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Abstract

Spatial statistics is a large branch of statistics, which includes the theory of
point processes. A point process is a random and countable collection of
points from some space, and its realisations are called point patterns. This
subject is of interest in many scientific fields such as ecology, stereology, neu-
rology, and astronomy, where information is collected from certain locations
and where these locations, themselves, are of interest. Often, the locations
constitute the points of the point patterns, and the information, collected at
the locations, is attributed to the points and are referred to as marks.

This thesis deals with point processes and has a twofold focus.
The first focus is on analysing two point patterns each concerning the lo-

cation and orientations of neurons contained in a section of the cerebral cortex
of a human brain. The structuring of neurons is of great interest in neuro-
science, since deviations from a “normal” neural structure can be linked to
different neurological diseases. One such structure is the so-called minicol-
umn structure, whose existence is still debatable. This minicolumn structure
is of particular interest in the present thesis. The two point patterns consist
of three-dimensional coordinates for the locations together with spherical co-
ordinates for the orientations of so-called pyramidal cells – specific cells that
are pyramid shaped and thus have a natural orientation. Hence, the data
are marked point patterns with orientations being the information collected
at the location of the neurons (the opposite is equally true, but seems less
appealing). These marked point patterns may simply be viewed as point pat-
terns consisting of points from the product space R3 × S2. To compare such
a point pattern to a proposed model we extend the concept of the so-called
K-function (a particular function that summarises certain characteristics of
a point pattern) to the product space Rd × Sk. Additionally, we apply this
function to test for dependence between the spatial (locations) and spherical
(orientations) component of the point patterns. As a result we find that the
two components are independent and consequently can be modelled sepa-
rately. Hence, we find and discuss a suitable model for the orientations and
a satisfactory model for the locations.

The second focus of this thesis is on some theoretical details on a certain
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class of point process models, namely the so-called iterated cluster point pro-
cesses. Iterated cluster point processes are briefly defined as a set of points,
each of which generate a set of offspring points, which in turn generate off-
spring and so on. These type of point processes are of interest in relation
to e.g. population genetics and community ecology, since they naturally de-
scribe a reproduction mechanism. We focus on finding a closed term expres-
sion for a particular summary function and show, under certain conditions,
that the point process converges in distribution as the number of iterations
tends to infinity.

The thesis is divided into two parts: the first part of the thesis gives an
introduction to the basic concept that are necessary for grasping the concepts
that are presented in the second part of the thesis; the second part of the
thesis consist of a collection of papers that deals with the aforementioned
problems.



Resumé

Rumlig statistik er en gren inden for statistik, der inkluderer teorien om
punktprocesser. En punktproces er en stokastisk og tællelig samling af punkt-
er fra et vilkårligt rum, og dens realiseringer kaldes for punktmønstre. Dette
emne er af interesse inden for mange videnskabelige områder såsom økologi,
stereologi, neurologi og astronomi, hvor information indsamles fra bestemte
lokationer, og hvor disse lokationer i sig selv er af interesse. Ofte udgør
lokationerne punkterne i punktmønstret, og den yderligere information, ind-
samlet på lokationerne, henføres til punkterne og bliver omtalt som mærker.

Denne afhandling omhandler punktprocesser og har et todelt fokus.
Det første fokus er på at analysere to punktmønstre, der hver vedrører

lokationen og orienteringen af neuroner i et område af hjernebarken fra en
menneskehjerne. Organiseringen af neuroner er af stor interesse i neurologi,
da denne kan knyttes til forskellige neurologiske sygdomme. Den såkaldte
minisøjle-struktur, hvis eksistens stadig diskuteres, er en del af denne organ-
isring. Minisøjle-strukturen er af særlig interesse i denne afhandling. De to
punktmønstre består af tredimensionelle koordinater for lokationerne sam-
men med sfæriske koordinater for orienteringerne af såkaldte pyramideceller
– specifikke celler, der er pyramideformet og som derfor har en naturlig
orientering. Punktmønstrene består altså af punkter fra produktrummet
R3× S2. For at sammenligne et sådant punktmønster med en model udvider
vi den såkaldte K -funktion (en bestemt funktion, der opsummerer visse
egenskaber ved et punktmønster) til produktrummet Rd × Sk. Yderligere,
anvender vi denne funktion til at teste for afhængighed mellem den rumlige
(lokationerne) og sfæriske (orienteringerne) komponent i punktmønstrene.
Vi finder, at de to komponenter er uafhængige og derfor kan modelleres sep-
arat. Derfor finder vi og diskuterer en passende model til orienteringerne
samt en tilfredsstillende model for placeringerne.

Det andet fokus i afhandlingen er på nogle teoretiske detaljer om en
bestemt klasse af punktprocesmodeller, nemlig de såkaldte itererede klyn-
gepunktprocesser. Itererede klyngepunktprocesser kan kort defineres som et
sæt af punkter, som hver genererer et sæt afkomspunkter, som igen genererer
afkom og så fremdeles. Denne type punktprocesser er af interesse i forhold
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til f.eks. populationsgenetik og samfundsøkologi, da de naturligt beskriver
en reproduktionsmekanisme. Vi fokuserer på at finde et lukket udtryk for en
bestemt opsummerende funktion og viser, under visse betingelser, at punkt-
processen konvergerer i fordeling, når antal iterationer går mod uendelig.

Afhandlingen er opdelt i to dele: første del af afhandlingen giver en in-
troduktion til de grundlæggende koncepter, der er nødvendigt for at forstå
koncepterne præsenteret i anden del af afhandlingen; anden del af afhandlin-
gen består af en samling artikler, der beskæftiger sig med de ovenfornævnte
problemer.
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Preface

This thesis is the result of the work done by my co-authors and me during my
time as a PhD-student at the Department of Mathematical Sciences at Aalborg
University, Denmark. The work is supported by the “Centre for Stochastic
Geometry and Advanced Bioimaging”, funded by the Villum Foundation.

The original objective of this thesis was to investigate the organisation
of pyramidal cells in the human cerebral cortex, with a particular focus on
the so-called minicolumn hypothesis. This is of great interest for biologists
since it is suspected that different minicolumnar structures are related to
different neurological disorders. In the process of finding a suitable point
process model for to describe the neural structure a lot of time was spent on
theoretical results for so-called iterated cluster point processes, which now
constitutes a great part of this thesis.

The thesis is structured in two parts: part I gives a introduction to the
minicolumn hypothesis, the data considered in this thesis, which are subsets
of the product space R3 × S2, as well as a brief introduction to the most
relevant theory of spatial point processes; part II is a collection of the three
papers:

A: Møller, J., Christensen, H. S., Cuevas-Pacheco, F., and Christoffersen, A.
D. (2019). Structured space sphere point processes and K-functions. To
appear in Methodology and Computing in Applied Probability. Available at
https://doi.org/10.1007/s11009-019-09712-w.

B: Møller, J. and Christoffersen, A. D. (2018). Pair correlation functions
and limiting distributions of iterated cluster point processes. Journal of
Applied Probability, 55:789–809.

A: Christoffersen, A. D., Møller, J., and Christensen, H. S. (2019). Mod-
elling columnarity of pyramidal cells in the human cerebral cortex. Sub-
mitted to Journal of the Royal Statistical Society: Series C (Applied Statistics).
Available on arXiv:1908.05065.

In the first paper we investigate whether there is a dependence between the
two components (that is the points of R3 and S2, respectively) of the datasets,
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and discuss a suitable model for the spherical component (that is the points in
S2). Theoretical details on iterated cluster point processes are discussed in the
second paper and finally in the third paper a model for columnar structures,
which makes use of a special case of the iterated cluster point process model,
is presented. It should be noted that the notation may be inconsistent over the
three papers and background knowledge may be presented multiple times.

I would like to extend my sincerest gratitude to my supervisor Professor
Jesper Møller for sharing his extensive knowledge and for his always honest
opinions. His dedication and industriousness is truly inspiring. I would also
like to thank Associate Professor Ege Rubak for his availability and kindness
whenever any software caused me trouble as well as Professor Jens R. Nyen-
gaard and his team for supplying the data, and for helpful discussions on the
biological aspect of the thesis. Finally, I would like to thank my loving and
caring partner Heidi S. Christensen, not only for her collaboration and many
fruitful professional discussions through the last three years, but also for her
love and moral support and for sticking around through the difficult periods.

Andreas D. Christoffersen
Aalborg University, August 30, 2019
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Background

1 Introduction

In many areas of science, such as ecology, stereology, neurology, and astron-
omy, datasets consisting of the locations of events (called points) arise. Such
datasets are referred to as point patterns, and often the interest is to investi-
gate the underlying structure of the points. A typical example of a point pat-
tern is the locations of trees in a forest or sub-region of a forest. In such a case
relevant questions could be how likely it is to observe two trees in close prox-
imity and possibly how this probability is affected by the presence/absence
of different nutrients in the soil or characteristics of the trees, such as height
or species. For many applications additional information, such as the species
of the tree, are recorded and attributed to each point. This information is
called a mark and can be treated in many ways depending on the nature of
the mark and the application. As an extension to the tree example the marks
could be the generations of the trees (of course this assignment of generations
would begin at an arbitrary time, since some of the eldest trees will have no
observable parents). With that additional information one could investigate
the reproduction mechanism of the trees, that is how are the offspring trees
scattered from the parent tree; or basically measuring how far the apple fall
from the tree. In that case the points would be contained in R2 and the marks
in N.

Obviously, more complicated types of point patterns arise in practise and
we consider such an instance in Section 2, where the open problem of the
minicolumn hypothesis along with two associated point patterns are pre-
sented. Following, in Section 3 a brief presentation on the basic, and for this
thesis essential, concepts for spatial point process. Finally, Section 4 gives
some closing remarks and summarise the outcome of each of the three pa-
pers contained in the second part of this thesis.
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2 The minicolumn hypothesis

Neurons are the fundamental cells of the nervous system that receive, pro-
cess and transmit signals/information and are in essence responsible for the
actions of its host (humans or animals), such as feeling, seeing, thinking, and
moving. A neuron is a cell that typically consists of a soma, multiple den-
drites, and a single axon. The soma is also called the cell body and contains
a nucleus, which in layman terms is referred to as the control centre of the
cell, and contains the genetic material of the cell as well as the nucleolus. The
soma varies in size and shape depending on the type of neuron and for in-
stance the pyramidal cells, which makes up approximately 75 % to 80 % of all
neurons (Buxhoeveden and Casanova, 2002), have pyramid-shaped somas.
The soma processes information received by the dendrites and passes the
processed information on to other neurons via the axon. Thus, the dendrites
and the axon constitute the links connecting neurons. Understanding how
neurons are connected and organised is key in understanding the workings
of the nervous system, including the brain.

The neocortex is part of the cerebral cortex and is organised in six lay-
ers (layers I-VI) each with its own unique neural structure. This layering
structure is part of the horizontal (relative to the so-called pial surface of the
brain) organisation of the cortex. Correspondingly, the neurons are vertically
organised and in particular the neurons of the cortical layers II-VI are hy-
pothesised to be organised in small linear aggregates which Lorente de Nó
(1938) suggested to be functional elementary units. Later Mountcastle (1978)
further defined these linear aggregates as minicolumns which constitute the
smallest level of vertical organisation and are, in humans, estimated to have
a diameter of 35 µm to 60 µm and consist of 80 neurons to 100 neurons. The
structure and functionality of minicolumns is still being debated today. A
brief discussion on this is found in Rafati et al. (2016). Although, or maybe
because, minicolumnarity in the neocortex is still debated, it is important to
understand its structure and functionality not at least because the minicol-
umn structure may be associated to different psychological and neurological
diseases, such as schizophrenia (Casanova, 2007), Alzheimer’s disease (Esiri
and Chance, 2006), autism (Casanova et al., 2006), and Down’s syndrome
(Buxhoeveden and Casanova, 2002).

2.1 State of the art

The minicolumn hypothesis has been extensively studied in the biological lit-
erature (see Buxhoeveden and Casanova (2002) or more recently Rafati et al.
(2016) and references therein), but only few statistical analyses have been per-
formed (see Skoglund et al., 2004; Cruz et al., 2005, 2008; Rafati et al., 2016).
Specifically, Skoglund et al. (2004) analysed stacks of two-dimensional im-
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3. Point processes

ages imitating the three-dimensional organisation of neurons in mice brains.
Cruz et al. (2005) applied a two-dimensional density map method in order to
quantify the average minicolumn, using data consisting of two-dimensional
coordinates of cell centres in two thin tissue samples from the brain of a mon-
key. Cruz et al. (2008) extended the concept of the two-dimensional density
map to create a theoretical model that can construct three-dimensional rep-
resentations of neurons based on two-dimensional coordinates. These three
studies are based on two-dimensional data, which means that the results only
approximate the reality. In contrast to these studies Rafati et al. (2016) consid-
ered three-dimensional point pattern data describing the locations of pyrami-
dal cells and found in three out of four datasets some degree of columnarity.
Though a model was proposed in this paper it was not fitted to data.

2.2 The datasets

The focus of this thesis was to analyse two datasets similar to those of Rafati
et al. (2016), that is three-dimensional locations of pyramidal cells’ nucleolus
centre, but with the additional information of the orientations of the cells. A
pyramidal cell does as mentioned have a pyramid-shaped soma, and at the
top of the pyramid the apex, which is the base of the so-called apical den-
drite, is found. The orientation of each of the pyramidal cells was measured
as the location of the apex relative to the cells’ nucleolus centre. These ori-
entations can be thought of as marks, yielding marked point patterns with
points restricted to W ⊂ R3 and marks in S2, where W is the observation
region of the points and S2 is the unit sphere. Alternatively, the data may
be considered point patterns in the product space W × S2. The two datasets
were collected from regions of layer III and V of the fourth Brodmann area of
the human brain, which is the primary motor cortex, and we refer to the data
as L3 and L5, respectively. The observation regions for L3 and L5 consist of
634 and 548 points and are of dimension [0, 492.7]× [0, 132.03]× [0, 407.7]µm
and [0, 488.44]× [0, 138.33]× [0, 495.4]µm, respectively. Finally the locations
are collected in such a way that the z-axis is perpendicular to the pial surface
of the brain, which implies that the minicolumns – if they exist – are parallel
to the z-axis.

3 Point processes

A point process, X, is the mathematical object used for modelling point pat-
terns. It is a random countable subset of some space S, that is often required
to be locally finite; that is, n(X ∩ B) < ∞ for any bounded B ⊆ S, where
n(·) denotes the cardinality. For a more rigorous definition see Daley and
Vere-Jones (2003). For most applications S ⊆ Rd, but point patterns on other
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metric spaces, such as Sk =
{

ξ ∈ Rk+1 : ‖ξ‖ = 1
}

or Rd × Sk may arise.

A point process, X, on Rd is said to be stationary if the distribution of X is
invariant under translation and isotropic if its distribution is invariant under
rotation about the origin. If X is defined on Sk stationarity is not defined, but
X is said to be isotropic if its distribution is invariant under rotation on Sk

(corresponds to rotating around the origin).

3.1 Functional summaries

Functional summaries are functions that reflect certain characteristics of a
model and can be empirically estimated for the data. These functions are
useful for fitting models as well as model control.

The n’th order moment measures

The n’th order intensity function ρ(n) : Sn → [0, ∞), n ∈ N := {1, 2, . . .},
can heuristically be interpreted as the simultaneous probability of observing
a point in each of the infinitesimal regions of size dξ1, . . . , dξn and containing
ξ1, . . . , ξn, respectively. Given that ρ(n) exists, it is defined such that is satisfy

E
6=

∑
ξ1,...,ξn∈X

I [(ξ1, . . . , ξn) ∈ C]

=
∫
· · ·

∫
I [(ξ1, . . . , ξn) ∈ C] ρ(n)(ξ1, . . . , ξn)dξ1 · · · dξn, C ⊆ Sn

where 6= above the summation means that the points ξ1, . . . , ξn are pairwise
distinct and I(·) denotes the indicator function.

The most common functional summary is the first order intensity function
ρ := ρ(1) which is simply referred to as the intensity function. A point process
with a constant intensity function ρ(·) ≡ ρ is said to be homogeneous.

The ratio of the second and first order product densities (given that they
exist)

g(ξ1, ξ2) =
ρ(2)(ξ1, ξ2)

ρ(ξ1)ρ(ξ2)

with a/0 = 0 for a ≥ 0, is called the pair correlation function (PCF). Intu-
itively, if for some model g(ξ1, ξ2) < 1 (g(ξ1, ξ2) > 1) it is unlikely (likely)
to jointly observe two points at ξ1 and ξ2 as opposed to independently ob-
serving a point at each of the two locations. In turn, if S ⊆ Rd and the PCF
is isotropic, that is (when abusing notation) g(ξ1, ξ2) = g(‖ξ1 − ξ2‖), then
g(r) < 1 (g(r) > 1) can be interpreted as repulsion (clustering) of the points
at distance r. Note that, for S * Rd a different distance metric needs to be
imposed, and the particular case of S ⊆ Rd × Sk is discussed in Paper A.
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3. Point processes

K-functions

For a point process, X, for which the PCF is invariant under translation, that
is, (again abusing notation) g(ξ1, ξ2) = g(ξ1 − ξ2), we may define a different
class of second order functional summaries called the second order reduced
moment measure, K. This measure is defined as

K(B) =
∫

B
g(ξ)dξ, B ⊆ S. (1)

If X is stationary, ρK(B) can be interpreted as the expected number of further
points in B given that X has a point at the origin. This interpretation comes
from the reduced Palm distribution, which will not be discussed further but
the definition see e.g. Coeurjolly et al. (2017) or Appendix C of Møller and
Waagepetersen (2004).

For S ⊆ Rd the most common choice of structuring element, B in (1), is
the ball with radius r and centre at the origin, denoted b(0, r). This choice of
B yields the K-function, K(r) = K(b(0, r)), which was originally introduced
for homogeneous point processes by Ripley (1976). The definition was later
extended to the inhomogeneous case by Baddeley et al. (2000). This partic-
ular choice of structuring element is rotationally symmetric and therefore of
little use when the goal is to detect columnar structures, which are inher-
ently anisotropic i.e. not rotationally symmetric. For this, Møller et al. (2016)
introduced the cylindrical K-function, Ku(r, t) = K(OuC(r, t)), where

C(r, t) =
{
(x1, . . . , xd) ∈ Rd : ‖(x1, . . . , xd−1)‖ ≤ r, |xd| ≤ t

}
is the cylinder with height 2t, base radius r, centre of mass at the origin, and
direction ed = (0, . . . , 0, 1) ∈ Rd, and Ou is the rotation operation satisfying
Oued = u where u ∈ Rd is arbitrary with ‖u‖ = 1.

For S ⊆ R3, Redenbach et al. (2009) consider the case when B is the double
spherical cone, which is also useful for detecting anisotropy. However, for our
application it seems more natural to consider the cylindrical K-function, since
we are specifically modelling cylindrical structures.

In Paper A we define the natural extension of the inhomogeneous K-
function to space-sphere point processes, i.e. when S ⊆ Rd × Sk. Further, we
discuss a certain separability property of the first and second order intensity
functions and its implications for the space-sphere K-function. Particularly,
with the datasets L3 and L5 in mind we use the space-sphere K-function to
test for independence between locations and orientations. Finally, we per-
form a simulation study to clarify how well the space-sphere K-function de-
tects non-separability.
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Other functional summaries

The empty space function, F, the nearest-neighbour distribution function, G,
and the J-function are other isotropic functional summaries that are com-
monly considered. For a stationary point process, X ⊂ Rd, these functional
summaries are defined as

F(r) = P(X ∩ b(0, r) 6= ∅),

G(r) =
1

ρ|B|E ∑
ξ∈X∩B

I [(X\{ξ}) ∩ b(ξ, r) 6= ∅] ,

J(r) =
1− G(r)
1− F(r)

for F(r) < 1.

Clearly, the F-function is the probability of observing a point within distance
r of the origin (or any other point of S, since X is required to be station-
ary). The G-function can be interpreted as the probability of observing an-
other point within distance r of the typical point (again this interpretation
comes from the Palm distribution, see Coeurjolly et al., 2017; Møller and
Waagepetersen, 2004). In turn, the J-function is interpreted as the probability
of not observing a point within distance r of a typical point relative to the
probability of not observing a point within distance r of the origin. Thus
J(r) < 1 (J(r) > 1) indicates clustering (repulsion) at scale r.

Model control

To investigate how well a fitted model describe a dataset we apply the so-
called global rank envelope test (introduced by Myllymäki et al., 2017), which
is a procedure that first approximates the distribution of a functional sum-
mary under some null model and then compares the empirical functional
summary of the dataset to this approximated distribution. This procedure
yields a p-interval and the results can be graphically displayed, which is a
huge advantage that allows the user to see more details on how the dataset
deviates from the null model. Further, a refinement of this method is intro-
duced in Mrkvička et al. (2018), which requires less simulations and yields a
single p-value.

3.2 Binomial and Poisson point processes

The binomial point process is a very simple model, where the number of
points is fixed. Specifically, X is said to be a binomial point process, on B ⊆ S,
if n (a fixed number) points are independent and identically distributed with
some density f , on B. This model is important in relation to the definition
of the so-called Poisson line cluster point process, which is described later.

8



3. Point processes

There we consider the simplest binomial points process with f (ξ) = 1/|B|,
that is, the points of X are uniformly scattered in B.

The most important point process model is the Poisson point process. It
is fully specified by its intensity function, ρ, (implying that there is no in-
teraction between points) and is easily defined through the binomial point
process as follows: X is a Poisson point process on S with intensity func-
tion ρ if, for any bounded set B ⊆ S, n(X ∩ B) is Poisson distributed with
rate E [n(X ∩ B)] =

∫
B ρ(ξ)dξ and conditioned on n(X ∩ B) = n for any

n ∈ N, X ∩ B is a binomial point process with n points and density f (ξ) =
ρ(ξ)/

∫
B ρ(ξ)dξ.

A homogeneous Poisson point process is also referred to as complete spa-
tial randomness (CSR) and is often used as a reference model, since it has
no underlying structure. How the observed point pattern deviates from CSR
can be very useful information in regards to understanding the data and in
turn finding a suitable model.

In Paper A we consider an inhomogeneous Poisson point process model
for the orientations of the pyramidal cell data, where the intensity function is
a mixture of the so-called Kent and Watson distributions. The Kent distribu-
tion is briefly a generalisation of the anisotropic Gaussian distribution to S2,
while the Watson distribution (in our case) generate points that are uniformly
distributed on a great circle and then displaced away from this great circle by
a von-Mises distribution; the von-Mises distribution is a generalisation of the
Gaussian distribution to a circle. The fitted models are found to be suitable.

3.3 Iterated cluster point processes

Paper B deals with so-called iterated cluster point processes which are basi-
cally discrete time Markov chains of point processes, G0, G1, . . . ⊂ Rd, where
the i’th state briefly can be defined as follows. Let the state Gi−1 for i ∈N be a
given point process on S, and associate to each point ξ ∈ Gi−1 a point process,
Xξ . Then the i’th state is given by the superposition Gi =

⋃
ξ∈Gi−1

(Xξ + ξ),
where Xξ + ξ denotes the translation of Xξ by ξ and where the initial state,
G0, is an arbitrary point process. The particular model is properly introduced
in Paper B.

This type of model is interesting in many contexts and is e.g. studied in
relation to population genetics and community ecology, tree and protein lo-
cations with different scales of clustering (see Shimatani, 2010; Wiegand et al.,
2007; Andersen et al., 2018). In Paper B we extend and elaborate the results
obtained by Shimatani (2010), which discusses a certain iterated cluster point
process that itself extends the work by Malécot which is discussed in Felsen-
stein (1975). The iterated cluster point process of Shimatani (2010), further,
allow for independent migration, which means that the i’th state is specified
as Gi =

⋃
ξ∈Gi−1

(Xξ + ξ)
⋃

Zi, where Z1, Z2, . . . are independent point pro-
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cesses and Zi is independent of G0, . . . , Gi−1. In Shimatani (2010) it is further
assumed that G0 is a Poisson point process, though it is mentions that the
PCF of Gi is tractable as long as the the PCF of G0 can be written as a cer-
tain convolution (details are included in Paper B). However, it is not argued
that such a point process exists, except for the Poisson point process. Finally,
Shimatani (2010) shows that under certain conditions the PCF of Gi, denoted
gi, converges as i → ∞, but not that the Markov chain has a time stationary
distribution, i.e. that the Markov chain converges in distribution, and that the
point process associated to this time stationary distribution has the PCF, gi.
These arguments are given in Paper B under more general conditions and for
an extended model.

