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Abstract 

In a software defined network, there are various hosts and switches. Often multiple connections exist from one host to another 
through the switches. These connections require different amount of bandwidth as well as time delay. The proposed work Cost 
Optimized Flow Control (COFC) aims at finding the most efficient path between a pair of hosts and accordingly deactivates 
certain switches to let them go to sleep. This requires knowledge about topology of the network which is stored in a software-
defined-network (SDN) controller. SDN decouples all the flow control activity from physical forwarding of packets. Flow 
control is entirely performed by the SDN controller as it determines the switches that can remain in sleep mode unless cost in its 
alternative paths crosses a threshold. This preserves energy and also optimizes the objectives bandwidth and delay. 
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1. Introduction 

Software defined network (SDN) is a relatively new network paradigm that provides a suitable construct for 
simplifying network management and introducing real time programmability [1-4]. Ample scope of innovation is 
there. Flow control activity is handled by a centralized controller and it is completely decoupled from underlying 
hardware i.e. physical layer forwarding of packets. The Open Networking Foundation (ONF) [2], industry consortia 
defines the term SDN as “the physical separation of the network control plane from the forwarding plane and where 
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a control plane controls several devices”. High level of network abstraction is applied through the control plane, 
which consists of a centralized controller only. This eliminates the need of fine tuning hardware components to meet 
requirements of the network from time to time. SDN provides several application programming interfaces or API 
(both northbound and southbound) to execute routing, security and access control.  

        The present article proposes one cost based flow control mechanism where optimized path between any 
two hosts in the network is determined based on bandwidth, estimated initial packet drop rate without wait in flow 
queue or message queue of a switch, timestamp of dropping the first packet and delay in composite links. If there are 
some switches that do not exist in the entire collection of optimum paths, then they are deactivated. They can remain 
in sleep mode unless software interrupts from the SDN controller raise them up again. Exactly one software 
interrupt is required to activate each switch. The interrupt is raised if any one switch suffers from shortage of battery 
power. In simulation section, COFC is compared with its state-of-the-art competitors and results show significant 
improvement in favor of COFC. 

As far as the novelty of COFC is concerned, the idea is simple but effective and innovative. This technique is 
applicable for SDNs of various kinds (simple as well as complex topologies) because COFC requires knowledge of 
all available paths between all pairs of source and destination hosts, bandwidth of links, average delay in switches 
along with their rate of dropping packets etc. This is possible only for SDN because SDN decouples physical packet 
forwarding from control plane. Packets flow as per instruction of the controller. To the best of authors knowledge, 
no similar work exists in the literature of SDN.  

2. Background and Related Work 

An important characteristic of dense software defined networks is rich link connectivity that is, one host is 
connected to other host through multiple different paths. Statistically, it has been shown that network traffic peaks 
during day time and falls at night. This leaves most of links in idle but on state consuming a huge amount of energy. 

     An energy-aware routing method is proposed in [15] that tries to use as few network devices as possible to 
take the responsibility of routing from one host to another. The strategy proposed in [11] is based on ternary content-
addressable memory (TCAM) that is placed inside switches [11]. If TCAM capacity of a switch is 0, then the switch 
is deactivated and no traffic can pass through it. However, it does not take care of bandwidth, packet drop rate, delay 
etc. We shall refer to this work as TCAM-SLP in rest of the paper. ElasticTree [17] is presented by Heller et. Al., 
that dynamically adjusts the set of active network elements to change traffic in a data center of Fat-Tree topology. 
CARPO [13] is a power optimization algorithm that applies correlation analysis among multiple flows  and traffic is 
consolidated for energy saving provided link capacity permits. A network function virtualization based technique is 
applied for energy efficiency in [20]. 

   ElastiCon [18] is a distributed controller architecture in which a pool of controllers is there. As per various 
traffic conditions, a controller is elected to serve in the control plane. Load is dynamically shifted from one 
controller to another. Fu et. Al. [14], proposed a dormant multi-controller model that applies quantitative analysis of 
energy consumption as well as performance throughput of multiple controllers. E3MC [19] is another multi-
controller system that applies energy efficiency using SDN. However, none of these energy saving mechanisms 
consider bandwidth and delay. Also they do not estimate packet drop rate in the links. The present work COFC takes 
care of these before selecting one particular host-to-host communication path. 

3. System Modeling 

The underlying network consists of certain hosts and switches. It is expressed as a graph G = (CNTL, H, S, 
LN) where CNTL is the special controller node or vertex. H denotes the set of hosts and S stands for the set of 
switches. LN is the set of links from vertex a to vertex b in graph G such that the following conditions hold: 

i) aH and bS 
ii) aS and bH 
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requirements of the network from time to time. SDN provides several application programming interfaces or API 
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An important characteristic of dense software defined networks is rich link connectivity that is, one host is 
connected to other host through multiple different paths. Statistically, it has been shown that network traffic peaks 
during day time and falls at night. This leaves most of links in idle but on state consuming a huge amount of energy. 

