

Aalborg Universitet

Efficiently Mining Maximal Diverse Frequent Itemsets

Wu, Dingming; Luo, Dexin; Jensen, Christian S.; Huang, Joshua Zhexu

Published in:
Database Systems for Advanced Applications - 24th International Conference, DASFAA 2019, Proceedings

DOI (link to publication from Publisher):
10.1007/978-3-030-18579-4_12

Creative Commons License
CC BY 4.0

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Wu, D., Luo, D., Jensen, C. S., & Huang, J. Z. (2019). Efficiently Mining Maximal Diverse Frequent Itemsets. In
Y. Tong, J. Natwichai, J. Yang, G. Li, & J. Gama (Eds.), Database Systems for Advanced Applications - 24th
International Conference, DASFAA 2019, Proceedings: DASFAA 2019: Database Systems for Advanced
Applications (pp. 191-207). Springer. Lecture Notes in Computer Science Vol. 11447
https://doi.org/10.1007/978-3-030-18579-4_12

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 25, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/304621235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-030-18579-4_12
https://vbn.aau.dk/en/publications/ae9f569d-2c31-40e6-88f4-e36745001716
https://doi.org/10.1007/978-3-030-18579-4_12

Efficiently Mining Maximal Diverse
Frequent Itemsets

Dingming Wu1, Dexin Luo1, Christian S. Jensen2, and Joshua Zhexue Huang1

1College of Computer Science & Software Engineering, Shenzhen University, China
{dingming,zx.huang}@szu.edu.cn, luodexin2016@email.szu.edu.cn

2Department of Computer Science, Aalborg University, Denmark
csj@cs.aau.dk

Abstract. Given a database of transactions, where each transaction is
a set of items, maximal frequent itemset mining aims to find all itemsets
that are frequent, meaning that they consist of items that co-occur in
transactions more often than a given threshold, and that are maximal,
meaning that they are not contained in other frequent itemsets. Such
itemsets are the most interesting ones in a meaningful sense. We study
the problem of efficiently finding such itemsets with the added constraint
that only the top-k most diverse ones should be returned. An itemset
is diverse if its items belong to many different categories according to
a given hierarchy of item categories. We propose a solution that relies
on a purposefully designed index structure called the FP*-tree and an
accompanying bound-based algorithm. An extensive experimental study
offers insight into the performance of the solution, indicating that it is
capable of outperforming an existing method by orders of magnitude and
of scaling to large databases of transactions.

Keywords: Frequent itemsets · Diversification · Algorithm.

1 Introduction

Frequent itemset mining [2] is important data analysis functionality. The proto-
typical application is supermarket basket analysis that allows a retailer to learn
which items are commonly bought together. For instance, it might be found
that “bread” and “milk” are often bought together. A major issue in frequent
itemset mining is the consideration of a huge number of itemsets, many of which
are eventually found to be insignificant. Hence, researchers have made efforts
to mine different constraint-based frequent itemsets, considering different kind
of itemsets, including closed [13], maximal [4], periodic [19], top-k [14], cost
(utility) [15], sequential [12], weighted [20], and diverse [17,18] itemsets.

Diverse frequent itemset mining [17, 18] targets scenarios where it may be
useful to give priority to frequent itemsets with items belonging to different
item categories. A measure called DiverseRank was introduced to quantify the
extent to which items in a set belong to multiple categories. The existing al-
gorithm [17] is inefficient for computing the diverse frequent itemsets on large

2 D. Wu et al.

data sets. The algorithm first extracts all frequent itemsets using the state-of-
the-art algorithm [9] and then extracts the possibly very small subset of diverse
itemsets from the frequent itemsets. It is a waste of time computing frequent
itemsets that are later eliminated because they are not diverse.

We combine the maximality and diversity constraints and study the problem
of efficiently finding the top-k maximal diverse frequent itemsets (MDFIs). Com-
pared to just finding diverse frequent itemsets, the maximality constraint is able
to reduce the number of discovered itemsets, since a frequent itemset is maximal
if none of its supersets are frequent. To support MDFI mining efficiently on large
data sets, we propose the FP*-tree, a variant of the FP-tree [9] that not only
is able to store compactly the necessary information for MFI computation, but
also contains a posting list for each item, which makes it possible to construct
supersets for maximal frequent itemsets (MFIs). We show that these supersets
can cover all the MFIs in the data set. However, the function for computing
the diversity score is non-monotonous. Therefore, the diversity score of those
supersets cannot be used as upper bounds on the diversity scores of the cov-
ered MFIs. Hence, we propose an algorithm that derives upper bounds on the
diversity scores of the MFIs to be computed. Using the FP*-tree, we present a
bound-based algorithm that is able to return the top-k MDFIs while computing
only some of the MFIs in the data set. Unlike existing methods that mine the
MFIs in descending order of item frequency, the proposed algorithm adopts a
new ordering based on the upper bounds on the diversity score for the MDFI
computation, so that the top-k result can be obtained by computing only a
few candidate MFIs. The proposed algorithm is compared to a basic algorithm
that extends two existing algorithms. The performance evaluation on a real data
set shows that the proposed algorithm on the FP*-tree outperforms the basic
algorithm by up to several orders of magnitude.

The rest of the paper is organized as follows. First, Section 2 presents prelim-
inaries and defines the paper’s problem formally. Then, Section 3 presents the
FP*-tree and the accompanying bound-based algorithm. Experimental results
are reported in Section 4, and Section 5 reviews related work. Finally, Section 6
concludes and offers research directions.

