, multi agent approaches and hybrid meta-heuristic 

approaches are not able to guarantee results with regards to the highly complex and 

interdependent aspects of UAV fleet mission planning, a decomposition based 

heuristic approach was proposed in this research. Decomposed approaches are better 

in terms of scaling and successful in providing solutions considering highly complex 

and interdependent aspects of UAV fleet mission planning (Paper F). Furthermore, as 

far as the decomposition is utilized, the solution approaches to the individual sub-

problems can be replaced with alternative solution strategies. This ensures the 

interdependency between the sub-problems is maintained, but that the fundamental 

approach remains the same. A decomposition approach is therefore considered to be 

more flexible in terms of changes to problem specifications than e.g. developing a 
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dedicated meta-heuristic. The proposed decomposed approach is presented in section 

3.5. 

3.2 ASSUMPTIONS 
To facilitate the formulation of the problem, with the goal and criteria as stated as 

above in Figure 9, some assumptions are necessary. The aim of the work presented in 

this thesis is to reduce the number and scope of the assumptions as much as possible. 

At the same time assumptions are introduced in such a manner that they have the least 

possible impact on the quality of solutions in terms of ensuring a real-life 

implementation will achieve the goals in as faithful a manner as possible. To limit the 

assumptions we must first define a few features.  

First, we define that there is such a term as a Sub-mission Time Window (STW) 

and that any STW can be subdivided into Flying Time Windows (FTWs). In defining 

the FTWs, the length of the time used in flying of UAVs considering the maximum 

energy limit and maximum carrying payload (Papers E and F). We also define that 

customer demand satisfaction is the portion of demand volume delivered to a 

customer by the fleet of UAVs from the total demand volume of that customer in a 

given time period. With these in mind we can state some necessary constraints related 

to four different areas (Papers E and F).  

Weather related assumptions: 

 A weather forecast is known in advance with sufficient accuracy to specific so 

called STWs, in which constant weather conditions, such as speed and direction 

of wind exists. For this purpose, we define a STW as a time period for which a 

constant wind direction and a range of wind speed can be given.  

 The minimum and maximum ranges of wind speed for each STW is known in 

advance from the weather forecast and the wind direction can be considered 

constant in a given STW .  

UAV related assumptions: 

 The UAVs within the fleet are homogenous. This specifically means that each 

UAV:  

o Has the same energy capacity and consumption behavior.  

o Spends the same time for take-offs and landings. 

o Has sufficient energy capacity to travel directly to the farthest customer in the 

network and come back directly to the depot in worst acceptable weather 

conditions . 

 At the start of each new STW the energy level for any UAV is assumed to be the 

maximum energy capacity.  

 Each UAV can fly only one complete mission during a FTW. This can be extended 

for reusability of UAVs within the same FTW and recharging stations should be 

introduced at the depot with time taken for recharging. Thus, missions should be 

created considering recharging of UAVs and time taken to recharge.  
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Customer and demand related assumptions: 

 A similar type of material is delivered to customers in different amounts [Kgs] and 

the material is stackable.  

 Customers can accept deliveries at any time during the time period.  

 Maximizing the customer demand satisfaction is equivalent to all customers 

receiving the maximum demand volume. 

       Operations and network related assumptions: 

 Network data is given, including the location of each customers, base and flying 

corridors. 

 Customers in the network can be divided into different clusters in order to reduce 

the complexity of the network. 

 UAV starts and finishes its traveling route of a within a given FTW. 

 More than one UAV can start to fly from the base at the same time. UAVs do not 

conflict with each other during takeoff as long as they are not traversing the same 

arc at the same time. 

3.3 DECLARATIVE MODEL 
For deriving a decision support driven model to address the UAV fleet mission 

planning problem a declarative model is proposed in Papers E and F. The 

mathematical formulation of the declarative model of UAV fleet mission planning in 

changing weather conditions employs the following symbols (Paper F). The main 

formula are referred in numbers ((1) to (11)) and the equations which explains the 

main formulas are referred in letters ((a) to (k)). 

Sets and sequences 

𝐺 = (𝑁, 𝐸) The graph representing the transportation network 

𝑁 = {0…𝑎} The set of nodes representing the base (node 0) and 

customer locations of nodes 

𝐸 = {{𝑖, 𝑗}| 𝑖, 𝑗 ∈ 𝑁 , 𝑖 ≠  𝑗} The set of edges defined between each pair of 

nodes 

𝐶𝐿𝑚,𝑙 = (𝑁𝑚,𝑙 , 𝐸𝑚,𝑙) The subgraph of 𝐺 representing mth cluster in lth 

flying time window; 𝜎(𝑙) - number of clusters in lth 

flying time window 

𝑁𝑚,𝑙  The set of nodes in the mth cluster in the lth flying 

time window, 𝑁𝑚,𝑙 ⊆ 𝑁 

𝐸𝑚,𝑙  The set of edges in mth cluster in the lth flying time 

window, 𝐸𝑚,𝑙 ⊆ 𝐸 
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Parameters 

UAV Technical Parameters  

Q The maximum loading capacity of a UAV [Kg] 

ep The empty payload of a UAV [Kg] 

𝑣𝑔𝑖,𝑗
  The ground speed of a UAV from node i to j [m/s] 

𝜗𝑖,𝑗  The angle of the vector of ground speed 𝑣𝑔𝑖,𝑗 [degrees] 

𝑣𝑎𝑖,𝑗
𝑙  The airspeed of a UAV from node i to j in the lth flying time 

window 

𝑣𝑎𝑖,𝑗
𝑙

 
 The maximum range of 𝑣𝑎𝑖,𝑗

𝑙  

𝑣𝑎𝑖,𝑗
𝑙   The minimum range of 𝑣𝑎𝑖,𝑗

𝑙  

𝑃𝑚𝑎𝑥  The maximum energy capacity of each UAV [J] in the fleet of 

UAVs 

𝑃𝑖,𝑗
𝑘  The amount of energy consumed per time unit from node i to j by 

kth UAV [J/s] 

w The time spent for take-offs and landings of UAVs  

K The size of the fleet of UAVs 

Network Parameters 

𝑑𝑖,𝑗 The travel distance from node i to j [m] 

𝑡𝑖,𝑗 The travel time from node i to j [s]  

𝐷𝑖  The demand at node i ∈ N0 = N \{0}[Kg] 

𝑏{𝑖,𝑗};{𝛼,𝛽}
  The binary variable of crossing edges   

𝑏{𝑖,𝑗};{𝛼,𝛽}
 = {

1 when an edge {𝑖, 𝑗} and {𝛼, 𝛽} is utilized
0 otherwise

 

 

      Environmental Parameters 

𝐻 The time period 𝐻 = [0, 𝑡𝑚𝑎𝑥] 
𝑆𝑇𝑊𝑇  The Sub-mission time window 𝑇: 𝑆𝑇𝑊𝑇 = [𝑆𝑇𝑊𝑆𝑇 , 𝑆𝑇𝑊𝐸𝑇], 