     An energy-aware routing method is proposed in [15] that tries to use as few network devices as possible to 
take the responsibility of routing from one host to another. The strategy proposed in [11] is based on ternary content-
addressable memory (TCAM) that is placed inside switches [11]. If TCAM capacity of a switch is 0, then the switch 
is deactivated and no traffic can pass through it. However, it does not take care of bandwidth, packet drop rate, delay 
etc. We shall refer to this work as TCAM-SLP in rest of the paper. ElasticTree [17] is presented by Heller et. Al., 
that dynamically adjusts the set of active network elements to change traffic in a data center of Fat-Tree topology. 
CARPO [13] is a power optimization algorithm that applies correlation analysis among multiple flows  and traffic is 
consolidated for energy saving provided link capacity permits. A network function virtualization based technique is 
applied for energy efficiency in [20]. 

   ElastiCon [18] is a distributed controller architecture in which a pool of controllers is there. As per various 
traffic conditions, a controller is elected to serve in the control plane. Load is dynamically shifted from one 
controller to another. Fu et. Al. [14], proposed a dormant multi-controller model that applies quantitative analysis of 
energy consumption as well as performance throughput of multiple controllers. E3MC [19] is another multi-
controller system that applies energy efficiency using SDN. However, none of these energy saving mechanisms 
consider bandwidth and delay. Also they do not estimate packet drop rate in the links. The present work COFC takes 
care of these before selecting one particular host-to-host communication path. 

3. System Modeling 

The underlying network consists of certain hosts and switches. It is expressed as a graph G = (CNTL, H, S, 
LN) where CNTL is the special controller node or vertex. H denotes the set of hosts and S stands for the set of 
switches. LN is the set of links from vertex a to vertex b in graph G such that the following conditions hold: 
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iii) aS and bS 
Assume that pathij denotes the set of different paths from one host hi to another host hj, s.t. hi, hj H. If k number of 
paths exist from hi to hj, then, 

pathij = {pij(1), pij(2), … , pij(k)} 
Where pij(v) s.t. 1vk, denote v-th path from hi to hj. 
Application of COFC will be possible for a network provided the following condition CND is satisfied. 

CND::  ∑  |pathij|  >  1 
     hi, hj  H, 
     ij 
The condition CND specifies that more than one path exists for at least one pair of distinct hosts. In that case, 

comparison between various paths between same pair of source and destination hosts, is possible and finding one 
optimum out of the available options, become relevant. For example, if we assume that between two hosts hi and hj, 
following three paths exist: Path1(i,j) = {hi->sw1->sw3->sw4->sw7->hj},Path2(i,j) = {hi->sw1->sw5->sw8->sw7-
>hj},Path3(i,j) = {hi->sw1->sw6->sw2->sw7->hj}. If we assume that Path1(i,j) is chosen as optimal, then it will 
open up the possibility of turning off the switches sw2, sw5, sw6 and sw8. But if the three paths are as below, then 
only the switches sw2 and sw8 may be turned off, because Path2(i,j) and Path3(i,j) have so many nodes in 
common. Path1(i,j) = {hi->sw1->sw3->sw4->sw7->hj} Path2(i,j) = {hi->sw1->sw4->sw8->sw7->hj} Path3(i,j) = 
{hi->sw1->sw3->sw2->sw7->hj}. Therefore, initial applicability IA(NT) of a network topology NT is formulated 
in (1). It is based on the concept that, if a large number of disjoint paths exist between various source-destination 
host pairs, then a good number of non-ingress switches may be turned off without hampering vertex to vertex 
communication. That is, size of the set LN is expected to get reduced up to a great extent after applying COFC on 
network topology NT. 
IA(NT) = MAX  { disjointij } / (|S| - |H|)                                                                                                                    (1) 
        hi, hj  H, 
          ij 
disjointij = [∑ { |pij(u) – pij(v) |}] /|pathij|                                                                                                                     (2) 
         1u,v|pathij|, 
            uv 
 
 
 
 
 
 
 

Figure 1: An example network of hosts and switches 
From the formulation in (2) we understand that disjointij is the average number of switches that can be turned off 
provided one path is selected to be the optimum out of |pathij| number of paths. Each path option is checked for 
disjointness with rest of the options between the same pair of source-destination hosts. Please note that maximum 
possible number of switches that can be turned off, is given by (|S| - |H|), because (|S| - |H|) is the total number of 
non-ingress switches. Possibility of turning all of them off, arises only when in the optimal path, ingress switches 
of source and destination hosts, directly communicate with each other. From the formulation (1) it is clear that, 
IA(NT) lies between 0 and 1. Application of COFC is performed on a network topology provided IA(NT) is greater 
than 0.25. Assume that for the network topology NT, Z(NT) denote the set of switches can remain deactivated for 
some time. For each switch swchZ(NT), let deactivation time duration be (swch) and rate of energy 
consumption in the same switch, be (swch). If overall simulation time is Y, then energy E(NT) saved through 
deactivation of those switches belonging to the set Z(NT), is formulated in (3). 
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E(NT) = ∑ ((swch) (swch))                                                                                                                                 (3) 
      swchZ(NT) 

One such example is shown in figure 1. We can see that two different paths exist from A to B. They are as 
follows: 

path1AB:  Asw1sw2sw4B 
path2AB:  Asw1sw3sw4B 
Each link in path1 and path2 require different amount of bandwidth. Also the delay they suffer is not expected 

to be uniform. COFC estimates the cost of each path in terms of bandwidth, approximate initial packet drop rate 
without wait in flow queue or message queue of a switch and delay, while background remains the original network 
in Figure 1. The option incurring minimum cost is elected for communication from host A to B. Without any loss of 
generality, we assume that cost incurred in path2AB is less than the same in path1AB in context of overall network 
in Figure 1. Therefore path2AB will be chosen for communication from A to B.  