2 Preliminaries and Problem Definition

Let I be a finite set of items, I = {i1, i2, · · · , im}. A databaseD = {T1, T2, · · · , Tn}
is a set of transactions, where each transaction Tj ∈ D (1 ≤ j ≤ n) is a subset
of I and is assigned an unique identifier j. An itemset X = {i1, i2, · · · , il} is a
set of l items, where ij ∈ I (1 ≤ j ≤ l) and l is the length of X. An itemset X
is contained in a transaction T if X ⊆ T . The support1 s(X) of an itemset X
is the number of transactions containing X in D. Given 1 ≤ σ ≤ |D|, an itemset
X is called σ-frequent in D if s(X) ≥ σ. A σ-frequent itemset X in D is a

1 The support of an itemset can be also defined as the fraction of transactions that
contain it. For simplicity, we use the count of transactions, which is equivalent when
database D is fixed.

Efficiently Mining Maximal Diverse Frequent Itemsets 3

maximal σ-frequent itemset (MFI) in D if no σ-frequent itemset X ′ exists
in D such that X ′ ⊃ X [4].

A category tree CT is a tree structure, where non-leaf nodes correspond to
categories and leaf nodes are items in I. Each internal node is the sub-category of
its parent node. Each item (leaf node) ij ∈ I (1 ≤ j ≤ m) belongs to the category
of its parent node. Nodes close to the root correspond to general categories, while
nodes close to leaf nodes correspond to specialized categories. The height h of a
category tree is the length of the longest path from the root to a leaf node. The
height of the root is h, and the height of a leaf node is 0. The level of a node is
the length of the path from the node to the root. The level of the root is then 0,
and the level of a leaf node is h. We consider only balanced category trees, i.e.,
paths from the root to a leaf node have the same length. Including a category
tree in maximal frequent itemset mining makes it possible to distinguish between
itemsets with similar items and itemsets with dissimilar items.

Definition 1. Let X be an itemset, let l be a level in the category tree, where
0 ≤ l ≤ h. We define GP(X, l) to be the generalized pattern [17] of X at
level l as follows. GP(X,h) = X, and GP(X, l), l < h, is obtained by replacing
each item in GP(X, l+ 1) with its corresponding parent at level l with duplicates
removed, if any.

Definition 2. The Merging Factor [17] MF (X, l) of itemset X at a level l
depends on the number of items getting merged when the pattern is moved from
the immediate lower level (l + 1) to level l in the category tree

MF (X, l) =
|GP(X, l)| − 1

|GP(X, l + 1)| − 1
, 0 ≤ l ≤ h− 1 (1)

Definition 3. The Proportional Level Factor [17] PLF (l) of level l is de-
fined as:

PLF (l) =
2(h− l)
(h− 1)h

, 1 ≤ l ≤ h− 1, h > 1 (2)

Definition 4. The diversity score div(X) of itemset X is defined as the Di-
verseRank [17] of X.

div(X) =

s+1∑
l=h−1

PLF (l)MF (X, l), (3)

where s is the level at which |GP(X, s)| = 1.

A generalized pattern GP of an itemset represents the itemset in a category
space. The smaller the level of a category is, the more general the category
is. The merging factor reflects how fast the size of the GP is reduced when
moving upward in the category tree. The PLF assigns weights to levels. The
contributions of the levels near the root should be larger than those of the levels
near the leaf nodes. The diversity score of a frequent itemset ranges from [0, 1].

4 D. Wu et al.

If all the items in a frequent pattern have the same immediate parent, the score
is 0. On the other hand, if all the items in a frequent itemset have only the root
as the common ancestor, the score is 1. The higher the score is, the more diverse
the itemset is.
Example 1. Figure 1 shows an example of a category tree with height h =
4. Consider itemset X = {c, e, f}. The generalized pattern of X at level 3 is
GP(X, 3) = {C9, C11}. Items c and e both have C9 as parent at level 3 and
because the parent of item f at level 3 is C11. The merging factor MF (X, 3) of
itemset X at level 3 is (|GP(X, 3)|−1)/(|GP(X, 4)|−1) = (2−1)/(3−1) = 0.5.
The proportional level factor (PLF) at each level is shown in Figure 1. The
diversity score of itemset X is div(X) = PLF (3)MF (X, 3)+PLF (2)MF (X, 2) =
(1/6) · 0.5 + (1/3) · 1 = 0.42 because the generalized pattern of X at level 1 is
{C2} and |GP(X, 1)| = 1, meaning that s = 1.

Definition 5. An itemset X is called a top-k maximal diversified σ-frequent
itemset (kMDFI) in D if it satisfies two conditions:

1. X is a maximal σ-frequent itemset in D.
2. There are fewer than k maximal σ-frequent itemsets in D with diversity

scores that exceed div(X).

C1

C2 C3

C4 C5 C8

C9 C10 C12 C15

e c d f b pa

C11

C6

C13

j

C14

gil

C7

level

0

1

2

3

4

PLF

1/2

1/3

1/6

0

Fig. 1: Example Category Tree

T1 a b c e f o

T2 a c g

T3 e i

T4 a c d e g

T5 a c e g l

T6 e j

T7 a b c e f p

T8 a c d

T9 a c e g m

T10 a c e g n

Table 1: Transactions

Problem Statement. Given a database D of transactions, a category tree CT ,
a user-defined support threshold σ, and a desired number of itemsets k, the
problem is to find efficiently a set of top-k maximal diversified σ-frequent
itemsets (kMDFIs) in D, i.e., to discover efficiently k maximal σ-frequent
itemsets with the highest diversity scores in D.