The so-called (modified) Thomas point process (Thomas, 1949) is a special
case of the iterated cluster point process and becomes important later when
the Poisson line cluster point process is to be defined. Specifically, G1 is said
to be a Thomas point process if G0 is a stationary Poisson point process, Z1
is empty, and Xξ for ξ ∈ G0 are independent Poisson point processes with
intensity

ρXξ
(η) =

α

2πσ2 exp
{
−‖η‖2

2σ2

}
for η ∈ S.

Note that ρXξ
is proportional to the density of the isotropic and zero-mean

Gaussian distribution, Nd(0, σ2 Id), where Id is the d× d identity matrix and
the proportionality constant α > 0 is the expected number of points in Xξ .

3.4 Determinantal point processes

In Paper B we discuss choices of G0 which ensure that the PCF of Gi for i ∈N

is tractable, and two such point processes are the so-called determinantal
and permanental point processes. The determinantal point process (DPP) is
defined in terms of its n′th order intensity functions as follows. Let C denotes
the complex plane, and consider a function C : Rd × Rd → C, which we
require to be non-negative. Then a point process, X, with n’th order intensity
function ρ(n) is called a DPP with kernel C, if

ρ(n)(ξ1, . . . , ξn) = det[C](ξ1, . . . , ξn) for ξ1, . . . , ξn ∈ Rd, (2)

where det[C](ξ1, . . . , ξn) is the determinant of the n × n matrix with entry
(i, j) given by C(ξi, ξ j), and n ∈ N. To obtain the definition for permanen-
tal point processe one can simply replace the determinant with the perma-
nent in the above definition. For more thorough and detailed expositions on
DPPs see Lavancier et al. (2015, 2014) and for permanental point processes
see McCullagh and Møller (2006). Note that a point process is not, in general,
uniquely characterised by its moments. However, it can be shown that, for
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3. Point processes

any kernel C, there only exists one point process that satisfy (2) (Lemma 4.2.6
in Hough et al., 2009).

The Poisson point process corresponds to a DPP in the special case where
C(ξ1, ξ2) = 0 whenever ξ1 6= ξ2 and satisfies ρ(n)(ξ1, . . . , ξn) = ρ(ξ1) · · · ρ(ξn)
for any n ∈ N. If C is Hermitian, ρ(n)(ξ1, . . . , ξn) ≤ ρ(ξ1) · · · ρ(ξn) (the
opposite is true for permanental point processes). This implies that DPPS are
repulsive, and in turn g(ξ1, ξ2) ≤ 1

The case where G1 of the iterated cluster point process is defined as the
Thomas point process, but with the exception that the initial generation, G0,
is a DPP is considered and applied to data in Paper C. This model will be
referred to as the determinantal Thomas point process.

3.5 Poisson line cluster point processes

The Poisson line cluster point process (PLCPP) was presented in the same pa-
per as the cylindrical K-function (Møller et al., 2016), and is to the best of our
knowledge the only model for columnar structures. Hence, we find it natural
to apply this model to the pyramidal cell data, L3 and L5. According to the
minicolumn hypothesis, the minicolumns are expected to be perpendicular
to the pial surface of the brain, and in turn this implies (at least for small sam-
ple regions) that the minicolumns are approximately parallel. Therefore, we
restrict attention to the degenerate PLCPP, which is a hierarchical model de-
fined as follows. Let Xxy ⊂ R2 be a Thomas point process in the (x, y)-plane
with centre process Φ. Then X = {(x, y, z) : (x, y) ∈ Xxy, z ∼ Uni f (0, a)},
with a < ∞, is a degenerate PLCPP on S = {(x, y, z) ∈ R3 : z ∈ [0, a]}.
Note that for Xxy restricted to a bounded region Bxy ⊂ R2, Xz = {z :
(x, y, z) ∈ X ∩ (Bxy × [0, a])} is a binomial point process on [0, a] consisting
of n(Xxy ∩ Bxy) points and with a uniform density. It should be clear from
the definition that the degenerated PLCPP consists of cylindrical clusters of
points centred around the lines li = {(ξi, ηi, z) : z ∈ [0, a]} for (ξi, ηi) ∈ Φ,
which are parallel to the z-axis. The prefix ‘degenerate’ refers to the fact that
these lines are parallel. Under the general definition of the PLCPP in Møller
et al. (2016), X need not be degenerate and it is defined on all of R3. However,
these assumptions are convenient for the application in Paper C.

In Paper C we generalise the degenerate PLCPP in two ways: we let Xxy
be a determinantal Thomas point process; and conditioned on Xxy = xxy we
let Xz be a Markov random field indexed by the points of xxy. Hence, to each
fixed location in xxy we associate a random variable following a distribution
which depends only on other points within some neighbouring region. By
this construction we allow for aggregation, repulsion, or even both.
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4 Overview

In summary, this thesis consists of the three papers in part II which briefly
contains the following scientific contributions.

In Paper A we extend the K-function to the product space Rd×Sk and dis-
cuss separability of the spatial and spherical components (cell locations and
orientations). We apply this K-function to two datasets and perform a simu-
lation study investigating how well this K-function detects non-separability.
Additionally, a model for the spherical component (cell orientationes) of the
pyramidal cell point patterns, is discussed and fitted to the data. Further-
more, we find independence between the spatial and spherical components,
using this newly introduced K-function, implying that the two components
may be modelled separately.

In Paper B an expression for the PCF of iterated cluster point processes is
given, when the PCF of the initial generation and of the noise point processes
are of a certain form. We discuss for which point processes the PCF has this
form, which, as previously mentioned, includes the determinantal and per-
manental point processes. It is also shown that under reasonable conditions
the distribution of iterated cluster point processes converges as the number
of generations tends to infinity and we give the expression of the PCF of the
point process following this limiting distribution.

In Paper C we find a model for the spatial component (nucleolus loca-
tions) of the pyramidal cell data, which in two ways generalise the Poisson
line cluster point proecss: first by replacing the Thomas point process in the
plane by the determinantal Thomas point process; second by replacing the
uniformly distributed z-coordinate by a Markov random field indexed by the
(x, y)-coordinates that we condition on.
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1. Introduction

Abstract

This paper concerns space-sphere point processes, that is, point processes on the
product space of Rd (the d-dimensional Euclidean space) and Sk (the k-dimensional
sphere). We consider specific classes of models for space-sphere point processes, which
are adaptations of existing models for either spherical or spatial point processes. For
model checking or fitting, we present the space-sphere K-function which is a natural
extension of the inhomogeneous K-function for point processes on Rd to the case of
space-sphere point processes. Under the assumption that the intensity and pair cor-
relation function both have a certain separable structure, the space-sphere K-function
is shown to be proportional to the product of the inhomogeneous spatial and spherical
K-functions. For the presented space-sphere point process models, we discuss cases
where such a separable structure can be obtained. The usefulness of the space-sphere
K-function is illustrated for real and simulated datasets with varying dimensions d
and k.

1 Introduction

Occasionally point processes arise on more complicated spaces than the usual
space Rd, the d-dimensional Euclidean space, as for spatio-temporal point
processes, spherical point processes or point processes on networks (see e.g.
Dvořák and Prokešová, 2016; Lawrence et al., 2016; Møller and Rubak, 2016;
Baddeley et al., 2017, and the references therein for details on such point
processes). In this paper we consider space-sphere point processes that live on
the product space S = Rd × Sk, where Sk = {u ∈ Rk+1 : ‖u‖k+1 = 1} is
the k-dimensional unit sphere, ‖ · ‖k denotes the usual distance in Rk, and
d, k ∈ {1, 2, . . .}. For each point (y, u) ∈ S belonging to a given space-sphere
point process, we call y its spatial component and u its spherical compo-
nent. Assuming local finiteness of a space-sphere point process, the spatial
components constitute a locally finite point process in Rd, but the spherical
components do not necessarily form a finite point process on Sk. However, in
practice the spatial components are only considered within a bounded win-
dow W ⊂ Rd, and the associated spherical components do constitute a finite
point process.

One example is the data shown in Figure A.1 that consists of the location
and orientation of a number of pyramidal neurons found in a small area of
a healthy human’s primary motor cortex. More precisely, the locations are
three-dimensional coordinates each describing the placement of a pyrami-
dal neuron’s nucleolus, and the orientations are unit vectors pointing from a
neuron’s nucleolus toward its apical dendrite. These data can be considered
as a realisation of a space-sphere point process with dimensions d = 3 and
k = 2, where the spatial components describe the nucleolus locations and the
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spherical components are the orientations. How neurons (of which around
75 to 80 % are pyramidal neurons) are arranged have been widely discussed
in the literature. Specifically, it is hypothesised that neurons are arranged
in columns perpendicular to the pial surface of the brain. This hypothesis,
referred to as the minicolumn hypothesis, have been studied for more than
half a century (see e.g. Lorente de Nó, 1938; Mountcastle, 1978; Buxhoeveden
and Casanova, 2002), and it is believed that deviation from such a colum-
nar structure is linked with neurological diseases such as Alzheimers and
schizophrenia.

Another example is the time and geographic location of fireballs, which
are bright meteors reaching a visual magnitude of −3 or brighter. They
are continually recorded by U.S. Government sensors and made available
at http://neo.jpl.nasa.gov/fireballs/. We can consider fireball events
as a space-sphere point process with dimensions d = 1 and k = 2, where
the time and locations are the spatial and spherical components, respectively.
Figure A.2 shows the location of fireballs on the globe (identified with the
unit sphere) observed over a time period of about 606 weeks.

The paper is organised as follows. In Section 2, we define concepts related
to space-sphere point processes and give some natural examples of such pro-
cesses. In Section 3, we define the space-sphere K-function, a functional sum-
mary statistic which is analogue to the space-time K-function when d = 2 and
Sk is replaced by the time axis (Diggle et al., 1995; Gabriel and Diggle, 2009;
Møller and Ghorbani, 2012). The space-sphere K-function is defined in terms
of the pair correlation function which is assumed to have a certain stationary
form. In the case where both the intensity and pair correlation function have
a specific separable structure discussed in Section 4, the space-sphere K-
function is shown to be proportional to the product of the spatial K-function
(Baddeley et al., 2000) and the spherical K-function (Lawrence et al., 2016;
Møller and Rubak, 2016). Further, an unbiased estimate is given in Section 5.
In Section 6, the usefulness of the space-sphere K-function is illustrated for
the fireball and neuron data as well as for simulated data, and it is e.g. seen
how the K-function may be used to test for independence between the spatial
and spherical components.
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1. Introduction

Fig. A.1: Location and orientation of pyramidal neurons in a small section of a human brain.
For details, see Section 6.2.

Fig. A.2: Top: orthographic projection of the fireball locations. Bottom: time of fireball events
measured in weeks. For details, see Section 6.1.
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2 Preliminaries

2.1 Setting

Throughout this paper we consider the following setting.
Equip Rd with the Lebesgue measure |A| =

∫
A dy and Sk with Lebesgue/

surface measure ν(B), where A ⊆ Rd and B ⊆ Sk are Borel sets. Thus, the
product space S = Rd × Sk is equipped with Lebesgue measure µ given by
µ(A× B) = |A|ν(B).

Let X be a simple locally finite point process on S, that is, we can view
X as a random subset of S such that the restriction XB = X ∩ B of X to any
bounded set B ⊂ S is finite. We call X a space-sphere point process, and assume
that it has intensity function ρ with respect to µ and pair correlation function
g with respect to the product measure µ⊗ µ. That is, for any Borel function
h : S 7→ [0, ∞),

E
{

∑
(yi ,ui)∈X

h(yi, ui)
}
=
∫

h(y, u)ρ(y, u)dµ(y, u), (A.1)

provided this integral is finite. We say that X is (first order) homogeneous if ρ is
a constant function. Furthermore, for any Borel function k : S× S 7→ [0, ∞),

E
{ 6=

∑
(yi ,ui),(yj ,uj)∈X

k(yi, ui, yj, uj)
}

(A.2)

=
∫∫

k(y1, u1, y2, u2)ρ(y1, u1)ρ(y2, u2)g(y1, u1, y2, u2)dµ(y1, u1)dµ(y2, u2),

provided this double integral is finite. Here, we set g(y1, u1, y2, u2) = 0 if
ρ(y1, u1)ρ(y2, u2) = 0, and ∑ 6=(yi ,ui),(yj ,uj)∈X means that we sum over pairs of

distinct points (yi, ui), (yj, uj) ∈ X.
The functions ρ and g are unique except for null sets with respect to µ

and µ⊗ µ, respectively. For ease of presentation, we ignore null sets in the
following. Note that g(y1, u1, y2, u2) = g(y2, u2, y1, u1) is symmetric on S× S.
We say that X is stationary in space if its distribution is invariant under trans-
lations of its spatial components; this implies that ρ(y, u) depends only on u,
and g(y1, u1, y2, u2) depends only on (y1, y2) through the difference y1 − y2.
If the distribution of X is invariant under rotations (about the origin in Rd)
of its spatial components, we say that X is isotropic in space. Stationarity and
isotropy in space imply that g(y1, u1, y2, u2) depends only on (y1, y2) through
the distance ‖y1 − y2‖d. We say that X is isotropic on the sphere if its distri-
bution is invariant under rotations (on Sk) of its spherical components; this
implies that g(y1, u1, y2, u2) depends only on (u1, u2) through the geodesic
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(great circle/shortest path) distance d(u1, u2) on Sk. If X is stationary in
space and isotropic on the sphere, then ρ is constant and

g(y1, u1, y2, u2) = g0{y1 − y2, d(u1, u2)}, y1, y2 ∈ Rd, u1, u2 ∈ Sk, (A.3)

depends only on (y1, y2) through y1 − y2 and on (u1, u2) through d(u1, u2)
(this property is studied further in Section 3). If it is furthermore assumed
that X is isotropic in space, then

g(y1, u1, y2, u2) = g∗{‖y1 − y2‖d, d(u1, u2)}, y1, y2 ∈ Rd, u1, u2 ∈ Sk,

depends only on (y1, y2) through ‖y1− y2‖d and on (u1, u2) through d(u1, u2).
The spatial components of X constitute a usual spatial point process Y =

{y : (y, u) ∈ X}, which is locally finite, whereas the spherical components
constitute a point process on the sphere U = {u : (y, u) ∈ X} that may be
infinite on the compact set Sk. Let W ⊂ Rd be a bounded Borel set, which
we may think of as a window where the spatial components YW = Y ∩W
are observed. As X is locally finite, the spherical components associated with
YW constitute a finite point process UW = {u : (y, u) ∈ X, y ∈ W} on Sk. Let
N = N(W) denote the cardinality of YW . To avoid trivial and undesirable
cases, we assume that |W| > 0 and that the following inequalities hold:

0 < E(N) < ∞ (A.4)

and
0 < E{N(N − 1)} < ∞, (A.5)

where, by (A.1)–(A.2),

E(N) =
∫

W×Sk
ρ(y, u)dµ(y, u)

and

E{N(N − 1)}

=
∫

W×Sk

∫
W×Sk

ρ(y1, u1)ρ(y2, u2)g(y1, u1, y2, u2)dµ(y1, u1)dµ(y2, u2).

Note that Y has intensity function ρ1 and pair correlation function g1
given by

ρ1(y) =
∫

ρ(y, u)dν(u), y ∈ Rd, (A.6)

and

ρ1(y1)ρ1(y2)g1(y1, y2)

=
∫∫

ρ(y1, u1)ρ(y2, u2)g(y1, u1, y2, u2)dν(u1)dν(u2)
(A.7)
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for y1, y2 ∈ Rd, where we set g1(y1, y2) = 0 if ρ1(y1)ρ1(y2) = 0. This follows
from (A.1)–(A.2) and definitions of the intensity and pair correlation function
for spatial point processes (see e.g. Møller and Waagepetersen, 2004) Clearly,
if X is stationary in space, then Y is stationary, ρ1 is constant, and g1(y1, y2) is
stationary, that is, it depends only on y1 − y2. If in addition X is isotropic in
space, then g1(y1, y2) is isotropic, that is, it depends only on ‖y1 − y2‖d. On
the other hand if Y is stationary (or isotropic) and the spherical components
are independent of Y, then X is stationary (or isotropic) in space.

Similarly, using definitions of the intensity and pair correlation function
for point processes on the sphere (Lawrence et al., 2016; Møller and Rubak,
2016), UW has intensity function ρ2 (with respect to ν) and pair correlation
function g2 (with respect to ν⊗ ν) given by

ρ2(u) =
∫

W
ρ(y, u)dy, u ∈ Sk, (A.8)

and

ρ2(u1)ρ2(u2)g2(u1, u2)

=
∫

W

∫
W

ρ(y1, u1)ρ(y2, u2)g(y1, u1, y2, u2)dy1 dy2
(A.9)

for u1, u2 ∈ Sk, where we set g2(u1, u2) = 0 if ρ2(u1)ρ2(u2) = 0. Note that
we suppress in the notation that ρ2 and g2 depend on W. Obviously, if X
is isotropic on the sphere, then ρ2 is constant and g2(u1, u2) is isotropic as it
depends only on d(u1, u2).

2.2 Examples

The following examples introduce the point process models considered in
this paper.

Example 1 (Poisson and Cox processes). First, suppose X is a Poisson process
with a locally integrable intensity function ρ. This means that, the count
N(A) = #XA is Poisson distributed with mean

∫
A ρ(y, u)dµ(y, u) for any

bounded Borel set A ⊂ S and, conditional on N(A), the points in XA are
independent and identically distributed (IID) with a density proportional to
ρ restricted to A. Note that g = 1. Further, X is stationary in space and
isotropic on the sphere if and only if ρ is constant, in which case we call X
a homogeneous Poisson process with intensity ρ. Furthermore, Y and UW are
Poisson processes, so g1 = 1 and g2 = 1.

Second, let Λ = {Λ(y, u) : (y, u) ∈ S} be a non-negative random field so
that with probability one

∫
A Λ(y, u)dµ(y, u) is finite for any bounded Borel

set A ⊂ S. If X conditioned on Λ is a Poisson process with intensity function
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Λ, then X is said to be a Cox process driven by Λ (Cox, 1955). Clearly, the
intensity and pair correlation functions of X are

ρ(y, u) = E{Λ(y, u)}, y ∈ Rd, u ∈ Sk, (A.10)

and
ρ(y1, u1)ρ(y2, u2)g(y1, u1, y2, u2) = E{Λ(y1, u1)Λ(y2, u2)},

for y1, y2 ∈ Rd and u1, u2 ∈ Sk. To separate the intensity function ρ from
random effects, it is convenient to work with a so-called residual random field
R = {R(y, u) : (y, u) ∈ S} fulfilling Λ(y, u) = ρ(y, u)R(y, u), so E{R(y, u)} =
1 (see e.g. Møller and Waagepetersen, 2007; Diggle, 2014). Then

g(y1, u1, y2, u2) = E{R(y1, u1)R(y2, u2)}, y1, y2 ∈ Rd, u1, u2 ∈ Sk, (A.11)

whenever ρ(y1, u1)ρ(y2, u2) > 0.

Note that projected point processes Y and UW are Cox processes driven by
the random fields {

∫
Sk Λ(y, u)dν(u) : y ∈ Rd} and {

∫
W Λ(y, u)dy : u ∈ Sk},

respectively. Their intensity and pair correlation functions are specified by
(A.6)–(A.9).

Example 2 (Log Gaussian Cox processes). A Cox process X is called a log Gaus-
sian Cox process (LGCP; Møller et al., 1998) if the residual random field is of
the form R = exp(Z), where Z is a Gaussian random field (GRF) with mean
function µ(y, u) = −c(y, u, y, u)/2, where c is the covariance function of Z.
Note that X has pair correlation function

g(y1, u1, y2, u2) = exp [c{(y1, u1), (y2, u2)}] (A.12)

for y1, y2 ∈ Rd and u1, u2 ∈ Sk.

Example 3 (Marked point processes). It is sometimes useful to view X as a
marked point process (see e.g. Daley and Vere-Jones, 2003; Illian et al., 2008),
where the spatial components are treated as the ground process and the
spherical components as marks. Often it is of interest to test the hypothesis
H0 that the marks are IID and independent of the ground process Y. Under
H0, with each mark following a density p with respect to ν, the intensity is

ρ(y, u) = ρ1(y)p(u), y ∈ Rd, u ∈ Sk,

and the pair correlation function

g(y1, u1, y2, u2) = g1(y1, y2), y1, y2 ∈ Rd, u1, u2 ∈ Sk,

does not depend on (u1, u2).
In some situations, it may be more natural to look at it conversely, that is,

treating UW as the ground process and YW as marks. Then similar results for
ρ and g may be established by interchanging the roles of points and marks.
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Example 4 Independently marked determinantal point processes. Considering a
space-sphere point process X as a marked point process that fulfils the hy-
pothesis H0 given in Example 3, we may let the ground process Y be dis-
tributed according to any point process model of our choice regardless of
the marks U. For instance, in case of repulsion between the points in Y, a
determinantal point process (DPP) may be of interest because of its attractive
properties (see Lavancier et al., 2015, and the references therein). Briefly, a
DPP is defined by a so-called kernel C : Rd ×Rd → C, which we assume is a
complex covariance function, that is, C is positive semi-definite and Hermi-
tian. Furthermore, let ρ

(n)
1 denote the nth order joint intensity function of Y,

that is, ρ(1)1 = ρ1 is the intensity and ρ(2)1 (y1, y2) = ρ1(y1)ρ1(y2)g1(y1, y2) for
y1, y2 ∈ Rd, while we refer to Lavancier et al. (2015) for the general definition
of ρ(n)1 which is an extension of (A.6)–(A.7). If for all n = 1, 2, . . . ,

ρ(n)1 (y1, . . . , yn) = det{C(yi, yj)}i,j=1,...,n, y1, . . . , yn ∈ Rd,

where det{C(yi, yj)}i,j=1,...,n is the determinant of the n× n matrix with (i, j)-
entry C(yi, yj), we call Y a DPP with kernel C and refer to X as an indepen-
dently marked DPP. It follows that Y has intensity function ρ(y) = C(y, y) and
pair correlation function

g1(y1, y2) = 1− |R(y1, y2)|2, y1, y2 ∈ Rd,

whenever ρ(y1)ρ(y2) > 0, where R(y1, y2) = C(y1, y2)/
√

C(y1, y1)C(y2, y2)
is the correlation function corresponding to C and |z| denotes the modulus
of z ∈ C.

Alternatively, we may look at a DPP on the sphere (Møller et al., 2018),
that is, modelling UW as a DPP while considering YW as the marks and im-
pose the conditions of IID marks independent of UW .

3 The space-sphere K-function

3.1 Definition

When (A.3) holds we say that the space-sphere point process X is second order
intensity-reweighted stationary (SOIRS) and define the space-sphere K-function
by

K(r, s) =
∫
‖y‖d≤r, d(u,e)≤s

g0{y, d(u, e)}dµ(y, u), r ≥ 0, 0 ≤ s ≤ π, (A.13)

where e ∈ Sk is an arbitrary reference direction. This definition does not de-
pend on the choice of e, as the integrand only depends on u ∈ Sk through its
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geodesic distance to e and ν(·) is a rotation invariant measure. For example,
we may let e = (0, . . . , 0, 1) ∈ Sk be the “North Pole”.

Let σk = ν(Sk) = 2π(k+1)/2/Γ{(k + 1)/2} denote the surface measure of
Sk. For any Borel set B ⊂ Rd with 0 < |B| < ∞, we easily obtain from (A.2)
and (A.13) that

K(r, s)

=
1
|B|σk

∫∫
y1∈B, ‖y1−y2‖d≤r, d(u1,u2)≤s

g0{y1 − y2, d(u1, u2)}dµ(y1, u1)dµ(y2, u2)

=
1
|B|σk

E
[ 6=

∑
(yi ,ui),(yj ,uj)∈X

I{yi ∈ B, ‖yi − yj‖d ≤ r, d(ui, uj) ≤ s}
ρ(yi, ui)ρ(yj, uj)

]
(A.14)

for r ≥ 0, 0 ≤ s ≤ π, where I(·) denotes the indicator function. The relation
given by (A.14) along with the requirement that the expression in (A.14) does
not depend on the choice of B could alternatively have been used as a more
general definition of the space-sphere K-function. Such a definition is in
agreement with the one used in Baddeley et al. (2000) for SOIRS of a spatial
point process. It is straightforward to show that (A.14) does not depend on
B when X is stationary in space.

For r, s > 0 and (y1, u1), (y2, u2) ∈ S, we say that (y1, u1) and (y2, u2) are
(r, s)-close neighbours if ‖y1 − y2‖d ≤ r and d(u1, u2) ≤ s. If X is stationary
in space and isotropic on the sphere, then (A.14) shows that ρK(r, s) can be
interpreted as the expected number of further (r, s)-close neighbours in X of
a typical point in X. More formally, this interpretation relates to the reduced
Palm distribution (Daley and Vere-Jones, 2003).

