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Abstract—Converter-grid interactions tend to bring in
frequency-coupled oscillations that deteriorate the grid stabil-
ity and power quality. The frequency-coupled oscillations are
generally characterized by means of multiple-input multiple-
output (MIMO) impedance models, which requires using the
multivariable control theory to analyze resonances. In this paper,
instead of the MIMO modeling and analysis, the two-port
network theory is employed to integrate the MIMO impedance
models into a single-input single-output (SISO) open-loop gain,
which is composed by a ratio of two SISO impedances. Thus,
the system resonance frequency can be readily identified with
Bode plots and the classical Nyquist stability criterion. Case
studies in both simulations and experimental tests corroborate
the theoretical stability analysis.

Index Terms—Impedance model, resonances, stability analysis,
two-port network, voltage source converters (VSCs)

I. INTRODUCTION

Voltage source converters (VSCs) have been widely used
in the modern power grid for renewable energy generation,
flexible power transmission, and energy-efficient power con-
sumption. As the penetration level of VSCs increases in the
power grid, the VSC-grid interactions tend to cause harmonic
instability phenomena across a wide frequency range, due
to the multi-timescale control dynamics of VSCs [1]. The
harmonic instability phenomena are further divided into the
frequency-decoupled resonances at harmonic frequencies and
the sideband (frequency-coupled) resonances around the grid
fundamental frequency [2].

The impedance-based analysis method is commonly used
to analyze the system stability and identify the resonance
frequency in the frequency-domain [2]. It has been shown
that the harmonic resonances are mainly caused by the inner
current control loop, where the time delay of the digital
control system brings in a negative damping close to the
resonance frequencies of passive filters and grid impedance
[3], [4]. Since the inner control loop has symmetric dynamics
in the dg- or af-frame, it can be represented by two single-
input single-output (SISO) transfer functions or one complex
transfer function [3], [5], and thus the resonance frequency
can be readily identified in Bode plots based on the Nyquist
stability criterion.

In contrast, the sideband resonances of the fundamental
frequency [6]-[14], which are resulted from the asymmetric
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dg-frame dynamics of the phase-locked loop (PLL) [6]-[11],
and the outer power control loops, e.g. the constant power
load with the regulated dc-link voltage loop [12], [13], or the
alternative voltage magnitude control loop [14]. In those cases,
the negative damping are introduced at either d- or g-axis,
instead of symmetrically on both d- and g-axes. Consequently,
the sideband resonances cannot be simply modeled by SISO
transfer functions [5], and the multiple-input multiple-output
(MIMO) transfer function matrices are needed to characterize
the frequency-coupling dynamics [10]-[12].

There are two general approaches for developing the MIMO
impedance matrices in respect to the used reference frame, i.e.
the dg-frame impedance matrices [6]-[8], [13] and the «af-
frame impedance matrices [9]-[12]. The mathematical rela-
tionships between the two reference-frame impedance matrices
has been explicitly revealed in [10], and the same stability
implications of two impedance matrices have been proved.
An important difference between two impedance matrices is
that the dg-frame impedance matrices are derived based on
the linear time-invariant (LTI) operating points, where the
dynamic couplings between different frequencies in the phase
domain are hidden in the dg-frame [6]-[8], whereas the (-
frame impedance matrices are essentially developed based on
the linear time-periodic (LTP) operating trajectories [2], [10],
[11], which enables to directly capture the frequency-coupling
dynamics. However, both impedance matrices are MIMO
systems, which require using the generalized (multivariable)
Nyquist stability criterion to predict the system stability, and
the Bode plots of the eigenvalues of the MIMO return-
ratio matrix were drawn to identify resonance frequencies of
the marginally stable system, yet they provide little insight
into how the grid impedance affect the system resonance
frequencies in [12]. Therefore, two SISO impedances derived
in the af-frame, which are known as the sequence-domain
impedance model, were used to predict the system stability
in [9], yet the method overlooks the non-zero off-diagonal
elements in the derived impedance matrix, which implies the
frequency-coupling dynamics were not considered and the
inaccurate stability implication may be resulted [10]-[12].