The network is modeled as a graph G = (V, E) where V is the set of vertices and E is the set of edges. By 
vertices we mean hosts and switches (subsequently called as nodes in general) whereas edge represents a connection 
between any two vertices. COFC finds a cost optimized version of G based on bandwidth, approximate initial packet 
drop rate without wait in flow queue or message queue of a switch and delay in the links. Let G = (V, E) denote 
the reduced G, where V=V-SL s.t. SL is the set of sleeping switches and E represents the set of connections in cost 
optimized network graph G. Corresponding to the network in Figure 1, G and G are shown in Figures 2 and 3, 
respectively, based on optimum bidirectional path assumptions in Table 1. 

 
Figure 2: G corresponding to the network in Figure 1  Figure 3: G corresponding to the graph of Figure 2 

      Table 1: Optimum paths from host-to-host 
Source Host Destination Host Path 
A B Asw1sw3sw4B 
A C Asw1sw6C 
A D Asw1sw6sw7B 
B C Bsw4sw7sw6C 
B D Bsw4sw7D 
C D Csw6sw7D 

SL = {sw2, sw5} 
The switches that can be deactivated in fig. 2 are sw2 and sw5.    

4. SDN Controller Design 

4.1 Overview 

 The SDN controller is equipped with four different tables, named host-call table, switch-dep-drop table, 
link-data table and min-cost-path table. Attributes of host-call table are as follows: 
i) host-id 
ii) max-call-gen 

host-id is the unique identification number of a host. For example, in the graph G of figure 2, host-ids are A, 
B, C and D. The other attribute max-call-gen is the maximum call generation rate of the host, that is, maximum 
number of calls generated by that host per unit time.  

Attributes of switch-dep-drop table are mentioned below: 
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        hi, hj  H, 
          ij 
disjointij = [∑ { |pij(u) – pij(v) |}] /|pathij|                                                                                                                     (2) 
         1u,v|pathij|, 
            uv 
 
 
 
 
 
 
 

Figure 1: An example network of hosts and switches 
From the formulation in (2) we understand that disjointij is the average number of switches that can be turned off 
provided one path is selected to be the optimum out of |pathij| number of paths. Each path option is checked for 
disjointness with rest of the options between the same pair of source-destination hosts. Please note that maximum 
possible number of switches that can be turned off, is given by (|S| - |H|), because (|S| - |H|) is the total number of 
non-ingress switches. Possibility of turning all of them off, arises only when in the optimal path, ingress switches 
of source and destination hosts, directly communicate with each other. From the formulation (1) it is clear that, 
IA(NT) lies between 0 and 1. Application of COFC is performed on a network topology provided IA(NT) is greater 
than 0.25. Assume that for the network topology NT, Z(NT) denote the set of switches can remain deactivated for 
some time. For each switch swchZ(NT), let deactivation time duration be (swch) and rate of energy 
consumption in the same switch, be (swch). If overall simulation time is Y, then energy E(NT) saved through 
deactivation of those switches belonging to the set Z(NT), is formulated in (3). 
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E(NT) = ∑ ((swch) (swch))                                                                                                                                 (3) 
      swchZ(NT) 

One such example is shown in figure 1. We can see that two different paths exist from A to B. They are as 
follows: 

path1AB:  Asw1sw2sw4B 
path2AB:  Asw1sw3sw4B 
Each link in path1 and path2 require different amount of bandwidth. Also the delay they suffer is not expected 

to be uniform. COFC estimates the cost of each path in terms of bandwidth, approximate initial packet drop rate 
without wait in flow queue or message queue of a switch and delay, while background remains the original network 
in Figure 1. The option incurring minimum cost is elected for communication from host A to B. Without any loss of 
generality, we assume that cost incurred in path2AB is less than the same in path1AB in context of overall network 
in Figure 1. Therefore path2AB will be chosen for communication from A to B.  

The network is modeled as a graph G = (V, E) where V is the set of vertices and E is the set of edges. By 
vertices we mean hosts and switches (subsequently called as nodes in general) whereas edge represents a connection 
between any two vertices. COFC finds a cost optimized version of G based on bandwidth, approximate initial packet 
drop rate without wait in flow queue or message queue of a switch and delay in the links. Let G = (V, E) denote 
the reduced G, where V=V-SL s.t. SL is the set of sleeping switches and E represents the set of connections in cost 
optimized network graph G. Corresponding to the network in Figure 1, G and G are shown in Figures 2 and 3, 
respectively, based on optimum bidirectional path assumptions in Table 1. 

 
Figure 2: G corresponding to the network in Figure 1  Figure 3: G corresponding to the graph of Figure 2 

      Table 1: Optimum paths from host-to-host 
Source Host Destination Host Path 
A B Asw1sw3sw4B 
A C Asw1sw6C 
A D Asw1sw6sw7B 
B C Bsw4sw7sw6C 
B D Bsw4sw7D 
C D Csw6sw7D 

SL = {sw2, sw5} 
The switches that can be deactivated in fig. 2 are sw2 and sw5.    

4. SDN Controller Design 

4.1 Overview 

 The SDN controller is equipped with four different tables, named host-call table, switch-dep-drop table, 
link-data table and min-cost-path table. Attributes of host-call table are as follows: 
i) host-id 
ii) max-call-gen 

host-id is the unique identification number of a host. For example, in the graph G of figure 2, host-ids are A, 
B, C and D. The other attribute max-call-gen is the maximum call generation rate of the host, that is, maximum 
number of calls generated by that host per unit time.  