Some literature treating marked point processes discuss the so-called mark-
weighted K-function (see e.g. Illian et al., 2008; Koubek et al., 2016), which to
some extent resembles the space-sphere K-function in a marked point process
context; both are cumulative second order summary functions that consider
points as well as marks. However, the mark-weighted K-function has an em-
phasis on the marked point process setup (and considers e.g. ρ1 rather than
ρ), whereas the space-sphere K-function is constructed in such a way that
it is an analogue to the planar/spherical K-function for space-sphere point
processes.

Example 1 continued (Poisson and Cox processes). A Poisson process is clearly
SOIRS and K(r, s) is simply the product of the volume of a d-dimensional
ball with radius r and the surface area of a spherical cap given by {u ∈ Sk :
d(u, e) ≤ s} for an arbitrary e ∈ Sk (see Li, 2011, for formulas of this area).
Thus, for r ≥ 0, the space-sphere K-function is

KPois(r, s) =


rdπ(d+k+1)/2

Γ(1+d/2)Γ{(k+1)/2} Isin2(s)

(
k
2 , 1

2

)
, 0 ≤ s ≤ π

2 ,

rdπ(d+k+1)/2

Γ(1+d/2)Γ{(k+1)/2}{2− Isin2(π−s)(
k
2 , 1

2 )},
π
2 < s ≤ π,
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where Ix(a, b) is the regularized incomplete beta function. In particular, if
k = 2,

Isin2(s)(
k
2 , 1

2 ), 0 ≤ s ≤ π
2

2− Isin2(π−s)(
k
2 , 1

2 ),
π
2 < s ≤ π

 = 1− cos(s).

If the residual random field R in (A.11) is invariant under translations
in Rd and under rotations on Sk, then the associated Cox process is SOIRS.
The evaluation of g (and thus K) depends on the particular model of R as
exemplified in Example 2 below and in Section 7.

Example 2 continued (LGCPs). Suppose that the distribution of R is invari-
ant under translations in Rd and under rotations on Sk, and recall that R is
required to have unit mean. Then the underlying GRF Z has a covariance
function of the form

c(y1, u1, y2, u2) = c0{y1 − y2, d(u1, u2)}, y1, y2 ∈ Rd, u1, u2 ∈ Sk,

and EZ(y, u) = −σ2/2 for all y ∈ Rd and u ∈ Sk, where σ2 = c0(0, 0) is the
variance. It then follows from (A.12) that X is SOIRS with

g0(y, s) = exp{c0(y, s)}, y ∈ Rd, 0 ≤ s ≤ π. (A.15)

4 Separability

4.1 First order separability

We call the space-sphere point process X first order separable if there exist
non-negative Borel functions f1 and f2 such that

ρ(y, u) = f1(y) f2(u), y ∈ Rd, u ∈ Sk.

By (A.4), (A.6), and (A.8) this is equivalent to

ρ(y, u) = ρ1(y)ρ2(u)/E(N), y ∈ Rd, u ∈ Sk, (A.16)

recalling that ρ2 and N depend on W, but ρ2/EN does not depend on the
choice of W. Then, in a marked point process setup where the spherical
components are treated as marks, ρ2(·)/E(N) is the density of the mark dis-
tribution. First order separability was seen in Example 3 to be fulfilled under
the assumption of IID marks independent of the ground process. Moreover,
any homogeneous space-sphere point process is clearly first order separable.
In practice, first order separability is a working hypothesis which may be
hard to check.
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4.2 Second order separability

If there exist Borel functions k1 and k2 such that

g(y1, u1, y2, u2) = k1(y1, y2)k2(u1, u2), y1, y2 ∈ Rd, u1, u2 ∈ Sk,

we call X second order separable. Assuming first order separability, it follows
by (A.5), (A.7), (A.9), and (A.16) that second order separability is equivalent
to

g(y1, u1, y2, u2) = βg1(y1, y2)g2(u1, u2), y1, y2 ∈ Rd, u1, u2 ∈ Sk, (A.17)

where
β = E(N)2/E{N(N − 1)}

and noting that β and g2 depend on W, but βg2 does not depend on the
choice of W. The value of β may be of interest: for a Poisson Process, β = 1;
for a Cox process, var(N) ≥ E(N) (see e.g. Møller and Waagepetersen, 2004),
so β ≤ 1; for an independently marked DPP, β ≥ 1 (Lavancier et al., 2015).

Example 1 continued (Poisson and Cox processes). Clearly, when X is a Poisson
process, it is second order separable. Assume instead that X is a Cox process
and the residual random field is separable, that is, R(y, u) = R1(y)R2(u),
where R1 = {R1(y) : y ∈ Rd} and R2 = {R2(u) : u ∈ Sk} are independent
random fields. Then, by (A.11), X is second order separable and

g(y1, u1, y2, u2) = E{R1(y1)R1(y2)}E{R2(u1)R2(u2)}

for y1, y2 ∈ Rd and u1, u2 ∈ Sk.

Example 2 continued (LGCPs). If X is a LGCP driven by Λ(y, u) = ρ(y, u) ·
exp{Z(y, u)}, second order separability is implied if Z1 = log R1 and Z2 =
log R2 are independent GRFs so that Z(y, u) = Z1(y) + Z2(u). Then, by
the imposed invariance properties of the distribution of the residual random
field, Z1 must be stationary with a stationary covariance function c1(y1, y2) =
c01(y1 − y2) and mean −c01(0)/2, and Z2 must be isotropic with an isotropic
covariance function c2(u1, u2) = c02{d(u1, u2)} and mean −c02(0)/2. Conse-
quently, in (A.15), c0(y, s) = c01(y) + c02(s) for y ∈ Rd and 0 ≤ s ≤ π.

Example 3 continued (marked point processes). Consider the space-sphere point
process X as a marked point process with marks in Sk. As previously seen,
first and second order separability is fulfilled under the assumption of IID
marks independent of the ground process, but we may in fact work with
weaker conditions to ensure the separability properties as follows. Assume
that each mark is independent of the ground process Y and the marks are
identically distributed following a density function p with respect to ν. Then
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the first order separability condition (A.16) is satisfied with ρ2(u) = E(N)p(u)
for u ∈ Sk. In addition, assuming the conditional distribution of the marks
given Y is such that any pair of marks is independent of Y and follows the
same joint density q(·, ·) with respect to ν⊗ ν, it is easily seen that the second
order separability condition (A.17) is satisfied with

g2(u1, u2) =
q(u1, u2)

βp(u1)p(u2)
, u1, u2 ∈ Sk,

whenever ρ2(u1)ρ2(u2) > 0. If we also have pairwise independence between
the marks, that is, q(u1, u2) = p(u1)p(u2), then the pair correlation function
g(y1, u1, y2, u2) = g1(y1, y2) does not depend on (u1, u2) and g2(u1, u2) = 1/β
is constant. Note that this implies g2 ≤ 1 for an independently marked
DPP, reflecting that even when the marks are drawn independently of Y the
behaviour of the points implicitly affects the marks as the number of points
is equal to the number of marks.

Again, the roles of points and marks may be switched resulting in state-
ments analogue to those above.

4.3 Assuming both SOIRS and first and second order separa-
bility

Suppose that X is both SOIRS and first and second order separable. Then the
space-sphere K-function can be factorized as follows. Note that Y and UW
are SOIRS since there by (A.3), (A.7), (A.9), and (A.16) exist Borel functions
g01 and g02 such that

g1(y1, y2) = g01(y1 − y2)

=
∫∫

ρ2(u1)

E(N)

ρ2(u2)

E(N)
g0{y1 − y2, d(u1, u2)}dν(u1)dν(u2)

(A.18)

for y1, y2 ∈ Rd with ρ1(y1)ρ1(y2) > 0, and

g2(u1, u2) = g02{d(u1, u2)}

=
∫

W

∫
W

ρ1(y1)

E(N)

ρ1(y2)

E(N)
g0{y1 − y2, d(u1, u2)}dy1 dy2

(A.19)

for u1, u2 ∈ Sk with ρ2(u1)ρ2(u2) > 0. Hence, the inhomogeneous K-function
for the spatial components in Y (introduced in Baddeley et al., 2000) is

K1(r) =
∫
‖y‖d≤r

g01(y)dy, r ≥ 0,

and the inhomogeneous K-function for the spherical components in UW (in-
troduced in Lawrence et al., 2016; Møller and Rubak, 2016) is

K2(s) =
∫

d(u,e)≤s
g02{d(u, e)}dν(u), 0 ≤ s ≤ π,
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where e ∈ Sk is arbitrary. Combining (A.13) and (A.17)–(A.19), we obtain

K(r, s) = βK1(r)K2(s), r ≥ 0, 0 ≤ s ≤ π.

Note that, if X is a first order separable Poisson process, then D(r, s) =
K(r, s)− K1(r)K2(s) is 0, and an estimate of D may also be used as a func-
tional summary statistic when testing a Poisson hypothesis.

5 Estimation of K-functions

In this section, we assume for specificity that the observation window is W ×
Sk, where W ⊂ Rd is a bounded Borel set, and a realisation XW×Sk = xW×Sk

is observed; in Section 7, we discuss other cases of observation windows. We
let YW = yW and UW = uW be the corresponding sets of observed spatial and
spherical components.

First, assume that ρ1 and ρ2 are known. Following Baddeley et al. (2000),
we estimate K1 by

K̂1(r) =
6=

∑
yi ,yj∈yW

I(‖yi − yj‖d ≤ r)
w1(yi, yj)ρ1(yi)ρ1(yj)

, r ≥ 0, (A.20)

where w1 is an edge correction factor on Rd. If we let w1(yi, yj) = |W ∩
Wyi−yj | be the translation correction factor (Ohser, 1983), where Wy = {y+ z :
z ∈ W} denotes the translation of W by y ∈ Rd, then K̂1 is an unbiased
estimate of K1 (see e.g. Lemma 4.2 in Møller and Waagepetersen, 2004).
For d = 1, we may instead use the temporal edge correction factor with
w1(yi, yj) = |W| if [yi − yj, yi + yj] ⊆ W and w1(yi, yj) = |W|/2 otherwise
(Diggle et al., 1995; Møller and Ghorbani, 2012). Moreover, for estimation of
K2, we use the unbiased estimate

K̂2(s) =
1
σk

6=

∑
ui ,uj∈uW

I{d(ui, uj) ≤ s}
ρ2(ui)ρ2(uj)

, 0 ≤ s ≤ π, (A.21)

cf. Lawrence et al. (2016) and Møller and Rubak (2016). A natural extension
of the above estimates gives the following estimate of K:

K̂(r, s) =
1
σk

6=

∑
(yi ,ui),(yj ,uj)∈xW×Sk

I{‖yi − yj‖d ≤ r, d(ui, uj) ≤ s}
w1(yi, yj)ρ(yi, ui)ρ(yj, uj)

(A.22)

for r ≥ 0, 0 ≤ s ≤ π. This is straightforwardly seen to be an unbiased
estimate when w1 is the translation correction factor.

Second, in practice we need to replace ρ1 in (A.20), ρ2 in (A.21), and ρ in
(A.22) by estimates, as exemplified in Section 6. This may introduce a bias.
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6 Data examples

6.1 Fireball locations over time

Figure A.2 shows the time and location of n = 344 fireballs observed over
a time period from 2005-01-01 03:44:09 to 2016-08-12 23:59:59 corre-
sponding to a time frame W of about 606 weeks. The data can be recovered at
http://neo.jpl.nasa.gov/fireballs/ using these time stamps. Figure A.2
reveals no inhomogeneity of neither fireball locations or event times. There-
fore we assumed first order homogeneity, and used the following unbiased
estimates for the intensities:

ρ̂1 = n/|W| = 0.57, ρ̂2 = n/(4π) = 27.37, ρ̂ = n/(4π|W|) = 0.05.

Then K̂1, K̂2, and K̂ (with w1 in (A.20) and (A.22) equal to the temporal edge
correction factor) were used as test functions in three different global rank
envelope tests for testing whether fireball event times, locations, and loca-
tions over time each could be described by a homogeneous Poisson model
with estimated intensity ρ̂1, ρ̂2, and ρ̂, respectively. Appendix A provides
a brief account on global rank envelope tests; see also Myllymäki et al.
(2017). Under each of the three fitted Poisson processes and using 2499
simulations (as recommended in Myllymäki et al., 2017), we obtained p-
intervals of (0.028, 0.040) for the event times, (0.908, 0.908) for the locations,
and (0.445, 0.516) for the locations over time. The associated 95% global rank
envelopes for K̂1 and K̂2 are shown in Figure A.3, and the difference between
K̂ and the upper and lower 95% global rank envelope is shown in Figure A.4.
Since K̂2 and K̂ stay inside the 95% global rank envelopes for the considered
distances on Sk and R× Sk, there is no evidence against a homogeneous Pois-
son model for neither locations or locations over time. On the other hand,
with a conservative p-value of 4%, the global rank envelope test based on
K̂1 indicates that a homogeneous Poisson model for the event times is not
appropriate. However, the observed test function K̂1(r) falls only outside the
envelope in Figure A.3 for large values of r. Thus, choosing a slightly smaller
interval of r-values would lead to a different conclusion.

As an alternative to the space-sphere K-function, we considered the sum-
mary function D(r, s) which in case of a Poisson process is 0. Estimating D
by D̂(r, s) = K̂(r, s)− K̂1(r)K̂2(s), we performed a global rank envelope test
with D as test function. The resulting test gave a p-interval of (0.537, 0.564)
which is similar to the one obtained using K̂ as test function.

6.2 Location and orientation of pyramidal neurons

We now return to the space-sphere point pattern concerning location and
orientation of pyramidal neurons described in Section 1, which is a data set
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Fig. A.3: Left: K̂1(r)− 2r for the fireball event times (solid curve) along with a 95% global rank
envelope (grey area) under a homogeneous Poisson model on the time interval for the observed
events. Right: K̂2(s)− 2π{1− cos(s)} for the fireball locations (solid curve) along with a 95%
global rank envelope (grey area) under a homogeneous Poisson model on S2.
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Fig. A.4: Difference between K̂(r, s) for the observed fireball locations over time and the lower
(K̂low) or upper (K̂upp) 95% global rank envelope under a homogeneous Poisson model on W ×
S2. Left: K̂(r, s)− K̂low(r, s). Right: K̂upp(r, s)− K̂(r, s).
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collected by Ali H. Rafati, a biomedical and clinical scientist. The point pat-
tern is observed on W × S2, where W ⊂ R3 is the rectangular box shown in
Figure A.1 with side lengths 492.7 µm, 132.0 µm, and 407.7 µm. Due to the
way data was collected, 46 neurons in the original dataset had an orienta-
tion/unit vector lying exactly in the x-z plane, meaning that the orientations
of these 46 neurons are located only on a great circle of S2. To keep the anal-
ysis simple we disregarded these neurons, resulting in a dataset consisting
of n = 504 neurons. Below we initially discuss an appropriate parametric
forms of the intensity for the locations and orientations and how to estimate
the intensity parameters. Then we investigate whether the orientations and
locations can be described by a Poisson model with the proposed intensity,
where we first consider the data as two separate point patterns (a spatial
point pattern describing the locations and a spherical point pattern describ-
ing the orientations) and next as a space-sphere point pattern.

Figure A.1 reveals no inhomogeneity for the neuron locations, whereas it
is evident that the orientations are inhomogeneous pointing mostly toward
the pial surface of the brain (the plane perpendicular to the z-axis). Thus, we
estimated the intensity of the locations by ρ̂1 = n/|W| = 1.9× 10−5, and for
the orientations we let the intensity be ρ2(u) = n f (u), where f is a density on
S2 which we model as follows. Figure A.5 indicates that the orientations arise
from a mixture of two distributions; one distribution with points falling close
to the North Pole and another with points falling in a narrow girdle. There-
fore, we let f (u) = p fK(u) + (1− p) fW(u) be the mixture density of a Kent
and a Watson distribution on S2 (see e.g. Fisher et al., 1987) for a detailed
description of these spherical distributions). In brief, the Kent density, fK,
depends on five parameters (three directional, one concentration, and one
ovalness parameter), and its contours are oval with centre and form speci-
fied by the directional parameters. Depending on the values of the ovalness
and concentration parameter, the Kent distribution is either uni- or bimodal.
Here, to account for the large number of points centred around the North
Pole, we consider the unimodal Kent distribution. Furthermore, the Watson
density, fW , depends on two parameters; a directional parameter determining
the centres of the density’s circular contours, and a concentration parameter
controlling where and how fast the density peaks. Depending on the sign of
the concentration parameter, the density either decreases or increases as the
geodesic distance to the centres of the contours increases, giving rise to either
a bimodal or girdle shaped distribution. Since the Watson distribution shall
describe the orientations on the girdle, the concentration parameter must be
negative.

The eight parameters of the proposed intensity function ρ2 were esti-
mated as follows. The orientations occurring on the southern hemisphere
are presumed to come from the Watson distribution, while the orientations
on the northern hemisphere come from both distributions. Therefore, and
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because the Watson density on the northern hemisphere is a reflection of
the southern hemisphere, we simple estimated the mixture probability by
p̂ = 1 − 2ns/n = 0.94, where ns is the observed number of points on the
southern hemisphere. The directional parameters were chosen based on ex-
pectations expressed by the scientist behind the data collections, which were
supported by visual inspection of the data; e.g. the directional parameter for
the Kent distribution that determines the centre of the contours was chosen
as the North Pole corresponding to the direction perpendicular to the pial
surface and consistent with Figure A.5. Finally, the concentration and oval-
ness parameters were estimated by numerical maximization of the profile
likelihood, giving the estimated density

f̂ (u) = 0.94 CK exp{14.89u3 + 2.69(u2
1 − u2

2)}+ 0.06 CW exp(−7.88u2
2),

where u = (u1, u2, u3) ∈ S2 and CK, CW are normalising constants (see Fisher
et al., 1987, for details). Figure A.5 suggests that the fitted density (and as-
sociated marginal densities found by numerical integration of f̂ ) adequately
describe the distribution of the observed orientations. Therefore, we now
turn to investigate whether the locations and orientations can be described
by Poisson models with the estimated intensities.

First, we considered the locations and orientations separately and used
K̂1 and K̂2, respectively, as test functions for the global rank envelope proce-
dure. Using 2499 simulations from a homogeneous Poisson process on W,
we obtained a global rank envelope test with p-interval (0.000, 0.020). Thus,
we reject that the locations follow a homogeneous Poisson model. The associ-
ated 95% global rank envelopes in Figure A.6 show that the rejection is due to
the observed K̂1(r) falling below the envelope for r-values between 10 µm to
25 µm. This suggests that the observed locations exhibit some degree of regu-
larity that needs to be modelled. For the orientations, a global rank envelope
test based on 2499 simulations under an inhomogeneous Poisson model on
S2 with intensity ρ̂2(u) = n f̂ (u) gave a p-interval of (0.475, 0.481) and thus
no evidence against the proposed model. Figure A.6 shows the associated
95% global rank envelope.

Second, we considered the data as a space-sphere point pattern and used
K̂ and D̂ to test for a Poisson model with a separable intensity estimated
by ρ̂(y, u) = ρ̂1ρ̂2(u)/n = n f̂ (u)/|W|, cf. (A.16). As the test functions K̂(r, s)
and D̂(r, s) depend on the two-dimensional argument (r, s) and they are non-
smooth with large jumps due to few orientations occurring in areas with low
intensity, we increased the number of simulations to 49999 in order to im-
prove the quality of the global rank envelope test (49999 is a much higher
number than recommended in Myllymäki et al., 2017, for test functions de-
pending on one argument only). This resulted in the p-intervals (0.547, 0.549)
for K̂ and (0.000, 0.003) for D̂; plots of the difference between the associated
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Fig. A.5: Plots of the observed neuron orientations (dots) and the fitted mixture density f̂ (grey
scale). Left: plot of orientations represented as cosine-colatitude and longitude along with their
marginal histograms and marginal fitted densities (solid curves) found by numerically integrat-
ing f̂ . Right: stereographic projection of the northern (top) and southern (bottom) hemisphere.

envelopes and the observed test function are shown in Figure A.7. In con-
clusion, the test based on K̂ reveals no evidence against the proposed space-
sphere Poisson model even though the corresponding Poisson model for the
locations was rejected by the test based on K̂1. However, the test based on D̂
provides a great deal of evidence against the model. This conclusion is prob-
ably due to the fact that for this data set K̂1(r)K̂2(s) � K̂(r, s), meaning that
the test based on D̂ is highly controlled by the values of K̂1 and K̂2, which
results in a rejection for r-values from 10 µm to 20 µm, in line with the test
based on K̂1.

It is unsatisfactory that K̂ does not detect any deviation from Poisson
when K̂1 clearly does, but we expect that the large jumps in K̂(r, s), caused
by (r, s)-close neighbours with low intensity, may explain why no evidence
against the model is detected. The few orientations that were modelled using
a Watson distribution mostly fall in places with very low intensity. There-
fore, we independently thinned the space-sphere point pattern with reten-
tion probability p̂ f̂K(u)/ f̂ (u) for u ∈ S2. Thereby (with high probability) we
removed neurons with orientations that were most likely generated by the
Watson distribution. This lead to removal of 26 neurons. For the thinned

36



6. Data examples

data, the global rank envelope test based on K̂ for testing the hypothesis
of an inhomogeneous Poisson process with intensity proportional to a Kent
density gave a p-interval of (0.052, 0.058). Still, the model was not rejected
at a 5% significance level, but we at least got closer to a rejection; and so
we continued the analysis with the thinned data. The analysis here indicates
that, at least in some cases, the power of the global rank envelope test based
on K̂ may be small. This is investigated further in Section 6.3.
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Fig. A.6: Left: K̂1(r) − 4πr3/3 for the neuron locations (solid curve) along with a 95% global
rank envelope (grey area) under a homogeneous Poisson model on W ⊆ R3. Right: K̂2(s) −
2π{1− cos(s)} for the neuron orientations (solid curve) along with a 95% global rank envelope
(grey area) under the fitted inhomogeneous Poisson model on S2.

As we have seen, a homogeneous Poisson model is not adequate for the
locations, and thus a Poisson model with intensity ρ̂ as described above is not
suitable for describing the space-sphere point pattern. To investigate whether
orientations and locations can be modelled separately, that is, whether the lo-
cations and orientations are independent, we kept the locations fixed, and in-
dependent of the locations we simulated IID orientations from the fitted Kent
distribution. The resulting global rank envelope test based on 49999 of such
simulations gave a p-interval of (0.9255, 0.9258) for K̂ and (0.1265, 0.1266) for
D̂, showing no evidence against the hypothesis of independence between lo-
cations and orientations. Alternatively, if one does not have a suitable model
to simulate the spherical (or spatial) components from, the independence test
may be performed by randomly permuting the components. Formally, this
tests only the hypothesis of exchangeability; a property that is fulfilled under
independence. Performing such a permutation test for our data where the
locations were fixed and the orientations permuted 49999 times resulted in a
p-interval of (0.5431, 0.5445) using either K̂ or D̂ (as K̂ and D̂ only differ by
a constant under permutation of the orientations and thus lead to equivalent
tests).
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Fig. A.7: For T̂ = K̂ (first row) and T̂ = D̂ (second row): difference between T̂(r, s) for the
observed neuron locations and orientations and the lower (T̂low) or upper (T̂upp) 95% global rank
envelope under the fitted inhomogeneous Poisson model on W × S2. Left: T̂(r, s)− T̂low(r, s).
Right: T̂upp(r, s)− T̂(r, s).

6.3 Simulation study

In the data analyses in Sections 6.1–6.2, the tests based on K̂ failed to reject
the proposed Poisson models in cases where the corresponding spatial model
was rejected when using K̂1. To investigate whether the space-sphere K-
function is a valuable addition to the existing functional summary statistics
on the space and sphere, we performed a simulation study comparing the
power of global rank envelope tests based on either K̂, D̂, or a combination
of K̂1 and K̂2. (The combined test function is simply a concatenation of K̂1
and K̂2. Mrkvička et al., 2017, recommended using such a combination rather
than K̂1 or K̂2 as a test function.)

