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ABSTRACT
With the proliferation of mobile devices and location-based ser-
vices, increasingly massive volumes of geo-tagged data are becom-
ing available. This data typically also contains non-location infor-
mation. We study how to use such information to characterize a
region and then how to find a region of the same size and with
the most similar characteristics. This functionality enables a user
to identify regions that share characteristics with a user-supplied
region that the user is familiar with and likes. More specifically,
we formalize and study a new problem called the attribute-aware
similar region search (ASRS) problem. We first define so-called
composite aggregators that are able to express aspects of interest
in terms of the information associated with a user-supplied region.
When applied to a region, an aggregator captures the region’s rel-
evant characteristics. Next, given a query region and a composite
aggregator, we propose a novel algorithm called DS-Search to find
the most similar region of the same size. Unlike any previous work
on region search, DS-Search repeatedly discretizes and splits re-
gions until an split region either satisfies a drop condition or it is
guaranteed to not contribute to the result. In addition, we extend
DS-Search to solve the ASRS problem approximately. Finally, we
report on extensive empirical studies that offer insight into the effi-
ciency and effectiveness of the paper’s proposals.
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1. INTRODUCTION
With the proliferation of location-based services, increasingly

massive volumes of spatial objects, often called points of interest
(POI), are being accumulated. These include geo-tagged tweets,
reviews, business directory listings and tourist information. For in-
stance, as of March 31, 2016, 2.8 million local businesses had been
claimed on Yelp [8]. These spatial objects often have additional
attributes that describe their properties. For example, in real es-
tate listings, apartments for sale have attributes such as price, size,
number of bedrooms, and year of construction.
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Figure 1: Motivating example.

The availability of massive volumes of spatial objects enables
data-driven solutions to real-life problems, similar-region search
being one such problem. In real-world settings, many scenarios
exist where users may want to search for regions with character-
istics similar to those of identified regions. For example, a tourist
who is happy with a particular shopping district in an unfamiliar
city may want to find another region that is similar to the shopping
district. Or a small business owner who is looking to expand may
want to find a region with surroundings that are similar to those
of the current business, as this may make it possible to reuse ex-
isting strategies and concepts for the new business. The following
more elaborate example serves to further motivate and illustrate the
similar region search problem.

EXAMPLE 1. Suppose that a user wants to buy an apartment.
The ideal neighborhood should satisfy three conditions: (1) The
neighborhood should include a restaurant, a supermarket, and a
bus stop, which makes it easy to get food and use public trans-
portation. The number of restaurants, supermarkets, and bus stops
should not be too large, to avoid noisy neighborhood. (2) The aver-
age sales price of apartments in the neighborhood in the past year
should be within the user’s budget. (3) The neighborhood should
be within a region of certain size so that the facilities are within
walking distance.

The user has started in a new job in a new city. How can the user
find a region with the above characteristics in this city?

When buying a new apartment, it is a tedious task to find a de-
sirable new region manually, particularly when many factors are to
be taken into account. To support applications like this, we provide
general functionality that, given a region and a description of the
characteristics to be considered, finds a similar region.

In order to find a similar region, two important questions must
be answered: (1) What does a region look like? and (2) How is
the similarity between two regions to be defined? To answer the
first question, we observe that the displays of smartphones, laptops,
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tablets, and navigation devices generally, are rectangular. So we
contend that defining a region to be rectangular is a natural choice
that makes it easy for users to specify regions. This idea is also
adopted in previous studies [5, 11, 24].

To answer the second question, we notice that different users are
likely to be interested in different aspects of a region. In Exam-
ple 1, the user is interested in two aspects: the presence of different
categories of POIs in the region, specifically restaurants, supermar-
kets, and bus stops, and the average sales price of apartments in the
region. These two aspects share a common characteristic. They are
both aggregates of attribute values associated with spatial objects
in a region. Specifically, we compute the number of POIs of each
category for all the POIs in the region, and we compute the average
sales price of the apartments in the region. In order to support a
broad class of applications, we aim to support the specification of
a broad class of notions of similarity. To do that, we introduce the
notion of a composite aggregator. Users can use their own com-
posite aggregators to define the aspects that they are interested in.
The result of applying a composite aggregator to a region is a fea-
ture vector that describes the region w.r.t. the aspects specified in
the aggregator. This then enables computation of the similarity be-
tween two regions.

More specifically, we generalize the problem described in Ex-
ample 1 and formulate the attribute-aware similar region search
(ASRS) problem. Let F be a composite aggregator that defines the
aspects that a user is interested in. Given a region rq of size a× b,
the ASRS problem is to find a similar region r of size a × b such
that the distance between the aggregate representations F (r) and
F (rq) of the two regions is minimal.

We propose a novel exact algorithm called DS-Search that solves
the ASRS problem. Unlike all previous work on region search
[5, 11, 12, 21] that is based on the sweep line algorithm, DS-Search
adopts a different and novel tack. We first reduce the ASRS problem
to the attribute-aware similar point (ASP) problem. The reduction
enables us to find a point from O(n2) disjoint regions, where n
is the number of spatial objects, instead of from an infinite set of
points in space. To solve the ASP problem, we first use a grid to
discretize the space into cells, which are classified into two groups:
clean cells and dirty cells. We compute an intermediate result by
processing the clean cells and estimate lower bounds of the distance
for the dirty cells. The dirty cells whose lower bounds exceed the
intermediate result can be safely pruned. Then we split the space
containing the remaining dirty cells into two smaller sub-spaces.
We repeatedly apply this discretize-split procedure to the smaller
sub-spaces until either the space satisfies a drop-condition or all
dirty cells in the grid are pruned. When the algorithm terminates,
it returns the exact answer to the ASRS problem. The complexity
of DS-Search is O(Ωn), where n is the number of spatial objects,
and parameter Ω depends only on the GPS accuracy and is inde-
pendent of the number of spatial objects. Hence, we can treat Ω as
a fixed constant. When the number of spatial objects is much larger
than Ω, the complexity of DS-Search can then be viewed as O(n),
which is much better than the O(n2) complexity of the sweep line
algorithm. In our experimental study, DS-Search is 2–3 orders of
magnitude faster than the sweep line algorithm. Moreover, we in-
troduce indexing along with pruning techniques to improve the ef-
ficiency of DS-Search.

Since a slight imprecision may be desirable in some applications,
if this substantially reduces the processing time, we extend DS-
Search to solve the ASRS problem approximately. This extension
of DS-Search finds a region that is very similar to the query region
with a better efficiency.

In summary, the key contributions are as follows:

(1) To the best of our knowledge, this is the first study of the
attribute-aware similar region search (ASRS) problem.

(2) We develop a novel algorithm called DS-Search to solve the
ASRS problem. Its time complexity is O(Ωn), where n is the num-
ber of spatial objects, and Ω is a constant determined by the accu-
racy of GPS tracking devices.

(3) We propose a novel index structure to improve the efficiency
of DS-Search. We further extend DS-Search to solve the ASRS
problem approximately with a better efficiency.

(4) By applying implementations of the proposed algorithms to
both real-life and synthetic datasets, we experimentally investigate
their efficiency and effectiveness in finding the most similar region.
The results show that DS-Search is 2–3 orders of magnitude faster
than a baseline algorithm, which is adapted from the sweep line
algorithm [11, 21]. We also show that with a slight modification,
our algorithm is about one order of magnitude faster than the sweep
line algorithm [21] for the MaxRS problem.

2. RELATED WORK
Range Aggregate Query. The range aggregate query [4,15,16,22]
takes as input a query range q and a set O of spatial objects, and
it outputs the total weight of the spatial objects in the query range.
In contrast, the ASRS problem aims to find a range of a given size
such that it is most similar to the query region. These two problems
have different settings. Hence, the approaches designed for range
queries cannot be applied to solve the ASRS problem.
Spatial Keyword Query. Different types of spatial keyword queries
(SKQ) typically take a location and a set of keywords as input.
Early studies [3, 7, 9, 10, 14, 18] aim to find a set of geo-textual ob-
jects such that each object is relevant to the query keywords and
is close to the query location. Instead of retrieving single objects,
several more recent studies retrieves groups of objects. One kind
of such functionality is the notion of collective spatial keyword
queries (CoSKQ). For example, the mCK query [6, 13, 25] aims
to find a group of objects covering all the query keywords while
minimizing the distances between the objects in the group. Cao et
al. [2] study five types of CoSKQ that use different objective func-
tions. Similar to the CoSKQ, given a source and a destination, the
optimal route query [17,19,23] aims to find the shortest route from
the source to the destination that covers POIs belonging to POI cat-
egories (e.g., a gas station or a post office) specified in the query.