Example 2. Consider the transactional database D in Table 1 and the category
tree CT in Figure 1. Let σ = 2. The top-2 maximal diversified 2-frequent itemsets
are X1 = {a, c, e, g} and X2 = {a, b, c, e, f} with diversity scores div(X1) = 0.78
and div(X2) = 0.24.

3 Bound-based Mining Algorithm

We present a method that is able to efficiently compute the kMDFIs in large
databases. Section 3.1 introduces the FP*-tree that stores information necessary

Efficiently Mining Maximal Diverse Frequent Itemsets 5

to enable kMDFI mining. Section 3.2 presents the bound-based algorithm that
uses the FP*-tree for mining kMDFIs. Section 3.3 derives bounds on the diversity
scores of MDFIs.

3.1 The FP*-Tree

The FP-tree [9] is an index on transactions that enables frequent itemset mining.
It consists of a tree structure and a header table. Each row in the header table
stores a frequent item, its frequency, and a pointer to a tree node. The rows are
sorted in non-increasing order of their frequencies. Ties are broken arbitrarily if
multiple items have the same frequency. The header table for the transactions
in Table 1 is shown in Figure 2, given σ = 2. The tree structure stores all
information necessary for mining frequent itemsets in a compact manner. It
is built in the following way. Initially, the tree contains only one root node.
Tree nodes are created and updated as transactions are scanned one by one. A
branch in the FP-tree stores items that appear in the same transactions, and the
nodes along a branch occur in the same order of the corresponding items in the
header table. Overlapping itemsets are represented by the sharing of prefixes of
the corresponding branches. For each transaction, the items included are sorted
using the item order in the header table. Consider the transactions in Table 1.
The scan of the first transaction leads to the construction of the first branch
of the tree: (e : 1), (c : 1), (a : 1), (b : 1), (f : 1). Item o is removed, since it is
not contained in the header table, meaning that o is infrequent. For the fourth
transaction, since its (ordered) frequent item list e, c, a, g, d shares a common
prefix e, c, a with the existing path, the count of each node along the prefix
is incremented by 1, and a new node (g : 1) is created and linked as a child
of (a : 2) and another new node (d : 1) is created and linked as the child of
(g : 1). The tree-structure on the right side of Figure 2 is the FP-tree built on
the transactions in Table 1.

Before presenting the FP*-tree, we define the rank r(i) of item i in the header
table as the position of i in the table. The rank of the first item is 1, and if item i
occurs before item i′, r(i) < r(i′). Let T (i) be the set of transactions that contain
i. The FP*-tree extends the FP-tree [9] by adding a posting list L(i) of (item,
counter) pairs for each item i in the header table. A pair (i′, counter) for item i
indicates that i and i′ co-occur counter times in transactions. An item i′ must
satisfy two conditions to be included in the posting list of item i: r(i′) < r(i)
and T (i) ∩ T (i′) 6= ∅.
Example 3. Figure 2 shows the FP*-tree of the transactions in Table 1 for
σ = 2. The header table and the tree structure are the same as in the FP-tree.
The posting list of item e is empty, since it is the first item in the header table
and no item has lower rank. The posting list of item a consists of pairs (c, 8)
and (e, 6), meaning that (1) c and e have lower rank than a, (2) items c and
a co-occur 8 times in transactions, and (3) items e and a co-occur 6 times in
transactions.

An FP*-tree can be built by a procedure that is a minor modification of that
for building the FP-tree. The construction of an FP-tree requires two scans of

6 D. Wu et al.

Item Freq. Node Links

Header Table

Root

c:2e:8

c:6 a:2

d:1g:1a:6

b:2 g:4

d:1f:2

e 8

c 8

a 8

g 5

b 2

f 2

d 2

Ø

(e,6)

(c,8),(e,6)

(c,5),(a,5),(e,4)

(e,2),(c,2),(a,2)

(e,2),(c,2),(a,2),(b,2)

(c,2),(a,2),(e,1),(g,1)

Posting Lists

Fig. 2: Example FP*-Tree

the transactional database. After the first scan, the header table is constructed.
The posting list of each item can be built during the second scan when the tree
structure is being constructed. For each transaction, the items are first sorted
following the item order in the header table. Then the items are inserted into
the tree structure one by one. In addition, each item i (except the first one) in
the transaction is added to the posting lists of the items whose ranks are lower
in the header table than that of i, and the corresponding counters are updated.
The following example shows how to build posting lists during the second scan.

Example 4. Figure 3 shows how posting lists are updated as transactions are
processed. So far, the header table has been constructed for σ = 2 (Figure 2).
Initially, the posting list of each item is empty. When transaction T1 in Table 1
is processed, the items in T1 are re-ordered as e, c, a, b, f to follow the item order
in the header table. Item o is removed, since it does not occur in the header
table, meaning that its frequency is less than σ = 2. The posting lists of item
c, a, b, and f are updated as shown in Figure 3. Take item a as an example.
Items e and c are added to its posting list, since their ranks in the header table
are higher than that of a. The corresponding counters are set to 1 because both
e and c co-occur with a in T1. Similarly, when T2 is processed, the posting lists
are updated as shown.

e

c

a

g

b

f

d

Ø

Ø

Ø

Ø

Ø

Ø

Ø

(e,1)

Ø

(e,1),(c,1)

Ø

(e,1),(c,1),(a,1)