Attributes of switch-dep-drop table are mentioned below: 
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i) switch-id 
ii) call-dep-rate 
iii) queue-size 
iv) init-pac-drop-rate-no-wait 
v) first-drop-time 

switch-id specifies unique identification number of the switch. As far as creation of tables are concerned, 
whenever any host registers into the network, its maximum call generation rate is available to the controller and the 
controller itself assigns an unique host identifier to that new host. Then the entry (host-id, maximum call generation 
rate) are inserted into the host-call table. As far as registering new switches into the network is concerned, 
information like switch-id, maximum possible call servicing rate or call-dep-rate and queue-size are known to the 
SDN controller. From these information initial packet drop rate without wait in flow queue or message queue of a 
switch (init-pac-drop-rate-no-wait) and minimum time duration between starting operation in the network and 
dropping the first packet (that is, first-drop-time) can be calculated. For example, suppose, one particular switch 
swch is associated with a set of hosts denoted by H1(swch) and a set of switches S1(swch). Also assume that, 
maximum call generation rate of a host hi is m(i) and size of flow queue or message queue of swch is f(swch). Call 
departure rate of a switch swch is c(swch). Therefore, maximum initial packet drop rate without wait in flow queue 
or message queue of a switch in swch is denoted by mpdr(swch) and defined in  (4). 
mpdr(swch) =  m(i) +   c(sw)  -  c(swch)                                                                                                               (4) 
               hiH1(swch) swS1(swch) 
From (4), first drop time fdm(swch) of a switch swch is computed in (5). 
fdm(swch) = f(swch)/ mpdr(swch)                                                                                                                          (5) 

For example, in the graph G of figure 2, switch-ids are sw1, sw2, sw3, sw4, sw5, sw6 and sw7. call-dep-
rate is the fixed call departure rate of a switch. Each switch is equipped with a message queue having different sizes. 
first-drop-time is the timestamp of dropping the first packet. init-pac-drop-rate-no-wait is the approximate initial 
packet drop rate without wait in flow queue or message queue of the switch. It is computed as follows, considering 
network topology graph G in fig. 2. In that graph, sw1 is connected to the network elements sw2, sw3, sw6 and A. 
Among these, only A can generate calls while the switches sw2, sw3 and sw6 can only forward. If max-call-gen of 
A is 0.3 (A can generate 0.3 calls per unit time) and call-dep-rates of sw2, sw3 and sw6 are 0.05, 0.7 and 0.3, then 
maximum number of calls that can arrive at the message queue of sw1, is given by (0.3+0.05+0.7+0.3) i.e. 1.35. If 
call-dep-rate of sw1 is 2, then init-pac-drop-rate-no-wait of sw1 will be 0 irrespective of the size of its message 
queue. On the other hand, if call-dep-rate of sw1 is 0.5, then rate of dropping packets in sw1 will be (1.35 – 0.5) i.e. 
0.85, irrespective of queue size. Assuming that size of message queue of sw1 be 3, timestamp of first packet drop or 
first-drop-time is given by, (queue-size / init-pac-drop-rate-no-wait) i.e. (3/0.85) or 3.529 or 3.  
 link-data table contains the bandwidth and delay information in each table. Names of the attributes are link-

id (specifying identification numbers of endpoints of a link), link-bandwidth and link-delay. min-cost-path table 
consists of minimum cost path information from each host to other. It’s attributes are start-host-id, end-host-id, path, 
cost and opt-path. start-host-id and end-host-id are host identifiers at beginning and end of a path. path specifies all 
possible router sequences in between those two hosts and cost is the overall associated cost involved in that path. As 
the name implies, opt-path is the optimum path in between those two hosts. Cost is computed based on information 
in the three other tables present in SDN controller.  Assume that between any two hosts hi and hj, path pij(u) is 
chosen as optimal where 1u|pathij|, where pij(u) is given by,pij(u) = {hi->swchq->swchq+1->swchq+2-> … -
>swchq+g->hj}.Here swchq is the ingress switch of hi whereas swchq+g is the same of hj. Then, overall bandwidth 
BW(pij(u)) of the path pij(u) is formulated in (4) whereas overall delay DL(pij(u)), initial packet drop rate without 
wait in flow queue or message queue of a switch PDR(pij(u)) and average first drop time AFDM(pij(u)) are given by 
(7), (8) and (9) respectively. 
    BW(pij(u)) = bw(hi->swchq) + ∑ bw(swchv+q->swchv+q+1) + bw(swchq+g->hj)                                                        (6) 

                                 1v(g-1) 
   DL(pij(u)) = dl(hi->swchq) + ∑ dl(swchv+q->swchv+q+1) + dl(swchq+g->hj)                                                               (7) 

                           1v(g-1) 
   PDR(pij(u)) = ∑ mpdr(swchv)                                                                                                                                   (8) 

         qv(g+q) 
AFDM(pij(u)) =[ ∑ fdm(swchv)] / (g+1)                                                                                                                    (9) 
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            qv(g+q) 
Here bw(a->b), dl(a->b ), pdr(a ) and fdm(a ) indicate bandwidth and delay of the link from a to b, initial 

packet drop rate without wait in flow queue or message queue of a switch and first drop time of the switch a, 
respectively. Then overall cost C(pij(u)) of the path pij(u) is given by (8). 
C(pij(u)) = (BW(pij(u))  DL(pij(u))  DL(pij(u))  AFDM(pij(u)))                                                                         (10) 