The above types of spatial keyword queries are fundamentally
different from the ASRS problem. Specifically, the ASRS problem
computes a more general aggregate representation when captur-
ing a region’s characteristics. Therefore, our problem applies to
a broader range of spatial data, including, but not limited to, geo-
textual data. Moreover, the ASRS problem aims to find a rectangu-
lar region, not a set of objects. Consequently, new techniques are
needed to solve the ASRS problem.
Region Search Problem. Our problem is closely related to the
region search problem. A class of studies [5, 11, 21, 24] aim to
find a region of a given size such that the aggregate score of the
region is maximized. For instance, the max-enclosing rectangle
(MER) problem [21] aims to find a rectangular region of a given
size that encloses the maximum number of objects. This problem
is further refined as the maximizing range sum (MaxRS) problem
[5, 24]. Next, Feng et al. [11] study the best region search (BRS)
problem that extends the aggregate function from SUM to support
submodular monotone functions. Also, Mostafiz et al. [20] extend
the MaxRS problem by taking the types of the spatial objects into
account. Specifically, they apply constraints to the types of the
spatial objects while searching for the region with the maximum
total weight.
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The ASRS problem is different from the aforementioned region
search problems that do not take a query region as input, as does
ASRS. The MER problem [21] and the MaxRS [5] problem use
SUM as the aggregate function to search for a region, while the
ASRS problem considers different types of attributes and uses the
distance between the feature vectors of a candidate region r and
the query region. Hence, the ASRS problem is more general, and
the MER and MaxRS problems are special cases of the ASRS prob-
lem. In our experimental study, we adapt our proposed algorithm
to solve the MaxRS problem and find that our algorithm is about
one order of magnitude faster than the state-of-the-art algorithm
for MaxRS [5, 21, 24].

Furthermore, we propose a novel algorithm, DS-Search, whose
time complexity is O(Ωn). This algorithm is fundamentally dif-
ferent from the sweep line algorithm used in all previous work
[5, 11, 21, 24]. The time complexity of the sweep line based al-
gorithms is dependent on the score function used: when using a
simple score function like SUM, the time complexity isO(n logn)
[5, 21], where n is the number of spatial objects. When using a
submodular function, the time complexity is O(n2) [11]. When
applying the sweep line algorithm to solve the ASRS problem, its
time complexity is O(n2), to be discussed in Section 4.1.

3. PROBLEM STATEMENT
We proceed to formulate the Attribute-aware Similar Region

Seach (ASRS) problem.

3.1 Terminology
We denote the set of attributes considered byA = {A1, . . . , Am},

and we denote the domain of attribute Ai by dom(Ai).
Next, we let O denote the set of spatial objects considered. For

a spatial object o, we use o.ρ to denote its geo-location, and o[Ai]
to denote its value of attribute Ai. For example, a set of POIs can
be viewed as a set of spatial objects. Attribute set A may contain
attributes like “category,” “rating,” and “price.” The domain of at-
tribute “category” may contain values such as “restaurant.” As an-
other example, geo-tagged tweets can be viewed as spatial objects.
We can assign a topic to each tweet according to its textual content
by adopting an existing topic model [1]. Then the attribute set A
may contain attributes like “hashtag” and “topic.” The domain of
attribute “topic” may contain pre-defined topics.

3.2 Composite Aggregator
There is no single right way of defining the similarity between

two regions. Rather, different users may be concerned with differ-
ent aspects of a region. For instance, one user may think two re-
gions are similar because they both contain many apartments, while
another user may think that the regions are different because one
contains old and inexpensive apartments while the other contains
new and expensive apartments. How can a user express the aspects
of interest of a region, and how can we capture the characteristics
of the region w.r.t. those aspects? Next, we introduce the notion
of a composite aggregator, which enables users to define the as-
pects that they are interested in. The result of applying a composite
aggregator to a region is a feature vector that describes the region
w.r.t. the aspects specified in the aggregator.

We start with the notion of aggregator, which computes a fea-
ture vector for a region w.r.t. a given attribute.

DEFINITION 1. Aggregator. An aggregator f takes as input
a region r, an attribute A, and a selection function γ that selects
a set γ(r) of objects from region r that satisfy certain conditions.

Aggregator f computes a feature vector from the set γ(r) of objects
w.r.t. the attribute A.

We consider three kinds of aggregators. Each aggregator takes a
region r, an attribute A, and a selection function γ as input.

(1) Distribution Aggregator fD: Aggregator fD computes the
distribution of objects in γ(r) according to their values of attribute
A. The distribution is represented as a d-dimensional vector, where
d = |dom(A)| is the count of all possible values for attribute A.
The i-th dimension of the vector is given as follow: fD(r, A, γ)[i] =
|{o|o ∈ γ(r) ∧ o[A] = ai}|.

(2) Average Aggregator fA: Aggregator fA computes the aver-
age value of attribute A for all objects in γ(r), i.e.,
fA(r,A, γ) = 1

|γ(r)|
∑
o∈γ(r) o[A].

(3) Sum Aggregator fS: Aggregator fS computes the sum of
the values of the attribute A for all objects in γ(r), i.e.,
fS(r, A, γ) =

∑
o∈γ(r) o[A].

EXAMPLE 2. We illustrate the outputs of the three aggrega-
tors by using the example in Fig 1. The domain of “category”
is dom(category) = {Apartment, Supermarket, Restaurant, Bus
stop}. Let γall be a selection function that selects all objects. Ag-
gregator fD(rq, category, γall) = (2, 1, 1, 1) computes a 4-dimen-
sional vector that captures the category distribution of the objects
in rq (two apartments, one supermarket, one restaurant, and one
bus stop). Let γapt be a selection function that selects the objects
whose “category” is “Apartment.” Aggregator fA(rq,Price, γapt)
= 2+1.5

2
= 1.75 computes the average sales price of the apart-

ments in rq . Aggregator fS(rq,Price, γapt) = 2 + 1.5 = 3.5
computes the sum of sales prices for the apartments in rq .

Remark. We consider three useful aggregators. For instance, we
can use fD to compute the categorical distribution of POIs in a
region, which reflects the functionality of the region. A region with
many apartments is very likely a residential area.Next we can use
fA to compute the average price of apartments for sale in a region,
which reflects an important characteristic of a region; we can use
fS to compute the total number of residents, which is useful in city
planing tasks, like allocating medical resources. We emphasize the
proposed solution is not limited to these three aggregators. Users
can define their own aggregators to support various applications.

So far, we have made it possible to use an aggregator f ∈ {fD,
fA, fS} together with an attribute A and a selection function γ to
define an aspect of interest. Next, we introduce the notion of a
composite aggregator F that makes it possible to define multiple
aspects of interest.

DEFINITION 2. Composite aggregator. A composite aggrega-
tor is defined as a k tuple F = ((f1, A1, γ1), . . . , (fk, Ak, γk)),
where fi ∈ {fD, fA, fS} is an aggregator, Ai is an attribute, and
γi is a selection function, i ∈ [1, k].

We next define the aggregate representation as follows.

DEFINITION 3. Aggregate Representation. When applied to
a region r, a composite aggregatorF = ((f1, A1, γ1), . . . , (fk, Ak,
γK)) computes a vector F (r) that is the concatenation of the out-
puts of fi(r, Ai, γi), i ∈ [1, k]. We refer to F (r) as the aggregate
representation of r w.r.t. composite aggregator F .

EXAMPLE 3. In Example 2, let F = ((fD, Category, γall),
(fA,Price, γapt)) be a composite aggregator. The representation
of rq w.r.t. F is F (rq) = (2, 1, 1, 1, 1.75).

The aggregate representation captures a region’s characteristics
w.r.t. the aspects defined in the composite aggregator. This then
enables the computation of the relevant similarity between two re-
gions.
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3.3 Problem Definition
We are now ready to define the ASRS problem.

DEFINITION 4. Attribute-aware Similar Region Search (ASRS)
problem. Given a setO of spatial objects, a query region rq of size
a × b, and a composite aggregator F , the attribute-aware similar
region search problem aims to find a region r of size a×b such that

r = arg min
r
dist(F (r), F (rq)),

where dist(F (r), F (rq)) is the distance between the representa-
tions of r and rq , which is defined as follows.

dist(F (r), F (rq)) =
∑
|F (r)[i]− F (rq)[i]| ·w[i],

where w is a weight vector that specifies the user’s preference
for each dimension in the representation.