(e,1),(c,1),(a,1),(b,1)

Ø

(e,1)

Ø

(c,2),(e,1)

(c,1),(a,1)

(e,1),(c,1),(a,1)

(e,1),(c,1),(a,1),(b,1)

Ø

T1 T2

Fig. 3: Building Posting Lists

3.2 Algorithm

Given a transaction database D and a category tree CT , a user defined frequency
threshold σ, and the desired number of MDFIs k, the state-of-the-art method

Efficiently Mining Maximal Diverse Frequent Itemsets 7

FPMAX [8] can compute the result kMDFIs by first discovering all maximal
frequent itemsets (MFIs) using the FP-tree and then computing the diversity
score of each MFI. Finally, the kMDFIs are the k MFIs with the largest diversity
scores. The limitation of FPMAX is that it has to compute many MFIs with
small diversity scores that do not contribute to the result.

The proposed bound-based algorithm adopts the FP*-tree, making it possi-
ble to avoid computing MFIs with small diversity scores, thus saving substantial
computational costs. Algorithm 1 shows the pseudo code. It first uses Algo-
rithm 2 to construct a superset for each item and then uses Algorithm 3 to
compute an upper bound on the diversity score for each item. Next, the items
in the header table are sorted in non-increasing order of their bounds, and the
algorithm then processes the items using this bound-based order. For each item
i, the algorithm computes the MFIs containing i as does FPMAX. The discov-
ered MFIs are added to the candidate set, and the diversity score of the current
kth MFI is recorded as τ . Next, when an item is to be processed, its bound is
first compared with τ . If the bound is smaller than τ , the algorithm returns the
current top-k MFIs; otherwise, the item is processed, and the MFIs containing
the item are computed. Function getNextItem() follows the bound-based order
in the header table and returns the next unprocessed item, and function MFI(i)
is the sub-routine in algorithm FPMAX that computes the MFIs that contain
item i.

input : Transactional database D, category tree CT , frequency threshold
σ, desired number of MFIs k

output: Top-k MDFIs

1 Xi ← call Algorithm 2 to construct a superset of the MFIs containing item i
in the header table according to σ;

2 Call Algorithm 3 to compute the upper bound bi on the diversity scores of

the MFIs containing item i using Xi;
3 Sort the items in the header table in descending order of their upper bounds;

4 τ ← −∞ ; . The diversity score of the current kth MFI.

5 while i← getNextItem() ∧bi ≥ τ do
6 X ← MFI(i);
7 foreach X ∈ X do
8 Compute the diversity score div(X) of X;
9 Add X to the candidate set;

10 τ ← the diversity score of the current kth MFI in the candidate set;

11 end

12 end
13 Return the top-k MFIs in the candidate set;

Algorithm 1: Bound-based Algorithm

3.3 Bounds on Diversity Scores

To define bounds on diversity scores, we need the concept of the tail of an itemset.

Definition 6. The tail t(X) of an itemset X is the item in X whose rank in
the header table is lower than the ranks of all the other items in X.

8 D. Wu et al.

We derive a bound on the diversity score of an itemset (Lemma 2) and a
bound on the diversity scores of the MFIs who have the same tail (Definition 6
and Lemma 4). Our bound-based algorithm efficiently computes the top-k MD-
FIs using these bounds.

Lemma 1. Given an FP*-tree, σ, and item i, Algorithm 2 constructs a superset
Xi of all possible MFIs whose tails are i. Note that there may exist multiple MFIs
whose tails are i.

Proof. Let Mi be the set containing all MFIs X such that t(X) = i. We now
prove that Xi as constructed by Algorithm 2 is a superset of any X in Mi.
Suppose an itemset X ′ exists in Mi that is not a subset of Xi. Then there must
be an item i′ in X ′ that is not in Xi. Since X ′ ∈ Mi is an MFI and t(X ′) = i,
items i′ and i must co-occur no fewer than σ times in transactions, and the
rank of i′ must be higher than that of i in the header table. According to the
method for constructing L(i), item i′ must be contained in L(i). And based on
Algorithm 2, item i′ should be added to Xi, which contradicts the assumption
that i′ is not in Xi. Thus, we have ∀X ∈Mi (Xi ⊇ X).

input : FP*-tree, support σ, item i
output: A superset of all possible MFIs whose tail is i

1 Get the posting list L(i) of item i from the FP*-tree;

2 Add i to Xi;
3 foreach item i′ in L(i) do
4 if the count associated with i′ ≥ σ then

5 Add i′ to Xi;
6 end

7 end

Algorithm 2: Superset Construction

Lemma 2. Given an itemset X, the set Xw = {iL, iR} consists of the furthest
apart pair of items in X according to the shortest path length in the category
tree. Then, the diversity score of Xw is an upper bound on the diversity score of
X, i.e., div(Xw) ≥ div(X).

Proof. Let C be the lowest common ancestor of the items in X, and let the level
of C in the category tree be s. Then C is also the lowest common ancestor of
the items in Xw, since set Xw = {iL, iR} consists of the furthest apart pair of
items in X according to the shortest path length. Then, we have |GP(X, s)| =
|GP(Xw, s)| = 1. For s+ 1 ≤ l ≤ h− 1, MF (X, l) ≤ 1 = MF (Xw, l). This holds
because (i) Xw contains only two items, and C is the lowest common ancestor
of the two items at level s, so that the cardinality of the generalized pattern of
Xw at level s+ 1 ≤ l ≤ h− 1 is 1, and (ii) |GF (X, l)| ≤ |GF (X, l + 1)|. Hence,
div(Xw) ≥ div(X).