𝑆𝑇𝑊𝑆𝑇 / 𝑆𝑇𝑊𝐸𝑇  is a start/end time of 𝑆𝑇𝑊𝑇  

𝐹𝑇𝑊𝑙  The flying time window 𝑙: 𝐹𝑇𝑊𝑙 = [𝐹𝑇𝑊𝑆𝑙 , 𝐹𝑇𝑊𝐸𝑙], 
𝐹𝑇𝑊𝑆𝑙/𝐹𝑇𝑊𝐸𝑙  is the start time of 𝐹𝑇𝑊𝑙  

Φ The number of Flying time windows 

𝑣𝑤𝑙
   The Wind Speed in the lth flying time window   

𝑣𝑤𝑙
   The Maximum range of 𝑣𝑤𝑙
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𝑣𝑤𝑙
   The Minimum range of 𝑣𝑤𝑙

  

𝜃𝑙 The Wind direction in the lth flying time window   

WUV 𝑊𝑈𝑉 = α (the standard deviation of the wind directions) + β (the 

standard deviation the wind speeds) 

α, β The Weighted parameters corresponding to wind speed and wind 

direction 

g Gravitational acceleration [m/s2] 

Variables 

Decision Variables 

𝑥𝑖,𝑗
𝑘   The binary variable used to indicate if kth UAV travels from node i to 

node j  

𝑥𝑖,𝑗
𝑘 = {

1 if kth UAV travels along from node i to node j  
0 otherwise

 

𝑦𝑖
𝑘  The time that kth UAV arrives at the node i  

𝑠0
𝑘 The time that kth UAV starts to fly from node 0 

𝑐𝑖
𝑘 The payload weight amount delivered to node i by kth UAV 

𝑓𝑖,𝑗
𝑘  The payload weight carried by a UAV from node i to j by kth UAV 

       Output Variables 

𝑆𝑛,𝑚,𝑙 The nth sub-mission in the mth cluster in the lth flying time window,  
𝑆𝑛,𝑚,𝑙  = ( 𝑅𝑛,𝑚,𝑙 , 𝑃𝑛,𝑚,𝑙 , 𝐶𝑛,𝑚,𝑙) ; 𝜓(𝑚,𝑙) – the number of sub-missions in 

the mth cluster in the lth flying time window 

𝐶𝑛,𝑚,𝑙 The customer demand satisfaction levels of nth sub-mission in mth cluster 

in the lth flying time window 

𝑅𝑜𝑟,𝑚,𝑙 The rth route in the mth cluster in the lth flying time window, where each 

route consists of a sequence of nodes (starts from the base , visits one or 

more customer nodes and returns to the base) 

𝑃𝑙𝑟,𝑚,𝑙 The schedule of the rth route in the mth cluster in the lth flying time 

window, where each schedule consists of a sequence of times where the 

nodes in a corresponding route is reached 

𝐶𝑆𝑟,𝑚,𝑙 The customer demand satisfaction levels of the rth route in the mth cluster 

in the lth flying time window  

𝑅𝑛,𝑚,𝑙 The routes of the nth sub-mission in the mth cluster in the lth flying time 

window. 𝑅𝑛,𝑚,𝑙 consists of a set of routes (𝑅𝑜𝑟,𝑚,𝑙) 

𝑃𝑛,𝑚,𝑙 The schedules of nth sub-mission in mth cluster in the lth flying time 

window 𝑃𝑛,𝑚,𝑙 consists of a set of schedules (𝑃𝑙𝑟,𝑚,𝑙) 

𝑅𝐿𝑠,𝑚,𝑙 The sth scenario in the mth cluster in the lth flying time window, 𝑅𝐿𝑠,𝑚,𝑙 =

(𝑅𝑜𝑟,𝑚,𝑙, 𝑃𝑙𝑟,𝑚,𝑙 , 𝐶𝑆𝑟,𝑚,𝑙); ¥ (𝑚,𝑙) – the number of scenarios in the mth 

cluster in the lth flying time window 
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𝐶𝑠𝑖,𝑛,𝑚,𝑙 The customer demand satisfaction level of the ith node of the nth sub-

mission in the mth cluster in the lth flying time window 

Constraints 

Arrival time at nodes 

The relationship between the binary decision variable of 𝑥𝑖,𝑗
𝑘  and the decision 

variable of 𝑦𝑖
𝑘 . 

        (𝑥𝑖,𝑗
𝑘 = 1)

 
⇒ ( 𝑦𝑗

𝑘 = 𝑦𝑖
𝑘 + 𝑡𝑖,𝑗 + 𝑤)          ,             ∀{𝑖, 𝑗} ∈ 𝐸, ∀𝑘 ∈ 𝐾.     (1) 

If  UAV 𝑘 is flying from node 𝑖 to node 𝑗 in a given FTW then the arrival time 𝑦𝑗
𝑘 

to node 𝑗 is equal to the sum of travel time 𝑡𝑖,𝑗 between node 𝑖 to 𝑗, time spent for take 

up landing 𝑤 and the arrival time 𝑦𝑖
𝑘 to node 𝑖 (1). 

Example 1: If the utilized UAV is 𝑘 = 1 on Figure 13 then formula (1) for each 

edges from route (blue arrows) is shown in (a), (b) and (c) assuming that 𝑠 0
𝑘 = 0. 

            (𝑥0,3
1 = 1)

 
⇒ ( 𝑦3

1 = 𝑠0
𝑘 + 2 + 1) = 3.                                                        (𝑎) 

            (𝑥3,1
1 = 1)

 
⇒ ( 𝑦1

1 = 𝑦3
1 + 4 + 1) = 8.                                                        (𝑏) 

           (𝑥1,0
1 = 1)

 
⇒ ( 𝑦0

1 = 𝑦1
1 + 1 + 1) = 10.                                                      (𝑐) 

 
Figure 13. Illustration of example 1. 
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Collision avoidance  

As the UAV fleet mission planning should ensure collision avoidance, Paper E 

proposes collision avoidance constraints to ensure that no more than one UAV can 

occupy at an edge in the network at the same time. This includes the blocking edges 

corresponding to which is utilized by UAV 𝑘 and UAV 𝑣. The blocking edges 

(𝑏{𝑖,𝑗};{𝛼,𝛽}
 = 1) should not be utilized at the same time when they are occupied by the 

UAVs (𝑥𝑖,𝑗
𝑘 = 1 and 𝑥𝛼,𝛽

𝑣 = 1). Thus, in collision avoidance, it provides the decision 

to fly the UAV with higher priority before the UAV with lower priority. If UAV k has 

higher priority than UAV v then:  

{
 
 

 
 
  (𝑏{𝑖,𝑗};{𝜶,𝜷}

 = 1) ∧ (𝑥𝑖,𝑗
𝑘 = 1)  ∧  (𝑥𝜶,𝜷

𝑣 = 1) 
 
⇒(𝑦𝑗

𝑘  ≤ 𝑦𝜶
𝑣)    

 

(𝑏{𝑖,𝑗};{𝜶,𝜷}
 = 1) ∧  (𝑥𝑖,𝑗

𝑘 = 1)  ∧  (𝑥𝜷,𝜶
𝑣 = 1)  

 
⇒(𝑦𝑗

𝑘  ≤ 𝑦𝜷
𝑣) 

(𝑏{𝑖,𝑗};{𝜶,𝜷}
 = 1)  ∧  (𝑥𝑗,𝑖

𝑘 = 1)  ∧  (𝑥𝜷,𝜶
𝑣 = 1) 

 
⇒(𝑦𝑖

𝑘  ≤ 𝑦𝜷
𝑣)

(𝑏{𝑖,𝑗};{𝜶,𝜷}
 = 1)  ∧  (𝑥𝑗,𝑖

𝑘 = 1)  ∧  (𝑥𝜶,𝜷
𝑣 = 1) 

 
⇒(𝑦𝑖

𝑘  ≤ 𝑦𝜶
𝑣)

 

Example 2: If UAV k has a higher priority than UAV v (Figure 14) then formula 

(2) ensures utilizing the edges of 0-2 (orange line) and 1-3 (blue line) ensuring 

collision avoidance (e). 