The ASRS problem follows the idea of query by example. The
query region can be a real region in space. For instance, user may
want to find a region in city A with the same function as a region
in city B. The query region can also be a virtual region handcrafted
by a user to describe his interests.

Note that the distance is based on the L1-norm. Our proposals
can be modified easily to use other distance metrics, e.g., L2-norm.
For ease of presentation, we only cover the L1-norm distance.

EXAMPLE 4. In Example 2, consider a weight vector w =
(1, 1, 1, 1, 1). The ASRS problem aims to find the most sim-
ilar region for rq w.r.t. the composite aggregator F . We have
F (r1) = (3, 1, 1, 1, 1.6) and F (r2) = (2, 0, 2, 0, 2.9) for re-
gions r1 and r2, respectively. Since the representation of rq is
F (rq) = (2, 1, 1, 1, 1.75), we have dist(F (rq), F (r1)) = 1.15,
and dist(F (rq), F (r2)) = 4.15. Region r1 is thus more similar to
rq than r2.

4. EXACT SOLUTION
To obtain an exact solution to the ASRS problem, we first in-

troduce the attribute-aware similar point (ASP) problem and can
reduce the ASRS problem to the ASP problem. Next, we present a
novel algorithm, DS-Search, that solves the ASP problem (and thus
the ASRS problem) efficiently.

4.1 The ASP Problem
The most similar region can be at any location in space, which is

infinite. Hence, it is prohibitively expensive to consider every pos-
sible location. This challenge is also faced by existing studies of re-
gion search problems [5,11,21]. Inspired by the idea of transform-
ing the MaxRS problem to the rectangle intersection problem [21],
we reduce the ASRS problem to the ASP problem. We first define
terminology to be used later.

DEFINITION 5. Rectangle. A rectangle object r is a rectangle
of size a × b that is associated with a set of attributes. We use r.ρ
to denote the location of the rectangle’s top-right corner. We use
r[Ai] to denote its value for attribute Ai.

Given a location p in a space, we say a rectangle object r covers
p if p is inside r. Let Rp be the set of rectangle objects that cover
p. Consider the example in Fig 2(b). Location p is covered by two
rectangles, i.e., Rp = {r5, r6}. Recall that in the ASRS problem,
we apply a composite aggregator to a region r to compute a rep-
resentation from the set of spatial objects in r. Similarly, we can
apply a composite aggregator to a location p and compute a rep-
resentation of p from Rp. With a slight abuse of notation, we use

F (p) to denote the aggregate representation computed from Rp
and refer to this as p’s aggregate representation. In Fig 3(b), by
applying F = ((fD,Color, γall)) to p, the aggregate representa-
tion is (1, 1), as p is covered by one red and one blue rectangle.
We refer to the distance between representations F (p) and F (rq)
as p’s distance.

We can now define of the ASP problem.

DEFINITION 6. Attribute-aware Similar Point (ASP) prob-
lem. Given a set R of rectangle objects, a composite aggregator
F , and a query representation F (rq), the ASP problem aims to find
a location p that minimizes dist(F (p), F (rq)).

The ASRS problem can be reduced to the ASP problem as fol-
lows. For each object oi in the ASRS problem, we generate a rect-
angle object of size a × b whose top-right corner is located at oi.
We use the same composite aggregator and query representation in
the ASP problem as in the ASRS problem. Therefore, we get an
instance of the ASP problem. We illustrate the reduction with the
example in Fig 2. In the ASRS problem, each spatial object is as-
sociated with the attribute “color.” To reduce the ASRS problem
to the ASP problem, for each spatial object oi, i ∈ [1, 6], we gen-
erate a rectangle of size a × b with the same attribute and whose
top-right corner is located at oi, as depicted in Fig 2(b). Note that
when reducing ASRS to ASP, we can also generate a rectangle in
other ways, such as making the spatial object any of the four cor-
ners of the rectangle or the centroid of the rectangle. We simply
use top-right corner to illustrate the idea of reduction.

Next, we prove that we can solve the ASRS problem by solving
the reduced ASP problem, and we justify the reduction by present-
ing a property of the ASP problem.

LEMMA 1. Consider a location p from the ASP problem and
the rectangular region r whose bottom-left corner is located at p
in the ASRS problem. A rectangle object ri covers p iff the corre-
sponding spatial object oi is inside r.

PROOF. Since a rectangle object ri is drawn by making the cor-
responding spatial object oi the top-right corner, we have ri.ρ.x =
oi.x, ri.ρ.y = oi.y. If a spatial object oi is inside r, we have
p.x < oi.x < p.x + a, p.y < oi.y < p.y + b. We can derive
ri.ρ.x − a < p.x < ri.ρ.x, ri.ρ.y − b < p.y < ri.ρ.y, i.e., ri
covers p. Similarly, we can get oi is inside r if ri covers p.

EXAMPLE 5. In Fig 2, location p is made the bottom-left cor-
ner of the dashed rectangular region r. In the ASRS problem, the
dashed region r encloses o5 and o6, while location p is covered by
r5 and r6 in the ASP problem.

THEOREM 1. Consider an instance of the ASRS problem. Let
p be the answer to the ASP problem reduced from the ASRS prob-
lem. Then the rectangular region r of size a× b whose bottom-left
corner is located at p is an answer to the ASRS problem.

PROOF. Let p be a location in space in the reduced ASP prob-
lem, and r be the corresponding rectangular region of size a× b in
the ASRS problem, whose bottom-left corner is located at p. Ac-
cording to Lemma 1, the spatial objects in r in the ASRS problem
have the same attributes as the rectangles that cover p in the ASP
problem. Since we use the same composite aggregator and query
representation, the region r in the ASRS problem has the same dis-
tance as the location p in the ASP problem. If p in the ASP problem
has the minimum distance then r also has the minimum distance
and is an answer to the ASRS problem instance.
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Figure 2: An example of reduction. The composite aggrega-
tor F = ((fD,Color, γall)) computes the distribution of ob-
jects according to their colors. The query representation is
(#red,#blue) = (1, 1). The weight vector for computing
distance between two representations is w = (1, 1). Figure 3: Discretization.

Figure 4: Two regions after
splitting.

Figure 5: A region satisfying
the drop condition.

EXAMPLE 6. In Fig 2, an ASRS problem is reduced to an ASP
problem. In the reduced ASP problem, location p is an answer, as
it is covered by exactly one red and one blue rectangle. In the ASRS
problem, the dashed region whose bottom-left corner is located at
p is an answer, as it covers one red and one blue spatial object.

Due to Theorem 1, we can solve ASRS by solving the ASP prob-
lem. We next show a property of the ASP problem that justifies the
reduction.

In the ASP problem, the edges of the rectangles divide the space
into many disjoint regions. Consider the example in Fig 2(b). The
grey region, which belongs to the overlap of r5 and r6, is a disjoint
region. We have the following property of disjoint regions.

LEMMA 2. Any location in a disjoint region is covered by the
same set of rectangles.

In Fig 2(b), any location in the grey disjoint region is covered by
{r5, r6}. This implies that we only need to find the disjoint region,
whose covering rectangles have the aggregate representation that is
most similar to the query representation.

LEMMA 3. There are O(n2) disjoint regions, where n is the
number of rectangles [21].

Consequently, by reducing ASRS to ASP, we convert our problem
from selecting a region from an infinite set to selecting a disjoint
region from a set of O(n2) disjoint regions.

It is then natural to ask the following question: How can we find
the disjoint region with the minimum distance in the set of O(n2)
disjoint regions? One idea is to adapt the sweep line algorithm as in
previous work [5,11,12,21] to scan the space and check all disjoint
regions. Specifically, we use a sweep line to scan the space. During
the sweeping, the sweep line is divided into intervals by the edges
of the rectangles. For each interval, we maintain a distance based
on the overlapping rectangles. A point from the interval with the
minimum distance during the sweeping is the solution to the ASP
problem. The time complexity of this solution is O(n2), where n
is the number of rectangle objects in the ASP problem.

Having quadratic complexity, the efficiency of this solution de-
grades rapidly as the number of rectangles increases. To address
this challenge, we propose the novel Discretize and Split search
(DS-Search) algorithm.