In order to avoid using the generalized Nyquist stability
criterion, a method based on the MIMO closed-loop transfer
function matrix of the entire system is recently introduced
in [14]. In the approach, instead of deriving the MIMO
impedance matrix describing the VSC terminal behaviors,
the MIMO closed-loop transfer function matrix of the entire
system is derived considering the impacts of the PLL, the
inner current control loop, and the outer power control loops
along with the grid impedance. It is then found that the SISO
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Fig. 1. Single-line diagram of a three-phase grid-connected VSC with current control and SRF-PLL.
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Fig. 2. Small-signal block diagram of the current control loop with the effect of SRF-PLL in the dg-frame.

transfer function entries of the MIMO closed-loop transfer
matrix share a common denominator, from which a SISO
open-loop gain is extracted for predicting the system stability
based on the classical stability criterion. A prominent feature
of this method is that the design-oriented stability analysis
can be performed based on the SISO transfer functions, i.e.
how do controller parameters affect the overall system stability
can be characterized. However, the VSC-grid interactions are
implicitly exposed since the grid impedance is embedded
in the MIMO closed-loop transfer function matrix of the
entire system. Furthermore, the derivation of the SISO transfer
function in [14] is non-trivial due to the dynamic coupling
between different control loops.

In this paper, instead of analytically deriving the common
SISO open-loop gain of the MIMO system for stability
analysis, the two-port network theory that is used for an-
alyzing large-scale integrated circuits [15] is applied to the
impedance-based modeling method to reorganize the MIMO
impedance matrices of the VSC and the grid impedance, where
the common SISO open-loop gain is then directly derived
with the output admittances at the terminals of the VSC
and the grid impedance. Therefore, there is thus no need
of prior knowledge on system parameters, and the common
SISO open-loop gain can be even derived with the “black
box” models of grid-connected VSCs, which, consequently,

provide a more efficient and intuitive method than that in
[14]. Moreover, based on the two-port impedance network, the
common SISO open-loop gain can be further transformed into
two SISO impedance ratios seen from the network terminals,
and the VSC-grid interactions can be separately analyzed
on each terminal. Therefore, only the equivalent admittances
seen from the terminals is required, and the measurements
of the entire MIMO impedance matrices are avoided [16],
which significantly facilitates the stability analysis and the
resonance frequencies caused by the asymmetric dg-frame
control dynamics can be readily identified with the Bode plots
of SISO impedance ratios. Simulations and experimental tests
validate the effectiveness of the proposed stability analysis
method.

II. GRID-CONNECTED VSCs

In this section, the derivation of the a/3-frame impedance
model for a current-controlled grid-connected VSC with the
effect of PLL [10] is reviewed, which provides a basis for
utilizing the two-port network theory in the next section.

A. System Description

Fig. 1 illustrates a single-line diagram of a three-phase
grid-connected current-controlled VSC, where a stiff dc volt-
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Fig. 3. The complex transfer function equivalent of an asymmetric transfer function matrix.

age source V. is used. Similar to [6]-[11], the frequency-
coupled resonance caused from the synchronous reference
frame (SRF)-PLL [17] is focused in this study. The L-filter
is used at the ac side, and an LC-resonant grid impedance is
considered at the point of common coupling (PCC), including
a grid inductance L, and a capacitance Cy. The PCC voltage,
ie. the voltage across the filter capacitor v, is measured by the
SRF-PLL for the grid synchronization purpose.

B. dq-Frame Impedance Modeling

The current controller is implemented in the dg-frame,
whose dynamic is thus affected by the phase angle § measured
by the SRF-PLL [5]. Considering the dynamic effect of
the SRF-PLL, the small-signal block diagram of the current
control loop in the dg-frame can be drawn in Fig. 2, which
has been explicitly derived in [2].

The superscript ”m” in the block of Fig. 2 implies the
MIMO transfer function matrix, instead of SISO transfer
functions. In Fig. 2, Y%, (s) and Y, (s) illustrate the L-
filter plant. G7";, (s) and G, (s) are diagonal matrices, where
Gy (s) represents the PI current controller transfer function
matrix with the proportional gain K., and the integral gain
K;, and G}, (s) denotes the time delay, which is introduced
by the digital computation (7) and the pulse width modula-
tion (0.57%) [18], where Ty is the sampling period. Y% ; (s)
and G5, (s) represent the dynamic effect of the SRF-PLL,
through the Park- and the inverse Park-transformations on the
current Aic 4q and the voltage command v} ;. ., respectively.
Y5, (s) and G'B;; (s) are given as