Cost saved in COFC by selecting pij(u) as optimal path as per the logic of COFC, is denoted as s-c(pij(u)) 
and formulated in (11). The set of other path options between the same pair of hosts is given by, (pathij - pij(u)). Cost 
of each path pth  (pathij - pij(u)), cost saved is given by, (C(pth) - C(pij(u))). Overall average cost saved by 
choosing pij(u) as optimal, is denoted by acs(pij(u)) and defined in (11).  
acs(pij(u)) = [{ (1 - C(pij(u))/C(pth))} /( |pathij | - 1)] 100                                                                                   (11) 

    pth  (pathij - pij(u)) 
Average cost saved in percentage throughout the simulation of COFC, is denoted as PSPF. Let F specify 

the total set of flows and for each flow f, let opt(f) denote the optimal path. Then, PSPF is formulated in (12). 
PSPF =  acs(opt(f)) / |F|                                                                                                                                         (12) 

              fF 

4.2 Illustration with an Example 

 Assume that corresponding to the graph G of Figure 2, the following information is maintained in Table 2, 
Table 3 and Table 4. 
 
Table 2: host-call table of G 
host-id max-call-gen 
A 0.3 
B 0.2 
C 0.5 
D 0.1 
  
Table 3: switch-dep-drop table of G 
switch-id call-dep-rate queue-size init-pac-drop-rate-no-wait first-drop-time 
sw1 2 10 0 0 
sw2 0.05 8 2.04 3 
sw3 0.7 12 2.4 5 
sw4 0.9 8 0.05 160 
sw5 0.2 12 1.2 10 
sw6 0.3 8 0.8 10 
sw7 0.4 10 0.2 50 
 
Table 4: Link data information 
link-id link-bandwidth link-delay 
(A,sw1) 2 1 
(sw1, sw6) 1 3 
(C, sw6) 5 2 
(sw1, sw3) 1 2 
(sw3, sw5) 3 2 
(sw5, sw6) 4 1 
(sw5, sw7) 3 1 
(sw6, sw7) 1 1 
(sw1, sw2) 10 10 
(sw2, sw4) 10 2 
(sw4, sw3) 2 2 
(sw4, B) 1 1 
(sw4, sw7) 4 2 
(sw7, D) 1 1 
 
Table 5: min-cost-path table 
start-
host-id 

end-host-
id 

Path cost opt-path 
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i) switch-id 
ii) call-dep-rate 
iii) queue-size 
iv) init-pac-drop-rate-no-wait 
v) first-drop-time 

switch-id specifies unique identification number of the switch. As far as creation of tables are concerned, 
whenever any host registers into the network, its maximum call generation rate is available to the controller and the 
controller itself assigns an unique host identifier to that new host. Then the entry (host-id, maximum call generation 
rate) are inserted into the host-call table. As far as registering new switches into the network is concerned, 
information like switch-id, maximum possible call servicing rate or call-dep-rate and queue-size are known to the 
SDN controller. From these information initial packet drop rate without wait in flow queue or message queue of a 
switch (init-pac-drop-rate-no-wait) and minimum time duration between starting operation in the network and 
dropping the first packet (that is, first-drop-time) can be calculated. For example, suppose, one particular switch 
swch is associated with a set of hosts denoted by H1(swch) and a set of switches S1(swch). Also assume that, 
maximum call generation rate of a host hi is m(i) and size of flow queue or message queue of swch is f(swch). Call 
departure rate of a switch swch is c(swch). Therefore, maximum initial packet drop rate without wait in flow queue 
or message queue of a switch in swch is denoted by mpdr(swch) and defined in  (4). 
mpdr(swch) =  m(i) +   c(sw)  -  c(swch)                                                                                                               (4) 
               hiH1(swch) swS1(swch) 
From (4), first drop time fdm(swch) of a switch swch is computed in (5). 
fdm(swch) = f(swch)/ mpdr(swch)                                                                                                                          (5) 

For example, in the graph G of figure 2, switch-ids are sw1, sw2, sw3, sw4, sw5, sw6 and sw7. call-dep-
rate is the fixed call departure rate of a switch. Each switch is equipped with a message queue having different sizes. 
first-drop-time is the timestamp of dropping the first packet. init-pac-drop-rate-no-wait is the approximate initial 
packet drop rate without wait in flow queue or message queue of the switch. It is computed as follows, considering 
network topology graph G in fig. 2. In that graph, sw1 is connected to the network elements sw2, sw3, sw6 and A. 
Among these, only A can generate calls while the switches sw2, sw3 and sw6 can only forward. If max-call-gen of 
A is 0.3 (A can generate 0.3 calls per unit time) and call-dep-rates of sw2, sw3 and sw6 are 0.05, 0.7 and 0.3, then 
maximum number of calls that can arrive at the message queue of sw1, is given by (0.3+0.05+0.7+0.3) i.e. 1.35. If 
call-dep-rate of sw1 is 2, then init-pac-drop-rate-no-wait of sw1 will be 0 irrespective of the size of its message 
queue. On the other hand, if call-dep-rate of sw1 is 0.5, then rate of dropping packets in sw1 will be (1.35 – 0.5) i.e. 
0.85, irrespective of queue size. Assuming that size of message queue of sw1 be 3, timestamp of first packet drop or 
first-drop-time is given by, (queue-size / init-pac-drop-rate-no-wait) i.e. (3/0.85) or 3.529 or 3.  
 link-data table contains the bandwidth and delay information in each table. Names of the attributes are link-