  (𝑏{0,2};{3,1}
 = 1)  ∧  (𝑥0,2

𝑘 = 1)  ∧  (𝑥3,1
𝑣 = 1)  

 
⇒(𝑦2

𝑘  ≤ 𝑦3
𝑣).                     (𝑒)  

 
 

 

  
  Figure 14. Illustration of example 2. 

Capacity  

 The demand assigned to a UAV should not exceed its capacity, which leads to the 

following formulation: 

          ∑  𝑖∈𝑁𝑚,𝑙
∑  𝑗∈𝑁𝑚,𝑙

𝑥𝑖,𝑗
𝑘 𝑐𝑗

𝑘

 
⩽ 𝑄                  ,                      𝑘 = 1…𝐾.     (3) 

𝑘 = 1…𝐾,  

𝑣 = 1…𝐾, 

𝑘 ≠  𝑣, 

{𝑖, 𝑗}, {𝛼, 𝛽} ∈ 𝐸 

 (2) 
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The sum of all the carried weights 𝑐𝑗
𝑘 by UAV 𝑘 should not exceed the maximum 

carrying payload 𝑄. Furthermore, the sum of all carried weights delivered to a 

customer should not exceed the demand of each customer (4).  

Example 3: In the route (blue lines) shown in Figure 15, customers receive 4 Kgs 

of material ( 𝑐3
1 = 4 ,  𝑐1

1 = 4 ) by UAV no. 1 which has a maximum loading capacity 

of 10 Kgs (Q=10). UAV 1 returns to the depot with empty payload (𝑐0
1=0). This is 

shown in (f) and (g) using formula (3).  

                                          𝑥0,3
1 𝑐3

1 + 𝑥3,1
1 𝑐1

1 + 𝑥1,0
1 𝑐0

1
 
⩽ 𝑄.                                                     (𝑓) 

      1 ∗ 4 +  1 ∗ 4 + 1 ∗ 0 ⩽ 10.                                                       (𝑔) 

∑  𝑘∈𝐾 ∑  𝑖∈𝑁 
∑  𝑗∈𝑁 

𝑥𝑖,𝑗
𝑘 𝑐𝑗

𝑘

 
⩽ 𝐷𝑖                   ,                      𝑖 ∈ N0  =  𝑁 \{0}.    (4) 

 
Figure 15. Illustration of example 3. 

Flow of UAVs 

When a UAV arrives at a node, the UAV must depart from that particular node.  

 ∑  𝑗∈𝑁𝑚,𝑙
𝑥𝑖,𝑗
𝑘 − ∑  𝑗∈𝑁𝑚,𝑙

𝑥𝑗,𝑖
𝑘 = 0      ,         𝑘 = 1…𝐾, ∀𝑖 ∈ 𝑁0 = 𝑁𝑚,𝑙 ∪ {0}. (5) 

The sum of all the occupied edges which enter node 𝑖 (∑  𝑗∈𝑁𝑚,𝑙
𝑥𝑗,𝑖
𝑘 ) should be 

equal to the sum of all the edges, which depart from node 𝑖 (∑  𝑗∈𝑁𝑚,𝑙
𝑥𝑖,𝑗
𝑘 ). 

Example 4: In the route illustrated in Figure 15, the sum of all the occupied edges 

which go to node 1 should equal the sum of all the edges which departs from node 1. 

This is shown in (h) and (i) using formula (5). 

 (𝑥1,0
1 + 𝑥1,2

1 + 𝑥1,3
1 + 𝑥1,4

1 + 𝑥1,5
1 ) − (𝑥0,1

1 + 𝑥2,1
1 + 𝑥3,1

1 + 𝑥4,1
1 + 𝑥5,1

1 ) = 0. (ℎ)  
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   (1 +  0 + 0 +  0 + 0) − (0 +  0 + 1 +  0 + 0) = 0.           (𝑖) 

Start and end of routes 

Each UAV that departs from the depot (Node 0) should return to the depot. 

  (𝑥𝑖,𝑗
𝑘 > 0)

 
⇒ (∑  𝑖∈𝑁𝑚,𝑙

𝑥0,𝑖
𝑘 = ∑  𝑖∈𝑁𝑚,𝑙

𝑥𝑖,0
𝑘 = 1)          ,        𝑘 = 1…𝐾.       (6) 

Constraint (6) ensures that each UAV departs from the depot (Node 0) and returns 

to the depot. The sum of all the edges which start from node 0 as well as the sum of 

all the edges which returns to node zero should be equal to one. 

Example 5: By using the example 3 in Figure 15, (5) is checked in (j) and (k). 

(𝑥3,1
1 > 0)

 
⇒ (𝑥0,1

1 + 𝑥0,2
1 + 𝑥0,3

1 + 𝑥0,4
1 + 𝑥0,5

1 ) = (𝑥1,0
1 + 𝑥2,0

1 + 𝑥3,0
1 + 𝑥4,0

1 + 𝑥5,0
1 ) = 1. (𝑗) 

                 (0 +  0 + 1 +  0 + 0) = (1 +  0 + 0 +  0 + 0) = 1 .              (𝑘) 

Energy  

Each UAV has a maximum energy capacity of Pmax and in flight it is not possible 

to consume more than the max energy capacity (Paper E).  

   ∑  𝑖∈𝑁𝑚,𝑙
∑  𝑗∈𝑁𝑚,𝑙

𝑥𝑖,𝑗
𝑘  𝑃𝑖,𝑗

𝑘  𝑡𝑖,𝑗 ⩽ 𝑃𝑚𝑎𝑥                ,              𝑘 = 1…𝐾.                 (7) 

The energy constraint (7) defines that the energy consumed by the kth UAV should 

be less than or equal to the maximum energy capacity of the UAV. To calculate the 

energy consumption of the UAVs considered in this research, energy consumption 

equations introduced in Paper B were used. The energy consumption of the UAVs as 

following.  

𝑃𝑖,𝑗
𝑘 =

1

2
𝐶𝐷𝐴𝐷(𝑣𝑎𝑖,𝑗

𝑙 )3 +
((𝑒𝑝 + 𝑓𝑖,𝑗

𝑘 )𝑔)
2

𝐷𝑏2𝑣𝑎𝑖,𝑗
𝑙  ,                                                   (8) 

where 𝐶𝐷 is the aerodynamic drag coefficient, A is the front facing area, 𝑒𝑝 is the 

empty weight of the UAV, D is the density of air, b is the width of UAV and g is 

gravitational acceleration (Paper F). The air speed of a UAV 𝑣𝑎𝑖,𝑗
𝑙  is defined in the 

following equations and an example for calculation of 𝑣𝑎𝑖,𝑗
𝑙  (considering 𝑣𝑔0,4

 =20 

m/s) is shown in Figure 16. 