4.2 Overview of DS-Search
Instead of moving a sweep line to locate every disjoint region and

examine its distance, DS-Search incorporates a new idea to tackle

ASP. Specifically, DS-Search discretizes the space into cells with
a grid. The cells can be classified into clean cells and dirty cells
(to be discussed in Section 4.3). We process the clean cells to get
an intermediate result. We also estimate a distance lower bound
for each dirty cell. The dirty cells whose lower bounds exceed the
intermediate result can be safely pruned. The remaining dirty cells
are split into two groups, each of which corresponds to a sub-space
smaller than the original space. Each of the two smaller sub-spaces
are then discretized again. We then check the clean and dirty cells
in the smaller space to refine the intermediate result. We repeat this
step until either there is no dirty cell whose lower bound is smaller
than the current result or the space satisfies the drop condition (Sec-
tion 4.5). When the algorithm terminates, the intermediate result is
an exact answer to ASP. Due to these ideas, DS-Search has bet-
ter time complexity and practical performance than the sweep line
solution.

DS-Search has three key procedures: discretizing the space, split-
ting the space, and checking the drop condition. We next elaborate
on each of these in turn with the running example of the reduced
ASP in Fig 2(b).

4.3 Discretizing the Space
We first discretize the space under consideration into nrow×ncol

cells with a grid. Here nrow and ncol are pre-specified parameters.
We use gi,j to denote the cell in the i-th column and j-th row. For
instance, the example in Fig 2(b) is discretized into 10 × 10 cells,
as depicted in Fig 3.

For each rectangle, we can find the sets of cells that it fully covers
and partially covers, respectively. For instance, cell g3,8 is fully
covered by r2, and g2,1 is partially covered by r4. We can classify
the cells into two categories according to their relationship with the
rectangles: (1) Clean cell: A cell is clean if no rectangle partially
covers it, and (2) Dirty cell: A cell is dirty if at least one rectangle
partially covers it.

In Fig 3, g3,8 is a clean cell. Cell g5,1 is a dirty cell, as r4 and r5
partially cover it.

The clean and dirty cells are processed separately.
Processing clean cells. According to the definition, a clean cell
is fully inside a disjoint region. As a result, any location p in a
clean cell g is covered by the same set of rectangles, denoted by
Rg . Hence, we can apply the composite aggregator to Rg to get
its aggregate representation and then compute the distance to the
query representation. In this case, the disjoint region that contains
this clean cell is examined. We take any location from the clean
cell with the minimum distance as an intermediate result. Note that
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all locations in this clean cell have the same distance. We simply
take the center of the cell as the intermediate result.
Processing dirty cells. As there are rectangles that partially cover
a dirty cell, different locations inside a dirty cell may have different
distances. To prune the dirty cells, we propose to estimate a lower
bound of distance for the locations inside a dirty cell.

To estimate a lower bound of distance, we first need to compute
two vectors v and v to bound the aggregate representation v of any
location in the dirty cell, i.e., v[i] ≤ v[i] ≤ v[i] for any 0 ≤ i ≤
d − 1. Once we have v and v, the lower bound of distance can be
computed as follows:

lb =
∑

w[i] ·


F (rq)[i]− v[i] if F (rq)[i] > v[i]

v[i]− F (rq)[i] if F (rq)[i] < v[i]

0 otherwise
(1)

LEMMA 4. For any location p in a dirty cell g, let v be its ag-
gregate representation. We have lb < dist(v, F (rq)) as long as
v[i] ≤ v[i] ≤ v[i] holds for any i ∈ [0, d− 1].

PROOF. IfF (rq)[i] > v[i], we have |F (rq)[i]−v[i]| ≥ |F (rq)[i]−
v[i]|. If F (rq)[i] < v[i], we have |F (rq)[i] − v[i]| ≥ |v[i] −
F (rq)[i]|. If v[i] ≤ F (rq)[i] ≤ v[i], we have |F (rq)[i]− v[i]| ≥
0. Putting these together, we get lb ≤ dist(F (rq),v).

We next elaborate on how to compute v and v to bound the ag-
gregate representation v of any location in a dirty cell.

For a dirty cell g, let Rfg and Rpg be the sets of rectangles that
fully and partially cover g, respectively. Let Rg = Rfg ∪ Rpg ,
Rg = Rfg . For any location p in g, let Rp be the set of rectangles
that cover p. We observe that Rg ⊆ Rp ⊆ Rg . This motivates us
to bound the aggregate representation by utilizingRg andRg .

Recall that the aggregate representation is the concatenation of
the outputs of aggregators. We next present how to bound the out-
put of an aggregator by usingRg andRg . For brevity, we consider
the distribution aggregator fD as an example. We can bound the
output of other aggregators similarly.

The i-th dimension of the output of fD is the number of rectan-
gles inRp having ai as the value for attribute A. We can compute
the bounding vectors as follows

vD[i] = |{r|r ∈ Rg ∧ r[A] = ai}|

vD[i] = |{r|r ∈ Rg ∧ r[A] = ai}|

LEMMA 5. Let vD be the output of fD . We have vD[i] ≤
vD[i] ≤ vD[i], i ∈ [0, d− 1].

PROOF. Since Rg ⊆ Rp ⊆ Rg , for each value ai of attribute
A, we have {r|r ∈ Rg ∧ r[A] = ai} ⊆ {r|r ∈ Rg ∧ r[A] = ai} ⊆
{r|r ∈ Rg ∧ r[A] = ai}. Hence, we have vD[i] ≤ vD[i] ≤ vD[i]
for any i ∈ [0, d− 1].

EXAMPLE 7. In the example in Fig 3, cell g2,1 is partially cov-
ered by r4 and r5. The aggregate representation of p is bounded by
v = (2, 0) and v = (0, 0). According to Equation 1, the lower
bound of p’s distance is lb = 0 + 1 = 1.

Cell g5,1 is fully covered by r6 and partially covered by r4 and
r5. The aggregate representation of p is bounded by v = (2, 1)
and v = (0, 1). According to Equation 1, the lower bound of p’s
distance is lb = 0 + 0 = 0.

With the lower bounds estimated, we can safely prune the dirty
cells whose lower bounds exceed that of the intermediate result.

Function Discretize(c, popt, dopt)
1 Construct a grid with nrow × ncol cells.;
2 foreach rectangle r in space do
3 Mark the cells that are fully and partially covered;
4 foreach cell g do
5 if g is a clean cell then
6 vg ← the aggregate representation of g ;
7 dg ← the distance between vg and the query

representation;
8 if dg < dopt then dopt ← dg , popt ← center of g;
9 else

10 g.lb← Lower bound of distance for any location in g;

The discretization procedure is outlined in Function Discretize.
The function takes as input the space c to be processed and two
variables popt and dopt, which are used to store the location with
the minimum distance. It first constructs a grid with nrow × ncol
cells (line 1). Then, for each rectangle r, it marks the cells that r
fully and partially cover (lines 2–3). Next, it iterates through every
cell in the grid (lines 5–10). If the cell is clean, it computes the ag-
gregate representation and the distance to the query representation
(lines 5–7). Otherwise, it computes the distance lower bound for
the locations in the cell (line 10). We take the center of the clean
cell with the minimum distance as an intermediate result (line 8).

EXAMPLE 8. Consider Fig 3. When invoking Function Dis-
cretize, we compute the distance to the query representation for
each clean cell. Cell g3,8 is a clean cell covered by r2. The ag-
gregate representation for a point at any location in g3,8 is (0, 1),
and the distance is 1 + 0 = 1. Since g3,8 has the current minimum
distance, we update popt with the center of g3,8 and set dopt to 1.
The lower bounds of all dirty cells are also computed.

4.4 Splitting the Space
In the previous step, we pruned the dirty cells whose lower bounds

exceed that of the current result. Here, we present how to deal with
the remaining dirty cells.

We propose to split the space containing the remaining dirty cells
into two smaller sub-spaces, and we then invoke Function Dis-
cretize again to discretize each sub-space. Since the sizes of the
sub-spaces are smaller, the sizes of the cells become smaller, and
we can estimate tighter bounds for the dirty cells, making them
more likely to be pruned. By repeatedly splitting and discretizing,
we can prune more dirty cells while gradually improving the inter-
mediate result.

The high level idea of splitting is as follows: We first partition the
remaining dirty cells into two groups. For each group, we return the
minimum bounding rectangle (MBR) that encloses all dirty cells in
the group as a new space.

When we partition the dirty cells, we have three goals: (1) We
aim to minimize the total area of the two MBRs for the two groups.
(2) The overlap between the two MBRs should be minimized. (3)
The numbers of the rectangles that overlap with the MBRs should
be balanced.