id (specifying identification numbers of endpoints of a link), link-bandwidth and link-delay. min-cost-path table 
consists of minimum cost path information from each host to other. It’s attributes are start-host-id, end-host-id, path, 
cost and opt-path. start-host-id and end-host-id are host identifiers at beginning and end of a path. path specifies all 
possible router sequences in between those two hosts and cost is the overall associated cost involved in that path. As 
the name implies, opt-path is the optimum path in between those two hosts. Cost is computed based on information 
in the three other tables present in SDN controller.  Assume that between any two hosts hi and hj, path pij(u) is 
chosen as optimal where 1u|pathij|, where pij(u) is given by,pij(u) = {hi->swchq->swchq+1->swchq+2-> … -
>swchq+g->hj}.Here swchq is the ingress switch of hi whereas swchq+g is the same of hj. Then, overall bandwidth 
BW(pij(u)) of the path pij(u) is formulated in (4) whereas overall delay DL(pij(u)), initial packet drop rate without 
wait in flow queue or message queue of a switch PDR(pij(u)) and average first drop time AFDM(pij(u)) are given by 
(7), (8) and (9) respectively. 
    BW(pij(u)) = bw(hi->swchq) + ∑ bw(swchv+q->swchv+q+1) + bw(swchq+g->hj)                                                        (6) 

                                 1v(g-1) 
   DL(pij(u)) = dl(hi->swchq) + ∑ dl(swchv+q->swchv+q+1) + dl(swchq+g->hj)                                                               (7) 

                           1v(g-1) 
   PDR(pij(u)) = ∑ mpdr(swchv)                                                                                                                                   (8) 

         qv(g+q) 
AFDM(pij(u)) =[ ∑ fdm(swchv)] / (g+1)                                                                                                                    (9) 
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            qv(g+q) 
Here bw(a->b), dl(a->b ), pdr(a ) and fdm(a ) indicate bandwidth and delay of the link from a to b, initial 

packet drop rate without wait in flow queue or message queue of a switch and first drop time of the switch a, 
respectively. Then overall cost C(pij(u)) of the path pij(u) is given by (8). 
C(pij(u)) = (BW(pij(u))  DL(pij(u))  DL(pij(u))  AFDM(pij(u)))                                                                         (10) 

Cost saved in COFC by selecting pij(u) as optimal path as per the logic of COFC, is denoted as s-c(pij(u)) 
and formulated in (11). The set of other path options between the same pair of hosts is given by, (pathij - pij(u)). Cost 
of each path pth  (pathij - pij(u)), cost saved is given by, (C(pth) - C(pij(u))). Overall average cost saved by 
choosing pij(u) as optimal, is denoted by acs(pij(u)) and defined in (11).  
acs(pij(u)) = [{ (1 - C(pij(u))/C(pth))} /( |pathij | - 1)] 100                                                                                   (11) 

    pth  (pathij - pij(u)) 
Average cost saved in percentage throughout the simulation of COFC, is denoted as PSPF. Let F specify 

the total set of flows and for each flow f, let opt(f) denote the optimal path. Then, PSPF is formulated in (12). 
PSPF =  acs(opt(f)) / |F|                                                                                                                                         (12) 

              fF 

4.2 Illustration with an Example 

 Assume that corresponding to the graph G of Figure 2, the following information is maintained in Table 2, 
Table 3 and Table 4. 
 
Table 2: host-call table of G 
host-id max-call-gen 
A 0.3 
B 0.2 
C 0.5 
D 0.1 
  
Table 3: switch-dep-drop table of G 
switch-id call-dep-rate queue-size init-pac-drop-rate-no-wait first-drop-time 
sw1 2 10 0 0 
sw2 0.05 8 2.04 3 
sw3 0.7 12 2.4 5 
sw4 0.9 8 0.05 160 
sw5 0.2 12 1.2 10 
sw6 0.3 8 0.8 10 
sw7 0.4 10 0.2 50 
 
Table 4: Link data information 
link-id link-bandwidth link-delay 
(A,sw1) 2 1 
(sw1, sw6) 1 3 
(C, sw6) 5 2 
(sw1, sw3) 1 2 
(sw3, sw5) 3 2 
(sw5, sw6) 4 1 
(sw5, sw7) 3 1 
(sw6, sw7) 1 1 
(sw1, sw2) 10 10 
(sw2, sw4) 10 2 
(sw4, sw3) 2 2 
(sw4, B) 1 1 
(sw4, sw7) 4 2 
(sw7, D) 1 1 
 
Table 5: min-cost-path table 
start-
host-id 

end-host-
id 

Path cost opt-path 
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A B A  sw1  sw2  sw4  B 16.52 A  sw1 sw6sw7 sw4  B 
A  sw1  sw3  sw4  B 2.140 
A  sw1  sw6  sw5  sw3sw4  B 35.34 
A  sw1 sw3  sw5  sw7 sw4  B 12.94 
A  sw1 sw3  sw5  sw6sw7 sw4  B 19.95 
A  sw1 sw6sw7 sw4  B 1.718 
A  sw1 sw6sw5sw7 sw4  B 7.923 