Specifically, we consider a homogeneous LGCP X driven by a random
field Λ(y, u) = ρ exp{Z(y, u)}, where ρ > 0 and

Z(y, u) = α + σ1Z1(y) + σ2Z2(u) + δZ3(y, u), y ∈ R, u ∈ S2,

for parameters σ1, σ2 > 0, δ ≥ 0, and α = −(σ2
1 + σ2

2 + δ2)/2. Further,
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Z1, Z2, and Z3 are independent GRFs with mean 0 and covariance functions
c1(y1, y2) = exp(−‖y1 − y2‖d/φ1), c2(u1, u2) = exp(−d(u1, u2)/φ2), and
c3(y1, u1, y2, u2) = c1(y1, y2)c2(u1, u2), respectively, with parameters φ1, φ2 >
0. Note that the resulting LGCP is homogeneous (and thus first order sepa-
rable) and SOIRS for any value of δ ≥ 0. In addition, by (A.12), the process
is second order separable if and only if δ = 0, in which case X has pair
correlation function

gθ(y1, u1, y2, u2)

= exp{σ2
1 c1(y1, y2) + σ2

2 c2(u1, u2)}, y1, y2 ∈ R, u1, u2 ∈ S2,
(A.23)

where θ = (σ1, φ1, σ2, φ2).
For each value of δ = 0, 0.5, 1, 1.5, 2, we simulated 100 realisations of a

LGCP on [0, 1]× S2 with ρ = 1000, σ1 = σ2 = 0.5, φ1 = 0.05, and φ2 = 0.132.
Then for each of these simulations, we fitted the LGCP model with δ =
0 using a second order composite likelihood approach proposed by Guan
(2006) to estimate θ. In the present time-sphere setting, for a finite point
pattern x ⊂ [0, 1]× S2, the log second order composite likelihood is given by

CL(θ; x) =
6=

∑
(yi ,ui),(yj ,uj)∈x

w(yi, ui, yj, uj) log{ρ(2)θ (yi, ui, yj, uj)}

− nr,slog
{ ∫

[0,1]×S2

∫
[0,1]×S2

w(y1, u1, y2, u2)

· ρ(2)θ (y1, u1, y2, u2)dµ(y1, u1)dµ(y2, u2)

}
.

(A.24)

Here, for user specified distances r and s, w(y1, u1, y2, u2) = I{‖y1 − y2‖d <
r, d(u1, u2) < s}, nr,s is the number of (r, s)-close neighbours, and ρ(2)θ is
the second order joint intensity function, which for the homogeneous LGCP
presented above is ρ(2)θ (y1, u1, y2, u2) = ρ2gθ(y1, u1, y2, u2). Then (A.24) is
easily seen not to depend on ρ, and by (A.23) the composite likelihood can
be written as

CL(θ; x) = l1(σ1, φ1; x) + l2(σ2, φ2; x) (A.25)

for functions l1 and l2. Thus, maximising the composite likelihood with re-
spect to θ can be split into two maximisation problems; that is, maximising l1
with respect to (σ1, φ1) and l2 with respect to (σ2, φ2). Finally, we tested the
null hypothesis δ = 0 using the global rank envelope test with 4999 simula-
tions from the fitted model using either K̂, D̂, or a combination of K̂1 and K̂2
as test functions.

Table A.1 gives an overview of the conclusions reached by these tests.
Note that the power of the tests based on either of the three test functions in
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Test function δ = 0 δ = 0.5 δ = 1 δ = 1.5 δ = 2

Liberal K̂ 4% 7% 42% 75% 98%
D̂ 2% 45% 92% 97% 100%
K̂1, K̂2 10% 11% 29% 28% 42%

Conservative K̂ 2% 5% 32% 72% 90%
D̂ 0% 26% 77% 82% 86%
K̂1, K̂2 10% 11% 29% 28% 40%

Table A.1: Power of tests for different values of δ when using the global rank envelope test with
either K̂, D̂, or K̂1 combined with K̂2. The decision was made using a significance level of 5% for
both the liberal and conservative tests

general increases with δ, both for the liberal and conservative test (for details
see Appendix A). Thus, with increasing degree of non-separability the tests
more often detect deviation from the separable model. However, tests based
on K̂ and particularly D̂ seem preferable in this setup as they have a higher
power than tests based on K̂1 combined with K̂2.

Obviously, the conservative p-value always lead to fewer rejections than
the liberal, giving a lower power. However, if the global rank envelope proce-
dure is based on a higher number of simulations, then the conservative and
liberal test will more often lead to the same conclusion.

7 Additional comments

Section 2.2 introduced examples of space-sphere point processes for which
the second order separability property described in Section 4 seems natural.
However, for other classes of point processes a different structure of the pair
correlation function may be more interesting. For example, suppose X is a
Cox process driven by

Λ(y, u) = ∑
(y′ ,u′ ,γ′)∈Φ

γ′k(y′, u′, y, u), y ∈ Rd, u ∈ Sk, (A.26)

where Φ is a Poisson process on S × (0, ∞) with intensity function ζ, and
k(y′, u′, ·, ·) is a density with respect to µ. Then X is called a shot noise Cox
process (SNCP) with kernel k (Møller, 2003). The process has intensity func-
tion

ρ(y, u) =
∫∫

γ′ζ(y′, u′, γ′)k(y′, u′, y, u)dµ(y′, u′)dγ′, y ∈ Rd, u ∈ Sk,
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and pair correlation function

g(y1, u1, y2, u2)

= 1 +

∫∫
γ′2ζ(y′, u′, γ′)k(y′, u′, y1, u1)k(y′, u′, y2, u2)dµ(y′, u′)dγ′

ρ(y1, u1)ρ(y2, u2)

(A.27)

for any y1, y2 ∈ Rd and any u1, u2 ∈ Sk with ρ(y1, u1)ρ(y2, u2) > 0. In the
trivial case where the kernel k(y′, u′, y, u) in (A.26) does not depend on u (or
y), the SNCP is both first and second order separable, with intensity and pair
correlation functions that do not depend on the spherical (or spatial) compo-
nents, and the process thus fulfils second order separability in the sense of
(A.17). However, the specific structure of the pair correlation function for a
SNCP in (A.27) makes it more natural to look for a product structure in g− 1
rather than g. That is, we may say that X is second order separable if there
exist Borel functions h1 and h2 such that

g(y1, u1, y2, u2)− 1 = h1(y1, y2)h2(u1, u2) (A.28)

for y1, y2 ∈ Rd, u1, u2 ∈ Sk. This property is naturally fulfilled whenever
we consider a Poisson process or any marked point process with marks that
are IID and independent of the ground process as described in Example 3.
Now, think of Φ in (A.26) as a marked point process with ground process
{(y, u) : (y, u, γ) ∈ Φ} and marks {γ : (y, u, γ) ∈ Φ}, and assume that the
ground process and the marks are independent processes, the ground process
is a homogeneous Poisson process on S with intensity α > 0, and the marks
are IID with mean m1 and second moment m2. If in addition k(y′, u′, y, u) =
k0{y − y′, d(u, u′)}, then Λ and thus X is stationary in space and isotropic
on the sphere. Further, X is homogeneous with intensity ρ = m1α and pair
correlation function

g(y1, u1, y2, u2)

= 1 +
m2

αm2
1

∫
k0{y1 − y′, d(u1, u′)}k0{y2 − y′, d(u2, u′)}dµ(y′, u′)

(A.29)

for y1, y2 ∈ Rd and u1, u2 ∈ Sk. Clearly, (A.29) depends only on (y1, y2)
through y1− y2, and on (u1, u2) through d(u1, u2), although there is no simple
expression for these dependencies in general. Furthermore, separability in
the form of (A.28) is fulfilled if the kernel k in (A.29) factorizes such that

k0{y− y′, d(u, u′)} = k01(y− y′)k02{d(u, u′)}, y, y′ ∈ Rd, u, u′ ∈ Sk,

for Borel functions k01 and k02. Then by (A.6)–(A.9), the pair correlations
functions for Y and UW are

g1(y1, y2) = 1 + c1
m2

αm2
1

∫
k01(y1 − y′)k01(y2 − y′)dy′, y1, y2 ∈ Rd,
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and

g2(u1, u2) = 1 + c2
m2

αm2
1

∫
k02{d(u1, u′)}k02{d(u2, u′)}dν(u′), u1, u2 ∈ Sk,

where

c1 =
1
σ2

k

∫∫∫
k02{d(u1, u′)}k02{d(u1, u′)}dν(u1)dν(u2)dν(u′)

and

c2 =
1
|W|2

∫ ∫
W

∫
W

k01(y1 − y′)k01(y1 − y′)dy1 dy2 dy′.

That is, g1 depends only on the spherical components through the constant
c1, and similarly g2 depends only on the spatial components through c2.
Prokešová and Dvořák (2014) discuss how an analogue property can be ex-
ploited to estimate the parameters of space-time SNCPs using minimum con-
trast estimation for the projected processes. A similar procedure will be ap-
plicable for space-sphere point processes, but we have not investigated this
further.

Section 5 considered the situation where the spatial components of X are
observed on a subset of Rd and the spherical components are observable
on the entire sphere. In more general applications, the spherical components
may only be observable on a subset of Sk leading to edge effects on the sphere
too. To account for this, edge correction methods for the sphere should be
used when estimating K2 (see Lawrence et al., 2016) and K. If X is observ-
able on a product space W1 ×W2, where W1 ⊂ Rd and W2 ⊂ Sk, then an
edge corrected estimate for K may be obtained by combining edge corrected
estimates for K1 and K2 analogous to (A.22). Concerning the specific choice
of edge correction method, Baddeley et al. (2015) mentioned for planar point
processes that, “So long as some kind of edge correction is performed . . . ,
the particular choice of edge correction technique is usually not critical”. We
expect that the situation is similar for our setting.

For one-dimensional test functions, Myllymäki et al. (2017) recommend
using 2499 simulations to perform a global rank envelope test, and Mrkvička
et al. (2017) discuss the appropriate number of simulations when using a
multivariate test function (as the empirical space-sphere K-function). In Sec-
tion 6.2, we used 49999 simulations for the global rank envelope test based
on K̂, since K̂ had steep jumps. To avoid this large number of simulations,
a refinement of the global rank envelope test discussed in Mrkvička et al.
(2018) can be applied.

In Example 1 we noticed that if a space-sphere point process is a Poisson
process, then the spatial and spherical components are Poisson processes as
well. Nevertheless, using K̂ for testing a space-sphere Poisson model may
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lead to a different conclusion than using K̂1 and K̂2 for testing whether the
corresponding Poisson models for the spatial and spherical components, re-
spectively, are appropriate. Indeed, in the case of Figures A.3–A.4, the test
based on K̂1 showed some evidence against a homogeneous Poisson model
for the fireball event times, while no evidence against a homogeneous Pois-
son model for the locations over time was seen with the test based on K̂. This
observation together with the results in Section 6.2 was our motivation for
making the simulation study in Section 6.3, where we investigated the power
of global rank envelope tests based on either K̂, D̂, or a combination of K̂1
and K̂2, and we concluded that tests based on K̂ and in particular D̂ seem
preferable.

In Section 6.3, we utilised homogeneity and second order separability to
speed up optimisation of the second order composite likelihood proposed
in Guan (2006). If the process is inhomogeneous but first (and second) or-
der separable, we still get a separation of the composite likelihood simi-
lar to (A.25), where l1 and l2 now may depend also on intensity parame-
ters. As an alternative, the second order composite likelihood discussed in
Waagepetersen (2007) can be used. However, in that case, first and second
order separability do not yield a separable likelihood as in (A.25), and for our
simulation study it resulted in unstable estimates (and thus it was discarded
in favour of the one proposed by Guan, 2006). Furthermore, one may investi-
gate whether the adaptive procedure discussed in Lavancier et al. (2018) will
provide stable estimates in the space-sphere setting. In short, Lavancier et al.
(2018) consider the score function related to (A.24) and introduce a modified
weight function w depending on g.

In this paper, we considered point processes living on Rd × Sk. Naturally,
we may extend the results/methods to more general metric spaces Rd ×M,
where M is a compact set (e.g. a torus). However, we need to require some
invariance property for the metric space M and its metric under a group
action, such that we can define an equivalence of the SOIRS property needed
to define K.
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Appendix A

In Sections 6.1–6.3, we used the global rank envelope test presented in Myl-
lymäki et al. (2017) to test for various point process models. In this appendix,
we briefly explain the idea and use of such a test. A global rank envelope test
compares a chosen test function for the observed data with the distribution
of the test function under the null model; as this distribution is typically un-
known it is approximated using a Monte Carlo approach. The comparison is
based on a rank that only gives a weak ordering of the test functions. Thus,
instead of a single p-value, the global rank envelope test provides an interval
of p-values, where the end points specify the most liberal and conservative
p-values of the test. A narrow p-interval is desirable as the test is incon-
clusive if the p-interval contains the chosen significance level. The width of
the p-interval depends on the number of simulations, smoothness of the test
functions and dimensionality. Myllymäki et al. (2017) recommended to use
2499 simulations for one-dimensional test functions and a significance level
of 5%.

An advantage of the global rank envelope procedure is that it provides a
graphical interpretation of the test in form of critical bounds (called a global
rank envelope) for the test function. For example, if the observed test func-
tion is not completely inside the 95% global rank envelope, this corresponds
to a rejection of the null hypothesis at a significance level of 5%. Further-
more, locations where the observed test function falls outside the global rank
envelope reveal possible reasons for rejecting the null model.

In their supplementary material, Myllymäki et al. (2017) discussed two
approaches for calculating test functions that rely on an estimate of the in-
tensity. One approach is to reuse the intensity estimate for the observed point
pattern in calculation of all the test functions, another is to reestimate the in-
tensity for each simulation and then use this estimate when calculating the
associated test function. For the L-function, which is a transformation of K1,
Myllymäki et al. (2017) concluded that the reestimation approach give the
more powerful test. In this paper, we have therefore based all our global rank
envelope tests on that approach.
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1. Introduction

Abstract

We consider a Markov chain of point processes such that each state is a superposi-
tion of an independent cluster process with the previous state as its centre process
together with some independent noise process and a thinned version of the previous
state. The model extends earlier work by Felsenstein and Shimatani describing a
reproducing population. We discuss when closed term expressions of the first and
second order moments are available for a given state. In a special case it is known
that the pair correlation function for these type of point processes converges as the
Markov chain progresses, but it has not been shown whether the Markov chain has
an equilibrium distribution with this, particular, pair correlation function and how
it may be constructed. Assuming the same reproducing system, we construct an
equilibrium distribution by a coupling argument.

1 Introduction

This paper deals with a discrete time Markov chain of point processes G0, G1,
. . . in the d-dimensional Euclidean space Rd, where the chain describes a re-
producing population and we refer to Gn as the nth generation (of points).
We make the following assumptions. Any point process considered in this
paper will be viewed as a random subsets of Rd which is almost surely lo-
cally finite, that is, the point process has almost surely a finite number of
points within any bounded subset of Rd (for measure theoretical details, see
e.g. Daley and Vere-Jones (2003) or Møller and Waagepetersen (2004)). Recall
that a point process X ⊂ Rd is stationary if its distribution is invariant under
translations in Rd, and then its intensity ρX ∈ [0, ∞] is the mean number of
points in X falling in any Borel subset of Rd of unit volume. Now, for gener-
ation 0, G0 is stationary with intensity ρG0 ∈ (0, ∞). Further, for generation
n = 1, 2, . . . , conditional on the previous generations G0, . . . , Gn−1, we obtain
Gn by four basic operations for point processes:

(a) Independent clustering: To each point x ∈ Gn−1 is associated a (non-
centred) cluster Yn,x ⊂ Rd. These clusters are independent identically
distributed (IID) finite point processes and they are independent of
G0, . . . , Gn−1. The cardinality of Yn,x has finite mean βn and finite vari-
ance νn and is independent of the points in Yn,x which are IID, with
each point following a probability density function (PDF) fn. We re-
fer to x + Yn,x (the translation of Yn,x by x) as the offspring/children
process generated by the ancestor/parent x, and we let

Yn =
⋃

x∈Gn−1

(x + Yn,x) (B.1)

51



Paper B.

be the independent cluster process given by the superposition of all
offspring processes generated by the points in the previous generation
Gn−1.

(b) Independent thinning: For all y ∈ Rd, let Bn,y be IID Bernoulli variables
which are independent of Yn, G0, . . . , Gn−1, and all previously gener-
ated Bernoulli variables. Let pn = P(Bn,y = 1). For all x ∈ Gn−1, let

Wn,x = {y ∈ x + Yn,x : Bn,y = 1}

be the independent pn-thinned point process of x + Yn,x, and let

Wn =
⋃

x∈Gn−1

Wn,x (B.2)

be the independent pn-thinned point process of Yn. Note that with
probability one, Wn ∩ Gn−1 = ∅, since by assumption on the cluster
points the origin is not contained in Yn,x.

(c) Independent retention: For all x ∈ Rd, let Qn,x be IID Bernoulli vari-
ables which are independent of Yn, G0, . . . , Gn−1, and all previously
generated Bernoulli variables. Let qn = P(Qn,x = 1) and let

Gthin
n−1 = {x ∈ Gn−1 : Qn,x = 1}

be the independent qn-thinned point process of Gn−1.

(d) Independent noise: Let Zn ⊂ Rd be a stationary point process with
finite intensity ρZn and independent of Wn, G0, . . . , Gn−1, and Gthin

n−1.
Finally, let

Gn = Wn ∪ Gthin
n−1 ∪ Zn (B.3)

where we interpret Zn as noise. For ease of presentation we assume
with probability one that Wn ∪ Gthin

n−1 and Zn are disjoint. Thus Wn,
Gthin

n−1, and Zn are pairwise disjoint almost surely.

When we later interpret our results, for any point x ∈ Gthin
n−1, since x ∈ Gn−1 ∩

Gn, we consider x both as its own ancestor and its own child.
Our model is an extension of the model in Shimatani’s paper Shimatani

(2010), which in turn is an extension of Malécot’s model studied in Felsen-
stein (1975) (we return to this in Section 2, item (vii) and (viii)). In particu-
lar, our extension allows us to model cluster centres exhibiting clustering or
regularity, points from previous generations can be retaining, and the noise
processes can also exhibit clustering or regularity (i.e., they are not assumed
to be Poisson processes). For statistical applications, we have in mind that Gn
may be observable (at least for some values of n ≥ 1) whilst G0 and the clus-
ter, thinning, and superpositioning procedures in items (a)–(b) and (d) are
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unobservable. Our model may be of relevance for applications in population
genetics and community ecology (see Shimatani (2010) and the references
therein), for analyzing tropical rain forest point pattern data with multiple
scales of clustering (see Wiegand et al. (2007)), and for modelling proteins
with multiple noisy appearances in PhotoActivated Localization Microscopy
(PALM) (see Andersen et al. (2018)). However, we leave it for other work to
study the statistical applications of our model and results.

The paper is organized as follows. A discussion of the assumptions in
items (a)–(d) and the related literature is given in Section 2. Section 3 focuses
on the first and second order moment properties of Gn, that is, its intensity
and pair correlation function (PCF); we extend model cases and results in Shi-
matani’s paper Shimatani (2010) and show that tractable model cases for the
PCF of G0 are meaningful in terms of Poisson and other point processes, in-
cluding weighted permanental and weighted determinantal point processes
(which was not observed in Shimatani (2010)). Section 4 discusses limiting
cases of the PCF of Gn as n→ ∞ when we have the same reproduction system
and under weaker conditions than in Shimatani (2010). In particular, when
natural conditions are satisfied, we establish ergodicity of the Markov chain
by using a coupling construction and by giving a constructive description of
the chain’s unique invariant distribution when extending the Markov chain
backwards in time. Finally, Appendix A provides background knowledge
on weighted permanental and determinantal point processes, Appendix B
verifies some technical details, and Appendix C specifies an algorithm for
approximate simulation of the Markov chain’s invariant distribution.

2 Assumptions and related work

Items (i)–(iv) below comment on the model assumptions in items (a)–(d).

(i) The process Yn is a stationary independent cluster process Daley and
Vere-Jones (2003) and we have the following special cases: If Gn−1 is a
stationary Poisson process, Yn is a Neyman-Scott process Neyman and
Scott (1958); if in addition #Yn,x follows a Poisson distribution, then
βn = νn and Yn is a shot-noise Cox process (SNCP; Møller (2003)) driven
by

Λn(x) = βn ∑
y∈Gn−1

fn(x− y), x ∈ Rd. (B.4)

This is a (modified) Thomas process Thomas (1949) if fn is the density
of d IID zero-mean normally distributed variates with variance σ2

n – we
denote this distribution by Nd(σ

2
n) – and it is a Matérn cluster process

Matérn (1960, 1986) if instead fn is a uniform density of a d-dimensional
ball with centre at the origin. However, in many applications a Poisson
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centre process is not appropriate. For instance, Van Lieshout & Badde-
ley (2002) considered a repulsive Markov point process model for the
centre process, whereby it is easier to identify the clusters than under a
Poisson centre process.

(ii) When βn ≤ νn, we may consider Yn as a stationary generalised shot-
noise Cox process (GSNCP; see Møller and Torrisi (2005)). In this model
(B.4) is extended to the case where Gn−1 is a general stationary point
process and Yn is a Cox process driven by

Λn(x) = ∑
y∈Gn−1

γykn[{(x− y)/by}]/bd
y, x ∈ Rd,

where kn is a PDF on Rd, the γy and the by for all y ∈ Gn−1 are inde-
pendent positive random variables which are independent of Gn−1, and
the γy are identically distributed with mean βn and variance νn− βn (as
#Yn,x has mean βn and variance νn = E{var(#Yn,x|γy)}+var{E(#Yn,x|γy)}
= βn + var(γn)). Further, by has an interpretation as a random band-
width and

fn(x) = E

{
kn(x/by)

bd
y

}
.

The general results for the intensity and PCF of Gn in Section 3 will
be unchanged whether we consider this stationary GSNCP or the more
general case in item (a).

(iii) Clearly, there is no noise (Zn is empty with probability one) if ρZn = 0.
The case ρZn > 0 may be relevant when not all points in a generation
can be described as resulting from independent clustering and thinning
as in (a)–(c). Note that in item (d) we could without loss of general-
ity assume Z1, Z2, . . . are independent. Further, we introduce the thin-
ning of Yn in item (b) only for modelling purposes and for comparison
with Shimatani (2010); from a mathematical point of view this thinning
could be omitted if in item (a) we replace each cluster Yn,x by what hap-
pens after the independent thinning: Namely that independent thinned
clusters Yth

n,x appear so that #Yth
n,x has mean βth

n = βn pn and variance
νth

n = βn pn − βn p2
n + νn p2

n and is independent of the points in Yth
n,x

which are IID with PDF fn, whereby Wn and Yth
n := ∪x∈Gn−1(x + Yth

n,x)
are identically distributed.

(iv) Assuming for n = 1, 2, . . . no thinning of Yn (pn = 1), an equivalent
description of items (a) and (c)–(d) is given in terms of the Voronoi
tessellation generated by Gn−1: For x ∈ Gn−1, let C(x|Gn−1) be the
Voronoi cell associated to x and consisting of all points in Rd which are
at least as close to x than to any other point in Gn−1 (with respect to
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usual distance in Rd). With probability one, since Gn−1 is stationary
and non-empty, each Voronoi cell is bounded and hence its volume is
finite (see e.g. Møller (1989, 1994)). Thus we can set

Gn =
⋃

x∈Gn−1

(x + Gn,x)
⋃

Gthin
n−1

where conditional on Gn−1 and for all x ∈ Gn−1, the Gn,x are inde-
pendent of Gthin

n−1 and they are IID finite point processes with a dis-
tribution as follows: #Gn,x has mean βn + |C(x|Gn−1)|ρZn , variance
νn + |C(x|Gn−1)|ρZn , and is independent of the points in Gn,x, where
| · | denotes volume. The points in Gn,x are i.i.d., each following a mix-
ture distribution so that with probability βn/{βn + |C(x|Gn−1)|ρZn} the
PDF is fn and else it is a uniform distribution on C(x|Gn−1).

In items (v)–(vi) below we discuss earlier work on the model for G0, G1, . . .,
where G0 is a stationary Poisson process, all Gn = Yn for n ≥ 1 (i.e., no thin-
ning, no retention, and no noise), fn = f and βn = β do not depend on
n ≥ 1. We may refer to this as a replicated SNCP. Frequently in the literature,
a so-called replicated Thomas process is considered, that is, f ∼ Nd(σ

2).

(v) Apparently this replicated SNCP was originally studied by Malécot, see
the discussion and references in Felsenstein’s paper Felsenstein (1975)
where the following three conditions are stated:

(I) ”individuals are distributed randomly on the line with equal ex-
pected density everywhere”;

(II) ”each individual reproduces independently, the number of off-
spring being drawn from a Poisson distribution with a mean of
one”; and

(III) ”each offspring migrates independently, the displacements being
drawn from some distribution m(x), which we will take to be a
normal distribution.”