Example 5. To exemplify Lemma 2, consider Figure 4 where X = {a, c, e}. The
furthest apart pair of items in X are a and e, so Xw = {a, e}. Both X and Xw

Efficiently Mining Maximal Diverse Frequent Itemsets 9

have the same lowest common ancestor C4 and its level is 2 in the category tree
in Figure 1. The diversity score of Xw is (1/6) · 1 = 0.17, and the diversity score
of X is (1/6) · (1/2) = 0.08, so that div(Xw) > div(X).

C4

C9 C10

e c a

C4

C9 C10

e a

Fig. 4: Example of Lemma 2

Lemma 3. Let itemsets X1 and X2 each consist of two items, and let |GP(X1, s1)| =
1 and |GP(X2, s2)| = 1. If s1 ≤ s2, div(X1) ≤ div(X2).

Proof. Since itemset X1 consists of two items and |GP(X1, s1)| = 1, we have

div(X1) =
∑s1+1

l=h−1 PLF (l)·1. Similarly, we obtain div(X2) =
∑s2+1

l=h−1 PLF (l)·1.
If s1 ≤ s2, we have div(X1) ≤ div(X2).

Lemma 4. div(Xi
w

) is an upper bound on the diversity score of any MFI whose
tail is i.

Proof. According to Lemma 1, set Xi is a superset of any MFI whose tail
is i. Let X represent any MFI whose tail is i. Sets Xi

w
and Xw consist of

the furthest apart pair of items in Xi and X, respectively. Given a category
tree, |GP(Xi

w
, s1)| = 1 and |GP(Xw, s2)| = 1. Since X ⊆ Xi, it follows that

s1 ≥ s2. Based on Lemma 3, div(Xi
w

) ≥ div(Xw). According to Lemma 2, we
have div(Xw) ≥ div(X). Hence, we derive div(Xi

w
) ≥ div(X), meaning that

div(Xi
w

) is an upper bound on the diversity score of any MFI with tail i.

According to Lemma 4, the bound on the diversity score of any MFI whose
tail is i is the diversity score of Xi

w
which consists of the furthest apart pair of

items in Xi returned by Algorithm 2. Actually, the diversity score of Xi
w

can
be computed without explicitly finding the furthest apart pair of items in Xi

using Algorithm 3. It takes the codes of the items in Xi as input. The length of
each code is the height of the category tree. Each element in the code of an item
corresponds to a node on the path from the root to the item. The diversity score
bound is initialized to 0. The algorithm checks the elements at the same level in
the codes of all the items from level = h− 1 to the level of the lowest common
ancestor of all the items. At each level, the corresponding proportional level
factor is added to the diversity score bound. It is because that for Xi

w
, before

reaching the level where the lowest common ancestor is found, MF (Xi
w
, l) = 1.

Finally, the bound on the diversity score of any MFI with tail i is returned.

Example 6. Table 2 shows itemsets Xi and the diversity score bounds div(Xi
w

)
computed by Algorithms 2 and 3, given the FP*-tree in Figure 2. Then bound-
based order of the items in the header table is g, b, f, a, d, c. Suppose the top-1

10 D. Wu et al.

MFI is requested. The bound-based algorithm first computes the MFIs whose
tail is item g, i.e., itemset {a, c, e, g} with diversity score 0.78. Now, it is found
that the diversity score of the current top-1 candidate exceeds the bound of the
item to be processed next (0.78 > 0.5). The algorithm returns {a, c, e, g} as the
top-1 result and terminates. If using the FPMAX algorithm, following the order
of the item frequency before finding the top-1 result, items c, a, g, b, and f have
to be processed. Even when item d has been processed, FPMAX is still not aware
of whether the MFIs that have not been found will have higher diversity scores.

input : Codes of items in set Xi

output: Bound on the diversity score of the MFIs with tail i

1 div ← 0;
2 level ← h− 1;
3 while level > 0 do
4 if the elements at level in all the codes are the same then
5 Break;
6 end
7 else
8 div ← div + PLF (level);
9 level ← level − 1;

10 end

11 end
12 Return div ;

Algorithm 3: Bound Computation

Table 2: Example Diversity Score Bounds
Item i Xi div(Xi

w
)

g a, c, e, g 1

b a, b, c, e 0.5

f a, b, c, e, f 0.5

a a, c, e 0.17

d a, c, d 0.17

c c, e 0

4 Empirical Study

The proposed algorithms are evaluated on a real commercial data set that con-
sists of 3,040,715 transactions. The number of unique items is 37,984. The height
of the category tree is 5. The number of non-leaf nodes in the category tree is
1,947. All algorithms have been implemented using Java and performed on a ma-
chine with Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz 3.30GHz, 16GB RAM
and the Windows 10 Professional operating system.

4.1 Result Investigation

Maximal Diversified Frequent Itemsets (MDFIs). Table 3 shows example
MDFIs and the number of MDFIs found from the real data set using various

Efficiently Mining Maximal Diverse Frequent Itemsets 11

frequency threshold σ, where N is the number of transactions in the data set.
The items in the discovered MDFIs belong to different categories. Take MDFI
“yoghurt, pear” as an example. Item “yoghurt” belongs to category “drink” and
item “pear” belongs to category “vegetable”. The data set used only contains
food-related catogories. It is expected that more interesting MDFIs will be found
if other types of items, such as clothes and home appliances, are included. When
σ is small, e.g., 0.000005 × N , a large number (980, 241) of MDFIs are found.
When σ is large, e.g., 0.001×N , only 71 MDFIs are discovered. In this dataset,
no MDFI is found when σ ≥ 0.005×N .