Sometimes the three goals conflict, making it impossible to op-
timize all three at the same time. We adopt a two-step heuristic
algorithm to address the problem: First, we choose two seed sets of
dirty cells such that we can gradually expand the two sets to com-
plete the partitioning. Specifically, we select two dirty cells that are
furthest from each other as the initial seed sets. Second, we expand
the two seed sets by adding the remaining cell to the sets gradually.
For each dirty cell, we compute the cost of adding it to a set. The
cost is defined as the increase of the area of the MBR when adding
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Function Split(G, dopt)
1 Gdirty ← dirty cells whose lower bounds are smaller than dopt;
2 g1, g2 ←two cells from Gdirty that are far from each other;
3 G1 = {g1}, G2 = {g2};
4 for each g ∈ Gdirty \ {g1, g2} do
5 cost1 = area(MBR(G1 ∪ {g}))− area(MBR(G1));
6 cost2 = area(MBR(G2 ∪ {g})− area(MBR(G2));
7 if cost1 > cost2 then G2 = G2 ∪ {g} ;
8 else G1 = G1 ∪ {g} ;
9 lb1 ← ming∈G1 lowerbound(g);

10 lb2 ← ming∈G2
lowerbound(g);

11 return MBR(G1), lb1,MBR(G2), lb2

it to the group. The dirty cell is added to the set with the minimum
cost.

The pseudocode of the split procedure is given in Function Split.
It takes as input the grid G that is used to discretize the space, and
the current minimum distance dopt. We first select the dirty cells
from G whose lower bounds are smaller than dopt(line 1). Next,
we select two cells from Gdirty that are farthest from each other
and initialize the two seed sets to be g1 and g2 (lines 2–3). Then,
for each remaining cell g, we compute the costs of adding it to the
two seed sets (lines 5–6). We add cell g to the set where the cost is
smallest (lines 7–8). When all cells in Gdirty have been processed,
we compute the smallest lower bound for each set (lines 9–10) and
return the MBRs that enclose the cells in the two sets together with
the lower bounds (line 11).

EXAMPLE 9. In Fig 3, the grey cells are the dirty cells whose
lower bounds are smaller than the current minimum distance. We
select {g6,1} and {g1,7} as two seeds of dirty cells. Then we ex-
pand the two sets gradually. For instance, the cost of adding g2,7

to {g1,7} is 2 − 1 = 1, while the cost of adding g2,7 to {g6,1}
is 35 − 1 = 34. Thus, we add g2,7 to set {g1,7}. We repeat this
procedure until all the dirty cells whose lower bounds are smaller
than the current minimum distance are processed. The two MBRs
are shown in Fig 4.

4.5 Drop Condition
As covered in Section 4.4, we repeatedly split and discretize

the space. The question is when can we stop splitting the space.
Clearly, if every dirty cell has a lower bound larger than the inter-
mediate result, there is no need to split because all dirty cells can
be pruned. We proceed to introduce a drop condition and show that
we can safely stop splitting if the space satisfies the drop condition.

We start by defining GPS accuracy, which will be used later.

DEFINITION 7. GPS horizontal/vertical accuracy. LetX and
Y be the sets of x-coordinates and y-coordinates of the vertical
and horizontal edges of the rectangles in R, respectively. We de-
fine the horizontal (vertical) accuracy, denoted by ∆X (∆Y ), as
the minimum distance between any two distinct values in X (Y ),
i.e., ∆X = min |xi − xj | for any xi, xj ∈ X,xi 6= xj (∆Y =
min |yi − yj | for any yi, yj ∈ Y, yi 6= yj).

Note that the horizontal and vertical accuracies cannot be in-
finitely small. They are bounded by the resolution of the position-
ing techniques and are unrelated to the cardinality of the dataset.
Therefore, we treat the GPS horizontal/vertical accuracies as con-
stants.

We next present the drop condition.

DEFINITION 8. Drop condition. Given a space that is dis-
cretized by a grid, we say that the space satisfies the drop condition
if both of the following conditions are satisfied:

2 · wc < ∆X , 2 · hc < ∆Y ,

where wc and hc are the width and height of a cell, and ∆X and
∆Y are the horizontal and vertical accuracies.

THEOREM 2. If a space satisfies the drop condition, every dis-
joint region in the space contains at least one clean cell.

PROOF. We prove the theorem by contradiction. Consider a
space that satisfies the drop condition, i.e., 2 · wc < ∆X , 2 · hc <
∆Y , where wc and hc are the width and height of a cell. We as-
sume that a disjoint region exists that encloses no cell. Let x1 and
x2 (y1 and y2) be the x (y) coordinate of any two vertical (hori-
zontal) edges of the disjoint region. Since |x2 − x1| ≥ ∆X , and
|y2−y1| ≥ ∆Y , we have |x2−x1| ≥ 2·wc, and |y2−y1| ≥ 2·hc.
Hence, this disjoint region encloses a rectangular region of size at
least 2 ·wc × 2 · hc. Hence, no matter how the position of the grid
varies, this disjoint region always encloses at least one cell, which
contradicts the assumption.

EXAMPLE 10. Consider the space to the left in Fig 4. We dis-
cretize it with a 10× 10 grid, as depicted in Fig 5. The edges of r2
and r3 divide the space into three disjoint regions. Every disjoint
region encloses at least one clean cell. Hence, this space satisfies
the drop condition, and we do not need to split it again.

4.6 The DS-Search Algorithm
We now have all the machinery in necessary to describe DS-

Search. The algorithm, shown in Algorithm 1, takes as input the
original space c, the current point with the minimum distance popt,
and the current minimum distance dopt. It returns a region of size
a × b with the minimum distance. The algorithm first reduces the
ASRS problem to the ASP problem by generating a rectangles for
each spatial object (line 1). Then it uses a heap H to maintain the
spaces to be processed. The heap is initialized to (c, 0) (line 2).
It processes the spaces in the heap greedily (lines 3–10). In each
iteration, it first invokes Function Discretize and updates popt and
dopt by examining the clean cells (line 5). If the space does not
satisfy the drop condition, it invokes Function Split to obtain two
smaller sub-spaces (line 7). The two smaller sub-spaces are then
pushed into the heap (line 8). The algorithm terminates when the
lower bounds of the unprocessed spaces in the heap are not smaller
than dopt. It returns the region ropt of size a× b whose bottom-left
corner is located at popt (lines 10–11).

EXAMPLE 11. We use the reduced ASP problem in Fig 2 to
illustrate the DS-Search algorithm. In the first iteration, we dis-
cretize the space into a 10× 10 grid, as shown in Fig 3. We update
popt and dopt by examining the clean cells. Currently, the mini-
mum distance is 1. Since the space in Fig 3 does not satisfy the
drop condition, we split it into two sub-spaces, as shown in Fig 4.
The two smaller sub-spaces are pushed onto the heap. In the sec-
ond iteration, assume that we pop out the left space in Fig 4 from
the heap. We discretize it with a 10 × 10 grid again, as shown in
Fig 5. We update the popt and dopt by examining all clean cells.
Currently, the minimum distance is 0. This space satisfies the drop
condition, so we do not need to split it again. As the lower bound
of the remaining spaces in the heap is equal to 0, the algorithm
terminates.
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Algorithm 1: DS-Search Algorithm
Input : Original space c, the current best point popt and its

distance dopt
Output: A region in c with the minimum distance

1 R← the set of rectangles whose top-right corner is an
object and each of which overlaps with c;

2 H ←a min-heap; Push (c, 0) into H;
3 repeat
4 c← the space in H with the minimum lower bound;
5 Discretize(c, popt, dopt);
6 if c does not satisfy the drop condition then
7 c1, lb1, c2, lb2 ←Split(G);
8 Push (c1, lb1), (c2, lb2) into H;
9 until H.top().lb ≥ dopt;

10 ropt ← a rectangular region whose bottom-left corner is
located at popt;

11 return ropt

LEMMA 6. Let Ω = W ·H(ncol+nrow)
∆X ·∆Y ·ncol·nrow

, where W and H are
the width and height of the original space, ncol and nrow are pa-
rameters specified by the user, and ∆X and ∆Y are the horizontal
and vertical accuracies. The complexity of Algorithm 1 isO(Ω ·n),
where n is the number of spatial objects.

PROOF. In Function Discretize, we need to compute the dis-
tance for each clean cell and estimate a lower bound for each dirty
cell. The time complexity is O(n · (ncol ·nrow) +ncol ·nrow · d),
where n is the number of rectangles, ncol and nrow are the pa-
rameters specified by user to control the grid for the discretiza-
tion, and d is the dimensionality of the aggregate representation.
The time complexity of Function Split is O(nrow × ncol). In
DS-Search, each time when we discretize a space, we split it into
two smaller sub-spaces unless it satisfies the drop condition. The
spaces that are processed form a binary tree. The depth of the tree
is O(log W

ncol·∆X
+ log H

nrow·∆Y
), where W and H are the width

and height of the original space, and ∆X and ∆Y are the horizontal
and vertical accuracies. Therefore, there are O( W ·H

ncol·nrow·∆X ·∆Y
)

spaces to be processed. Putting these together, the time complexity
of Algorithm 1 is O(Ω · n).