(In our notation, d = 1, β = 1, and f ∼ N1(σ
2), but Felsenstein (1975)

considered also more general offspring densities f and the cases d =
2, 3.) Felsenstein (1975) noted that “(I) is incompatible with (II)–(III)”
because G1, G2, . . . are not stationary Poisson processes and “a model
embodying (II) and (III) will lead to the formation of larger and larger
clumps of individuals separated by greater and greater distances”, and
then he concluded “This model is therefore biologically irrelevant”.

(vi) Kingman in Kingman (1977) considered the case where β is replaced
by a non-negative function b which is allowed to depend on the cluster
centre x and the previous generation, so a cluster with centre x is a
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Poisson process with intensity function b(x, Gn−1) f ( · − x); e.g., as in
the Voronoi case discussed in item (iv), b(x, Gn−1) may depend on Gn−1
in a neighbourhood of x. Then Gn is a Cox process: Gn conditional on
Gn−1 is a Poisson process with intensity function

Λn(x) = ∑
y∈Gn−1

b(y, Gn−1) f (x− y), x ∈ Rd. (B.5)

In this setting Kingman (1977) verified that it is impossible for Gn to be
a stationary Poisson process, however, replacing f (x − y) in (B.5) by a
more general density which may depend on Gn−1 − x, Kingman (1977)
noticed that it is possible for Gn to be a stationary Poisson process. A
trivial example is the Voronoi case in item (iv) when Gn = Zn for n ≥ 1.

Recently, Shimantani in Shimatani (2010) considered first the case of items
(a)–(b) and no noise, when d = 2 and there is the same reproduction system
so that fn = f , βn = β > 0, νn = ν, and pn = p ∈ (0, 1] do not depend on
n ≥ 1.

(vii) In particular, Shimatani (2010) considered the case f ∼ N2(σ
2) and

when βp = 1 or equivalently when the intensities ρG0 = ρG1 = . . . are
invariant over generations, and then he showed that as n→ ∞, the PCF
for Gn diverges. It follows from item (iii) that the model is equivalent to
a replicated Neyman-Scott process; this becomes a replicated Thomas
process when each cluster size is Poisson distributed, and hence the re-
sult in Shimatani (2010) agrees with the results in Felsenstein (1975) and
Kingman (1977). Note that Shimatani (2010) implicitly assumed that a
cluster can have more than one point. Otherwise the PCF of Gn be-
comes equal to 1; we discuss this rather trivial case again in Section 3.2
and 4; see also Section 3 in Kingman (1977).

Then, Shimantani in Shimatani (2010) extended the model by including
noise as in item (d) and by making the following assumptions: The noise
processes Zn are stationary Poisson processes, satisfying 0 < ρZ1 = ρZ2 = . . .
and ρG0 = ρG1 = . . . , meaning that βp ≤ 1. As there is no noise if βp = 1 it
is also assumed that βp < 1.

(viii) Then Shimatani (2010) showed that the PCF of Gn converges uniformly
as n → ∞ and he argued that this limiting case may be “biologically
valid” (Shimatani, 2010, Section 2.4). However, we address some points
arising from Shimatani (2010).

• He did not show that there exists an underlying point process hav-
ing this limiting case as its PCF, although he claimed that “this
modified replicated Neyman-Scott process reaches an equilibrium
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state”. In Section 4, for our more general model, we prove the
existence of such an underlying point process.

• When G0 is not a stationary Poisson process but its PCF is of a
particular form (which we specify later in connection to (B.9)), he
did not argue that there exists an underlying point process and
what it could be. In Section 3, we verify this existence under our
more general model.

Finally, we remark on a few related cases.

(ix) Whilst we study the processes Gn for all n = 1, 2, . . ., often in the spatial
point process literature the focus is on either G1 or G2, assuming pn = 1
and ρZn = 0 for n = 1 or n = 1, 2, respectively. Wiegand et al. (2007)
studied this in the special case of a double Thomas cluster process G2
when d = 2, i.e., when G0 is a stationary Poisson process, (B.4) holds
for both G1 = Y1 and G2 = Y2, and fn ∼ N2(σ

2
n) for n = 1, 2; see

also Andersen et al. (2018) for more general functions fn. Moreover,
Wiegand et al. (2007) extended the double Thomas process to the case
where ρZ1 = 0 and ρZ2 > 0; this type of model is also considered in
Andersen et al. (2018). In any case, our general results for intensities
and PCFs in Section 3 will cover all these cases.

(x) If for each generation we assume no thinning (p1 = p2 = . . . = 1), no
noise (ρZ1 = ρZ2 = . . . = 0), no retention (q1 = q2 = . . . = 0) as well
as β1 = β2 = . . . and f1 = f2 = . . ., then the superposition

⋃∞
n=0 Gn is

known as a spatial Hawkes process, see Møller and Torrisi (2007) and
the references therein.

3 First and second order moment properties

In this section we determine the intensity and the PCF of Gn for n = 1, 2, . . . ,
under more general assumptions than in Shimatani’s paper Shimatani (2010).
Specifically, points from one generation can be retained in the next genera-
tion, the noise is an arbitrary stationary point process (not necessarily a sta-
tionary Poisson process as in Shimatani (2010)), and we do not assume the
same reproduction system.

3.1 Intensities

By induction Gn is seen to be stationary for n = 0, 1, . . . Its intensity is de-
termined in the following proposition where for notational convenience we
define Z0 = G0 so that ρZ0 = ρG0 .
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Proposition 3.1 . For n = 1, 2, . . . , we have that Gn is stationary with a positive
and finite intensity given by

ρGn = ρGn−1(βn pn + qn) + ρZn = ρZn +
n−1

∑
i=0

ρZi

n

∏
j=i+1

(β j pj + qj). (B.6)

Proof. Using induction for n = 1, 2, . . . , the proposition follows immediately
from items (a)–(d), where the term ρZi ∏n

j=i+1(β j pj + qj) is the contribution
to the intensity caused by the clusters with centres Zi and after applying the
two types of independent thinnings.

3.2 Pair correlation functions

Preliminaries

Recall that a stationary point process X ⊂ Rd with intensity ρX ∈ (0, ∞) has a
translation invariant PCF (pair correlation function) (u, v) → gX(u− v) with
(u, v) ∈ Rd×Rd if for any bounded Borel function h : Rd×Rd → [0, ∞) with
compact support,

E ∑
x1,x2∈X: x1 6=x2

h(x1, x2) = ρ2
X

∫∫
h(x1, x2)gX(x1 − x2)dx1 dx2 < ∞. (B.7)

Equivalently, for any bounded and disjoint Borel sets A, B ⊂ Rd, denoting
N(A) the cardinality of X ∩ A, the covariance between N(A) and N(B) exists
and is given by

cov{N(A), N(B)} = ρ2
X

∫
A

∫
B
{gX(x1 − x2)− 1} dx1 dx2.

Some remarks are in order. Note that gX is uniquely determined except
for nullsets with respect to Lebesgue measure on Rd, but we ignore such
nullsets in the following. Thus the translation invariance of the PCF is im-
plied by the stationarity of X. Our results below are presented in terms of
the reduced PCF gX − 1 rather than gX , and gX = 1 if X is a Poisson process.
It is convenient when gX is isotropic, meaning that there is a function gX,o so
that for all x ∈ Rd, gX(x) = gX,o(‖x‖) depends only on x through ‖x‖. With
a slight abuse of terminology, we also refer to gX and gX,o as PCFs.

For a PDF h on Rd, let h̃(x) = h(−x) and let

h ∗ h̃(x1 − x2) =
∫

h(x1 − y)h(x2 − y)dy (B.8)

be the convolution of h and h̃. Note that if U and V are IID random variables
with PDF h, then U −V has PDF h ∗ h̃. In the following section we consider
the case

gX − 1 = a h ∗ h̃ (B.9)
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for real constants a, where X in particular, may refer to the initial generation
process, G0, or the noise process, Zn. This corresponds to X being a Poisson
process if a = 0, a point process with positive association between its points
(attractiveness, clustering, or clumping) if a > 0, and a point process with
negative association between its points (repulsiveness or regularity) if a < 0.
In Shimatani (2010), for the initial generation process G0, Shimatani briefly
discussed the special case of (B.9) when h ∼ N2(τ

2/2) (so h ∗ h̃ ∼ N2(τ
2))

whilst the noise processses are stationary Poisson processes. However, if
a 6= 0 he did not argue if an underlying point process with PCF gX exists. In-
deed, as detailed in Appendix A, there exist α-weighted determinantal point
processes satisfying (B.9) if α = −1/a is a positive integer, and there exist
Cox processes given by α-weighted permanental point processes satisfying
(B.9) if α = 1/a is a positive half-integer. Additionally, h needs not to be
Gaussian when dealing with weighted determinantal and permanental point
processes; e.g. h may be the density of a normal-variance mixture distribution
Barndorff-Nielsen et al. (1982). Also generalized shot-noise Cox processes
Møller and Torrisi (2007) have PCFs of the form (B.9) with a > 0. More-
over, (B.9) holds for many other cases of point process models for X: If the
Fourier transform F (gX − 1) is well-defined and non-negative, if h = h̃, and
if a :=

∫
(gX − 1) ∈ (0, ∞), then (B.9) holds with

h = F−1{√F (gX − 1)
}/√

a

provided this inverse transform is well-defined. Extensions of B.9 are dis-
cussed in Section 3.2

We will need the following lemma in Section 3.2.

Lemma 3.2 . Suppose gX is of the form (B.9). Then∫∫
{gX(x1 − x2)− 1} f (u− x1) f (v− x2)dx1 dx2 = ah ∗ h̃ ∗ f ∗ f̃ (u− v)

for any integrable real function f defined on Rd and for any u, v ∈ Rd.

Proof. Follows from (B.8) and (B.9) using Fubini’s theorem and the fact that
the convolution operation is commutative and associative.

First main result

This section concerns our first main result, Theorem 3.3, which is verified in
Section (3.2). We use the following notation. Define

cn = E{#Yn,x(#Yn,x − 1)}/β2
n = (νn + β2

n − βn)/β2
n if βn > 0, (B.10)

with cn = 0 if βn = 0. If βn = νn > 0, as in the case when #Yn,x follows a (non-
degenerated) Poisson distribution, then cn = 1. The case of overdispersion
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(underdispersion), that is, νn > βn (νn < βn) corresponds to cn > 1 (cn < 1).
Denote by δ0 the Dirac delta function defined on Rd. Recall that for any
integrable real function h defined on Rd, h ∗ δ0 = δ0 ∗ h = h, and for any
a ∈ R, aδ0 ∗ aδ0 = a2δ0, where we understand 0δ0 as 0. Finally, let ∗n

i=1hi =
h1 ∗ · · · ∗ hn where each hi is either of the form aiδ0, with ai a real constant, or
it is an integrable real function defined on Rd.

Theorem 3.3 . Suppose gG0 and gGZn
are of the form (B.9), that is, gG0 − 1 =

a f0 ∗ f̃0 and gZn − 1 = bn fZn ∗ f̃Zn for n = 1, 2, . . .. Then, for all u ∈ Rd and
n = 1, 2, . . .,

gGn(u)− 1 =

(
ρG0

ρGn

)2

a f0 ∗ f̃0 ∗
n∗

i=1

{(
βi pi fi + qiδ0

)
∗
(

βi pi f̃i + qiδ0
)}

(u)

(B.11)

+
n

∑
i=1

ρGi−1

ρ2
Gn

{
ci
(

βi pi
)2 fi ∗ f̃i + βi piqi

(
fi + f̃i

)}

∗
n∗

j=i+1

{(
β j pj f j + qjδ0

)
∗
(

β j pj f̃ j + qjδ0
)}

(u)

(B.12)

+
n−1

∑
i=1

(
ρZi

ρGn

)2

bi fZi ∗ f̃Zi

∗
n∗

j=i+1

{(
β j pj f j + qjδ0

)
∗
(

β j pj f̃ j + qjδ0
)}

(u)

(B.13)

+

(
ρZn

ρGn

)2
bn fZn ∗ f̃Zn(u) (B.14)

where the (n− i)-th fold convolution in (B.12) is interpreted as 1 if i = n and
the sum in (B.13) is interpreted as 0 if n = 1.

The terms in (B.11)–(B.14) have the following interpretation when u 6= 0:
The right side of (B.11) corresponds to pairs of n-th generation points with
different 0-th generation ancestors; the i-th term in (B.12) corresponds to pairs
of n-th generation points when they have a common (i − 1)-th generation
ancestor initiated by Zi−1 if i > 1 or by G0 if i = 1; the i-th term in (B.13)
corresponds to pairs of n-th generation points with different i-th generation
ancestors initiated by Zi; and (B.14) corresponds to point pairs in Zn.

Later in Section 4.1, our main interest is in the behaviour of gGn as n→ ∞
when we have the same reproduction system, but for the moment, it is worth
noticing the flexibility of our model for G1 and the effect of the choice of
its centre process G0: For simplicity, suppose there is no noise and no re-
tention of points from one generation to the next (i.e., ρZn = qn = 0 for
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n = 1, 2, . . .), and G0 is stationary and either a Poisson or an weighted deter-
minantal or permanental point process with a Gaussian kernel. Specifically,
suppose d = 2, G0 has intensity ρG0 = 100, and using a notation as in Ap-
pendix A, the Gaussian kernel has an auto-correlation function of the form
R(x) = exp(−‖x/τ‖2), where the value of τ depends on the type of process:
For the α-weighted determinantal point process, we consider the most repul-
sive case, that is, a determinantal point process (α = 1) and τ = 1/√ρG0 π
is largest possible to ensure existence of the process Lavancier et al. (2015);
for the α-weighted permanental point process, α = 1/2 (the most attractive
case when it is also a Cox process, see Appendix A) and τ = 0.1 is an arbi-
trary value (any positive number can be used). Note that R2 = (

√
πτ)2 f0 ∗ f̃0

where f0 ∼ N2(τ
2/8), which by (B.30) and (B.31) mean that (B.9) is satis-

fied with a = 2(
√

πτ)2 and a = −(
√

πτ)2 for the weighted permanental
and determinantal point processes, respectively, and a = 0 in case of the
Poisson process. Moreover, let the number of points in a cluster be Poisson
distributed with mean β1 = 10, p1 = 1, and f1 ∼ N2(σ

2), with σ = 0.01.
Then, by Theorem 3.3,

gG1(u)− 1 =
a

2π(2σ2 + τ2/4)
exp

{
− ‖u‖2

2(2σ2 + τ2/4)

}
+

1
ρG04πσ2 exp

(
−‖u‖

2

4σ2

)
.

In Figure B.1 we present the isotropic PCF gG1,o(r) = gG1(u) as a function of
the inter-point distance r = ‖u‖ in case of each of the three models of G0,
where using an obvious notation, gdet

G1,o < gPois
G1,o < gwper

G1,o . Most notable is the

fact that gdet
G1,o(r) exhibits repulsion at midrange distances r. For gwper

G1,o , we
see a high degree of clustering, which is persistent for large values of r; this
will of course be even more pronounced if we increase the value of τ; whilst
decreasing σ will increase the peak at small values of r. Figure B.2 shows
simulations of G1 in each of the three cases of the model of G0. As expected,
we clearly see a higher degree of repulsion when G0 is a determinantal point
process (the left most plot) and a higher degree of clustering when G0 is a
weighted permanental point process (the right most plot). In particular, the
clusters are more distinguishable when G0 is a determinantal point process,
and this will be even more pronounced if decreasing σ because the spread of
clusters then decrease.

Proof of Theorem 3.3

Shimatani in Shimatani (2010) verified Theorem 3.3 in the special case where
q1 = q2 = · · · = 0, b1 = b2 = · · · = 0 (as is the case if Z1, Z2, . . . are
stationary Poisson processes), and c1 = c2 = · · · > 0, in which case the terms
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Fig. B.1: The PCFs of G1 when G0 is a determinantal, Poisson, or weighted permanental point
process (dashed, solid, and dotted respectively), with parameters and Gaussian offspring PDF
as specified in the text. The solid horizontal line is the PCF for a Poisson process.

Fig. B.2: Simulations of G1 restricted to a unit square when G0 is a determinantal (left panel),
Poisson (middle panel), or weighted permanental (right panel) point process, see Figure B.1 and
the text.

in (B.13)–(B.14) are zero. If c1 = c2 = · · · = 0, then (B.12) is zero and by
(B.10), with probability one, #Yn,x ∈ {0, 1} for all x ∈ Gn−1 and n = 1, 2, . . ..
Consequently, the proof of Theorem 3.3 is trivial if c1 = c2 = · · · = 0 and
both G0 and Z1, Z2, . . . are stationary Poisson processes, because then a = 0,
b1 = b2 = · · · = 0, G1, G2, . . . are stationary Poisson processes, and the class of
stationary Poisson processes is closed under IID random shifts of the points,
thinning, and superposition. The general proof of Theorem 3.3 follows by
induction from the following lemma together with Lemma 3.2.

Lemma 3.4 . If ρGn−1 > 0, ρGn > 0, and gGn−1 and gZn exist, then gGn exists
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and is given by

gGn(u− v)− 1

=

(
ρGn−1 βn pn

ρGn

)2 [∫∫
{gGn−1(x1 − x2)− 1} fn(u− x1) fn(v− x2)dx1 dx2

+
cn

ρGn−1

fn ∗ f̃n(u− v)
]

+

(
ρGn−1 qn

ρGn

)2 {
gGn−1(u− v)− 1

}
+

(
ρZn

ρGn

)2

{gZn(u− v)− 1}

+
ρ2

Gn−1
βn pnqn

ρ2
Gn

[ ∫ {
gGn−1(v− x)− 1

} {
fn(u− x) + f̃n(u− x)

}
dx

+
1

ρGn−1

{
fn(u− v) + f̃n(u− v)

} ]
for any u, v ∈ Rd.

Proof. Note that Yn is stationary with intensity

ρYn = ρGn−1 βn. (B.15)

It follows straightforwardly from (B.1), (B.7), and Fubini’s theorem that its
PCF is given by

ρ2
Yn

gYn(u− v) = ρ2
Gn−1

β2
n

∫∫
gGn−1(x1 − x2) fn(u− x1) fn(v− x2)dx1 dx2

+ ρGn−1 cnβ2
n fn ∗ f̃n(u− v)

(B.16)
for any u, v ∈ Rd, where the two terms on the right hand side correspond to
pairs of points from Yn belonging to different clusters and the same cluster,
respectively. Hence by (B.2) and (B.15), Wn is stationary with intensity

ρWn = pnρYn = ρGn−1 βn pn (B.17)

and PCF

gWn(u− v) = gYn(u− v)

=
∫∫

gGn−1(x1 − x2) fn(u− x1) fn(v− x2)dx1 dx2

+
cn

ρGn−1

fn ∗ f̃n(u− v)

(B.18)

where the first identify follows from the fact that PCFs are invariant under
independent thinning, and where (B.16) is used to obtain the second identity.

63



Paper B.

Also, for disjoint Borel sets A1, A2 ⊆ Rd, it follows from items (a)–(c) that

E{#(Wn ∩ A1)#(Gthin
n−1 ∩ A2)}

= ρWn ρGthin
n−1

∫
A1

∫
A2

{
1

ρGn−1

fn(x1 − x2) + gGn−1 ∗ f̃n(x1 − x2)

}
dx1dx2.

Furthermore, by (B.3), (B.7), and Fubini’s theorem it is readily seen that Gn
has PCF given by

ρ2
Gn

gGn(x) = ρ2
Wn

gWn(x) +
(

ρthin
Gn−1

)2
gGthin

n−1
(x) + ρ2

Zn
gZn(x)

+ 2ρWn ρZn + 2ρZn ρthin
Gn−1

+ 2ρWn ρGthin
n−1

{
gGn−1 ∗ fn(x) +

1
ρGn−1

fn(x)

}

where the six terms on the right hand side correspond to pairs of points
from Wn, Zn, Gthin

n−1, Wn and Zn, Zn and Gthin
n−1, and Wn and Gthin

n−1, respectively,
where the latter three cases can be ordered in two ways. Combining all this
with the first identity in (B.6) and (B.17), we easily obtain

gGn(u− v)− 1

=

(
ρGn−1 βn pn

ρGn

)2

{gWn(u− v)− 1}+
(

ρZn

ρGn

)2

{gZn(u− v)− 1}

+

(
ρGn−1 qn

ρGn

)2 {
gGn−1(u− v)− 1

}
+ ρWn ρGthin

n−1

[ ∫
(gGn−1(v− x)− 1)

{
fn(u− x) + f̃n(u− x)

}
dx

+
1

ρGn−1

{
fn(u− v) + f̃n(u− v)

} ]
.

This combined with (B.18) imply the result in Lemma 3.4.

Extension

More generally than in Section 3.2 we may consider the case where the PCF
of the initial generation G0 and the noise Zn are affine expressions:

gG0 − 1 = a0 + a1 f0,1 ∗ f̃0,1 + · · ·+ ak f0,k ∗ f̃0,k (B.19)

and

gZn − 1 = bn,0 + bn,1 fZn ,1 ∗ f̃Zn ,1 + · · ·+ bn,l fZn ,l ∗ f̃Zn ,l , n = 1, 2, . . . ,
(B.20)

64



4. Same reproduction system

for real constants a0, . . . , ak, bn,1, . . . , bn,l and PDFs f0,1, . . . , f0,k, fZn ,1, . . . , fZn ,l .
For instance, the superposition of k independent Poisson, weighted perma-
nental, or weigthed determinantal point processes has a PCF of the form
(B.19) or (B.20). Also Theorem 3.3 provides examples of PCFs of the form
(B.19) or (B.20). Assuming (B.19) and (B.20), Theorem 3.3 is immediately
generalised by replacing a f0 ∗ f̃0 in (B.11) by (B.19), bn fZn ∗ f̃Zn in (B.14) by
(B.20), and similarly for bi fZi ∗ f̃Zi in (B.13).

4 Same reproduction system

Throughout this section we assume the same reproduction system over gen-
erations, that is, in items (a)–(d), βn = β, νn = ν, fn = f , pn = p, qn = q do
not depend on n, Z1, Z2, . . . are IID stationary point processes, so ρZn = ρZ for
n = 1, 2, . . . , and ρG0 = ρG1 = · · · = ρG > 0. Note that the noise process Zn
and the initial generation process G0 need not be Poisson processes and the
offspring densities need not be Gaussian as in Shimatani’s paper Shimatani
(2010). By (B.6), we have either

βp + q = 1 and ρZ = 0, (B.21)

or

βp + q < 1 and ρZ > 0. (B.22)

In case of (B.22),
ρG = ρZ/(1− βp− q). (B.23)

4.1 Limiting pair correlation function

Under the assumptions above and in Theorem 3.3, setting 00 = 1, the PCF
simplifies after a straightforward calculation to

gGn(u)− 1 = a f0 ∗ f̃0 ∗
n

∑
k1=0

n

∑
k2=0

(
n
k1

)(
n
k2

)
q2n−k1−k2(βp)k1+k2 f ∗k1 ∗ f̃ ∗k2(u)

+

{
c(βp)2 f ∗ f̃ + βpq( f + f̃ )

ρG
+

(
ρZ
ρG

)2
b fZ ∗ f̃Z

}

∗
n−1

∑
i=0

i

∑
k1=0

i

∑
k2=0

(
i

k1

)(
i

k2

)
q2i−k1−k2(βp)k1+k2 f ∗k1 ∗ f̃ ∗k2(u),

(B.24)
for n = 1, 2, . . ., where

c = (ν + β2 − β)/β2 if β > 0, c = 0 if β = 0,
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f ∗n is the n-th convolution power of f if n > 0, and f ∗0 ∗ f̃ ∗0 = δ0. For
instance, consider the case f ∼ Nd(σ

2) and fZ ∼ Nd(κ
2), and suppose d ≥ 3

in case of (B.21). Then the binomial formula combined with either (B.21) or
(B.22) imply that the first double sum in (B.24) tends to 0 as n → ∞, and
hence

gG(u)− 1 := lim
n→∞

gGn(u)− 1

=
c

ρG

∞

∑
i=0

i

∑
k1=0

i

∑
k2=0

(
i

k1

)(
i

k2

)
q2i−k1−k2(βp)2+k1+k2

{2π(2 + k1 + k2)σ2}d/2

· exp
{
− ‖u‖2

2(2 + k1 + k2)σ2

}
+

2
ρG

∞

∑
i=0

i

∑
k1=0

i

∑
k2=0

(
i

k1

)(
i

k2

)
q2i−k1−k2+1(βp)1+k1+k2

{2π(1 + k1 + k2)σ2}d/2

· exp
{
− ‖u‖2

2(1 + k1 + k2)σ2

}
+

(
ρZ
ρG

)2 ∞

∑
i=0

i

∑
k1=0

i

∑
k2=0

(
i

k1

)(
i

k2

)
q2i−k1−k2(βp)k1+k2

[2π {(k1 + k2)σ2 + 2κ2}]d/2

· exp
[
− ‖u‖2

2 {(k1 + k2)σ2 + 2κ2}

]
(B.25)

is finite. Shimatani in Shimatani (2010) only showed that this is finite under
the assumption d = 2, b = q = 0, and c > 0. Then Shimatani noticed that
βp = 1 and ρZ = 0 (which is (B.21) for q = 0) imply divergence of gGn as
n → ∞, whilst βp < 1 and ρZ > 0 (which is (B.22) for q = 0) imply conver-
gence. Further, in the case of convergence and when βp ≈ 1, he discussed an
approximation of gG(u) that depends on whether ‖u‖ is close to 0 or not.