𝑣𝑎𝑖,𝑗
𝑙 = √(𝑣𝑔𝑖,𝑗 𝑐𝑜𝑠 𝜗𝑖,𝑗 − 𝑣𝑤𝑙

  𝑐𝑜𝑠 𝜃𝑙)
2

+ (𝑣𝑔𝑖,𝑗 𝑠𝑖𝑛 𝜗𝑖,𝑗 − 𝑣𝑤𝑙
  𝑠𝑖𝑛 𝜃𝑙)

2

 .          (9𝑎) 
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𝑣𝑎𝑖,𝑗
𝑙 = √(𝑣𝑔𝑖,𝑗 𝑐𝑜𝑠 𝜗𝑖,𝑗 − 𝑣𝑤𝑙

  𝑐𝑜𝑠 𝜃𝑙)
2
+ (𝑣𝑔𝑖,𝑗 𝑠𝑖𝑛 𝜗𝑖,𝑗 − 𝑣𝑤𝑙

  𝑠𝑖𝑛 𝜃𝑙)
2
 .           (9𝑏) 

 
Figure 16. Example of calculation of UAV 𝑣𝑎𝑖,𝑗

𝑙 . 

The objective function 

The objective is to maximize the customer demand satisfaction levels for all the 

customers (10), where 𝐶𝑠𝑖,𝑛,𝑚,𝑙 is calculated as a percentage using (11) as presented 

in Paper F. 

maximize:   min
𝑖 ∈ 𝑁0

 {∑  𝑖∈𝑁 
∑  
𝜓(𝑚,𝑙)
𝑛=1 ∑  

 𝜎(𝑙) 
𝑚=1 ∑

1

𝑎
𝐶𝑠𝑖,𝑛,𝑚,𝑙}

Φ
𝑙=1  .                          (10) 

𝐶𝑠𝑖,𝑛,𝑚,𝑙 =
∑  𝑘∈𝐾 𝑐𝑖

𝑘
 

 𝐷𝑖
.                                               (11) 

The solution approach considered in the study is illustrated in Figure 17. A set of 

customers located at different points in a delivery distribution network are to be 

serviced by a fleet of UAVs during a specified time period that contains changing 

weather conditions.  
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Figure 17. The problem modeling illustration (Paper F). 

Figure 17 illustrates the time period as a sequence of STWs, which consists of 

different weather conditions. Each STW consists of a range of wind speed and a given 

wind direction so that in creation of routes and schedules for the UAV fleet, the 

weather data of each STW are considered. The specifications of the UAVs, customer 

demands, network data with flying corridors and customer locations and weather data 

are given as input data. A solution strategy should be used to create a final mission 
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plan which consists of a sequence of sub-missions with corresponding routes and 

schedules (blue and orange lines) for the UAV fleet as shown in the latter part of 

Figure 17. 

3.4 PROBLEM FORMULATION 
As mentioned in the literature review, there are still no effective solutions, which 

allow to plan (route and schedule) UAV missions under the changing weather 

conditions. In order to find a solution for the problem following guiding question to 

facilitate the main problem should be considered (Papers E and F). 

Is it possible to create a fleet mission plan which consists of a sequence of sub-

missions 𝑆𝑛,𝑚,𝑙  = (𝑅𝑛,𝑚,𝑙 , 𝑃𝑛,𝑚,𝑙 , 𝐶𝑛,𝑚,𝑙) (determined by decision variables 𝑥𝑖𝑗
𝑘

, 

𝑦𝑖
𝑘 , 𝑐𝑖

𝑘 , 𝑓𝑖,𝑗
𝑘 ) of a given UAV fleet which maximize customer demand satisfaction 

(𝐶𝑠𝑖,𝑛,𝑚,𝑙) considering weather conditions and all defined constraints within the given 

time period (𝐻) ?    

Problem statement 

The problem’s nature gives that a set of geographically dispersed customers 

should be served by a fleet of UAVs charged from a central charging depot within a 

clearly defined time period, while taking into account that changing weather 

conditions occur. The goal is to maximize the demand satisfaction, such that each 

customer is reached with the maximum demand before the end of the time period, 

while obeying all hard constraints. 

3.5 DECOMPOSITION APPROACH 
A decomposition approach is proposed to solve the problem. It is inspired by the 

work completed by Cheng and Wang (2009), who solve the VRPTW using a 

decomposition technique. Cheng and Wang (2009) results show that problem 

decomposition provides better solution quality than directly solving the problem in 

one step (Cheng and Wang 2009). Accordingly, a general decomposed approach 

consisting of four sub-problems is proposed to overcome the potential poor solution 

quality found in the one step approach. This decomposition is presented in Paper E 

and explained in detail in Paper F.  

3.5.1 Determine the Sub-mission Time Windows 

In order to reduce the complexity of the weather conditions in the main problem, 

the first considered sub-problem assumes that a given time period with changing 

weather conditions can be divided into several STWs as proposed in Papers E and F. 

As proposed in Paper F, the STWs consist of similar weather conditions from the start 

of STW to the end of STW. The goal is to determine the size of STWs and create a 

sequence of STWs, such that each window consists of a range of wind speed and a 

wind direction. The weather forecast data is used to determine the size of STWs 

(Papers E and F). The minimum and maximum ranges of wind speed for each STW 

are known in advance and the wind direction is assumed to be constant within a given 
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STW. Subsequently, the STWs can be further subdivided into FTWs. The intention is 

to determine the length of FTWs to match needs for the sub-missions of each UAV, 

matching energy and payload carrying constraints. These sub-missions in their 

entirety comprise the complete mission plan for the UAV fleet. The results from 

solving this sub-problem provide a sequence of STWs where each STW is further sub-

divided into FTWs. 

3.5.2 Determine the clusters of customers 

In order to address the complexity of the network and the customer demand 

requirements in the main problem, the second considered sub-problem defines that it 

is reasonable to group a given set of customers at different points into Customer 

Clusters (CLs) as proposed in Paper E and F. The aim is to create clusters such that 

customers can receive either the entirety of their demand or fraction of this within a 

given FTW. The results of this sub-problem provide a set of alternative clusters of 

customers for each FTW. 

3.5.3 Create a possible set of sub-missions  

In order to reduce the complexity in the scheduling and routing of UAVs, the third 

considered sub-problem assumes that a given set of customers in a cluster will be 

served during a given FTW. As proposed in Paper E, each FTW consist of a set of 

sub-missions, such that each sub-mission consists of routes with schedules of the 

UAVs delivering materials to the customers. The goal is to create a set of sub-missions 

for each cluster, in such a manner that the customers are reached with a portion of the 

demands during each FTW. The results of this sub-problem provide a set of possible 

feasible sub-missions for a cluster in a given FTW. 