Remark. In parameter Ω = W ·H(ncol+nrow)
∆X ·∆Y ·ncol·nrow

, nrow and ncol are
user-specified parameters, and ∆X and ∆Y are constants that are
only determined by positioning technology used, as discussed in
Section 4.5. Moreover, W and H are bounded by the size of the
real world and thus can also be viewed as constants. Putting these
together, the parameter Ω is independent of the number of spatial
objects and is a constant. When the number of spatial objects is
much larger than Ω, the complexity of Algorithm 1 can be viewed
as being O(n). This makes the algorithm more efficient than the
traditional sweep line based approaches. According to our experi-
ments, the DS-Search algorithm is 2–3 orders of magnitude faster
than the sweep-line based baseline algorithm.

LEMMA 7. Algorithm 1 computes the exact answer to ASRS.

PROOF. We denote by d the optimal disjoint region in the re-
duced ASP that has the minimum distance. Let c be a space in heap
H that overlaps with this disjoint region. If c does not satisfy the
drop condition, we split c into two smaller sub-spaces. At least one
sub-space overlaps with disjoint region d. As we repeatedly split
and discretize space, the sizes of the cells get smaller and smaller.
Eventually, the space will satisfy the drop condition in finite steps.

Figure 6: The structure of a grid index.

When the space c satisfies the drop condition, this means at least
one clean cell is inside disjoint region d. We can find a location in
disjoint region d when we examine all clean cells in c. Hence, Al-
gorithm 1 always returs the exact answer to the ASRS problem.

5. ENHANCING DS-SEARCH WITH A GRID
INDEX

We propose a pruning technique based on a grid index to further
improve the efficiency of DS-Search.

5.1 Overview
The ASRS problem has a “locality” property: the aggregate rep-

resentation of a region is only determined by the set of spatial ob-
jects inside the region. Motivated by this observation, we propose
a pruning technique by following the divide-and-conquer strategy.

The high-level idea is as follows: We first use a grid index to di-
vide the space into cells. For each cell in the grid, we estimate a dis-
tance lower bound for the set of candidate regions whose bottom-
left corners are in the cell. Then the cells are searched greedily
by invoking DS-Search: the cells with smaller lower bounds are
searched first. We terminate when the lower bounds of the un-
searched cells are not smaller than the current minimum distance.

Note that this idea is different from the discretization of a re-
gion as introduced in Section 4.3. There, the discretization is ap-
plied to the rectangles generated in the reduced ASP problem. The
reduction from the ASRS problem to the ASP problem is query-
dependent, i.e., we need the size of the query rectangle to conduct
the reduction. Hence, the discretization has to be done during query
processing. In contrast, the grid introduced here is used to index the
spatial objects. Its granularity is independent of the query, and it is
constructed before querying occurs.

5.2 Grid Index
The grid index is essentially a grid consisting of sx × sy cells,

where sx and sy are pre-specified and are independent from the
query. We use gi,j to denote the cell in the i-th column and j-th
row. We use G[ i2

i1
][ j2
j1

] to denote the region consisting of cell gi,j
for any i1 ≤ i < i2 and j1 ≤ j < j2.

Each cell in the grid is assigned an attribute summary table.
This table contains a number of entries of the form (As : TAs),
where As is an attribute, and TAs is a hash table that maps a value
am ∈ dom(As) to the number of objects having am as the value
of attribute As. For a cell gi,j , its attribute summary table is built
over the objects in all cells in G[∞

i
][∞
j

].

EXAMPLE 12. Fig 6 illustrates the grid index. Consider the
cell g1,0. Its attribute summary table, as shown in the figure, is built
over the objects inG[∞

1
][∞

0
], which is the entire set of objects. For

instance, three objects have a11 as the value of A1. Thus, the entry
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Figure 7: Bounding and bounded regions.

of A1 in the corresponding hash table contains the key-value pair
a11 : 3.

Note that many cells share the same attribute summary table.
In Fig 6, cells g2,1, g0,2, g1,2, and g2,2 have the same attribute
summary table. Hence, we use a hash map to record a cell and
its attribute summary table to avoid redundant storage, as shown in
Fig 6.

The grid index has the following property.

LEMMA 8. Consider a region G[ r
l
][ t
b
]. Let naj be the num-

ber of objects in the region having aj as the value of Ai. We can
efficiently obtain naj by utilizing the grid index as follows:

naj = gl,b.TAi [aj ] + gr,t.TAi [aj ]− gl,t.TAi [aj ]− gr,b.TAi [aj ]

According to Lemma 8, we can efficiently compute the number
of objects with a particular value of a specified attribute in a region
G[ r

l
][ t
b
].

5.3 Estimating a Lower Bound
We say that a candidate region r is bl-corner-located in a cell

gi,j if the bottom-left corner of r is in gi,j . Next we describe how
to estimate a distance lower bound for the candidate regions bl-
corner-located in a cell. We first introduce the concepts of bound-
ing region and bounded region.

DEFINITION 9. Bounding and bounded region. Given a can-
didate region r and a grid G, a cell is an inside cell if it is fully
covered by r, a cell is an outside cell if it does not overlap with r,
and a cell is a boundary cell if it is partially covered by r.

We define the region consisting of the inside cells as the bounded
region of r, denoted by G. We define the region consisting of the
inside cells and the boundary cells as the bounding region of r,
denoted by G.

EXAMPLE 13. In Fig 7, the red cell is an inside cell, the dotted
cells are outside cells, and the blue cells are boundary cells.

For the set of candidate regions that are bl-corner-located in a
cell gi,j , we can compute the bounding and bounded regions ac-
cording to the cell size and the size of the candidate region. Given
a candidate region r and its bounding and bounded regions G and
G, we have O(G) ⊆ O(r) ⊆ O(G), where O(r), O(G), and
O(G) are the sets of objects in r, G, and G, respectively. As a re-
sult, we can estimate a lower bound of the distance for r as we did
in Section 4.3. Specifically, we first compute two vectors v and v
to bound the aggregate representation of v. Then we compute the
lower bound based on Equation 1.

5.4 Search Using the Grid Index
Algorithm 2 describes how to utilize the grid index to improve

the efficiency of DS-Search. It takes as input a grid index G. We
use a min-heapH to maintain the cells to be processed (line 1). We
use dopt and popt to maintain the current minimum distance and

Algorithm 2: GI-DS
Input : A grid index G, a composite aggregator F , query

region rq
Output: The most similar region r

1 H ← a min-heap, dopt ←∞, popt ← null;
2 for each cell g in G do
3 lb←lower bound for the candidate regions in g;
4 Push (lb, g) into heap H;
5 while H is not empty ∧H.top.lb < dopt do
6 lb, g ← H.pop();
7 ropt ←DS-Search(g, lb, popt, dopt);
8 return ropt;

the point with the minimum distance (line 1). First, for each cell
g in the grid index, we compute a lower bound of the distance for
the candidate regions that are bl-corner-located in g as explained in
Section 5.3 (line 3). The cell g and its lower bound lb are pushed
onto the heap (line 4). Then we search the cells iteratively (lines 5–
7). In each iteration, we pop out the cell with the minimum lower
bound (line 6), and invoke Algorithm 1 to find the region with the
minimum distance in g (line 7). We repeat this procedure until
the lower bounds of the unsearched cells are not smaller than the
current minimum distance dopt (line 5).

6. AN APPROXIMATE SOLUTION
In some applications, a slight imprecision of the result returned

may be preferable, if this reduces the processing time substantially.
Here, we extend DS-Search to solve the ASRS problem approxi-
mately.

We first define the (1 + δ)-approximate ASRS problem.

DEFINITION 10. (1 + δ)-approximate ASRS problem. Given
a setO of spatial objects, a query region rq of size a×b, a compos-
ite aggregator F , and a parameter δ > 0, the (1 + δ)-approximate
ASRS problem aims to find a region r of size a× b such that

dist(F (r), F (rq)) ≤ (1 + δ)dist(F (ropt), F (rq)),

where ropt is the optimal region that has the minimum distance.

The quality of the approximation can be controlled by choosing
an appropriate δ. A smaller δ yields a better approximation.