In general (i.e., without making the assumption of normal distributions
and so on), if we assume gGn − 1 has a finite limit and (B.22) is satisfied, then

gG(u)− 1 =

{
c(βp)2 f ∗ f̃ + βpq( f + f̃ )

ρG
+

(
ρZ
ρG

)2
b fZ ∗ f̃Z

}

∗
∞

∑
i=0

i

∑
k1=0

i

∑
k2=0

(
i

k1

)(
i

k2

)
q2i−k1−k2(βp)k1+k2 f ∗k1 ∗ f̃ ∗k2(u)

(B.26)
which does not depend on a or f0. Here, as βp + q ↑ 1, ρZ/ρG goes to 0,
meaning that the less noise we consider, the less it matters which type of PCF
for the noise process Zn we choose. On the other hand, as βp + q ↓ 0, gG − 1
tends to b fZ ∗ f̃Z, which simply is the PCF of Zn.

Considering the situation at the end of Section 3.2, assume that d = 2,
q = 0, f ∼ Nd(σ

2), and gZn − 1 = b fZ ∗ f̃Z (corresponding to (B.9)) with
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fZ ∼ Nd(κ
2/8) and b = 0, b = −(

√
πκ)2, and b = 2(

√
πκ)2 for the Poisson,

determinantal, and weighted permanental point process, respectively. Then
gG(u) is given by (B.25), where d = 2 and κ2 is replaced by κ2/8. Also assume
that p = 1, σ = 0.1, ρG = 100, and the number of points in a cluster is
Poisson distributed (implying c = 1) with mean β = 0.8, so ρZ = 20. Finally,
assume κ = 0.1 in case of weighted permanental noise and κ = 1/

√
ρZπ in

case of determinantal noise (the most repulsive Gaussian determinantal point
process). Shimatani in Shimatani (2010) discussed the case where βp = 0.99 –
a plot (omitted here) shows that the limiting PCFs corresponding to the three
models of noise processes are then effectively equal. By lowering βp, the
reproduction system is diminished, and hence depending on the model type,
a higher degree of regularity or clustering is obtained. This will also increase
the rate of convergence because the number of generations initialized by a
single point will be fewer. Note that in Figure B.3 the convergence is already
rapid as gG8 and gG16 are practically indistinguishable. Figure B.3 further
shows that it is only for small or moderate inter-point distances that the three
limiting PCFs clearly differ.
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Fig. B.3: The reduced PCFs gGn − 1 when the noise processes are either determinantal, Poisson
or weighted permanental point processes (left to right), with parameters and Gaussian offspring
PDF as specified in the text. The solid horizontal line is the PCF - 1 for a Poisson process.

4.2 Second main result

Although Shimatani in Shimatani (2010) showed convergence of gGn in the
special case considered above, he did not clarify whether the Markov chain
G0, G1, . . . converges in distribution to a limit so that this limiting distribu-
tion (also called the equilibrium, invariant, or stationary distribution) has
a PCF given by (B.26). In order to show that G0, G1, . . . is indeed converg-
ing to a limiting distribution under more general conditions, and to specify
what this is, we construct in accordance with items (a)–(d) a Markov chain
. . . , Gst

−1, Gst
0 , Gst

1 , . . . with times given by all integers n and so that this chain is
time-stationary (its distribution is invariant under discrete time shifts), as fol-
lows. First, we generate noise processes as in item (d): Let . . . , Z−1, Z0, Z1, . . .
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be independent stationary Poisson processes on Rd with intensity ρZ. Sec-
ond, for any integer n and point x ∈ Zn, we consider the family of all gener-
ations initiated by the ancestor x, that is, the family

Fn,x =
∞⋃

m=1

W(m)
n,x

where

W(1)
n,x =

{
Wn,x ∪ {x} if Q1,x = 1,
Wn,x if Q1,x = 0,

is defined by the reproduction mechanism of independent clustering, inde-
pendent thinning, and independent retention given in items (a)–(c) (with
βn = β and νn = ν), W(2)

n,x is the offspring and retained points generated by

the points in W(1)
n,x (using the same reproduction mechanism as before), and

so on. In other words, W(m)
n,x is the set of (m + n)-th generation points with

common n-th generation ancestor x ∈ Zn. Moreover, we assume that condi-
tional on . . . , Z−1, Z0, Z1, . . . , the families Fn,x for all integers n and x ∈ Zn
are independent (and hence IID). Finally, for all integers n, we let

Gst
n = Wst

n ∪ Zn with Wst
n =

∞⋃
m=1

⋃
x∈Zn−m

W(m)
n−m,x. (B.27)

It will be evident from the next theorem that any Gst
n has intensity ρG

given by (B.23) and PCF gG given by (B.26) (provided gG(u − v) is a lo-
cally integrable function of (u, v) ∈ Rd × Rd); a formal proof is given in
Appendix B. The proof of Theorem 4.2 is based on a coupling construction
between G1, G2, . . . and Gst

1 , Gst
2 , . . . together with the following result.

Lemma 4.1 . Suppose βn = β, νn = ν, fn = f , pn = p, qn = q, and ρZn = ρZ
do not depend on n ≥ 1, where βp + q < 1 and ρZ > 0. Let K ⊂ Rd be a
compact set and let

Tst
0,K = sup

{
m ∈ {1, 2, . . .} : W(m)

0,x ∩ K 6= ∅ for some x ∈ Gst
0
}

(B.28)

be the last time a point in K is a member of a family initiated by some point
in the 0-th generation Gst

0 . Then

E
(
Tst

0,K
)
≤ |K|ρG

βp + q
1− βp− q

is finite, and so Tst
0,K < ∞ almost surely.

Proof. Let K ⊂ Rd be compact and define

N = ∑
x∈Gst

0

#(F0,x ∩ K).

68



4. Same reproduction system

By the law of total expectation, conditioning on Gst
0 and using Campbell’s

theorem, we obtain

E(N) = ρG

∫ ∞

∑
m=1

∫
K

(
βp f + qδ0

)∗m
(y− x)dy dx

= ρG

∫ ∞

∑
m=1

∫
K

m

∑
k=0

(
m
k

)
qm−k(βp)k f ∗k(y− x)dy dx

= |K|ρG
βp + q

1− βp− q
(B.29)

using Fubini’s theorem in the last identity. Further, the families initiated by
the points in Gst

0 are almost surely pairwise disjoint, so N is almost surely the
number of points in K belonging to some family initiated by a point x ∈ Gst

0 .
Consequently, P(Tst

0,K ≤ N) = 1, whereby the lemma follows.

We are now ready to state our second main result.

Theorem 4.2 . Suppose . . . , Z−1, Z0, Z1 . . . are IID stationary point processes
and βn = β, νn = ν, fn = f , pn = p, qn = q, and ρZn = ρZ do not depend
on n ≥ 1, where βp + q < 1 and ρZ > 0. Then . . . , Gst

−1, Gst
0 , Gst

1 , . . . is a time-
stationary Markov chain constructed in accordance to items (a)–(d). Let Π be
the distribution of any Gst

n and let N be the space of all locally finite subsets
of Rd. Then there exists a (measurable) subset Ω ⊆ N so that Π(Ω) = 1 and
for any compact set K ⊂ Rd and all ω ∈ Ω, conditional on G0 = ω, there
is a coupling between G1, G2, . . . and . . . , Gst

−1, Gst
0 , Gst

1 , . . ., and there exists a
random time TK(ω) ∈ {0, 1, . . .} so that Gn ∩ K = Gst

n ∩ K for all integers
n > TK(ω). In particular, for any ω ∈ Ω and conditional on G0 = ω, Gn
converges in distribution to Π as n → ∞, and so Π is the unique invariant
distribution of the chain G0, G1, . . ..

Proof. Obviously, . . . , Gst
−1, Gst

0 , Gst
1 , . . . is a time-stationary Markov chain con-

structed in accordance to items (a)–(d). To verify the remaining part of the
theorem, we may assume that G0 and Gst

0 are independent. Then, conditional
on G0, we have a coupling between G1, G2, . . . and . . . , Gst

−1, Gst
0 , Gst

1 , . . . be-
cause Gst

1 , Gst
2 , . . . and G1, G2, . . . are generated by the same noise processes

Z1, Z2, . . ., the same offspring processes Yn,x for all times n = 1, 2, . . . and all
ancestors x ∈ Gn−1 ∩ Gst

n−1, the same Bernoulli variables Bn,y for all times
n = 1, 2, . . . and all offspring y ∈ Yn,x with ancestor x ∈ Gn−1 ∩ Gst

n−1, and
the same Bernoulli variables Qn,x for all times n = 1, 2, . . . and all retained
points x ∈ Gn−1 ∩ Gst

n−1. Let K ⊂ Rd be compact. In accordance with (B.28),
for ω ∈ N , let

TK(ω) = sup
{

m ∈ {1, 2, . . .} : W(m)
0,x ∩ K 6= ∅ for some x ∈ ω

}
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be the last time a point in K is a member of a family initiated by some point
in ω, and let Ω = {ω ∈ N : TK(ω) < ∞}. By Lemma 4.1 and the coupling
construction, Π(Ω) = 1 and Gn ∩ K = Gst

n ∩ K whenever n > TK(ω), so for
any ω ∈ Ω,

lim
n→∞

P (Gn ∩ K = ∅|G0 = ω) = lim
n→∞

P
(
Gst

n ∩ K = ∅, n > TK(ω)
)

because G0 is independent of (Gst
0 , TK(ω)). Since the sequence of events {ω :

1 > TK(ω)} ⊆ {ω : 2 > TK(ω)} ⊆ . . . increases to Ω, we obtain

lim
n→∞

P (Gn ∩ K = ∅|G0 = ω) = lim
n→∞

P
(
Gst

n ∩ K = ∅
)
= P

(
Gst

0 ∩ K = ∅
)

.

Thus, recalling that the distribution of a random closed set X ⊆ Rd (e.g. a
locally finite point process) is uniquely characterized by the void probabilities
P(X ∩ K = ∅) for all compact sets K ⊂ Rd, we have verified that conditional
on G0 = ω, the chain G1, G2 . . . converges in distribution towards Π. In turn,
this implies uniqueness of the invariant distribution Π.

In Theorem 4.2, under mild conditions, we can take Ω = N . For instance,
this is easily seen to be the case if there exists ε > 0 so that f (x) > 0 whenever
‖x‖ ≤ ε. In the special case c = 0, Π is just a stationary Poisson process, and
so Ω = N . Moreover, the integral

γ :=
∫
(gG − 1)

is a rough measure of the amount of positive/negative association between
the points in Gst

n . Note that comparing γ with the corresponding measure
for another stationary point process makes only sense if the processes have
equal intensities, see Lavancier et al. (2015). Under the assumptions in both
Theorem 3.3 and 4.2, by (B.26),

γ =
c(βp)2 + 2βpq

ρG {1− (βp + q)2} +
bρ2

Z
ρ2

G {1− (βp + q)2}

=
1

1 + βp + q

{
c(βp)2 + 2βpq

ρZ
+ b(1− βp− q)

}
which does not depend on f or fZ. Furthermore, γ may take any positive
value and some negative values depending on how we choose the values of
the parameters. This means we may have an equilibrium distribution exhibit-
ing any degree of clustering or some degree of regularity. In fact, γ can only
be negative when b is negative, e.g when Zn is a determinantal point process.
In this case b has a lower bound, bmin, that ensures the existence of the de-
terminantal point process Lavancier et al. (2015) and consequently, γ ≥ bmin.
The case γ = bmin happens exactly when βp + q = 0 (i.e., when offspring
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are never produced or no points are retained after the thinning procedures
in items (b) and (c)) and thus Gn = Zn is a determinantal point process.

For approximate simulation of Gst
0 under each of the three models of the

noise processes, we use the algorithm described in Appendix C. Simulation
was initially done with parameters and set-up corresponding to that of Fig-
ure B.3. However, the resulting point patterns were not distinguishable from
a stationary Poisson process when comparing empirical estimates of the PCF,
L-function, or J-function of the simulations to 95% global rank envelopes
under each model (for definition of L- and J-functions, see e.g. Møller and
Waagepetersen (2004), and for the envelopes, see Myllymäki et al. (2017)).
Therefore, in order to better distinguish the three models, we consider two
cases as follows.

Case 1:
This case is based on minimizing γ under determinantal noise and on
maximizing γ under weighted permanental noise. Let d = 2, f ∼
Nd(σ

2), with σ = 0.1, fZ ∼ Nd(κ
2/8), ρG = 100, p = 1, β = 0.3, q = 0,

and consequently ρZ = 70.

• In case of determinantal noise: Let κ = 1/
√

ρZπ (the most re-
pulsive Gaussian determinantal point process) and the number
of points in a cluster be Bernoulli distributed with parameter β,
implying c = 0 (each point has at most one offspring). Then
γ ≈ −5.38× 10−3.

• In case of Poisson noise: Let the number of points in a cluster
be Poisson distributed with intensity β, implying c = 1. Then
γ ≈ 9.89× 10−4.

• In case of weighted permanental noise: Let κ = 1 and the number
of points in a cluster be negative binomially distributed with prob-
ability of success equal to 0.12 and dispersion parameter equal to
0.11, implying c = 10. Then γ ≈ 3.39.

Case 2:
This case is such that the clusters are more separated. Let d = 2, f ∼
Nd(σ

2), with σ = 0.01, fZ ∼ Nd(κ
2/8), ρG = 100, p = 1, β = 0.95, q = 0,

and consequently ρZ = 5. Also, let the number of points in a cluster
be negative binomially distributed with probability of success equal to
0.208 and dispersion parameter equal to 0.25, implying c = 5.

• In case of determinantal noise: Let κ = 1/
√

ρZπ. Then γ ≈ 0.463.

• In case of Poisson noise: γ ≈ 0.463.

• In case of weighted permanental noise: Let κ = 1. Then γ ≈ 0.624.
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Figure B.4 shows simulations of Gst
0 under each of the three models of the

noise processes (left to right) in Case 1 and 2 (top and bottom). Based on
these simulations, Figure B.5 shows empirical estimates of functional sum-
mary statistics based on the simulated point patterns from Figure B.4 along
with 95% global rank envelopes based on 2499 simulations (as recommended
in Myllymäki et al. (2017)) of a stationary Poisson process with the same in-
tensity as used in Figure B.4. The first simulated point pattern of Case 1 looks
slightly less clustered than the second, whilst the last looks more clustered.
This is in accordance with the values of γ and the corresponding functional
summary statistics in Figure B.5. Additionally, Figure B.5 reveals that the
case of Poisson noise is not distinguishable from the stationary Poisson pro-
cess, while the case of weighted permanental noise is more clustered. The
case of determinantal noise is not distinguishable from the stationary Pois-
son process by the PCF or L-function, but is shown to be more regular by the
J-function. In Case 2, the clusters of the point pattern simulated under de-
terminantal noise looks more separated than the clusters of the point pattern
simulated under Poisson noise. The clusters of the point pattern simulated
under weighted permanental noise are clustered to such a degree that it gives
the illusion of few highly separated clusters. All three models of Case 2 are
as expected significantly different from the stationary Poisson process.
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Fig. B.4: Simulations of Gst
0 restricted to a unit square when the noise processes are either

determinantal (left panel), Poisson (middle panel), or weighted permanental (right panel) point
processes, with parameters as specified in the text. The rows corresponds to Case 1 and 2,
respectively.
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Fig. B.5: Empirical PCFs, L-functions, and J-functions (left to right) based on the simulations of
Gst

0 from Figure B.4 when the noise processes are either determinantal (dashed), Poisson (solid),
or weighted permanental (dotted). The rows corresponds to Case 1 and 2, respectively. The grey
regions are 95% global rank envelopes based on 2499 simulations of a stationary Poisson process
with the same intensity as Gst

0 .
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A Weighted determinantal and permanental point
processes

When defining stationary weighted determinantal/permanental point pro-
cesses, the main ingredients are a symmetric function C : Rd → R and a real
number α. Before giving the definitions of these point processes we recall the
following.

For a real n× n matrix A with (i, j)-th entry ai,j, the α-weighted permanent
of A is defined by

perα(A) = ∑
σ

α#σa1,σ1 · · · an,σn

where σ denotes a permutation of {1, . . . , n} and #σ is the number of its
cycles. This is the usual permanent of A if α = 1. Moreover, the α-weighted
determinant of A is given by

det
α
(A) = per−α(−A).

This is the usual determinant of A if α = −1. Often we just write perα A for
perα(A), and detα A for detα(A).

For any X1, . . . , Xn ∈ Rd, the n× n matrix with (i, j)-th entry C(Xi − Xj)
is denoted by [C](X1, . . . , Xn). Thus

perα[C](X1, . . . , Xn) = ∑
σ

α#σC(X1 − Xσ1) · · ·C(Xn − Xσn).

Note that the weighted permanent/determinant can be negative if the map-
ping Rd ×Rd 3 (u, v) → C(u− v) is not positive semi-definite. When this
mapping is positive semi-definite, C is an auto-covariance function, with cor-
responding auto-correlation function R(x) = C(x)/C(0) provided C(0) > 0.

A locally finite point process X ⊂ Rd has n-th order joint intensity ρ
(n)
X for

n = 1, 2, . . . if for any bounded and pairwise disjoint Borel sets A1, . . . , An ⊂
Rd,

E [N(A1) · · ·N(An)] =
∫

A1

· · ·
∫

An
ρ
(n)
X (x1, . . . , xn) dx1 · · · dxn < ∞.

Note that ρ
(n)
X is unique except for a Lebesgue nullset in Rdn (we ignore

nullsets in the following). Thus, if X is stationary, ρ
(1)
X is constant and agrees

with the intensity ρX , and ρX > 0 implies that gX(u− v) = ρ
(2)
X (u, v)/ρ2

X is
the PCF.

If for all n = 1, 2, . . ., the n-th order joint intensity exists and is

ρ
(n)
X (X1, . . . , Xn) = perα[C](X1, . . . , Xn)
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we say that X is a stationary α-weighted permanental point process with
kernel C and write X ∼ PPPα(C). Conditions are needed to ensure the exis-
tence of PPPα(C), see Shirai and Takahashi (2003) and McCullagh and Møller
(2006). To exclude the trivial case where X is empty we assume αC(0) > 0.
Note that C must be an auto-covariance function, α > 0 since ρX = αC(0),
and

gX(x)− 1 = R(x)2/α. (B.30)

This reflects that the process exhibits a positive association between its points.
In fact, if C is an auto-covariance function and k = 2α is a positive integer,
then X ∼ PPPα(C) exists and it is a Cox process: Conditional on IID zero-
mean stationary Gaussian processes Φ1, . . . , Φk on Rd with auto-covariance
function C/2, we can let X be a Poisson process with intensity function
Λ(x) = Φ1(x)2 + · · · + Φk(x)2, x ∈ Rd. In particular, if α = 1, then X is
the boson process introduced by Macchi (1975).

If for all n = 1, 2, . . ., the n-th order joint intensity exists and is

ρ
(n)
X (G1, . . . , Gn) = detα[C](G1, . . . , Gn)

we say that X is a stationary α-weighted determinantal point process with
kernel C and write X ∼ DPPα(C). To exclude the trivial case where X is
empty we assume αC(0) > 0. Again C needs to be an auto-covariance func-
tion, α > 0 since ρX = αC(0), and

gX(x)− 1 = −R(x)2/α. (B.31)

If α = 1, then X is the fermion process introduced by Macchi (1975) (it is usu-
ally called the determinantal point process). We have the following existence
result: If C is continuous and square integrable, existence of X ∼ DPP1(C) is
equivalent to the Fourier transform of C being bounded by 0 and 1 Lavancier
et al. (2015). When α is a positive integer, X ∼ DPPα(C) can be identified with
the superposition G1 ∪ · · · ∪ Gα of independent processes Gi ∼ DPPα(C/α),
i = 1, . . . , α. In general, the process is not well-defined if 0 < α < 1, cf.
McCullagh and Møller (2006).

B The intensity and PCF of the invariant distribu-
tion

Let the situation be as in Theorem 4.2. Below we verify (B.23) and (B.26) holds
for Gst

n provided gG(u− v) is a locally integrable function of (u, v) ∈ Rd×Rd.
Note that the Gst

n are identically distributed and Gst
0 = Wst

0 ∪ Z0 where

Wst
0 =

⋃∞
m=1

⋃
x∈Z−m W(m)

−m,x, cf. (B.27). Hence, for Borel sets A ⊆ Rd with
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|A| < ∞, using similar arguments as in the derivation of (B.29), we obtain

E{#(Wst
0 ∩ A)} = |A|ρZ

βp + q
1− βp− q

, (B.32)

so Wst
0 has intensity

ρW = ρZ
βp + q

1− βp− q
(B.33)

whereby it follows that Gst
0 has intensity ρG as given by (B.23).

Let A1, A2 ⊆ Rd be disjoint Borel sets with |Ai| < ∞, i = 1, 2. Using
similar arguments as in the derivation of (B.29) (or (B.32)) and exploiting the
fact that Z0, Z−1, . . . are IID point processes with a PCF of the form gZ =
1 + b fZ ∗ f̃Z as well as the independence between Z0 and Wst

0 , we obtain

E{#(Gst
0 ∩ A1)#(Gst

0 ∩ A2)}

= ρ2
Z|A1||A2|+ ρ2

Z

∫
A1

∫
A2

b fZ ∗ f̃Z(x1 − x2)dx1 dx2 + 2ρZρW |A1||A2|

(B.34)

+
∞

∑
m1=1

∞

∑
m2=1: m1 6=m2

ρ2
Z(βp + q)m1+m2 |A1||A2| (B.35)

+
∞

∑
m=1

ρ2
Z(βp + q)2m|A1||A2|

+
∞

∑
m=1

ρ2
Z

∫
A1

∫
A2

b fZ ∗ f̃Z

∗
m

∑
k1=0

m

∑
k2=0

(
m
k1

)(
m
k2

)
q2m−k1−k2(βp)k1+k2 f ∗k1 ∗ f̃ ∗k2(y1 − y2)dy1 dy2

(B.36)

+
∞

∑
m=1

E
{

∑
x∈Z−m

#(W(m)
−m,x ∩ A1)#(W

(m)
−m,x ∩ A2)

}
. (B.37)

Here,

• the first two terms of (B.34) corresponds to pairs of points from Z0 with
one point falling in A1 and the other in A2;

• the third term corresponds to pairs of points either from Z0 ∩ A1 and
Wst

0 ∩ A2 or from Z0 ∩ A2 and Wst
0 ∩ A1;

• the term in (B.35) corresponds to pairs of points, with one point falling
in A1 and the other in A2 of two families initiated by ancestors from
different generations;
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• the two terms in (B.36) corresponds to pairs of points, with one point
falling in A1 and the other in A2 from two different families initiated
by ancestors from the same generation;

• the term in (B.37) corresponds to pairs of points from the same family,
falling in A1 and A2, respectively.

Using (B.23) and (B.33), we observe that (B.34)–(B.36) simplify to

ρ2
G|A1||A2|+

∞

∑
m=0

ρ2
Z

∫
A1

∫
A2

b fZ ∗ f̃Z

∗
m

∑
k1=0

m

∑
k2=0

(
m
k1

)(
m
k2

)
q2m−k1−k2(βp)k1+k2 f ∗k1 ∗ f̃ ∗k2(y1 − y2)dy1 dy2

(B.38)
and the term in (B.37) is equal to

ρZ

∞

∑
m=1

∫∫∫∫∫
A1

∫
A2

(
(βp f + qδ0)

∗i(y− x)

· [c(βp)2 f (ỹ1 − y) f (ỹ2 − y)

+ βpq { f (ỹ1 − y)δ0(ỹ2 − y) + δ0(ỹ1 − y) f (ỹ2 − y)}]

· (βp f + qδ0)
∗(m−1−i)(y1 − ỹ1)

· (βp f + qδ0)
∗(m−1−i)(y2 − ỹ2)

)
dy1 dy2 dỹ1 dỹ2 dy dx.