. | 0 —Hprr(s) Ve,

Yprr(s) = { 0 Hprr(s) Vc,dq ] .
m N 0 _HPLL (S) Ici
pw=[§ S ] e

where Hpry (s) is the small-signal model of the SRF-PLL
[17], which is linearized as a 2"%-order dynamic system [3].
From Fig. 2, the reference-to-output transfer function ma-
trix, G} 4, () and the closed-loop output admittance matrix,

)

Y14, (8) can be derived, respectively, as
Aic,d id,ref Avc,d
|: AZC q :| = ’gll,dq (S) |: ’L’q r(if chq (8) AUC q

Ade dq idg,ref Ave, daq

3)

where G} 4, (s) is given by

e (3) = [+ T (s)] T (s) )

where T30 (s) is the open-loop gain of the transfer function
matrix, which is given by

Tg]l (5) = p%q (S) dmel,dq (5) G;r:rqu (S) (5)

The closed-loop output admittance matrix, Yc’l’qu (s), de-
notes the disturbance (the PCC voltage)-to-output transfer
function, and it can be derived as [7]

Ychq (5) = 7cqib,dq (8) YIQEL (8)
m m -1 m m m
+ [I + Ty (5)] g (8) Gaeraq (8) GBLL (5)
m m -1 m
- [I + qu (S)] 0,dq (8)
(6)
As given by (1) and (2), Y2} (s) and G5, (s) are asym-
metric matrices, which make Y7, (s) asymmetric, and thus
it cannot be analyzed as SISO complex transfer functions [5].

C. af-Frame Impedance Modeling

The dg-frame impedance matrix derived in (6) is based
on real vectors which is LTI, and thus it cannot explicitly
disclose the dynamic couplings between different frequencies
in the phase domain. Thus, the transformation from a general
real-valued transfer function matrix to its equivalent based on
complex vectors, yet still in the dg-frame, has been earlier
introduced in [19]. This transformation matrix is recently
applied to the dg-frame impedance matrix in [8], while in
[2], this transformation is derived from the complex transfer
function equivalent of an asymmetric transfer function matrix,
which is summarized and shown in Fig. 3. y} ; (s) and
Y ag (s) are the complex conjugates of the complex transfer
functions y4 44 (s) and y_ 44 (s), respectively. Hence, the
frequency coupling dynamics caused by asymmetric control
loops in the dg-frame are implanted into the system.

Then, considering the frequency translation between the
dg- and af-frame, the af-frame complex-valued impedance
matrix can be derived as [10]:

l: 4%%,{15 :| — |: Y+ (S) Y- (3) :l |: ‘QUC,Q/B :| (7)
el Azz,aﬁ yj (S) yi (S) e’ Av:,aﬂ
Y, (s)

where Y, (s) shows the electrical relations of complex
vectors at different frequencies, and Av? 5 is the complex
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Fig. 4. General two-port network representation of a grid-connected VSC based on impedance matrices.

conjugate vector of Av,,g in the af-frame. For a given
voltage vector at the frequency w, a frequency-coupled current
vector at the frequency 2w; — w is generated according to
(7), where w; is the grid fundamental frequency. It is worth
mentioning that the «af-frame impedance (or admittance)
matrix has been validated in [10], and the model validation
will not be repeated in this work.

III. TWO-PORT NETWORK FOR STABILITY ANALYSIS

This section presents first a general two-port network rep-
resentation of grid-connected VSCs based on the MIMO
impedance matrices, and then elaborates the principle of
deriving the common SISO open-loop gain from the two-
port network. The essential differences between the proposed
approach and the conventional impedance-based stability anal-
ysis method are highlighted.

A. General Two-Port Network Representation

Fig. 4 illustrates a general two-port network representation
of grid-connected VSCs based on the MIMO impedance
matrices, where the grid impedance matrix in the a/-frame
is diagonal, which is expressed as [10], [11]

Avc,ag o Avgyag
o
| Zy(s) 0 Aic,ap 3)
[ 0 Z;(s) } { eTONY g }
Zy(s)

In order to preserve the physical property at the PCC of VSC
and meanwhile illustrate the frequency-coupling dynamics, the
two grid impedance entries are distributed on two ports of the
network.