Table 3: Maximal Diversified Frequent Itemsets
σ = 0.001×N σ = 0.0005×N σ = 0.0001×N

MDFIs: 71 div MDFIs: 457 div MDFIs: 11313 div

yoghurt, banana 1 yoghurt, salt 1 stationary, auto accessories 1

pork, tomato 1 pork, pumpkin 1 yoghurt, fish 1

rice, fish 1 tomato, shrimp 1 rice, chicken 1

σ = 0.00005×N σ = 0.00001×N σ = 0.000005×N
MDFIs: 32990 div MDFIs: 356204 div MDFIs: 980241 div

yoghurt, hot dog 1 pistachio, tea 1 basket, chocolate, pistachio, sugar box, tea 1

yoghurt, dumpling 1 Coca Cola, nuts 1 yoghurt, shorts 1

potato, curry 1 oil, shampoo 1 sugar, crab 1

Length of MDFIs. Figure 5 shows the length distribution of the MDFIs. When
σ is large (0.0005×N), all MDFIs are of length 2. When σ = 0.00005×N , around
90% of the MDFIs are of length 2 and 10% of the MDFIs contain 3 items. When
σ is small (0.000005 × N), 50% of the MDFIs are of length 2, 40% contain 3
items, and 10% are of length larger than 3. It is expected that longer MDFIs are
found when using small σ values, since more items are considered as frequent.

Diversity Score Distribution. Figure 6 shows the diversity score distribution
of the discovered MDFIs. When σ is large (0.0005×N), 66% of the MDFIs have
diversity scores from 0.75 to 1, and 10% have diversity scores from 0.5 to 0.75.
When σ is small (0.000005×N), 42% of the MDFIs have diversity scores from
0.75 to 1, 19% have diversity scores from 0.25 to 0.5, and 40% have diversity
scores from 0 to 0.25. As expected, when using small σ values, long MDFIs with
high diversity scores are found.

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 ≥4

%
 o

f
n
u
m

b
e
r

o
f
M

F
Is

length

σ=0.000005

σ=0.00005

σ=0.0005

Fig. 5: Length Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

[0-0.25]

(0.25-0.5]

(0.5-0.75]

(0.75-1.0]

%
 o

f
n

u
m

b
e

r
o

f
M

F
Is

diversity score

σ=0.000005

σ=0.00005

σ=0.0005

Fig. 6: Diversity distribution

12 D. Wu et al.

4.2 Efficiency

We proceed to evaluate the performance of the proposed algorithm and a basic
algorithm under different parameter settings.

Basic Algorithm. No algorithm exists that targets top-k MDFIs. Instead, for
comparison, we provide a basic algorithm that extends some existing techniques.
The basic algorithm has two steps. It firstly finds all maximal frequent itemsets
using the FPMAX [8] algorithm. Then, it computes the diversity score of each
discovered maximal frequent itemset using the Item-Encoding algorithm [17].
Finally, the top-k MDFIs with the highest diversity scores are returned.

Varying the number of requested sets k. Recall that to obtain the top-k
MDFIs, the basic algorithm computes all the MFIs from the data set, while the
bound-based algorithm only computes a few candidate MFIs. Figure 7 shows
the number of MFIs computed and the CPU time of the two algorithms when
k is varied from 1 to 50. Parameter σ is set to 4000, which is roughly 0.13% of
the transactions in the data set. Note that the number of MFIs computed and
the CPU time of the basic algorithm do not change with k, since whatever k
is, the basic algorithm always computes all the MFIs in the data set and ranks
them. Nevertheless, the number of MFIs computed, and the CPU time of the
bound-based algorithm increase as k increases. Because the more MDFIs that are
requested, the more candidates are computed, yielding more computational cost.
When k = 1, the number of MFIs computed using the bound-based algorithm is
55% less than that of the basic algorithm and the CPU time of the bound-based
algorithm is only 0.6% of the CPU time of the basic algorithm. When k is set to
10 and 20, the bound-based algorithm also significantly outperforms the basic
algorithm. When k = 50, the performance of the bound-based algorithm and
the basic algorithm are the same. The reason is that there are 38 MFIs in the
data set under the current parameter setting. Requesting top-50 MDFIs incurs
the same computational cost for both algorithms.

 0

 10

 20

 30

 40

 50

1 10 20 50

n
u
m

b
e
r

o
f
M

F
Is

k

Basic

Bound-based

(a) # of MFIs

1e+00

1e+01

1e+02

1e+03

1e+04

1 10 20 50

ru
n
ti
m

e
 (m

s
)

k

Basic

Bound-based

(b) CPU time

Fig. 7: Varying k

Varying the frequency threshold σ. Figure 8 shows the number of MFIs
computed and the CPU time of the two algorithms when σ is varied from 1500

Efficiently Mining Maximal Diverse Frequent Itemsets 13

(0.05% of the transactions in the data set) to 4000 (0.1% of the transactions in
the data set). The number of requested MDFIs k is fixed at 10. When σ is small,
many MFIs can be discovered. When σ is large, only few MFIs exist. Hence, as
σ increases, the computational costs of both algorithms decrease. The bound-
based algorithm beats the basic algorithm for all values of σ. The number of
MFIs computed using the bound-based algorithm is 53%–83% of that using the
basic algorithm. The CPU time of the bound-based algorithm is 0.6%–7.2% of
the CPU time of the basic algorithm.