(B.39)
In (B.39), y corresponds to an i-th generation point in the family initiated by
x ∈ Z−m, c(βp)2 + 2βpq is the expected number of pairs of points ỹ1 and
ỹ2 which are children of y, and y1 and y2 are the (m− 1− i)-th generation
offspring of ỹ1 and ỹ2, respectively. Using Fubini’s theorem together with
(B.23), after straight forward calculations, (B.39) reduces to

ρG

∫
A1

∫
A2

∞

∑
i=0

{
c(βp)2 f ∗ f̃ + βpq( f + f̃ )

}
∗

i

∑
k1=0

i

∑
k2=0

(
i

k1

)(
i

k2

)
q2i−k1−k2(βp)k1+k2 f ∗k1 ∗ f̃ ∗k2(y1 − y2)dy1 dy2

Combining this result with (B.38) we finally see that Gst
0 has PCF gG as given

by (B.26).

C Simulating the limiting process

This appendix presents an approximate simulation procedure for simulat-
ing a special case of Gst

0 on a bounded region R ⊂ Rd. It is available in R
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through the package icpp, which can be obtained at https://github.com/
adchSTATS/icpp. The implementation utilizes existing functions from the
packages spatstat and RandomFields to simulate the noise process.

For simplicity and specificity we make the following assumptions. Let
the situation be as in Theorem 4.2, but with q = 0 and let f ∼ Nd(σ

2) with
σ > 0. Also, without loss of generality, assume no thinning (i.e., p = 1). Let
R⊕r = {ξ ∈ Rd : b(ξ, r) ∩ R 6= ∅} where b(ξ, r) is a closed ball with centre
ξ and radius r ≥ 0. Denote n the number of iterations in our approximate
simulation algorithm, that is, −n is the starting time when ignoring what
happens previously. Note that

√
nσ is the standard deviation of the nth

convolution power of f . To account for edge effects, let r = 4
√

nσ where
4 is an arbitrary non-negative value ensuring that a point of Gst

−n \ R⊕r would
generate a nth generation offspring in R with very low probability, at most
1/15787. In the approximate simulation procedure, we ignore those points
of Gst

0 ∩ R which are generated by an ith generation ancestor x when i < −n
or both −n ≤ i < 0 and x 6∈ R⊕4

√
−iσ. This is our algorithm in pseudocode

where “parallel-for” means a parallel for loop:

parallel-for i = −n to 0 do
simulate Z′i := Zi ∩ R⊕4

√
−iσ

end parallel-for
set O := Z′−n
if n 6= 0 then

for i = −(n− 1) to 0 do
parallel-for x ∈ O do

simulate the 1st generation offspring process, Ox, with parent x
end parallel-for
set O := Z′i

⋃ (⋃
x∈O Ox ∩ R⊕4

√
−iσ

)
end for

end if
return O

Note that ρZ ∑n
i=0(βp)i is the intensity of the stationary point process ob-

tained by ignoring those points of Gst
0 which are generated by an ith genera-

tion ancestor with i < −n. We base the choice of n on this fact by considering
a precision parameter ε > 0 and letting

n = sup
{

m ∈ {1, 2, . . .} :
∥∥∥ρZ

m

∑
i=0

(βp)i − ρG

∥∥∥ ≤ ε

}
.

To exemplify, let ρG = 100 and βp = 0.8 implying that ρZ = 20, and let
ε = 2.22× 10−16, then n = 159. If instead βp = 0.99, then n = 3609.
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1. Introduction and conclusions

Abstract

For modelling the location of pyramidal cells in the human cerebral cortex we suggest
a hierarchical point process in R3. The model consists first of a generalised shot noise
Cox process in the xy-plane, providing cylindrical clusters, and next of a Markov
random field model on the z-axis, providing either repulsion, aggregation, or both
within specified areas of interaction. Several cases of these hierarchical point processes
are fitted to two pyramidal cell datasets, and of these a model allowing for both
repulsion and attraction between the points seem adequate.

1 Introduction and conclusions

The structuring of neurons in the human brain is a subject of great interest
since abnormal structures may be linked to certain neurological diseases (see
Casanova, 2007; Esiri and Chance, 2006; Casanova et al., 2006; Buxhoeveden
and Casanova, 2002). A specific structure that has been extensively studied in
the biological literature is the so called ’minicolumn’ structure of the cells in
the cerebral cortex (see Buxhoeveden and Casanova, 2002; Rafati et al., 2016,
and references therein). Rafati et al. (2016) characterised these minicolumns
as ‘linear aggregates of neurons organised vertically in units that traverse the
cortical layer II–VI, and have in humans a diameter of 35–60 µm and consist
typically of 80–100 neurons’.

1.1 Data

In this paper we analyse the structuring of pyramidal cells, which make up
approximately 75 % to 80 % of all neurons (Buxhoeveden and Casanova, 2002)
and are pyramid shaped cells, where the apical dendrite extends from the top
of the pyramid. Specifically, the paper is concerned with two datasets con-
sisting of the locations and orientations of pyramidal cells in a section of
the third, respectively, fifth layer of Brodmann’s fourth area of the human
cerebral cortex. Here, each location is a three-dimensional coordinate repre-
senting the centre of a pyramidal cell’s nucleolus and each orientation is a
unit vector representing the apical dendrite’s position relative to the corre-
sponding nucleolus.

Figure C.1 shows the two point pattern datasets of 634 and 548 nucleolus
locations which will be referred to as L3 and L5, respectively (for plot of the
orientations for L3, see Møller et al., 2019). Note that the observation window
W for the cell locations is a rectangular region with side lengths 492.70 µm,
132.03 µm, and 407.70 µm for L3 and 488.40 µm, 138.33 µm, and 495.40 µm
for L5. Notice also that the nucleolus locations are recorded such that the
z-axis is perpendicular to the pial surface of the brain. In accordance to the
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minicolumn hypothesis, this implies that the minicolumns extend parallel to
the z-axis.

Fig. C.1: Visualisations of the nucleolus locations for datasets L3 (left) and L5 (right).

1.2 Background and purpose

Møller et al. (2019) found independence between locations and orientations
for L3 meaning that the two components may be modelled separately; the
same conclusion has afterwards been drawn for L5. As they also found
a suitable inhomogeneous Poisson process model for the orientations, and
since it is hard by eye to see much structure in the point patterns shown in
Figure C.1, the focus of this paper is on modelling the nucleolus locations. In
particular, we aim at modelling the nucleolus locations for L3 respective L5

by a spatial point process with a columnar structure and discuss to what ex-
tent this relates to the minicolumn hypothesis. Note that for the two datasets
we use the same notation X for the spatial point process, and we view X as a
random finite subset of W.

To the best of our knowledge the so-called Poisson line cluster point pro-
cess (see Møller et al., 2016) is the only existing point process model for
modelling columnar structures. This model was considered by Rafati et al.
(2016) in connection to the pyramidal nucleolus locations, but was not fitted
to data. For each point pattern considered in the present paper, we notice
later that a more advanced model than the Poisson line cluster point process
is needed; below we describe such a model for X.

1.3 Hierarchical point process models

Briefly, we consider a hierarchical model for X (further details are given in
Sections 3–5), noting that the observation window is a product space, W =
Wxy ×Wz, where Wxy is a rectangular region in the xy-plane and Wz is an
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interval on the z-axis. First, we model the point process Xxy given by the
projection of X onto the xy-plane; second, conditioned on Xxy, we model the
vector Xz consisting of the z-coordinates of the points in X. Note that the
dimension of Xz agrees with the number of points in Xxy and is denoted by
n.

The model for Xxy

For Xxy we consider the restriction of a cluster point process to Wxy defined
briefly as follows (further details are given in Sections 4–5). Let Φ ⊂ R2

be a stationary point process with intensity κ > 0, and associate to each
point (ξ, η) ∈ Φ a point process X(ξ,η) ⊂ R3 that is concentrated around
the line in R3 which is perpendicular to the xy-plane, with intersection point
(ξ, η, 0). We refer to X(ξ,η) as the cylindrical cluster associated to (ξ, η). Let
Pxy(X(ξ,η) ∩W) denote the projection onto the xy-plane of the observed part
of the cylindrical cluster. For short we refer to the non-empty Pxy(X(ξ,η) ∩W)
as the projected cluster with centre point (ξ, η). Then we let

Xxy =
⋃

(ξ,η)∈Φ

Pxy(X(ξ,η) ∩W).

Further, conditional on Φ, we assume that the projected clusters are indepen-
dent and each non-empty Pxy(X(ξ,η) ∩W) is distributed as the intersection of
Wxy with a finite planar Poisson process translated by the centre point (ξ, η);
this Poisson process has intensity function aα f , where a is the length of the
interval Wz, α > 0 is a parameter, and f is the probability density function of
a bivariate zero-mean isotropic normal distribution with standard deviation
σ > 0. Thus, ignoring boundary effects, αa is the expected size (or number of
points) of a projected cluster and σ controls the spread of points in a projected
cluster. Specifically, we let first Φ be a planar stationary Poisson process and
second a stationary determinantal point process (Lavancier et al., 2015), since
we observe in the first case a very low expected number of points in a pro-
jected cluster and because in the second case we want a repulsive model in
order to obtain less overlap between the projected clusters.

The special case with Φ a planar stationary Poisson process and Xz a
homogeneous binomial point process (that is, the n points in Xz are in-
dependent and uniformly distributed on Wz) which is independent of Xxy
corresponds to a degenerate case of a Poisson line cluster point process as
considered in Møller et al. (2016). This becomes clear in Section 4.

The model for Xz conditioned on Xxy

We consider several other cases than a homogeneous binomial point pro-
cess for Xz which is independent of Xxy. In general, conditioned on Xxy =
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{(xi, yi)}n
i=1, we propose a Markov random field model, where the condi-

tional probability density function of Xz is of the form

f ((zi)
n
i=1 | (xi, yi)

n
i=1) ∝ γ

sB1,θ1
((zi)

n
i=1 | (xi ,yi)

n
i=1)

1 γ
sB2,θ2

((zi)
n
i=1 | (xi ,yi)

n
i=1)

2 (C.1)

× I(‖(xi, yi, zi)− (xj, yj, zj)‖ > h for 1 ≤ i < j ≤ n),

with notation defined as follows. We consider {(xi, yi, zi)}n
i=1 as a realisation

of X, where (xi, yi) is the xy-point associated to zi, the realisation of the i’th
point in Xz (as a technical detail, unless Xz is a binomial point process, (C.1)
is not invariant under permutations of z1, . . . , zn since we have associated
(xi, yi) to zi, so we cannot view (C.1) as the density of a point process where
we are conditioning on the number of points). Note that the right hand side
in (C.1) is an unnormalised density and e.g. (zi)

n
i=1 is short hand notation for

(z1, . . . , zn). We let I(·) be the indicator function. Further, γ1 > 0, γ2 > 0, and
h ≥ 0 are unknown parameters; if h > 0, it is a hard core parameter ensuring
a minimum distance h between all pair of points in X; for the pyramidal
cell data it seems natural to include a hard core condition since cells cannot
overlap; and when γ1 = γ2 = 1 and h = 0, the conditional model simply
reduces to the homogeneous binomial point process. Furthermore, for k =
1, 2,

sBk ,θk ((zi)
n
i=1 | (xi, yi)

n
i=1) = ∑

1≤i<j≤n
I((xi, yi, zi) ∈ Bk(xj, yj, zj; θk)),

where Bk(x, y, z; θk) ⊂ R3 is an interaction region, with centre of mass (x, y, z)
and a ‘size and shape parameter’ θk, that determines the interaction between
points. It is additionally assumed that the hard core ball, given by the
three-dimensional closed ball of radius h and centre (x, y, z) does not con-
tain B1(x, y, z; θ1) or B2(x, y, z; θ2). Finally, it is assumed that the symmetry
condition

(xi, yi, zi) ∈ Bk(xj, yj, zj; θk) if and only if (xj, yj, zj) ∈ Bk(xi, yi, zi; θk)

and the disjointness condition

B1(x, y, z; θ1) ∩ B2(x, y, z; θ2) = ∅

are satisfied.
These conditions ensure that we can view Xz conditioned on Xxy as a

Markov random field with second order interactions: for 1 ≤ i < j ≤ n,
two z-coordinates zi and zj interact (in Markov random field terminology, zi
and zj are neighbours) if and only if ‖(xi, yi, zi) − (xj, yj, zj)‖ ≤ h (that is,
the hard core condition is not satisfied, which happens with probability 0)
or (xi, yi, zi) lies within the region of interaction of zj given by the union of
B1(xj, yj, zj; θ1) and B2(xj, yj, zj; θ2) (here the symmetry condition is needed
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to ensure that we can interchange the roles of i and j). The interaction can
either cause repulsion/inhibition or attraction/clumping of the points in X
depending on whether γk < 1 or γk > 1 for k = 1, 2. Thus, apart from the
hard core condition, the model allows for both repulsion and attraction but
within different interaction regions B1 and B2.

The final hierarchical model and results

At the end of the paper (Section 5) we obtain a satisfactory fit of the fol-
lowing hierarchical model, with the following interpretation of the estimated
parameters.

First, the model for Xxy is given as in Section 1.3 where the centre process
Φ is a most repulsive determinantal point process (as detailed in Section 5.1).
The parameter estimates are given in Table C.1, where the estimated expected
cluster size α̂a is much smaller than expected for a minicolumn when restrict-
ing it to the observation window – provided the minicolumn hypothesis is
true; cf. personal communication with Jens R. Nyengaard. So we neither
claim that we have a fitted model for minicolumns nor that the minicolumn
hypothesis is true. Instead we have fitted a model with cylindrical clusters:
from Table C.1 we see, if |Wxy| denotes the area of Wxy, the estimated number
of projected clusters is |Wxy|κ̂, which is approximately 260 for L3 and 142 for
L5; the estimated expected size of a projected cluster is only 2.42 for L3 and
3.87 for L5.

κ̂ σ̂ α̂a
L3 0.0040 5.45 2.42
L5 0.0021 6.53 3.87

Table C.1: Minimum contrast estimates for our final model of Xxy (the DLCPP model in Sec-
tion 5.1) for the datasets L3 and L5.

Second, the model of Xz conditioned on Xxy has cylindrical interaction re-
gions as illustrated in Figure C.2, and (C.1) is the pairwise interaction Markov
random field density

f ((zi)
n
i=1 | (xi, yi)

n
i=1) ∝ ∏

1≤i<j≤n
I(‖(xi, yi, zi)− (xj, yj, zj)‖ > h)

×γ
I(‖(xi ,yi)−(xj ,yj)‖≤r1, |zi−zj |≤t1)

1

×γ
I(‖(xi ,yi)−(xj ,yj)‖≤r2, t1<|zi−zj |≤t2)

2 ,

where γ1 > 0 and γ2 > 0 are interaction parameters and 0 < r2 ≤ r1 and
0 < t1 < t2 are parameters which determine the ‘range of interaction’ such

that h <
√

t2
k + r2

k for k = 1, 2. The restrictions on r1, r2, t1, and t2 are em-
pirically motivated by use of functional summaries as detailed in Section 5.2.
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B1 B2

Fig. C.2: Visualisation of the hard core region ball (in dark) and the cylindrical interaction regions
B1 (the cylinder) and B2 (the union of the two elongated cylinders) used in our final model for
L3.

The final fitted model have parameter estimates as displayed in Table C.2
where most notably γ̂1 < 1 and γ̂2 > 1. In particular the final fitted model
is in accordance to the empirical findings as noted later when the so-called
cylindrical K-function of Figure C.3 is discussed: we have modelled repul-
sion within stunted cylinders (corresponding to B1) and aggregation within
elongated cylinders (corresponding to B2), see again Figure C.2. Moreover,
the estimated hard core ĥ is greater than 6 µm, which is in accordance with
‘distance between the nucleolus and the membrane of a pyramidal cell’ (per-
sonal communication with Jens R. Nyengaard). Note that the hard core ball
is much smaller than the interaction region B1: 2ĥ (the diameter of the hard
core ball) is about half as small as 2t̂1 (the height of B1). Finally, comparing
Tables C.1-C.2, we note that the two ‘clustering parameters’ 2σ̂ and r̂2 are of
the same order.

γ̂1 γ̂2 ĥ r̂1 t̂1 r̂2 t̂2
L3 0.41 1.78 6.25 20 11.5 11 35.5
L5 0.51 1.68 6.77 24.25 15.5 14.75 37.25

Table C.2: Pseudo likelihood estimates of our final model (model 5 from Table C.4 in Section 5.2)
for the datasets L3 and L5.

In conclusion, for each dataset we have fitted a rather complex hierar-
chical point process model describing columnar structures of the nucleolus
locations. This model included repulsion between nucleolus locations given
by a hard core condition on a small scale and a stunted cylindrical interac-
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tion region on a larger scale, as well as clustering between nucleolus locations
given by an elongated cylindrical interaction region.

1.4 Model fitting

In Møller et al. (2016) parameter estimation for the degenerate PLCPP model
was simply done by a moment based procedure which included minimisa-
tion of a certain contrast between a theoretical second order moment func-
tional summary and its empirical estimate. In the present paper we use a
similar minimum contrast procedure for estimating the parameters of mod-
els for Xxy. For the models of Xz conditioned on Xxy we find it convenient
to use a maximum pseudo likelihood procedure as detailed in Section 5.2.
Moreover, each fitted model is evaluated by considering informative global
extreme rank length (GERL) envelope procedures (Mrkvička et al., 2018; Myl-
lymäki et al., 2017) for various functional summaries.

1.5 Outline

The remainder of this paper explains how we arrive at the final model given
in Section 1.3 after fitting several other models. In Section 2 we introduce
some basic concepts and definitions needed for the models in the subsequent
sections. In Section 3 we investigate how the nucleolus locations deviate from
complete spatial randomness (that is, when X is a homogeneous Poisson pro-
cess), and in Section 4 we also notice a deviation from a fitted degenerate
PLCPP model. Finally, in Section 5 we introduce and fit various generalisa-
tions of the degenerate PLCPP model as briefly described in Sections 1.3–1.4.

2 Preliminaries

The point processes X, Xxy, and Xz introduced above are viewed as the re-
striction to the bounded sets W, Wxy, and Wz of a locally finite point process
Y ⊂ Rd with d = 3, 2, 1, respectively. Briefly speaking, this means that Y is
a random subset of Rd satisfying that YB = Y ∩ B is finite for any bounded
set B ⊂ R3; for a more rigorous definition of point processes, see e.g. Daley
and Vere-Jones (2003) or Møller and Waagepetersen (2004). Below we recall
a few basic statistical tools needed in this paper, using the generic notation Y
for a locally finite point process defined on Rd (apart from the cases above,
we have in mind that Y could also be the centre process Φ from Section 1.3).

2.1 Moments

For each integer n ≥ 1, to describe the n’th order moment properties of Y,
we consider the so-called n’th order intensity function λ(n) : (Rd)n → [0, ∞)
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given that it exists. This means that for any pairwise distinct and bounded
Borel sets B1, . . . , Bn ⊂ Rd,

E
[
n(YB1) · · · n(YBn)

]
=
∫

B1

· · ·
∫

Bn
λ(n)(x1, . . . , xn)dx1 · · ·dxn

is finite, where n(YB) denotes the cardinality of YB.
The first order intensity function λ(1) = λ is of particular interest and

is simply referred to as the intensity function. Heuristically, λ(u)du can be
interpreted as the probability of observing a point from Y in the infinitesimal
ball of volume du centred at u. If the intensity function λ(·) ≡ λ is constant,
then λ|B| = E [n(YB)] for any bounded Borel set B ⊂ Rd, where | · | is the
Lebesgue measure. In this case Y is said to be homogeneous and otherwise
inhomogeneous. Clearly, stationarity of Y (meaning that its distribution is
invariant under translations in Rd) implies homogeneity.

2.2 Functional summaries

In order to determine an appropriate model for an observed point pattern, we
consider functional summaries, which reflect/summarise different properties
of the point pattern and are useful for model fitting and control. The main
examples are considered below.

To summarise the second order moment properties, it is custom to con-
sider the pair correlation function (PCF), g, which is defined as the ratio of
the second and first order intensity function, that is,

g(x1, x2) =
λ(2)(x1, x2)

λ(x1)λ(x2)
, x1, x2 ∈ Rd.

Heuristically, g(x1, x2) can be interpreted as the probability of simultaneously
observing a point from X in each of the two infinitesimal balls of volume
dx1 and dx2 centred at respectively x1 and x2 relative to the probability of
independently observing a point in the two infinitesimal balls. The PCF is
said to be stationary when (with abuse of notation) g(x1, x2) = g(x1 − x2)
and isotropic when g(x1, x2) = g(‖x1 − x2‖).

If the PCF is stationary, it is closely related to the so-called second order
reduced moment measure, K, given by

K(B) =
∫

B
g(x)dx,

where B ⊂ Rd is a Borel set (see Møller and Waagepetersen, 2004). If Y is
stationary and B has centre of mass at the origin of Rd, then λK(B) can be
interpreted as the expected number of further points falling within B given
that Y has a point at the origin; and when considering scalings of B, we refer
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to B as a structuring element. The simplest example occurs when B is a ball
centred at the origin and with radius r > 0; then K(r) = K(B) becomes
the K-function introduced by Ripley (1976); and often we instead consider a
transformation of the K-function, which is called the L-function and defined
by L(r) = (K(r)/ωd)

1/d, where ωd is the volume of the d-dimensional unit
ball. In particular, if Y is a stationary Poisson process, then L(r) = r.

For detecting cylindrical structures, Møller et al. (2016) introduced the
cylindrical K-function which corresponds to K(B) when B is a cylinder of
height 2t, base-radius r, and centre of mass at the origin. Note that Ripley’s
K-function depends only on one argument, r, while the cylindrical K-function
depends both on r, t, and the direction of the cylinder. However, when d =
3 and since the minicolumns are expected to extend along the z-axis, we
only consider cylinders extending in this direction, effectively reducing the
number of arguments to two.

We will also consider the commonly used F-, G-, and J-functions when
performing model control; see van Lieshout and Baddeley (1996) for defi-
nitions. Briefly, if Y is stationary, F(r) is the probability that Y has a point
within distance r > 0 from a fixed location in Rd; G(r) is the probability that
Y has another point within distance r > 0 from an arbitrary fixed point in Y;
and J(r) = (1− G(r))/(1− F(r)) when F(r) < 1.

The functional summaries will in the following be used both for model fit-
ting as described in Section 2.3 and for model checking using GERL envelope
procedures as mentioned in Section 1.4. In the GERL envelope procedure, the
distribution of the empirical functional summary under the hypothesis of in-
terest is estimated by simulations. The procedure is a refinement of the global
rank envelope procedure (Myllymäki et al., 2017), where it is recommended
to use 2499 simulations for a single one-dimensional functional summary
and at least 9999 simulations for a single two-dimensional functional sum-
mary (Mrkvička et al., 2016). However, we consider a concatenation of the
L-, G-, F-, and J-functions, as well as the cylindrical K-function in which case
Mrkvička et al. (2017) recommend using more simulations. Particularly for
a concatenation of k one-dimensional summary functions they recommend
using k× 2499 simulations. We do however have a different setup since we
are concatenating both one- and two-dimensional summary functions. For
the GERL envelope procedure, Mrkvička et al. (2018) suggest that a lower
number of simulations may be enough. Therefore, we use 9999 simulations.
Since we consider a concatenation of one- and two-dimensional functional
summaries, we ensure that each of the functional summaries are weighted
equally in the GERL envelope test by evaluating them at the same number of
arguments (Mrkvička et al., 2017). Specifically we consider 642 r-values for
each of the L-, G- F-, and J-functions and a square grid over 64 r-values and
64 t-values for the cylindrical K-function.
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2.3 Minimum contrast estimation

For parametric point process models, minimum contrast estimation is a com-
putationally simple fitting procedure introduced by Diggle and Gratton (1984)
that is applicable when a closed form expression of a functional summary, T,
exists. The idea is to minimise the distance from the theoretical function T to
its empirical estimate T̂ for the data. Specifically, if T depends on the param-
eter vector θ and is a function of ‘distance’ r > 0 (as for example in case of
Ripley’s K-function), the minimum contrast estimate of θ is given by

θ̂ = argminθ

∫ rmax

rmin

∣∣T(θ, r)q − T̂(r)q∣∣p dr, (C.2)

where rmin < rmax, q, and p are positive tuning parameters. General recom-
mendations on q are given in Guan (2009) and Diggle (2014), when T(r) =
g(r) or T(r) = K(r). Unless otherwise stated, we let p = 2, q = 1/4, rmin = 0,
and rmax be one fourth of the shortest side length of the relevant observation
window (the rectangular window Wxy in our case).