A C A  sw1  sw6  C 11.52 A  sw1 sw6C 
A  sw1  sw3  sw5  sw6C 105.6 
A  sw1  sw3  sw5  sw7sw6  C 38.88 
A  sw1 sw3  sw4  sw7 sw6  C 13.8 
A  sw1 sw3  sw4 sw7sw5 sw6  C 31.99 
A  sw1 sw2sw4 sw7  sw6C 47.89 
A  sw1 sw2sw4sw7 sw5  sw6C 93.05 
A  sw1 sw2sw4sw3sw5  sw6C 17.39 
A  sw1 sw2sw4sw3sw5  sw7sw6C 170 

A D A  sw1  sw6  sw7D 2 A  sw1 sw6sw7D 
A  sw1  sw3  sw5  sw7D 20.46 
A  sw1  sw3  sw5  sw6sw7  D 35.33 
A  sw1  sw2  sw4  sw7D 23.22 
A  sw1 sw2  sw4 sw3sw5 sw7  D 106.5 
A  sw1 sw2  sw4 sw3sw5 sw6sw7  D 148.42 
A  sw1 sw6sw5sw7 D 30.8 
A  sw1 sw6sw5sw3sw4  sw7D 28.26 

B C B  sw4  sw2  sw1  sw6C 40.59 B  sw4 sw7  sw6 C 
B  sw4  sw2  sw1  sw3  sw5  sw6  C 164.32 
B  sw4  sw2  sw1  sw3  sw5  sw7 sw6 
 C 

160.56 

B  sw4 sw7  sw6 C 0.945 
B  sw4 sw7  sw5 sw6 C 14.43 
B  sw4 sw3  sw5sw6 C 5.82 
B  sw4 sw3  sw5sw7sw6 C 16.02 
B  sw4 sw3  sw1sw6 C 9.28 

B D B  sw4   sw7D 0.0857 B  sw4 sw7  D 
B sw4  sw3  sw5  sw7D 5.99 
B sw4 sw3  sw5  sw6sw7  D 11.397 
B sw4  sw2  sw1  sw3  sw5  sw7 D 99.13 
B sw4  sw2  sw1  sw3  sw5  sw6sw7 
D 

139.42 

B sw4  sw2  sw1  sw6  sw7 D 40.10 
B sw4  sw2  sw1  sw6 sw5sw7 D 72.84 
B sw4  sw3  sw1  sw6 sw5sw7 D 19.81 
B sw4  sw3  sw1  sw6sw7 D 6.44 

C D C  sw6   sw7D 1.4 C sw6  sw7D 
C sw6  sw5  sw7D 8.17 
C sw6 sw5  sw3  sw4sw7  D 22.85 
C sw6 sw5  sw3  sw1 sw2 sw4sw7  D 187.99 
C sw6  sw1 sw3 sw4sw7  D 15.59 
C sw6  sw1 sw3 sw5sw7  D 51.52 
C sw6  sw1 sw2 sw4sw7  D 54.67 
C sw6  sw1 sw2 sw4 sw3 sw5sw7  D 173.15 

  
 Based on the above information, minimum cost paths from one host to another, are computed and stored in 
min-cost-path table.  
 Suppose there is a path PT from A to B in graph G of fig. 2, such that, PT = A  sw1  sw3  sw4  B. 
As per table 2, overall bandwidth of the path is {link-bandwidth (A  sw1) + link-bandwidth(sw1  sw3) + link-
bandwidth(sw3  sw4) + link-bandwidth(sw3  sw4) +  link-bandwidth(sw4  B) }i.e. (2+1+2+1) or 6. 
Similarly, overall delay of the path is, {delay (A  sw1) + delay(sw1  sw3) + delay(sw3  sw4) + delay(sw4  
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A B A  sw1  sw2  sw4  B 16.52 A  sw1 sw6sw7 sw4  B 
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D 

139.42 

B sw4  sw2  sw1  sw6  sw7 D 40.10 
B sw4  sw2  sw1  sw6 sw5sw7 D 72.84 
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B sw4  sw3  sw1  sw6sw7 D 6.44 
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C sw6 sw5  sw3  sw1 sw2 sw4sw7  D 187.99 
C sw6  sw1 sw3 sw4sw7  D 15.59 
C sw6  sw1 sw3 sw5sw7  D 51.52 
C sw6  sw1 sw2 sw4sw7  D 54.67 
C sw6  sw1 sw2 sw4 sw3 sw5sw7  D 173.15 