B. Conventional Impedance-Based Stability Analysis

In the conventional impedance-based approach, the grid
impedance matrix is cascaded with the VSC admittance matrix
as shown in Fig. 5, and the open-loop transfer function matrix
of the MIMO system is derived directly from the ratio of
impedance matrices, i.e. the return-ratio matrix L., (s), which
is given by

Lun (s) = 27 (5) Y (5) ©)

Then the generalized Nyquist stability criterion is applied
to the return-ratio matrix for the stability prediction. This

is basically a MIMO system analysis method, and has been
widely used with three-phase VSC systems [6]-[13]. To utilize
this method, all entries of the impedance matrices need to be
known, either by analytical derivations or through impedance
measurements [16]. Moreover, the Nyquist plots of eigenvalues
of the return-ratio matrix provide little insight into how the
grid impedance affect the system resonance frequency [14].

C. Proposed Stability Analysis Method

Instead of utilizing the multivariable control theory, the
active network analysis theory [20] is employed to analyze the
VSC-grid interactions. Given a general LTI two-port network
model constituted by admittance matrices, which is shown in
Fig. 6, the dynamic interactions at each port can be analyzed
by applying the superposition principle and using the SISO
impedances seen from each port, which are illustrated as
follows.

First, considering the input voltage vgs only and vy is set to

zero, the current at Port 2 can be derived as
i2 = —'UQYL (10)

and the electrical relations of the two-port network is shown

S ]l ]

Substituting (10) into (11),the following transfer functions
can be derived:

Y12
Y22

(1)

v _ =y

G, = =
Y Yoo + YT,

12)

Y_i-n;l ( $ ) Alc Avc _ Zél'n ( § ) Avg
( ) ) :_ A: Zg-(s) @A"ﬂ
v, (s) y_(s i ap j.aﬁ 2.0
: *
Y (S ) Y S) (»:HAT:_,,,; . ”:Av:_a,; Z:(s)) @ LI

Fig. 5. Impedance equivalent model of the current-controlled
grid-connected VSC.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2019.2934513, IEEE

Transactions on Power Electronics

v, Ly,
REACEAGIN
v " Y \s Yz \ 8 v, V:
. )721(5) Vo (S) -

Y

in out
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) Y12Y21
Yin = — =y +y12— = y11 —
(% U1

— ({3
Y22 +Yp

where GG, is the internal two-port gain, and Yj,, is the equiv-
alent input admittance seen from the Port 1. Then, including
the admittance Yg, the SISO closed-loop gain from vg to vy
can be derived as

Ys
v Ys 4+ yn
vs 1 _ Y12Y21 (14

(Ys +y11) (YL + y22)

Based on (12) and (14), the SISO closed-loop gain from vg
to v9 can then be calculated as

y21Ys
va _vpv1 (Y +uyn) (YL +y20) {15)
vg V1 VS 1 Y12Y21

(Ys +y11) (Yo + y22)
Next, considering the input voltage v only and setting vg
as zero, the SISO closed-loop gains from vg to v; and v2 can
be derived similarly, which are given by

Y12Y1
v (Ys+yn) (Yo + o) (16)
v 1— Y12Y21
(Ys +y11) (Yz + y22)
Yy
U2 Y +
vh 1_ - 91333;1 a7

(Ys +y11) (Y + y22)

From (14)-(17), it is clear that all the SISO closed-loop gains
share the same characteristic equation, and a common open-
loop gain G, can be identified from that, which is given by

Y12Y21
(Ys +y11) (Yo + y22)

Then, the stability of the two-port network can be evalu-
ated based on (18), which, differs from the conventional
impedance-based approach, is a SISO transfer function. Thus,
the classical Nyquist stability criterion can be applied, which
significantly simplifies the stability analysis and the system
resonance frequency can be readily identified through the Bode
plots of (18).

It is worth mentioning that the concept of the common
SISO open-loop gain has been introduced in [14] for the
stability analysis of grid-connected VSCs. However, instead

Gr =~ (18)

of utilizing the impedance-based representation, the common
SISO open-loop gain given in [14] is analytically derived
from a closed-loop MIMO transfer function matrix of the
entire system, which contains the VSC with the pre-defined
control structure and controller parameters along with the grid
impedance. Moreover, the whole computation process is more
complicated than Fig. 6.