 0

 100

 200

 300

 400

 500

1.5k 2k 2.5k 3k 3.5k 4k

n
u
m

b
e
r

o
f
M

F
Is

σ

Basic

Bound-based

(a) # of MFIs

1e+00

1e+01

1e+02

1e+03

1e+04

1.5k 2k 2.5k 3k 3.5k 4k
ru

n
ti
m

e
 (m

s
)

σ

Basic

Bound-based

(b) CPU time

Fig. 8: Varying σ

Scalability. To study how the computational cost of the proposed algorithm
changes when varying the size of the data set, we have generated five data sets
from the original data set by randomly selecting 200K, 400K, 600K, 800K, and
1M transactions. Figure 9 shows the number of MFIs computed and the CPU
time of the two algorithms when the size of the data set is varied. Parameter
σ is set to 500, which is roughly 0.25%, 0.125%, 0.083%, 0.063%, and 0.05% of
the number of transactions in the five data sets, respectively. The number of
requested MDFIs k is fixed at 1. The computational costs of both the basic and
the bound-based algorithms increase as the size of data set increases. On the
five data sets, the bound-based algorithm outperforms the basic algorithm by
orders of magnitude in terms of CPU time. The number of computed MFIs of
the bound-based algorithm is 33.3%–82.3% of that of the basic algorithm.

 0

 100

 200

 300

 400

 500

200 400 600 800 1000

n
u
m

b
e
r

o
f
M

F
Is

number of transaction(k)

Basic

Bound-based

(a) # of MFIs

1e+00

1e+01

1e+02

1e+03

1e+04

200 400 600 800 1000

ru
n
ti
m

e
 (m

s
)

number of transaction(k)

Basic

Bound-based

(b) CPU time

Fig. 9: Varying the Number of Transactions

14 D. Wu et al.

5 Related Work

Frequent Itemsets with Various Constraints. Since mining frequent item-
sets from transactional databases involves an exponential mining space and gen-
erates a huge number of itemsets, efficient discovery of constrained or user-
interest based frequent itemsets is attractive. In many real-world scenarios, it is
often sufficient to mine a small and interesting representative of frequent item-
sets. Hence, various constraints have been posed on the frequent itemsets in the
literature. An itemset X is closed in a data set if there exists no superset that has
the same frequency as X. Pasquier et al. [13] propose the A-Close algorithm that
uses a closure mechanism to find frequent closed itemsets. A frequent itemset
is maximal if none of its supersets are frequent. Burdick et al. [4] introduce the
MAFIA algorithm for mining maximal frequent itemsets from a transactional
database. A frequent itemset is periodic-frequent if it appears at a user-specified
regular interval in the database. Tanbeer et al. [19] present the periodic-frequent
pattern tree that captures the database contents in a highly compact manner
and enables a pattern growth mining technique to generate the complete set of
periodic-frequent itemsets in a database for user-given periodicity and support
thresholds. Top-k frequent itemset mining finds interesting itemsets from the
highest support to the k-th support. The CRM and CRMN algorithms [14] are
proposed to mine top-k frequent itemsets efficiently. In utility mining, each item
has external utility such as a profit or price and internal utility that refers to a
non-binary value in a transaction. The importance of an itemset is measured by
the concept of utility, which is the sum of the products of external and internal
utilities of items in the itemset. An itemset is called a high utility itemset [15]
when its utility is no less than a user-specified minimum utility threshold. Mallick
et al. [12] consider the problem of the incremental mining of sequential patterns
when new transactions or new customers are added to an original database.
They present an algorithm for mining frequent sequences that uses information
collected during an earlier mining process to cut down the cost of finding new
sequential patterns in the updated database. Frequent weighted itemset mining
considers a database where each item in a transaction may have a different sig-
nificance. Vo et al. [20] propose a method for mining frequent weighted itemsets
using WIT-trees. The diverse frequent itemset mining [17] uses the DiverseRank
to rank the frequent itemsets based on the items categories. Later, Swamy et
al. [18] study the diverse frequent itemsets in the context where there concept
hierarchies are unbalanced.

In this paper, we study the MDFI that extends the diverse frequent itemset by
considering the maximality constraint. And an efficient bound-based algorithm
is proposed for mining the top-k MDFIs.

Maximal Frequent Itemset Mining. MAFIA [5] mines maximal frequent
itemsets (MFIs) using a depth-first traversal of the itemset lattice with pruning
mechanisms and combining a vertical bitmap representation of the database.
GenMax [6, 7] is a backtrack search based algorithm for mining MFIs. It uses
progressive focusing to perform maximality checking, and it uses diffset prop-