To solve the (1 + δ)-approximate ASRS problem, we make two
major changes to DS-Search. The first relates to how we split a
region (Function Split in Section 4.4). In the exact solution, we
split a region into two smaller regions by partitioning the dirty cells
whose lower bounds are smaller than the current minimum distance
into two sets and return the two MBRs that enclose the cells in each
set. In the approximate solution, it is not necessary to consider all
dirty cells. Specifically, we change line 1 in Function Split to let
Gdirty be the set of dirty cells whose lower bounds are smaller than
dopt, where dopt is used to maintain the current minimum distance.

The second major change relates to the use of the grid index
that we use to enhance DS-Search. In Algorithm 2, we iteratively
process each candidate in a greedy manner until the lower bound of
the top candidate region in the heap exceeds the current minimum
distance (lines 5–7 in Algorithm 2). Instead, we now terminate the
process early when the lower bound of the top candidate region
exceeds dopt

1+δ
, where dopt is used to maintain the current minimum

distance.
With these modifications, we have the following theorem.
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THEOREM 3. Let rapp be the region found by the modified DS-
Search algorithm. We have dist(F (rapp), F (rq)) ≤ (1 + δ) ·
dist(F (ropt), F (rq)), where ropt is the optimal region with the
minimum distance.

PROOF. We can prove by contradictory. Assume that
dist(F (rapp), F (rq)) > (1 + δ) · dist(F (ropt), F (rq)). Let r′

be a region whose distance is smaller than dist(F (rapp),F (rq))

(1+δ)
. Let

g be the candidate region where r′ is bl-corner-located. Then g’s
lower bound is smaller than dist(F (rapp),F (rq))

(1+δ)
. Hence g will be

processed by DS-Search in GI-DS. Similarly, let c be a cell in DS-
Search that contains the bottom-left corner of r′. If c is a clean
cell, then r′ will be returned. If c is a dirty cell, its lower bound
is smaller than dist(F (rapp),F (rq))

(1+δ)
, indicating that c will be further

split. This procedure repeats until c is a clean cell, and r′ is then
returned. In both cases, r′ will be returned, which contradicts the
assumption. Hence, the theorem is proved.

7. EXPERIMENTAL STUDY
We present the setup of our experiments, and then investigate

the performance of the proposed algorithms. All algorithms are
implemented in C++ and compiled by VS 2015. All experiments
are run on a Windows PC with an Intel Xeon 3.70 GHz CPU and
16 GB memory.

7.1 Experimental Setup
Datasets. We use real and synthetic data in the experimental study.
We use a real dataset Tweet that consists of 3.2 × 108 geo-tagged
tweets posted in the U.S. The dataset was crawled from June 2014
to December 2016. The ranges of latitude and longitude of the
tweets are [24.39, 49.39] and [−124.87,−66.86], respectively. Its
GPS horizontal and vertical accuracies are both ∆X = 10−8,
∆Y = 10−8.

Next we use a synthetic dataset POISyn that is generated from
Tweet. Specifically, for each tweet in Tweet, we generate a spa-
tial object that has the same location as the tweet, and we assign
two attributes “Rating” and “Number of visits” to each such object.
The “rating” is computed as follows: rating = |tweet|

max |tweet| · 10,
where |tweet| is the length of the text content of the corresponding
tweet, and max |tweet| is the maximum length of any tweet in the
dataset. Therefore, the domain of “rating,” dom(rating) is [0, 10].
The “number of visits” of a spatial object is randomly selected from
[1, 500].
Composite Aggregator. In order to evaluate our proposed ap-
proaches, we design two composite aggregators, one for each dataset.
The details of the composite aggregator are as follows:

Composite Aggregator 1: The first composite aggregator is de-
signed for Tweet. Assume we want to find a region that is highly
correlated to weekend. Specifically, most of the geo-tagged tweets
inside the region are posted during weekends rather than on week-
days. In order to find such a region, we need a composite aggre-
gator that computes the distribution of tweets based on the day
of the week they are posted. Hence, we use the following com-
posite aggregator: F1 = ((fD, day of the week, γall)). Note that
|dom(day of the week)| = 7. Thus F1 outputs a 7-dimensional
vector, where the i-th dimension corresponds to the number of
tweets posted on the i-th weekday.

We next present how to use a query region to describe our inter-
ests. Since we aim to find a region with more tweets on weekends
than on weekdays, we consider a query region rq whose aggre-
gate representation is F (rq) = (0, 0, 0, 0, 0, T6, T7), where T6

and T7 are the maximum number of tweets on Saturday and Sun-
day, respectively, that a region can have. We use a weight vector
w = ( 1

5
, 1

5
, 1

5
, 1

5
, 1

5
, 1

2
, 1

2
) when computing the distance between

two representations. With the given composite aggregator, query
representation, and weight vector, a candidate region is more simi-
lar to the query if more tweets occur on weekends and fewer tweets
occur on weekdays.

Composite Aggregator 2: The second composite aggregator is
designed for POISyn. Assume we want to find a region such that
many people visit POIs in the region, and such that the average
rating of the POIs is very good. To find such a region, we de-
fine a composite aggregator that computes the average rating of
the POIs and the sum of number of visits of the POIs: F2 =
((fS ,Number of visits, γall), (fA,Rating, γall)). This composite
aggregator computes a 2-dimensional vector.

To describe our interests, we consider a query region rq whose
aggregate representation is F (rq) = (vmax, 10), where vmax is
the maximum number of visits a region can have. We use weight
vector w = ( 1

vmax
, 1

10
) to compute the distance between two rep-

resentations. With the given composite aggregator, query represen-
tation, and weight vector, a candidate region is more similar to the
query region if the total number of visits in the region is large and
the average rating of POIs in the region is high.
Query Rectangle Size. Let W and H be the width and height of
the minimum rectangle that encloses all the spatial objects. We set
q = W

1000
× H

1000
to be the unit size of a query rectangle, and we

define k · q = (k · W
1000

)× (k · H
1000

). We then vary the size of the
query rectangle by using different values for k.
Evaluated algorithms. We evaluate the following algorithms. (a)
The DS-Search algorithm; (b) The GI-DS algorithm. We use 64-
GI-DS, 128-GI-DS, and 256-GI-DS to denote the GI-DS algorithm
with grid index granularity 64 × 64, 128 × 128, and 256 × 256,
respectively; (c) The extension of GI-DS for the (1 + δ) approxi-
mate ASRS problem, denoted by app-GIDS; and (d) the sweep line
based algorithm, denoted as Base, which is adapted from the liter-
ature [11, 21].

7.2 Performance of DS-Search
We evaluate the performance of DS-Search and compare with

Base.
Effect of query rectangle size. We first evaluate the effect of the
size of the query rectangle. We use four query rectangle sizes: q,
4q, 7q, 10q. We set the parameters ncol = 30 and nrow = 30 for
DS-Search. We extract 1 million objects from Tweet and POISyn
to form two new datasets, denoted as Tweet-1M and POISyn-1M,
respectively. Fig 8 reports the runtime of DS-Search and Base. The
y-axis uses a logarithmic scale.

We observe that DS-Search is orders of magnitude faster than
Base. This is because the complexity of Base is O(n2), while the
complexity of DS-Search is close to O(n), where n is the number
of spatial objects. We also observe that DS-Search is affected less
by the size of the query rectangle than Base.
Effect of ncol and nrow. In this set of experiments, we evaluate
the effect of parameters ncol and nrow. We vary ncol and nrow
to control the granularity of the grid. We use four combinations:
10× 10, 20× 20, 30× 30, 40× 40, and 50× 50. Fig 9 shows the
resulting runtime of DS-Search.

We observe that DS-Search achieves the best performance when
the parameters are set to ncol = nrow = 30. The granularity of
the grid has an significant impact on the efficiency. When we use a
fine granularity, there is a large number of cells in the grid. Since
we need to compute the aggregate representation for each clean
cell and to estimate a lower bound for each dirty cell, the time cost
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Figure 8: Runtime v.s. query rectangle size.
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Figure 9: Runtime of DS-Search w.r.t. ncol and nrow.

will be high due to the large number of cells. On the other hand,
when we use a coarse granularity, the width and height of each
cell is large, making it unlikely to satisfy the drop condition. We
need to balance these two factors when we assign values to the two
parameters.
Scalability. Finally, we evaluate the scalability of DS-Search and
Base w.r.t. the number of geo-tagged objects in the dataset. We
use 10q as the query rectangle size. We set the parameters ncol =
nrow = 30 for DS-Search. Fig 10 depicts the runtime when vary-
ing the dataset cardinality. The y-axis uses a logarithmic scale.