3.5.4 Find sequences of sub-mission deliveries, which gives the 
maximum customers satisfaction 

In order to reduce the complexity in the main problem, the fourth considered sub-

problem defines that the combined UAV fleet mission plan consists of a sequence of 

sub-missions as presented in Papers E and F. The goal is to find admissible missions, 

such that the sum of the sub-missions’ deliveries provide the maximum customer 

demand satisfaction. As a secondary objective it is possible to determine the 

admissible solutions which minimizes total travel time. The results obtained through 

solving this sub-problem provides a sequence of sub-missions that together constitute 

the UAV fleet mission plan (Papers E and F). 

3.5.5 Interdependency between the sub-problems 

     Figure 18 illustrates the relationships between the sub-problems based on the 

influences from the outputs of each sub-problem. The interdependencies between the 

sub-problems, illustrated in Figure 18, are as defined below (Papers E and F). 

     A set of selected clusters of customers in the network are considered to plan 

the delivery missions for each STW. For each customer cluster, a set of feasible 

collision-free UAV routes and accompanying schedules are created. The creation of 
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sub-missions is influenced by the nature of weather condition in each STW. The 

sequence of sub-missions from each FTW provides a full mission plan. The created 

feasible sub-missions are combined in a sequence to identify the sequence which 

provides the maximum demand satisfaction (Paper F). An interdependency analysis 

substantiates that sub-problem 3, is the most captious problem as all the remaining 

sub-problems are linked to it. 

 
Figure 18. Interdependency between the decomposed sub-problems (Papers F). 
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CHAPTER 4. SOLUTION APPROACH  
In this chapter, the solution approach and the results of the problem in the thesis 

are presented which address the RQ4.  

4.1 SOLUTION APPROACH  
In order to solve the main problem by addressing the decomposed sub-problems 

stated in section 2 and depending on the link between the sub-problems a sequential 

approach is proposed in Papers E and F as following.  

4.1.1 The method to determine the sub-mission time windows 
Given: Data about weather forecast (wind direction and wind speed) in the time 

period [0, 𝑡𝑚𝑎𝑥]. 
Question: How many STWs should be created in the time period [0, 𝑡𝑚𝑎𝑥] and how 

many FTWs should be extracted in each STW?  

By using the weather forecast data, the possible length of STWs are determined 

by using the following steps as proposed in Paper F.  The method mentioned in Paper 

F creates a sequence of STWs where the whole planning period is divided into STWs. 

A similar concept is proposed in Paper E, but in that paper those time windows are 

defined as weather time windows with the purpose to create sub-missions during a 

time where there are similar weather conditions. The STWs are divided in FTWs 

based on the time used in flying the UAVs considering the maximum fuel limit and 

maximum carrying payload. The method to create the STWs is illustrated in Figure 

19. 

 
Figure 19. The method to create STWs. 

4.1.2 The Method to determine the clusters of customers 
The given variables are: 𝐺 = (𝑁, 𝐸), 𝐹𝑙, 𝑣𝑤𝑙

 = [𝑣𝑤𝑙
  , 𝑣𝑤𝑙

  ], 𝜃𝑙. 

Question: How to determine clusters of customers 𝐶𝐿𝑚,𝑙 = (𝑁𝑚,𝑙 , 𝐸𝑚,𝑙) which 

should be extracted from the transportation network? 
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A method for determining the customer clusters is proposed in Paper F based on 

the geographical location of the customers. Customer clustering can be achieved in 

several ways such as hierarchical clustering and expectation–maximization clustering 

and “k-means” clustering. In Paper F, the “k-means” clustering algorithm is applied 

as it is already used in existing literature with competitive results (X. Liu et al. 2013; 

Mourelo Ferrandez et al. 2016). Euclidian distance between customers are taken as 

the feature of the clustering algorithm and the clustering algorithm is shown in Figure 

20, where the centroid is the data point at the center of each cluster. The determination 

of the number of clusters are done arbitrarily. 

 
Figure 20. Clustering algorithm. 

4.1.3 The method to create a possible set of sub-missions 
Given: l-th flying time window:𝐹𝑙,𝑣𝑤𝑙

 = [𝑣𝑤𝑙
  , 𝑣𝑤𝑙

  ], 𝜃𝑙, 𝐶𝐿𝑚,𝑙  , 𝑑𝑖,𝑗  ,𝑣𝑔𝑖,𝑗
 , 𝑡𝑖,𝑗. 

Question: Does there exists a set of admissible sub-missions 𝑆𝑚,𝑙 =

{𝑆1,𝑚,𝑙 , … , 𝑆𝑞,𝑚,𝑙} which satisfy the energy constraints and ensure collision avoidance?  

The method to create a possible set of sub-missions for a cluster in a given FTW 

has two stages as explained in Papers E and F. In the first stage a list of scenarios for 

the cluster is created and stage two utilizes these scenarios to create sub-missions. 

This provides a set of sub-missions for each mth cluster in each lth FTW. As the 

tendency in the business is to be conservative, which means that one rather reduces 

the solution space in this manner than allows for potential solutions that are going to 

turn out to be infeasible to execute in real-life. 

Stage one: Create possible scenarios (𝑅𝐿𝑠,𝑚,𝑙 = (𝑅𝑜𝑟,𝑚,𝑙 , 𝑃𝑙𝑟,𝑚,𝑙 , 𝐶𝑆𝑟,𝑚,𝑙) ) for 

each cluster in a FTW. As presented in Paper F the scenarios consist of 𝐶𝑛 customers 

and each customer receives a portion of materials which is equal to the payload of the 

UAV divided by 𝐶𝑛. 𝐶𝑛 is a parameter with the range of [1, max number of customers 

in the cluster]. Scenarios are created which have one customer to a maximum number 

of customers in the cluster as explained in detail in Paper F. The desired number of 
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scenarios are given as the input in this method and the method stops when the list of 

scenarios consists of the desired number of scenarios (Paper F). 

Stage two: Input for stage two is the list of scenarios and customer demand 

satisfaction levels determined in stage one for a cluster. The sub-missions for each 

cluster are created as per the method presented in Paper F. 

Illustration of the method for first time window 

A simple illustration of sub-mission creation within a given FTW for two clusters 

(CL1,1 and CL2,1) is selected for demonstrating the method. For CL1,1 (Figure 21) sub-

mission creation is illustrated in Figures 22 and 23. For CL2,1 (Figure 24) sub-mission 

creation is illustrated in Figures 25 and 26. 

 
Figure 21. First cluster in first FTW. 

Stage one of the sub-mission creation for CL1,1 is illustrated as following in Figure 

22, taking the stopping criterion of desired number of scenarios equals to 4. This 

stopping criterion is taken to illustrate the differences in four created scenarios.  
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Figure 22. Four scenarios created for the first cluster in first FTW. 

Stage two of the sub-mission creation for CL1,1 is illustrated as following, taking 

the stopping criteria of desired sub-missions equals to 2. These stopping criterions are 

taken to illustrate the differences of two created sub-missions in the solution approach. 

 
Figure 23. Two sub-missions created for the first cluster in first FTW. 
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Figure 24. Second cluster in first FTW. 