Efficiently Mining Maximal Diverse Frequent Itemsets 15

agation to perform fast frequency computation. MinMax [21] is also based on
depth-first traversal and iterations for mining MFIs. It removes all the non-
maximal frequent itemsets without enumerating all the frequent itemsets from
smaller ones. It backtracks to the proper ancestor directly, instead of level by
level. Algorithms LFIMiner and LFIMiner-ALL [10] adopt a pattern fragment
growth methodology based on the FP-tree for mining maximum length frequent
itemsets that is a subset of the MFIs. Yang [23] studied the complexity-theoretic
aspects of MFI mining, from the perspective of counting the number of solu-
tions. MaxDomino [16] uses the notions of dominane factor and collapsibility
of transaction for efficiently mining MFIs. It employs a top-down strategy with
selective bottom-up search. Pincer-Search [11] combines both bottom-up and
top-down search for discovering MFIs. A restricted search is conducted in the
top-down direction for maintaining and updating the maximum frequent candi-
date set, which is used for early pruning of candidates that would normally be
encountered in the bottom-up search. CfpMfi [22] is a depth-first search algo-
rithm based on CFP-tree for mining MFIs. It uses a variety pruning techniques
and an item ordering policy to reduce the search space. DepthProject [1] finds
long itemsets using a depth first search of a lexicographic tree of itemsets, and
it uses a counting method based on transaction projections along its branches.
MaxMiner [3] employs a breadth-first traversal of the search space and reduces
database scanning by employing a look-ahead pruning strategy, i.e., if a node
with all its extensions can be determined to be frequent, there is no need to
further process that node. FPMAX [8] is an extension of the well know FP-
growth [9] for mining MFIs. The maximal frequent itemset tree (MFI-tree) is
used to keep track of all maximal frequent itemsets.

The basic algorithm for mining MDIFs proposed in this paper uses the state-
of-the-art FPMAX as a component. And the proposed bound-based algorithm
outperforms the basic algorithm significantly.

6 Conclusions

This work studies the problem of finding the top-k most diverse itemsets that
are frequent. It tries to find long frequent itemsets of items belonging to different
categories. Since no existing algorithm targets top-k MDFIs mining, we propose
a basic algorithm that extends existing techniques. However, the basic algorithm
fails to scale well to large data sets. We also propose the so-called FP*-tree along
with a bound-based algorithm that is able to reduce the computational costs very
significantly. Extensive experiments conducted on a large data set demonstrate
that the proposed method consistently outperforms the basic algorithm.

References

1. Agarwal, R.C., Aggarwal, C.C., Prasad, V.V.V.: Depth first generation of long
patterns. In: KDD. pp. 108–118 (2000)

16 D. Wu et al.

2. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: SIGMOD. pp. 207–216 (1993)

3. Bayardo, Jr., R.J.: Efficiently mining long patterns from databases. SIGMOD Rec.
27(2), 85–93 (1998)

4. Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu, T.: MAFIA: A maximal
frequent itemset algorithm. IEEE Trans. Knowl. Data Eng. 17(11), 1490–1504
(2005)

5. Burdick, D., Calimlim, M., Gehrke, J.: Mafia: A maximal frequent itemset algo-
rithm for transactional databases. In: ICDE. pp. 443–452 (2001)

6. Gouda, K., Zaki, M.J.: Genmax: An efficient algorithm for mining maximal fre-
quent itemsets. Data Min. Knowl. Discov. 11(3), 223–242 (2005)

7. Gouda, K., Zaki, M.J.: Efficiently mining maximal frequent itemsets. In: ICDM.
pp. 163–170 (2001)

8. Grahne, G., Zhu, J.: High performance mining of maximal frequent itemsets. In:
HPDM (2003)

9. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: SIGMOD. pp. 1–12 (2000)

10. Hu, T., Sung, S.Y., Xiong, H., Fu, Q.: Discovery of maximum length frequent
itemsets. Inf. Sci. 178(1), 69–87 (2008)

11. Lin, D.I., Kedem, Z.M.: Pincer-search: An efficient algorithm for discovering the
maximum frequent set. IEEE Trans. on Knowl. and Data Eng. 14(3), 553–566
(2002)

12. Mallick, B., Garg, D., Grover, P.S.: Incremental mining of sequential patterns:
Progress and challenges. Intell. Data Anal. 17(3), 507–530 (2013)

13. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed
Itemsets for Association Rules, pp. 398–416 (1999)

14. Pyun, G., Yun, U.: Mining top-k frequent patterns with combination reducing
techniques. Appl. Intell. 41(1), 76–98 (2014)

15. Ryang, H., Yun, U., Ryu, K.H.: Fast algorithm for high utility pattern mining with
the sum of item quantities. Intell. Data Anal. 20(2), 395–415 (2016)

16. Srikumar, K., Bhasker, B.: Efficiently mining maximal frequent sets in dense
databases for discovering association rules. Intell. Data Anal. 8(2), 171–182 (2004)

17. Srivastava, S., Kiran, R.U., Reddy, P.K.: Discovering diverse-frequent patterns in
transactional databases. In: COMAD. pp. 69–78 (2011)

18. Swamy, M.K., Reddy, P.K., Srivastava, S.: Extracting diverse patterns with unbal-
anced concept hierarchy. In: PAKDD. pp. 15–27 (2014)

19. Tanbeer, S.K., Ahmed, C.F., Jeong, B., Lee, Y.: Discovering periodic-frequent pat-
terns in transactional databases. In: PAKDD. pp. 242–253 (2009)

20. Vo, B., Coenen, F., Le, B.: A new method for mining frequent weighted itemsets
based on wit-trees. Expert Syst. Appl. 40(4), 1256–1264 (2013)

21. Wang, H., Li, Q., Ma, C., Li, K.: A maximal frequent itemset algorithm. In: RSFD-
GrC. pp. 484–490 (2003)

22. Yan, Y., Li, Z., Wang, T., Chen, Y., Chen, H.: Mining maximal frequent itemsets
using combined fp-tree. In: AI. pp. 475–487 (2004)

23. Yang, G.: The complexity of mining maximal frequent itemsets and maximal fre-
quent patterns. In: KDD. pp. 344–353 (2004)