We observe that DS-Search is about 2–3 orders of magnitude
faster than Base, especially when the number of objects becomes
larger. This occurs because Base has a much higher complexity
than DS-Search.

7.3 Performance of the GI-DS Algorithm
We proceed to study the performance of the GI-DS algorithm.

Effect of granularity. We first investigate the effect of the granu-
larity of the grid index on the efficiency using three granularities:
64 × 64, 128 × 128, and 256 × 256. We extract 100 million geo-
tagged objects from Tweet and POISyn to form datasets Tweet-
100M and POISyn-100M, respectively. Fig 11 reports the runtime
of the four algorithms w.r.t. the query rectangle size.

We observe that GI-DS outperforms DS-Search in most cases.
In particular, GI-DS algorithm achieves the best performance when
the granularity is set to 128 × 128. The running time of GI-DS is
about 47% of the running time of DS-Search on average.

Moreover, we observe that when the granularity of the grid index
is too coarse or too fine, the efficiency of GI-DS degrades. When
the granularity is too coarse, the lower bound estimated for each
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Figure 10: Runtime v.s. number of objects.

Table 1: Ratio of cells searched on Tweet-100M and index size.

Query rectangle size Index size
Granularity q 4q 7q 10q
64× 64 24.0 % 22.7% 19.2% 13.8% 2.2 MB

128× 128 8.1% 7.1% 5.5% 7.6% 8.6 MB
256× 256 2.3% 2.0% 1.4% 2.0% 33.6 MB
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Figure 11: Runtime v.s. granularity of grid index.

cell is loose, making it difficult to prune unnecessary cells. On the
other hand, when the granularity is too fine, two nearby cells in
the grid may be covered by the almost the same set of rectangles.
Thus, the two cells have similar lower bounds, meaning that the
granularity introduces redundant computations.
Index size. The grid index needs to maintain a pointer from each
cell to an attribute summary table. The sizes of grid indices with
different granularity are reported in Table 1. We observe that since
the granularity of the grid is relatively coarse (from 64 × 64 to
256× 256), the indices take a little space.
Usefulness of lower bound. To investigate the usefulness of the
lower bound estimation in the GI-DS algorithm, we run 64-GI-DS,
128-GI-DS, and 256-GI-DS on Tweet-100M and report the ratio
of cells in the grid index that are searched by DS-Search. The re-
sults reported in Table 1 show that only a small fraction of cells
are searched. Moreover, the fraction of cells that are searched de-
creases when the granularity of the grid index increases. This is
because we can estimate a much tighter lower bounds when a fine
granularity is adopted.

7.4 Performance of the app-GIDS Algorithm
We proceed to evaluate the approximate solution.

Efficiency. In this set of experiments, we use four values for pa-
rameter δ: 0.1, 0.2, 0.3 and 0.4. We vary the cardinality of the
dataset and report the runtime of the approximate solutions with
different δs in Fig 12. We observe that the runtime decreases as δ
increases. This is because fewer dirty cells are considered in the
phase of splitting the region in DS-Search when a large δ is used.
As a result, the subregions tend to be smaller and are more likely to
satisfy the drop condition, yielding a better efficiency. In addition,
more candidate regions in the grid index are pruned when δ is large.
Result quality. We next conduct experiments to evaluate the qual-
ity of the regions returned by the approximate solution. The quality
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Figure 12: Runtime of the approximate solution w.r.t. δ.
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Table 2: Approximation quality for composite aggregator F1.
Cardinality δ
|O| 0.1 0.2 0.3 0.4

1× 108 1.02819 1.02826 1.02829 1.02829
2× 108 1.05659 1.05659 1.05678 1.05681
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Figure 13: Application to MaxRS problem.

is measured by quality =
dapp

dopt
, where dapp is the distance of the

region returned by the approximate solution and dopt is the distance
of the most similar region. We vary δ from 0.1 to 0.4, and report
the quality of the approximate result for composite aggregator F1

in Table 2. We observe that the approximation quality is quite good
even when a large δ is used.

7.5 Application to the MaxRS Problem
We evaluate the proposed algorithm when it is adapted to solve

the MaxRS problem. Recall that the MaxRS problem [21] aims to
find a rectangle of given size that encloses the maximum number of
spatial objects. The algorithm Optimal Enclosure (OE) with com-
plexity of O(n logn) is the state-of-the-art solution to the MaxRS
problem. As discussed in Section 2, the MaxRS problem is a special
case of the ASRS problem. We can thus easily adapt the proposed
DS-Search algorithm to solve the MaxRS problem. Specifically, as
we are interested in the region that encloses the maximum num-
ber of objects, we estimate an upper bound for each cell instead of
lower bound. The upper bound of a dirty cell g is the total number
of rectangles that fully or partially cover g. Then we modify Al-
gorithm 1 to greedily process the regions with the maximum upper
bound (line 4 in Algorithm 1). We use DS-Search to denote the
modified version of Algorithm 1 and compare it with OE.

Firstly, we evaluate effect of the size of the query rectangle. We
randomly select 5 × 106 spatial objects from Tweet. We vary the
rectangle size from q to 30q. Fig 13a reports the runtime of the
two algorithms w.r.t. the query rectangle size. We observe that DS-
Search is about an order of magnitude faster than OE. Moreover,
DS-Search is less sensitive to the size of the query rectangle.

We next evaluate the scalability. We vary the cardinality of the
dataset from 1, 000, 000 to 10, 000, 000 spatial objects and report
the runtime in Fig 13b. We observe that DS-Search scales well
w.r.t. the number of spatial objects. It can finish in fewer than 20
seconds when there are 10,000,000 spatial objects, which enables
it to handle real applications with massive data.

We conclude that DS-Search outperforms the state-of-the-art al-
gorithm OE for the MaxRS problem, which is adopted in all subse-
quent studies [5, 11, 12, 24].

7.6 Case Study
In our case study, we run DS-Search on the 4,556 Foursquare

POIs in Singapore. We adopt the composite aggregator F =
((fD,Category, γall)) to compute the category distribution of the
POIs in a region.

Fig 14(a) depicts three regions: “Orchard” (red), “Marina Bay”
(black), and “Bugis” (blue). Specifically, “Orchard” is the query re-
gion, “Marina Bay” is the similar region discovered by DS-Search,
and “Bugis” is a baseline region that is used to help us interpret

Figure 14: A Case study on Singapore.

Figure 15: “Orchard” is more related to “Marina Bay.”

the result. The aggregate representations of the three regions are
visualized as a stacked bar graph in Fig 14(b).

“Orchard” and “Marina Bay” are epicenters of shopping in Sin-
gapore that offer many luxury stores and entertainment options. As
can be seen from Fig 14(b), most of the dimensions in the aggregate
representations of the two regions are very similar. This explains
why DS-Search thinks “Orchard” and “Marina Bay” are similar. In
contrast, although “Bugis” and “Orchard” are similar in dimensions
like “Food” and “Transport,” they are quite different in the other di-
mensions, like nightlife spot and arts & entertainment. In fact, as
shown in Fig 15, if we search the three regions in Google, there are
more results about “Orchard” and “Marina Bay” than about “Or-
chard” and “Bugis,” which indicates that “Marina Bay” is more
similar to “Orchard” than “Bugis.”

This case study shows that the ASRS functionality is useful for
capturing a region’s characteristics and for retrieving similar re-
gions. Therefore, our proposed solution can be a useful tool in a
range of real life applications. For instance, if a user enjoys ex-
ploring “Orchard,” the proposed solution can be utilized to identify
the similar region “Marina Bay” and recommend it to the user for
further exploration.

8. CONCLUSIONS
The need for advanced retrieval of regions with selected charac-

teristics has gained in prominence due to the availability of increas-
ingly massive volumes of geo-tagged data. We define so-called
composite aggregators that are able to capture a region’s character-
istics. We then formalize and study a new problem, the attribute-
aware similar region search problem. To this end, we propose a
novel algorithm called the DS-Search algorithm. We also propose
indexing along with pruning techniques to improve the efficiency
of DS-Search. Since approximate answers are acceptable in many
applications, we extend DS-Search to find regions that are similar to
the exact solution with error bounds. The experimental study shows
that DS-Search is 2–3 orders of magnitude faster than a baseline al-
gorithm adapted from the sweep-line algorithm. We also show that
we can extend DS-Search to address the MaxRS problem with slight
modifications while outperforming the baseline algorithm by one
order of magnitude. As part of future work, we intend to take the
inner structure of the region, i.e., the spatial distribution of the ob-
jects into consideration to measure the similarity between regions.
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