Stage one of the sub-mission creation for CL2,1 is illustrated as following, taking 

the stopping criteria of the desired number of scenarios equals to 4.  

 
Figure 25. Four scenarios created for the second cluster in first FTW. 

Stage two of the sub-mission creation for CL2,1 is illustrated as following, taking 

the stopping criteria of desired sub-missions equals to 2.  
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Figure 26. Two sub-missions created for the second cluster in first FTW. 

For the first FTW four sub-missions are created as S1,1,1, S2,1,1, S1,2,1, S2,2,1. 

4.1.4 The method to find sequences of sub-mission deliveries ensuring 
high demand satisfaction  

Given: a set of FTWs: 𝐹𝑆𝑙 ,𝐹𝐸𝑙 , set of clusters 𝐶𝐿𝑚,𝑙 = (𝑁𝑚,𝑙 , 𝐸𝑚,𝑙) and the set of 

admissible sub-missions 𝑆𝑚,𝑙 = {𝑆1,𝑚,𝑙 , … , 𝑆𝑞,𝑚,𝑙} for each cluster in each FTW. 

Question: How to find the sequence of sub-mission deliveries which maximize the 

customer demand satisfaction?  

The Depth-first search (DFS) algorithm is proposed in Paper F to find admissible 

missions which gives the highest customer demand satisfaction as DFS expands all 

nodes to the greater depth, it is guaranteed to find an quality solution (Korf 2003).  

 
Figure 27. Process to find the sequence of sub-missions, which provides the 

maximum customer demand satisfaction. 

 

The sub-missions which are created are searched using the DFS to find the 

sequence of sub-missions which provides the maximum customer demand satisfaction 
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level and Figure 27 shows steps in searching the sequence of sub-missions which 

provide the final mission plan. All sets of possible sequences of sub-missions are 

searched in Paper E using brute-force search for small instances. 

 

4.2 NUMERICAL EXAMPLES AND COMPARISONS 
Several numerical examples with illustrations to explain the solution approach 

stated in section 4.1 are presented in Papers D, E and F. This section contains 

additional experiments not mentioned in the appended papers and expanding on the 

numerical investigation of both the problem and solution approach. The experiments 

presented in this section support the answering of RQ4 and in understanding how the 

various parameters influence the sub-mission creation.  

All experiments were performed with a fleet of UAVs having the characteristics 

listed in Figure 17. The considered STWs consist of different lengths where the STWs 

are the outputs of sub-problem 1. A description of the input data used for the 

experiments is shown in Table 4. For each FTW, which falls under an STW, the input 

parameters for the UAV fleet size, maximum carrying payload, the number of 

customers per route and the maximum energy of UAV are changed to make the sub-

missions while all remaining parameters are kept constant. Weather data is taken from 

the weather data of Denmark (Danish Meteorological Institute, 2015). All 

experiments were conducted on a personal computer with 2.7 GHz speed and 8 Gb 

RAM. 

Table 4. Input data for the experiments (Papers F). 

Input Data Values 

The maximum energy of UAV (𝑃𝑚𝑎𝑥) 12000 (KJ) 

UAV fleet size (K) 2,3,4,5 

Number of sub-mission time windows 5 

Number of clusters per STW (𝜎) 2,3,4 

Number of scenarios per cluster per FTW (¥) 3,4,5 

Number of sub-missions per cluster (𝜓) 2 

Number of customers per route (Cn) 1,2,3,4,5 

Ground speed (𝑣𝑔𝑖,𝑗
 ) 20 (m/s) 

Length of 𝐹𝑇𝑊𝑙  1800,3600,5400,7200,9000 (s) 

Maximum loading capacity of UAV (Q) 24 (Kg) 

The demand of the customers (𝐷𝑖) [80,100] (Kg) 

Time period (𝐻) 43200 (s) 

 

By using the input data, sub-missions are created for each cluster for each flying 

time window. The creation of sub-missions is done by the method proposed in Paper 

F. By using the input data sub-missions are created for each cluster for each flying 

time window. The obtained results are presented in Papers E and F. In addition, 

several other experiments were conducted which are described in Table 5. 
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Table 5. Description of the experiments. 

Experi-

-ment 

Description Description of changing 

parameters 

1 Input parameters of 𝑣𝑤𝑙
 , 𝜃𝑙, Cn, K are 

changed, and all the remaining 

parameters are kept as constant. 

𝑣𝑤𝑙
 : [6,13] (m/s) 

𝜃𝑙: [0, 180] (degrees) 

Cn: (1, 2), K : [2, 6] 

2 Input parameters of length of 𝐹𝑇𝑊𝑙 =  

𝐹𝑇𝑊𝐸𝑙 − 𝐹𝑇𝑊𝑆𝑙  and 𝑃𝑚𝑎𝑥  are 

changed and all the remaining 

parameters are kept as constant. 

length of 𝐹𝑇𝑊𝑙: 

(20,40,60,80,100) (mins) 

𝑃𝑚𝑎𝑥: (6000,12000) (KJ) 

3 Input parameters of K, Q and 𝐶𝑛 are 

changed and all remaining parameters 

are kept as constant. 

K: [2, 6] 

Q: (12,24) (Kg) 

𝐶𝑛: (1,2) 

 

 
Figure 28. Customer demand satisfaction levels for the sub-missions created at 

different wind speeds for a wind direction of 30 degrees with different combinations 

of fleet size and numbers of customers per route (Experiment 1).  
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Figure 29. Customer demand satisfaction levels for the sub-missions created for 

different wind directions and with different combinations of fleet size and numbers 

of customers per route for a wind speed of 8m/s (Experiment 1). 

 
Figure 30. Customer demand satisfaction levels for the sub-missions created for 

FTWs with different length and with different maximum energy limits of UAVs 

(Experiment 2). 
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Figure 31. Customer demand satisfaction levels for the sub-missions created for 

different combinations of fleet size and numbers of customers per route for different 

maximum loading capacity of UAVs (Experiment 3). 

Depending on the weather forecast, the fleet size and the number of customers per 

route can be chosen when creating sub-missions (Figure 28 and 29). As the fleet size 

increases the risk of potential collisions occurring increases and to have possible sub-

missions with higher fleet size, larger length of FTW is needed (Figure 30) and UAVs 

with larger loading capacities are required (Figure 31). From the numerical 

experiments one is able to infer a number of interesting properties of both the problem 

and the solution approach. From the experiments it is clear that changes to wind 

direction significantly affect the creation of sub-missions, which in turn leads to 

different customer demand satisfaction levels. Thus, it can be noted that the 

combinations of fleet size, number of customers per route and loading capacity of the 

UAVs could be decided based on the weather forecast data (Figure 28, 29 and 30). 

This underlines the importance of including wind speed and direction in mission 

planning approaches as they severely limit range and carrying capability. As the fleet 

size is increasing the potential collisions between UAVs are increasing, in small 

FTWs sub-missions with the higher fleet size are not possible due to the increase of 

collision avoidance blockage. As the length of the FTWs become shorter, it is 

challenging to create sub-missions and this influences the quality of the solutions. 
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This information can be used to decide the fleet size of the sub-missions depending 

on the available length of FTWs. 