In addition, although the SISO open-loop gain given in (18)
is based on admittance matrices, it requires knowing all the en-
tries of the admittance matrices, similarly to the conventional
impedance-based approach. It is shown that measuring all the
entries of the a5-frame admittance matrix is difficult, yet the
measurement of the equivalent terminal admittances can be
readily obtained. Hence, a refined frequency scan approach
that considers the frequency coupling dynamics of VSCs is
introduced in [16]. Thus, to deal with this challenge, the SISO
closed-loop gains are reformulated as follows:

Ys
V1 YS Y;
_— = = mn 19
vs YS + }/in 1 + E ( )
Yin
Ys
v Ys Y,
2 =g, =G, 20
Vg Ys +Yin 14 Ys 0
Yin
Y
Y]
e .t S ¢ (... @1
Vg YL + Yout 1+ YL
Yout
YL
o Yo You (22)
UZ YL + Yout 1 YL
+ Y.
out
here
W * —Y12 (23)
Y oyn +Ys

It is seen that the SISO open-loop gain can be reformulated
as two impedance ratios, where Y, is the equivalent output
admittance seen from Port 2, which is given as

Y12Y21

B 24)
y11 + Yg (

Yout = Y22 —

Thus, instead of identifying all the entries of the admittance
matrix, only the equivalent input and output admittances at the
Port 1 and Port 2 are required for the stability analysis.

Following this principle, the general two-port network
model shown in Fig. 6 can be replaced by that shown in
Fig. 4, and then the corresponding equivalent admittances can
be derived as

1

“TZ,0 @
1

= 7 (26)
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Fig. 7. Configuration of the experemental platform.

TABLE I. Identical system parameters used in the four cases.

System symbol Parameter Description Value
Ve Dc bus voltage 650 V
Iqcma Current command in d-axis 212 A
fsw Switching frequency 10 kHz
T Sampling time 100 ps
Kep/Ke Current controller parameters 7.9 / 2742
L, Converter side inductor 1.5 mH
Cy Grid capacitor 15 uF
y—(s)y* (s)
Yin = y+ (s) — 1 (27
v 6+ 7 )
( Z; (s)
\ y—(s)y~ (s)
Yout = Yt (3) - 1 (23)
y+ (s) + )
( Zg (s)

IV. CASE STUDIES AND VERIFICATIONS

In order to validate the effectiveness of the proposed stabil-
ity analysis method, four different cases based on the system
diagram shown in Fig. 1 are studied in this section, including
the frequency-domain stability analysis, time-domain simu-
lations and experimental verifications. In experimental tests,
the experimental platform is shown in Fig. 7 that a constant
dc voltage source is used at the dc-side of the VSC, and a
regenerative grid simulator is used to emulate the grid voltage.
The digital control system of the VSC is implemented in the
dSPACE DS1007 system, where the voltage and current are
measured by using the DS2004 high-speed A/D board, and
the gate signals are generated using DS5101 digital waveform
output board.

Descriptions of Cases

TABLE I-1II provide the electrical system and controller
parameters used in the four cases, where the same current
controller parameters are used, yet different PLL parameters
are compared. Moreover, to evaluate the stability of VSC under

weak grid conditions, four different grid inductances yet the
same grid capacitance, corresponding to different short-circuit
ratio (SCR) values are considered, and the g-axis current
commands are adjusted in order to compensate the voltage
drop caused by the grid inductance variation.

First, a reference case is introduced in Case I, where the
VSC is tested with the SCR of 2.5, the d-axis current command
is equal to 21.2 A, and the g-axis current command is set as
-4.5 A. The proportional gain used in the SRF-PLL K, is
designed as 1.05 [17]. Then, in the Case II, a lower bandwidth
of SRF-PLL than that in Case I is tested, and hence all the
parameters are the same as Case I, expect that K, is set
as 0.35. Next, in Case III, a weaker grid condition with the
SCR of 1.6 is tested, which corresponds to an increase of the
grid inductance from 11 mH to 16.4 mH, and accordingly,
the g-axis current command is tuned from -4.5 A to -7.2 A.
The other parameters are the same as Case I. Lastly, a different
grid voltage amplitude, i.e. 400 V..., 5, is considered in the Case
1V, yet the grid inductance remains unchanged from Case I,
and thus the SCR is increased from 2.5 to 4.4, and the g-axis
current command is changed from -4.5 A to -2 A.