When the PCF has a closed form expression, alternative estimation pro-
cedures can be used, including the second order composite likelihood (see
Guan, 2006; Waagepetersen, 2007), adapted second order composite likeli-
hood (see Lavancier et al., 2018), and Palm likelihood (see Ogata and Katsura,
1991; Prokešová et al., 2016; Baddeley et al., 2015).

3 Complete spatial randomness

The most natural place to begin our point pattern analysis is by testing
whether a homogeneous Poisson process X with intensity λ > 0 (we then
view Y as a stationary Poisson process with the same intensity), also called
complete spatial randomness (CSR), adequately describe each nucleolus point
pattern dataset. Recall that this means that n(X) is Poisson distributed with
parameter λ|W| and conditional on n(X) the points in X are independent
and uniformly distributed within W. Even when CSR is not an appropriate
model, deviations from the model can be useful for determining whether the
points of a homogeneous point pattern tend to e.g. attract or repel each other.

The CSR model is fully specified by its intensity, which naturally is esti-
mated by n(X)/|W|, which is equal to 2.37× 10−5 for L3 and 1.63× 10−5 for
L5. For this fitted model Figure C.3 summarises the results of the GERL enve-
lope procedure based on the concatenation of the L-, G-, F-, J-, and cylindrical
K-functions as discussed in Section 2.2. Particularly, the left column depicts
the part concerning the empirical functional summaries L̂(r)− r, Ĝ(r), F̂(r),
and Ĵ(r) along with the corresponding 95% envelope. The right column de-
picts the empirical cylindrical K-function along with the areas at which it falls
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outside the 95% envelope. It is observed that the empirical functional sum-
maries L̂, F̂, and Ĵ fall strictly outside the envelope for midrange values of r in
a manner that indicates repulsion between points at this range. For small and
large r-values the observed point patterns resemble the Poisson process. This
behaviour could suggest a kind of clustering, where clusters of points from
a Poisson process are somewhat separated. The separation of these clusters
seems to be more pronounced for L3 than for L5. Further, in the right col-
umn of Figure C.3, the empirical cylindrical K-function falls above the upper
global rank envelopes for cylinders that have a height larger than approxi-
mately 35 µm for both datasets and a base radius of approximately 5 µm to
15 µm for L3 and 5 µm to 20 µm for L5. Furthermore, the observed cylindrical
K-functions falls below the lower 95% GERL envelope for cylinders with a
height of approximately 10 µm to 30 µm and a base radius larger than 5 µm.
Hence, for elongated cylinders extending in the z-direction, we tend to see
more points in the data than we expect under CSR, while for stunted cylin-
ders we tend to see fewer points. This seems to be in correspondence with
columnar structures where the columns extend in the z-direction.
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Fig. C.3: Results of the GERL envelope procedure under CSR based on a concatenation of the
empirical L-, G-, F-, J-, and cylindrical K-functions. Left: concatenation of the one-dimensional
empirical functional summaries for the data (solid line) together with 95% envelopes (grey re-
gion); for ease of visualisation, the functions have been scaled. Right: empirical cylindrical
K-function (grey scale) where shaded vertical/horizontal lines indicate that the function falls
above/below the 95% envelope. The white line indicates the values for which the cylinder
height is equal to the base diameter. Top: results for the dataset L3. Bottom: results for the
dataset L5.
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4 The degenerate Poisson line cluster point pro-
cess

Møller et al. (2016) presented the so-called Poisson line cluster point process
(PLCPP) which is useful for modelling columnar structures. Specifically, we
consider a degenerate PLCPP Y ⊂ R3 constructed as follows.

1. Generate a stationary Poisson process Φ = {(ξi, ηi)}∞
i=1 ⊂ R2 with

finite intensity κ > 0. Each point (ξi, ηi) ∈ Φ corresponds to an
infinite line li in R3 which is perpendicular to the xy-plane, that is,
li = {(ξi, ηi, z) | z ∈ R}.

2. Conditional on Φ, generate independent stationary Poisson processes
L1 ⊂ l1, L2 ⊂ l2, . . . with identical and finite intensity α > 0.

3. Generate point processes X1, X2, . . . ⊂ R3 by independently displacing
the points of L1, L2, . . . by the zero-mean isotropic normal distribution
with standard deviation σ > 0.

4. Finally, set Y =
⋃∞

i=1 Xi and X = YW .

Some comments to the construction in items 1–4 are in order.
In the general definition of the PLCPP in Møller et al. (2016), the lines

l1, l2, . . . are modelled as a stationary Poisson line process. That is, the lines
are not required to be perpendicular to the xy-plane nor does the Poisson
line process need to be degenerate (meaning that the lines are not required to
be mutually parallel). Further, the dispersion density (used in item 3) can be
arbitrary. However, the construction is still such that Y becomes stationary.
Furthermore, it turns out that it does not matter whether we consider a three-
dimensional normal distribution for displacements in in item 3 or a bivariate
normal distribution with displacements of the xy-coordinates for the points
of L1, L2, . . ..

Returning to the degenerate PLCPP of items 1–4, we imagine that each
Xi is a cylindrical cluster of points around the line li, where these cylindrical
clusters are parallel to the z-axis. Furthermore, the interpretation of the pa-
rameters κ, α, and σ in terms of a Poisson cluster point process is similar to
that in Section 1.3 except that we now also consider lines not intersecting W:
if Y as defined by items 1–4 is restricted to a subset S ⊂ R3 bounded by two
planes parallel to the xy-plane, for specificity S =

{
(x, y, z) ∈ R3 | z ∈Wz

}
,

this restricted point process can be seen as a (modified) Thomas process (see
Thomas, 1949; Møller and Waagepetersen, 2004) on R2 along with indepen-
dent z-coordinates following a uniform distribution on Wz.

To see this, first note that conditional on Φ = {(ξi, ηi)}∞
i=1 and for all

i = 1, 2, . . ., Xi is a Poisson process in R3 with intensity function λi((x, y,
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z)) = α f (x − ξi, y − ηi), where f is the probability density function of the
bivariate isotropic normal distribution given in item 3. In turn, this implies
that Y conditioned on Φ is a Poisson process in R3 with intensity function
∑∞

i=1 λi((x, y, z)). Further, since λi(x, y, z) = λi(x, y) does not depend on z for
all i = 1, 2, . . ., the projection of YS onto the xy-plane, Pxy(YS), conditioned on
Φ is a Poisson process with intensity a ∑∞

i=1 λi(x, y), where a is the length of
the interval Wz. Since Φ is a stationary Poisson process, Pxy(YS) is a Thomas
process with centre process intensity κ and expected cluster size αa (that is,
the expected number of points in Xi ∩ S). Finally, from items 2–4 it follows
that the z-coordinates of Xz are independent and uniformly distributed on
Wz, and they are independent of Xxy.

Consequently, simulating X = YW is straightforwardly done by simu-
lating a Thomas point process (on a larger set than Wxy in order to avoid
boundary effects) along with independent uniform z-coordinates on Wz. For
simulating the Thomas point process we apply standard software from the
R-package spatstat (Baddeley et al., 2015). Similarly, fitting a degenerate
PLCPP to a realisation of X is simply a matter of fitting a Thomas process
to the point pattern consisting of the xy-coordinates of the points in that
realisation. Since the K-function of the Thomas process has a closed form
expression, the model can be fitted using minimum contrast estimation with
T(r) = K(r) in (C.2). Table C.3 summarises the parameter estimates, where
most notably the expected cluster size α̂a is < 1 for both L3 and L5. Un-
derstanding each cylindrical cluster within W as (a part of) a minicolumn,
‘these parameter estimates result in very unnatural models for the datasets,
since each minicolumn within W is expected to consist of less than one point’
(personal communication with Jens R. Nyengaard).

κ̂ σ̂ α̂a
L3 0.027 2.86 0.36
L5 0.0085 4.58 0.95

Table C.3: Minimum contrast estimates of the degenerate PLCPP.

Despite the fact that the fitted degenerate PLCPP models are somewhat
unnatural and hardly can be interpreted as a model with (hypothesised)
minicolumnar structures, GERL envelope procedure based on a concatena-
tion of the F-, G-, and J-functions show that the Thomas process suitably fit
the projected locations with a p-value of 0.76 for L3 and 0.87 for L5. How-
ever, results from the concatenated GERL envelope procedure described in
Section 2.2 indicated that the model did not suitably describe the three-
dimensional nucleolus locations with a p-value of 10−4 for both L3 and L5.
Specifically, Figure C.4 shows the empirical cylindrical K-function and in-
dicates where it deviates from the 95% envelope. Clearly, the model does
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Fig. C.4: Empirical estimates of the cylindrical K-function (grey scale) where shaded verti-
cal/horizontal lines indicate that the function falls above/below the 95% GERL envelope under
the fitted degenerate PLCPP and based on the concatenation described in Section 2.2. The white
line indicates the values for which the cylinder height is equal to the base diameter. Top: results
for the dataset L3. Bottom: results for the dataset L5.

account for some of the columnarity of the data as opposed to CSR, but the
empirical cylindrical K-function for L3 still falls above the 95% envelope. Fur-
thermore, the empirical cylindrical K-function for both datasets falls below
the 95% envelope similar to what was seen under CSR, indicating a lack of
regularity, which in fact is supported by the one-dimensional functional sum-
maries (not shown). This could suggest that the cylindrical clusters should
be more distinct; motivating us to generalise the degenerate PLCPP model as
in the following section.

5 A generalisation of the degenerate PLCPP

As some but not all features of the data were explained by the degenerate
PLCPP fitted in Section 4, we propose in this section two generalisations as
follows.

1. The centre process Φ is a planar stationary point process.

2. Xz conditioned on Xxy follows a Markov random field model.

The first modification is straightforward and for this specific application we
chose a repulsive centre process to obtain more distinguishable cylindrical
clusters; this is detailed in Section 5.1. Further, the assumption of station-
arity of Φ is made in order to apply a similar minimum contrast estimation
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procedure as in Section 4, so implicitly we make the assumption that the
PCF or the K-function is expressible on closed form. For the second mod-
ification we suggest a conditional model inspired by the multiscale point
process and particularly the Strauss hard core point process (see e.g. Møller
and Waagepetersen, 2004) which will allow for further repulsion or even ag-
gregation between the points; this is detailed in Section 5.2.

5.1 A determinantal point process model for the centre points

Consider a point process Y ⊂ R3 specified by items 1–4 in Section 4 with
the exception that the centre process Φ now is an arbitrary stationary pla-
nar point process. Then, recalling the notation from Section 4, Pxy(YS) is a
planar Cox process (see Møller and Waagepetersen, 2004) and even a planar
generalised shot-noise Cox process (see Møller and Torrisi, 2005) driven by
the random intensity function Λ(x, y) = a ∑∞

i=1 λi(x, y) for (x, y) ∈ R2. More-
over, Pxy(YS) corresponds to the Thomas process, but with a different centre
point process (unless of course Φ is a stationary Poisson process).

In this section we focus on the case where Φ is a stationary determinantal
point process (DPP; see Lavancier et al., 2015), in which case we will refer to Y
as the determinantal line cluster point process (DLCPP). A DPP is defined in
terms of its n’th order intensity function for n = 1, 2, . . .: let C : R2×R2 → C

be a function and λ(n) the n’th order intensity function of Φ, then Φ is called
a DPP with kernel C if

λ(n)(x1, . . . , xn) = det[C](x1, . . . , xn) for n = 1, 2, . . ., x1, . . . , xn ∈ R2,

where det[C](x1, . . . , xn) is the determinant of the n× n matrix with (i, j)’th
entry C(xi, xj). For further details on DPPs, we refer to Lavancier et al. (2015)
and the references therein. When Φ is a DPP, we call Pxy(YS) a determinan-
tal Thomas point process (DTPP). The DTPP is discussed to some extent in
Møller and Christoffersen (2018), where a closed form expression of its PCF
is found. Thus, the DLCPP can be fitted by fitting a DTPP to the projected
data using a minimum contrast procedure (see Section 2.3).

For our data we want to obtain a DLCPP with as much repulsion as possi-
ble between the centre lines of the cylindrical clusters. Therefore, we let Φ be
the ‘most repulsive DPP’ (in the sense of Lavancier et al., 2015), which is the
jinc-like DPP given by the kernel C(x1, x2) =

√
ρ/π J1

(
2
√

πρ‖x1 − x2‖
)

/‖x1−
x2‖, where J1 is the first order Bessel function of the first kind and ‖ · ‖ de-
notes the usual planar distance (for more information on this particular DPP,
see Lavancier et al., 2018; Biscio and Lavancier, 2016).

Simulation of the DTPP is done by first simulating a DPP with intensity κ
(on a larger region than Wxy in order to avoid boundary effects), for which we
use the functionality of spatstat, then secondly generating for each cluster a

100



5. A generalisation of the degenerate PLCPP

0

25

50

75

100

125

0 100 200 300 400

X

Y

0

50

100

0 100 200 300 400

X

Y

25

50

75

100

125

100 200 300 400

X

Y

50

100

100 200 300 400

X

Y

Fig. C.5: Projection of observed nucleolus locations onto the xy-plane (left) and simulations from
the fitted jinc-like DTPP (right) for the datasets L3 (top) and L5 (bottom).

Poisson distributed number of points with intensity αa, and finally displacing
these points by a bivariate zero-mean isotropic normal distribution.

The parameter estimates of the jinc-like DTPP model were obtained by
minimum contrast with T(r) = g(r); see Table C.1 for the results and the
accompanying discussion in Section 1.3. Despite the expectation under the
minicolumn hypothesis of having much higher values of α̂a than in Table C.1
(see again Section 1.3), simulations of the fitted jinc-like DPP in the xy-plane
seem in reasonable correspondence to the projected data; see Figure C.5.
Furthermore, results from the GERL envelope procedure based on a concate-
nation of the F-, G-, and J-functions do not provide any evidence against the
jinc-like DPP model for the projected points with p-values of 0.67 for L3 and
0.83 for L5.

Since the jinc-like DTPP model fits the projected data well, we proceeded
and added independent uniform z-coordinates on Wz to the simulations,
thereby obtaining simulations of the jinc-like DLCPP. Figure C.6 summarises
the result of the 95% GERL test based on the concatenation of functional sum-
maries as described in Section 2.2. The left column depicts the part of the one-
dimensional functional summaries along with 95% envelopes, while the right
column shows the empirical cylindrical K-function along with shaded regions
that indicate where it deviates from the corresponding envelope. These plots
show that the models do not account for the regularity of the data. This leads
us to our next generalisation in Section 5.2.

5.2 A Markov random field model for the z-coordinates

Motivated by the observations at the end of the previous section, in this sec-
tion we propose to model the z-coordinates conditioned on the xy-coordinates
by a pairwise interaction point process as given in (C.1). Thereby, our hierar-
chical model construction yields a more flexible model for X but we ignore
edge effects in the sense that we have only specified a model for first Pxy(YS)
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Fig. C.6: Results of the GERL envelope procedure under the fitted DLCPP based on a con-
catenation of the empirical L-, G-, F-, J-, and cylindrical K-functions. Left: concatenation of
the one-dimensional empirical functional summaries for the data (solid line) together with 95%
envelopes (grey region); for ease of visualisation, the functions have been scaled. Right: empir-
ical cylindrical K-function (grey scale) where shaded vertical/horizontal lines indicate that the
function falls above/below the 95% envelope. The white line indicates the values for which the
cylinder height is equal to the base diameter. Top: results for the dataset L3. Bottom: results for
the dataset L5.
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and second Xz conditioned on Xxy = Pxy(YS)∩Wxy, thereby ignoring a possi-
ble influence of points in Y \W when (C.1) is used in the latter step (unless it
specifies a binomial point process). This simplification is just made for math-
ematical convenience; indeed it would be interesting to construct a model
taking edge effects into account so that Y becomes stationary, but we leave
this challenging issue for future research. Below we first specify the ingredi-
ents of the conditional probability density function given in (C.1) for various
models and discuss the overall conclusions, next describe how to find pa-
rameter estimates, and finally discuss how well the estimated models fit the
data. Note that although we have not specified a stationary model for Y, it
may still make sense to interpret plots of empirical cylindrical K-functions
and F̂, Ĝ, Ĵ, and L̂-functions, since we have stationarity in the xy-plane and
approximately stationarity in the z-direction (as the density (C.1) is invariant
under ‘translations of (z1, . . . , zn) within Wz’).

In our search for a suitable model for the nucleolus locations, we consid-
ered many special cases of (C.1). Table C.4 summarises five selected models,
where b((x, y, z); r) is the ball with centre (x, y, z) and radius r, and where
c((x, y, z); r, t) and d((x, y, z); r, t) denote the cylinder and double cone, re-
spectively, with centre of mass at (x, y, z), height 2t, base radius r, and ex-
tending in the z-direction. First, we considered model 1 which is a hard core
model if h > 0 and one of the simplest ways of modelling regularity; note
that model 1 with h = 0 is the binomial point process with a uniform density
as considered in Section 4. Though accounting for small distance repulsion,
when fitted to the data, model 1 turned out not to account for the repul-
sion at larger scales. Second, we considered model 2 which is a conditional
Strauss model with a hard core condition (see Møller and Waagepetersen,
2004, and the references therein). For this model the scale of repulsion for
the z-coordinates seemed too great for points with similar xy-coordinates,
and therefore we found it natural to replace the spherical interaction region
with a cylinder, yielding model 3. However, model 3 did not correct the prob-
lem, and continuing with a single region of interaction we next suggested
model 4 with a region given by a cylinder minus a double cone. Model 4
does to a smaller degree penalise the occurrence of points with similar xy-
coordinates. However, this model was not suitable either. Models 1–4 were
discarded by GERL tests with extremely small p-values. Finally, we consid-
ered model 5 which is a more flexible model that allows for both repulsion
and aggregation within cylinder shaped interaction regions, cf. the discussion
in Section 1.3. For simplicity all the models were also considered without a
hard core condition, that is h = 0, but was in every case found inadequate.

The likelihood function corresponding to (C.1) involves a normalising
constant which needs to be approximated by Markov chain Monte Carlo
methods. We propose an easier alternative based on the pseudo likelihood
function (Besag, 1975) defined as follows when the data is given by {(xi, yi,

103



Paper C.

Model γ1 γ2 B1(·; θ1) B2(·; θ2) θ1
1 1 1 ∅ ∅ -
2 > 0 1 b(·; r) ∅ r > h
3 > 0 1 c(·; r, t) ∅ r, t > 0
4 > 0 1 c(·; r, t)\d(·; r, t) ∅ r, t > 0
5 > 0 > 0 c(·; r1, t1) c(·; r2, t2) \ c(·; r1, t1) r1, t1 > 0

Table C.4: Specific choices of the parameters γ1, γ2, θ1, θ2 and the interaction regions
B1(·; θ1), B2(·; θ2) for five models given by the density (C.1). For each model, a hard core pa-
rameter h ≥ 0 is included. Apart from the specified restrictions, it is required for models 2–5
that B1(·; θ1) 6⊆ b(·; h) (for model 2 this means that r > h as already indicated) and in addition
for model 5 that B2(·; θ2) 6⊆ b(·; h) where θ2 = (r2, t2) with r1 ≥ r2 > 0 and t2 > t1.

zi)}n
i=1 ⊂ W. For i = 1, . . . , n, the i’th full conditional density associated to

(C.1) is

f (zi | (z1, . . . , zi−1, zi+1, . . . , zn), (xj, yj)
n
j=1)

= I(‖(xi, yi, zi)− (xj, yj, zj)‖ > h for j 6= i)γs1,i
1 γ

s2,i
2 /ci (C.3)

where we define

sk,i = ∑
j: j 6=i

I
(
(xj, yj, zj) ∈ Bk((xi, yi, zi); θk)

)
, k = 1, 2,

and where the normalising constant is given by

ci =
n−1

∑
k=0

n−1

∑
l=0

γk
1γl

2

∫
Wz

I(‖(xi, yi, z)− (xj, yj, zj)‖ > h for j 6= i)

× I

(
∑

j: j 6=i
I
(
(xj, yj, zj) ∈ B1((xi, yi, z); θ1)

)
= k

)

× I

(
∑

j: j 6=i
I
(
(xj, yj, zj) ∈ B2((xi, yi, z); θ2)

)
= l
)

dz.

To estimate the model parameters we maximise the log pseudo likelihood
given by

LP(γ1,γ2, h, θ1, θ2)

=
n

∑
i=1

log f (zi | (z1, . . . , zi−1, zi+1, . . . , zn), (xj, yj)
n
j=1).

(C.4)

Clearly, by (C.3) the maximum pseudo likelihood estimate (MPLE) ĥ of h
is the minimum distance between any distinct pair of points (xi, yi, zi) and
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(xj, yj, zj) in the data. This in fact also corresponds to the maximum likeli-
hood estimate. For h = ĥ and for fixed θ1 and θ2, we easily obtain the fol-
lowing. For each of models 2–4, the MPLE of γ1 exists if and only if s1,i 6= 0
for some i, and then the log pseudo likelihood function is strictly concave
with respect to log γ1. For model 5, the MPLE of (γ1, γ2) exists if and only
if s1,i 6= 0 for some i and s2,j 6= 0 for some j, and then the log pseudo like-
lihood function is strictly concave with respect to (log γ1, log γ2). Therefore,
the (profile) log pseudo likelihood can be maximised by a combination of a
grid search over θ1 and θ2 and numerical optimisation with respect to γ1 and
γ2. Table C.2 shows the maximum pseudo likelihood estimates of model 5
for the two datasets, where for the numerical optimisation we used optim (a
general-purpose optimisation function from the R-package stats).

Each of the five models in Table C.4 were fitted to L3 and L5 by finding the
maximum pseudo likelihood estimate, and model checking was performed
using GERL envelope procedures based on the concatenation of functional
summaries as discussed in Section 2.2. For the fitted models, model 5 was
the most appropriate with p-values of 0.34 for L3 and 0.03 for L5 when us-
ing the GERL envelope procedure; the 95% GERL envelope is visualised in
Figure C.7. Thus no evidence is seen against the fitted models summarised
in Table C.2 for L3 while only slight evidence is present for L5. We note
that for both datasets the fitted models are such that B1 is a stunted cylin-
der and models repulsion since γ̂1 < 1, while c(·, r2, t2) is elongated and
B2 models aggregation, since γ̂2 > 1. Hence, when standing in some point
(x1, y1, z1) ∈ X it is less likely to observe a z-coordinate if the correspond-
ing xy-coordinates are similar to (x1, y1). Specifically, if (x1, y1) and (x2, y2)
lies within distance 20 µm for L3 and 24.25 µm for L5, it is less likely to ob-
serve a z-coordinate z2 (associated to (x2, y2)) with |z1− z2| less than 11.5 µm
for L3 and 15.5 µm for L5. Analogously, given that (x1, y1) and (x2, y2) lies
within distance 11 µm for L3 and 14.75 µm L5, it is more likely to observe z2
if |z1 − z2| is in the interval from 11.5 µm to 35.5 µm for L3 or from 15.5 µm
to 37.25 µm for L5.

Finally, note that simulations from each of models 1–5 can straightfor-
wardly be obtained using a Metropolis-Hastings algorithm for a fixed num-
ber of points and given a realisation of the xy-coordinates. Specifically, we
used (Algorithm 7.1 in Møller and Waagepetersen, 2004) but with a system-
atic updating scheme cycling over the point indexes 1 to n, using a uniform
proposal for a new point in Wz and a Hastings ratio calculated from the full
conditional (C.3). We successively updated each point 100 times under the
systematic updating scheme, corresponding to 63400 and 54800 point up-
dates for L3 and L5, respectively.
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Fig. C.7: Results of the GERL envelope procedure under the fitted model 5 based on a con-
catenation of the empirical L-, G-, F-, J-, and cylindrical K-functions. Left: concatenation of
the one-dimensional empirical functional summaries for the data (solid line) together with 95%
envelopes (grey region); for ease of visualisation, the functions have been scaled. Right: empir-
ical cylindrical K-function (grey scale) where shaded vertical/horizontal lines indicate that the
function falls above/below the 95% envelope. The white line indicates the values for which the
cylinder height is equal to the base diameter. Top: results for the dataset L3. Bottom: results for
the dataset L5.
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