 
Figure 32. Experiment results showing different sub-missions with Cn=2 and 

Cn=1 delivering same demand quantities. 
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In addition to this, the determination of an appropriate fleet size to satisfy demand 

quantities can be decided based on the size of FTWs. Shorter FTWs have to be planned 

with smaller fleet size will result in less blockage due to collision avoidance and as 

the length of FTWs increases, sub-missions with larger fleet size can be planned. 

However, this comes with the added difficulty in avoiding collisions as the potential 

for collisions increases with increasing fleet size. Thus, depending on the length of 

FTWs which is based on the nature of the weather conditions, different combinations 

of the of fleet size, number of customers per routes, payload allocations and customer 

clusters can be chosen to find high quality solutions for the mission planning problem. 

Furthermore, it is observed that different combinations of sub-missions can lead to 

exactly the same demand satisfaction with different degrees of total travel distance 

and total energy consumption (Figure 32). This is an interesting observation, as it 

implies that there are multiple solutions with the same objective function value, but 

differing degrees of resource consumption. This supports the approach present in 

Paper F, highlighting the use of the approach for decision support and fleet mission 

prototyping.  

 

Table 6. Mission planning results behavior with forecast vs. actual weather conditions. 

 

The mission planning results behavior with forecast vs. actual weather conditions 

are shown in the following Table 6. The actual data have a 4% average deviation from 

the forecast weather data for 24 hours forecast, and have 3% average deviation from 

the forecast weather data for 12 hours forecast. The results show that the plans 

proposed for a 12 hours planning horizon by the model provide acceptable results in 

execution with real weather data as even for 4% changes it provides results more than 

99% of customer demand satisfaction.  

4.3 DISCUSSION  
As the problem presented in this work is neither previously addressed nor solved 

in existing literature it is not directly possible to compare with existing methods. Even 

though several contributions have been completed within UAV fleet mission 

planning, these contributions have uniformly ignored the impact of weather conditions 

and only considered relatively small UAVs compared to the UAVs used in this study 

(Dorling et al. 2016). As the UAVs’ specifications highly impact energy consumption, 

especially for larger UAVs, linear approximations are not justifiable. This contrasts 

directly with the current-state where primarily linear approximations of energy 

consumption are considered.   

Number of 

customers (n )
Fleet size(K )

Solution for 

forecast 

weather data

1% change 

from 

forecast

2% change 

from 

forecast

3% change 

from 

forecast

4% change 

from 

forecast

1% change 

from 

forecast

2% change 

from 

forecast

3% change 

from 

forecast

4% change 

from 

forecast

5 2 100.00 100.00 100.00 100.00 99.77 100.00 100.00 100.00 100.00

3 100.00 100.00 100.00 100.00 99.14 100.00 100.00 100.00 100.00

10 2 99.80 99.80 99.80 99.35 99.31 99.80 99.80 99.80 99.71

3 100.00 100.00 100.00 100.00 99.13 100.00 100.00 100.00 100.00

4 100.00 100.00 100.00 100.00 99.82 100.00 100.00 100.00 100.00

15 3 99.22 99.22 99.02 98.81 98.73 99.52 99.52 99.52 99.12

4 99.43 99.43 99.43 98.43 98.16 99.43 99.43 99.43 99.14

5 100.00 100.00 100.00 99.83 99.47 100.00 100.00 100.00 100.00

6 100.00 100.00 100.00 100.00 99.76 100.00 100.00 100.00 100.00

Actual weather data

Wind speed changes in execution Wind direction changes in execution
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Certain studies have formulated the mission planning problem for a fleet of UAVs 

as a mixed-integer non-linear programming problem, but approximated the problem 

as a mixed-integer linear program, and used a solver (Gurobi) to the latter on a set of 

test instances (Fügenschuh and Müllenstedt 2015). Fügenschuh and Müllenstedt 

consider energy limitations of UAVs, but has not the effects of weather conditions in 

deriving the energy consumptions and used linear approximations of the energy 

consumption of UAVs. A COP approach was used in Paper G to solve the problem 

and limitations that restrict its use to mission planning problems in distribution 

networks in which the number of customers does not exceed 12 and the number of 

UAVs in the fleet is not larger than 5. For such problem instances, solutions can be 

obtained in under 1000 s. This problem is formulated as an extension of the VRPTW 

and solved using a COP approach and is presented in Paper L. The problem was 

solved in a constraint-programming environment (IBM ILOG) and solutions were 

obtained. However, such programming environments could provide solutions for 

networks in which the UAV fleet size is less than or equals to 4, and the number of 

customers is less than or equals to 8 (Paper F).   

The UAV fleet size can be given as an input and the maximum customer demand 

satisfaction level, which can be provided by that fleet size in the given weather 

conditions can be determined by the model. Furthermore, the presented model can be 

used by a planner to give a desired customer demand satisfaction level as an input and 

find the required number of UAVs to accommodate that desired customer demand 

satisfaction level (Papers E and F). For instance, if the desired customer demand 

satisfaction level is 96% then the method can find the mission plans which provides 

96% customer demand satisfaction, and the required UAV fleet size to accommodate 

that desired customer demand satisfaction level for the given weather conditions. In 

the current method, all the customers have given a similar priority in serving by the 

fleet of UAVs, but the model can be modified if certain customers should be given 

higher priority than other customers in receiving the demand volume (Paper F). 

The outcome of this research can be used as a decision support tool in aerospace 

companies. Paper F discusses in detail on utilizing the proposed method to facilitate 

mission planners in taking decisions in UAV fleet mission planning. This allows one 

to answer questions regarding the analysis of the robustness of the UAV fleet mission 

plan to different influencing parameters of wind speed and direction, UAV fleet size, 

specifications, payload capacity and energy capacity (Paper F). Furthermore, the 

conducted simulations of this study are provided to aerospace companies, as proposal 

input for a UAV fleet planning decision support system enabling to prototype 

alternative mission proposals for execution. Investigations on potential approaches 

and an offline-based system are carried out to ensure that only missions suitable to be 

sent to flight approval from Air Traffic Control are accepted and the results of the 

study will be implemented as a technical tool in decision support systems for 

aerospace companies (Papers F). 
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CHAPTER 5. CONCLUSIONS AND 

FUTURE WORK 
The focus of this research is presenting a strategy to solve the multi-trip UAV fleet 

mission planning problem subject to changing weather conditions. This thesis report 

provides a solution approach for the hitherto unsolved problem considering energy 

consumption constraints in changing weather conditions and ensuring collision 

avoidance. The novelty of this research is that it gives the first unified definition of 

the UAV fleet mission planning problem subject to changing weather conditions and 

proposing a decomposed approach to solve it. This problem involves managing 

complex characteristics during the process of mission planning while considering 

factors such as weather dependencies and collision avoidance. This has to be 

conducted while addressing the non-linear energy consumption behavior of UAVs, 

which in turn depends on many factors such as UAV type, weather conditions and 

payload.  

 

5.1 RESEARCH CONTRIBUTIONS  
The scientific contributions of the thesis are as follows: 

 Providing a published general overview of the current state and contributions in 

the domain of UAV routing. 