It is important to note that in all cases, the integral gain of
the SRF-PLL, K, is tuned to make the system marginally sta-
ble in simulations and experiments. Due to the non-idealities in
the experimental setup, the critical PLL parameters that cause
the system marginally stable are slightly different between
simulations and experiments in the four cases (see TABLE III),
and consequently the resulted resonance frequencies are also
shifted with the maximum 1.5 Hz.

Case I - Reference Case

Fig. 8 shows the simulation results and the associated
frequency-domain analysis for the Case I, where the integral
gain of the SRF-PLL K,; is identified as 237 to make the
system marginally stable in simulations. Fig. 8(a) show the
simulated VSC current and PCC voltage waveforms. However,
the resonance frequencies are hidden in the time-domain
simulation. The corresponding harmonic spectrum is given in
Fig. 8(b), where the frequency resolution is set as 0.5 Hz in
both simulations and experiments. It is clear that the resonance
frequencies are 8 Hz and 92 Hz. Then, Fig. 8(c) shows the
Bode plots of the admittance ratios derived in (19)-(22). It can
be seen that the magnitude response of the input admittance
ratio % reaches 0.32 dB at the phase crossover frequency
(91.9 Hz), which implies the gain margin of 0.32 dB, and
meanwhile the output admittance ratio ;: L also reaches 0.32
dB at the phase crossover frequency (8.1 Hz). Both of them
match well with the resonance frequencies of 92 Hz and 8
Hz identified in the harmonic spectra analysis as shown in
Fig. 8(b).

Fig. 9 shows the experimental results and the associated
frequency-domain analysis for the Case I. Differs from the
simulation, the system encounters resonance when K, is
216, which is less than that in the simulation. The resonance
frequencies are also shifted with 1.5 Hz, as shown by the
harmonic spectra in Fig. 9(b). Fig. 9(c) shows the frequency-
domain analysis result with the K; used in the experiment.
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TABLE II. Different system parameters used in the four cases.

System symbol Vg, rms Iy cma Kpp SCR (Lg)
Grid Voltage  Current command  Proportional gain  Short Circuit Ratio
in g-axis in SRE-PLL (Grid Inductance)
Case | 220 V, 50 Hz 45 A 1.05 2.5 (11.0 mH)
Case 1I 220 V, 50 Hz 45 A 0.35 2.5 (11.0 mH)
Case III 220 V, 50 Hz 12 A 1.05 1.6 (16.4 mH)
Case IV 400 V, 50 Hz 20 A 1.05 44 (11.0 mH)

TABLE III. Integral gain K; used in SRF-PLL where insta- ¢ jg clear that the gain margin of two admittance ratios is
bility occurs. increased to 0.72 dB, due to the reduced K,;, and the phase
crossover frequencies are indicated as 9.3 Hz and 90.7 Hz.
Simulation Experiment Hence, even though the PLL parameters are slightly different
between the simulation and the experiment, the proposed

Case I 237 216 method predicts well the resonance frequencies by means of
Case II 128 117 two SISO admittance ratios, which greatly facilitate the system
Case 1II 59 56 stability analysis compared to the conventional impedance-
Case IV 285 285

based approach.
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Fig. 9. Experimental result and frequency-domain analysis for Case I.
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Fig. 11. Experimental result and frequency-domain analysis for Case II.

Case 1l - Lower SRF-PLL Bandwidth

Fig. 10 shows the simulation result and the frequency-
domain analysis for the Case II. In this case, the proportional
gain of the SRF-PLL, K, is intentionally reduced to obtain a
lower bandwidth, as given by TABLE II, and then K,; is found
to be 128 when the system becomes marginally stable. From
the harmonic spectra analysis in Fig. 10(b), it can be seen that
the resonance frequencies are 24.5 and 75.5 Hz, which are
higher than the Case I. This is because the reduced bandwidth
of SRF-PLL leads to a lower-frequency oscillation at the ¢-
axis [7], which leads to the frequency-coupled resonances at a
higher frequency in the a8-frame [10], i.e. 50 — 25.5 = 24.5
Hz and 50 + 25.5 = 75.5 Hz. Fig. 10(c) plots the frequency
responses of admittances, from which the gain margin can be
identified as 0.015 dB, and the phase crossover frequencies
are 24.6 Hz and 75.4 Hz, respectively.

Fig. 11 shows the experimental results and the frequency-
domain analysis for the Case II. The critical value of K,,; that
makes the experimental system marginally stable is changed as
117. Yet, the same resonance frequencies as that are identified
in the simulation can be observed from Fig. 11(b). Then, with
the updated K ;, the frequency-domain analysis result for the
experimental test is shown in Fig. 11(c). It is seen that the

phase crossover frequencies of two admittance ratios are 25.5
Hz and 74.5 Hz, respectively, and their gain margin is 0.54
dB, which is higher than that in Fig. 10(c), due to the reduced
K,;. This case once again confirms the effectiveness of the
proposed analysis method.

Case 1ll - Weaker Grid with Lower SCR

Fig. 12 shows the simulation results and the associated
frequency-domain analysis for the Case III. It is clear that the
critical value of K; is reduced as 59 with the reduced SCR.
Fig. 12(b) shows the harmonic spectra of the simulated voltage
and current. It can be seen that the resonance frequencies are
17.5 Hz and 82.5 Hz, which imply that a lower-frequency
oscillation at the g-axis is introduced in the grid with a lower
SCR. The gain margin of two admittance ratios in this case is
shown in Fig. 12(c), which is 0.63 dB at the phase crossover
frequencies of 17.3 Hz and 82.7 Hz, respectively.

The experimental results and the frequency-domain analysis
for the Case III are shown in Fig. 13, where the critical value
of K,; is further reduced as 56, which is slightly less than that
in the simulation. The observed resonance frequencies from
the harmonic spectra of the measured voltage and currents are
17.5 Hz and 82.5 Hz, which are the same as the simulation
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Fig. 13. Experimental result and frequency-domain analysis for Case III.

result in Fig. 13(b). Also, the resonance frequencies identified
from the frequency-domain analysis are also the same as that
in Fig. 13(c), yet the gain margin is slightly increased to 0.68
dB. Hence, the theoretical analysis results are well aligned
with the simulations and experimental tests.

Case 1V - Different Grid Voltage Amplitude

In this case, by increasing the grid voltage from 220 V.,
to 400 V,.,,,s, a sequence-coupled, not only frequency-coupled,
resonance phenomenon is observed. The critical value of K,
that makes the system marginally stable is the same in the sim-
ulation and experiment, which is given in TABLE III. Fig. 14
shows the simulation result and the associated frequency-
domain analysis, while the experimental result is shown in
Fig. 15. It is clear that in both cases the resonance frequencies
which are observed from the simulation and experiment are the
same, which are 11 Hz and 111 Hz, as shown in Fig. 14(b)
and Fig. 15(b).

The frequency-domain analysis is provided in Fig. 14(c). It
is clear that the phase crossover frequencies of two admittance
ratios are -10.8 Hz and 110.8 Hz with a gain margin of 0.72
dB. This negative resonance frequency (-10.8 Hz) implies
a negative-sequence resonant component in the three-phase

system [2]. The presence of this negative-sequence resonance
is due to the oscillation induced by the PLL is 60.8 Hz
in the g-axis, which, when transforming into the «f-frame,
turns as 50 — 60.8 = —10.8 Hz and 50 + 60.8 = 110.8
Hz. Since the harmonic spectra shown in Fig. 14(b) and
Fig. 15(b) cannot reflect the sequence information, only the
11 Hz and 111 Hz resonance frequencies are observed. This
case study again indicates that the proposed method can also
predict the sequence-coupled resonances by means of two
SISO admittance ratios.

V. CONCLUSIONS

In this paper, a SISO system stability analysis method has
been introduced for analyzing the stability of three-phase VSC
systems. Differing from the conventional impedance-based
approach, the proposed method utilizes the active two-port
network theory to intuitively formulate a SISO open-loop gain
for the MIMO dynamic system of VSCs. The SISO open-loop
gain is further translated into two SISO admittance ratios and
the need of measuring the four entries of the VSC admittance
matrix is avoided. This superior feature significantly facili-
tates the system stability analysis, and the frequency-coupled
resonances can be readily identified through the Bode plots of
two SISO admittance ratios. Comprehensive case studies in the
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frequency-domain, time-domain simulations and experimental
tests have demonstrated the effectiveness of the proposed
stability analysis method.
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