 Identifying the different conditions influencing the non-linear energy consumption 

of aircrafts and analyzing how those factors affect UAV fleet mission planning. 

 Presenting the novel problem of UAV fleet mission planning subject to changing 

weather conditions. 

 Presenting a decision support driven declarative model for the problem of UAV 

fleet mission planning subject to changing weather conditions. 

 Proposing a decision support driven solution strategy based on decomposition 

solution approach to solve the problem of UAV fleet mission planning subject to 

changing weather conditions. 
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Figure 33. Blue print of the PhD project. 

 

Figure 33 presents the steps of the PhD project with reference to the research 

questions and publications. Papers H, I, J and K are the supporting papers published 

during the PhD study. 

Appended papers in the second part of the thesis has answered the research 

questions stated in chapter 1 as follows. 

RQ1 What is the current state of UAV fleet mission planning in the existing 

literature and what are the gaps? Addressed in Paper A 

Paper A provides a published overview of the current state and contributions to 

the area of the UAV routing and a general categorization of the VRP followed by a 

UAV routing classification based on an extensive analysis of the existing research 

contributions published in this domain. This analysis is used to identify the gaps in 

the current state to address the unique nature of the routing of UAVs in outdoor 

environments in the context of the problem addressed in this study. 

RQ2 What are the conditions influencing the UAV fleet mission planning, which 

are unique to UAVs? Addressed in Paper B  

Paper B identifies the factors affecting the energy consumption of UAVs during 

execution of missions and examines the general characteristics of the energy 

consumption. As the energy capacity and consumption are critical constraining factors 

in UAV routing, Paper B provides an overview of the current state of and 

contributions to the area of energy consumption in UAVs followed by a general 

categorization of the factors affecting energy consumptions of UAVs which are used 

in this study.  

RQ3 What are the factors, which affect the energy consumption of UAVs, and 

how do those factors affect the energy consumption of UAVs? Addressed in Paper C 

Paper C presents an analysis related to the parameters that affect the energy 

consumption of the UAVs through an example scenario of a single UAV multi-

delivery mission.   

RQ 4 Is it possible to solve the UAV fleet mission planning problem for a fleet of 

UAVs delivering materials to maximize customer demand satisfaction ensuring 
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collision avoidance and considering the behavior of energy consumption of UAVs? 

Addressed in Papers D, E, F, G and L. 

Paper D presents a method to ensure that at least one feasible solution exists for 

the considered problem and it leads to the opportunity to find sufficient conditions 

guaranteeing the existence of at least one feasible solution. Furthermore, in this paper 

algorithms dedicated to UAV routing and scheduling problems subject to collision 

avoidance, weather changes and energy consumption constraints are developed.  

Paper E presents a declarative model aimed at analyzing the relationships of a 

given UAVs driven supply network and its function in a sequence of sub-missions 

following the required deliveries. In this paper, an illustrative example is presented 

with an approach leading to conditions ensuring solutions existence where the 

permissible size of the distribution network for which such missions can be 

determined. The proposed model consists of an approach in which a network is 

decomposed into clusters, which covers a part of the set of all customers serviced by 

the fleet of UAVs.  

Paper F proposes a decision support driven solution approach to obtain a sequence 

of sub-missions that delivers a requested amount of goods to customers, within a given 

time period under the given weather forecast constraints. Furthermore in the paper 

computational experiments which allow to assess alternative strategies of UAV fleet 

mission planning are presented. 

Paper G provides an offline strategy to solve the problem of the multi-trip UAV 

fleet mission planning subject to changing weather conditions, while considering 

energy consumption constraints and collision avoidance of UAVs. When creating the 

missions, depending on the weather forecast, the fleet size and the number of 

customers per route can be decided upon. 

Paper L presents the problem as an extension of the VRPTW and formulates it as 

a COP. The problem is solved in a constraint-programming environment (IBM ILOG) 

and solutions are obtained for small problem instances. 

Based on the experimental results found in Papers E, F and G, sub-missions 

having different combinations of fleet size and numbers of customers per route could 

be used to deliver similar amounts of customer demands. However, depending on the 

length of FTWs different sub-missions can be chosen to execute the missions. It is 

observed that the collision avoidance constraint increases the flying time of the sub-

missions and if a different network can be used where there is less crossing between 

flying corridors, then the flying time of sub-missions will be reduced. Hence, the 

nature of the network influences the results of the creation of sub-missions.  

The proposed declarative decomposed solution approach gives a reasonable 

approach to solve the problem reducing its complexity and leads to acceptable 

solutions for aerospace companies. The approach could be used as a prototype of a 

DSS addressing various influencing parameters involved in UAV fleet mission 

planning.   

5.2 FUTURE RESEARCH DIRECTIONS 
       Future research directions highlighting possible extensions of the presented 

work will produce a significant step towards autonomous UAV fleet mission 

planning. The contributions of this research provide a foundation for future 
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researchers to expand on the research directions listed as following. Below are 

identified four such reasonable directions of future work. All four suggestions focus 

on extending the problem in terms of adding complexity to match real world needs.  

The research presented in this study can be extended to multiple depots with 

recharging stations as a method of extending the flight distance of UAVs. This would 

be reasonable to match very large-scale practical implementations of UAV fleets 

managing deliveries. To complete this extension, customers can be assigned to 

different depots and each depot could be utilized to supply the materials based on the 

customer demands. As the network size increases, to cater to a large number of 

customers, the clusters of customers can be assigned to dedicated depots.  

The research presented in this study could also reasonably be extended by adding 

customer delivery time windows to the problem. This would match with certain 

existing delivery systems, where goods are promised to be delivered within a given 

specific time slot. In the current study, the customers need just to be served before the 

end of the time period. If each customer has specific delivery time windows, the 

current solution method can be extended as the customers with common time 

windows can be grouped and the sub-missions can be planned accordingly.  

The research presented in this study could be extended by considering two 

different types of UAV tasks; drop off and pickup. After a UAV completes a delivery, 

the UAV can either fly back to a depot to complete the next delivery or pick up new 

material to fly directly to another customer. This breaks with the pickup strategy 

utilized in the current study, where all materials are picked up centrally at the depot. 

To accommodate this extension, the current solution strategy should be extended by 

considering the customer locations as potential depots and the mission creation has to 

be modified to address pickups and deliveries. 

A final potential extension of the research could be to consider a fleet of 

heterogeneous UAVs rather than the homogenous ones considered in the current 

research. The advantages of considering a heterogeneous fleet with different types of 

UAV specifications is that one can match the specifications to customers dependent 

on the nature of their demand. This influences the mission creation, as the calculation 

of the energy consumption should be done by taking the specifications of the 

heterogeneous fleet of UAVs into account and the routes can then be assigned 

subsequently as in the current approach. Thus, the heuristic method used in mission 

creation should be modified to be applied for a heterogeneous fleet of UAVs. 

These extensions all underline the strength of using a decomposition approach. 

The extensions can be supported and implemented within the current setup, through 

modifying sub-problems and the solution strategies to the sub-problems. This 

underlines the flexibility and scalability of the proposed approach. Furthermore, it 

underlines how the presented research can be considered as a foundation to build the 

UAV fleet mission planning systems of the future on.  
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