  
 Based on the above information, minimum cost paths from one host to another, are computed and stored in 
min-cost-path table.  
 Suppose there is a path PT from A to B in graph G of fig. 2, such that, PT = A  sw1  sw3  sw4  B. 
As per table 2, overall bandwidth of the path is {link-bandwidth (A  sw1) + link-bandwidth(sw1  sw3) + link-
bandwidth(sw3  sw4) + link-bandwidth(sw3  sw4) +  link-bandwidth(sw4  B) }i.e. (2+1+2+1) or 6. 
Similarly, overall delay of the path is, {delay (A  sw1) + delay(sw1  sw3) + delay(sw3  sw4) + delay(sw4  
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B) }i.e. (1+2+2+1) or 6. Overall init-pac-drop-rate-no-wait of PT is due to only the switches, i.e. sw1, sw3 and sw4; 
hosts cannot drop packets. Therefore overall init-pac-drop-rate-no-wait of PT is {init-pac-drop-rate-no-
wait(sw1)+init-pac-drop-rate-no-wait(sw3)+init-pac-drop-rate-no-wait(sw4)} i.e. (0+2.4+.05) or 2.45. Average first-
drop-time is summation of first-drop-time of all the switches divided by number of switches. For the path PT, 
average first-drop-time is (0+5+160)/3 i.e. 165/3. Cost C(PT) of the path PT, is thus formulated in (13). 
                                         (13) 
In this way, costs of all paths between all pairs of hosts are computed and the path with minimum cost between each 
pair of hosts, is selected for communication. The switches that do not appear in any of these optimal paths, can be 
switched off to save energy consumption in the network. Corresponding G appears in Figure 4. 
 

 
Figure 4: Reduced network graph after deactivating possible switches 

SL = {sw2, sw3, sw5} 

5.  Simulation Environment And Results  

5.1 Simulation Environment 

Simulation is run using MATLAB 2015b on a server with 3.1GHz Intel Core 2 Duo Processor, 16 GB RAM and 
Windows 8.1. State-of-the-art competitors of COFC are TCAM-SLP and CARPO. Numbers of switches are 10, 30, 
50, 70 and 100. Number of hosts is kept constant at 25. Number of flows vary as 10, 100, 1000, 10000, 100000. 
Number of simulation runs is 10. The performance metrics are as follows 
i) Percentage of energy saved per flow (PEPF) 
ii) Percentage of saving in cost per flow (PSPF) 

These are measured with respect to number of switches and number of flows. Formulation of PEPF appear in 
(16). PSPF is already defined in (12).   When numbers of switches are varied, number of flows is kept constant at 
1000. Similarly when measured with respect to number of flows, number of switches are kept constant at 70. 

PEPF = {(A1 – B1) / (A1flowcnt)}  100 
A1 = [ e-c(hi)Without-COFC +  e-c(swch)Without-COFC)]                                                                                          (14) 
        hiH            swchS        
B1 = [ e-c(hi)COFC +  e-c(swch)COFC)]                                                                                                              (15) 
        hiH        swchS                          
PEPF = [( e-c(hi)Without-COFC +  e-c(swch)Without-COFC) - ( e-c(hi)COFC +  e-c(swch)COFC)]/flowcnt              (16) 
              hiH                         swchS                              hiH              swchS 
e-c(hi)COFC and  e-c(swch)COFC denote energy consumed by host hi and switch swch in COFC throughout the 

simulation period  whereas e-c(hi)Without-COFC and  e-c(swch)Without-COFC denote energy consumed by host hi and 
switch swch in a non-COFC communication throughout the simulation period. flowcnt is the total number of flows 
throughout the simulation. 

5.2 Simulation Results 

With increase in number of network switches, a lot of new routes evolve between any two pair of hosts. 
Therefore, the difference between energy consumption corresponding to any two routes between any two pair of 
hosts generally increases or remains the same in some cases but never decreases. TCAM-SLP deactivates a switch if 
its TCAM capacity is 0. CARPO utilizes correlation between packets. However none of them focus on the rate of 
dropping packets by switches belonging to one particular path. Packets that are dropped have to be resent sometime 
later again, consuming more energy in those paths. Similarly the time delay before dropping the first packet in a 
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path also matters. If average first-drop-time of a path is high, then it may happen that the entire session of 
communication completes before the first packet through the route can be dropped. All these contribute to energy 
efficiency of COFC than its state-of-the-art competitors. This is shown in Figure 5.  

   Figure 6 clearly illustrates the fact that when network load is low, COFC significantly saves energy than its 
competitors. For example, when network flow is close to 100, almost 86% energy is saved. The figure goes down to 
42% when number of flows is as high as 100000. As expected, energy efficiency effectiveness decreases as network 
load increases. As already mentioned, cost of a path is computed as, cost = {bandwidth×delay×init-pac-drop-rate-
no-wait×avg(first-drop-time)}. These factors, specially bandwidth, delay and init-pac-drop-rate-no-wait are very 
important constituents of cost of a path. These are neither considered by TCAM-SLP, nor by CARPO. With increase 
in number of network switches, new route options open between pairs of hosts. The links have different bandwidth, 
delay etc. This saves more cost, as shown in Figure 7.  

   As number of flows in the network increase, it may happen that after some time a switch in the optimum path 
runs out of the battery power and the link breaks. In that case, new optimum will be the next choice in min-cost-path 
table, corresponding to the same pair of source and destination nodes. As a result, cost saving decreases. Still, since 
COFC elects the optimum path based on important factors like bandwidth, delay, pac-dop-rate etc., so COFC 
produces substantial improvement in terms of cost, than its competitors. This is evident from Figure 8. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5. Percentage of energy saved per flow vs number of switches           Figure 6: Percentage of energy saved per flow vs number of flows 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Percentage of cost saved per flow vs number of switches            Figure 8: percentage of cost saved per flow vs number of flows 

6. Conclusion 

 The main strength of COFC is the estimation of cost of multiple routes between various pairs of hosts. In a 
software defined network, routes are always established through SDN controller. Main advantage of this centralized 
configuration is that SDN controller can be made aware of topology of the whole network. If different aspects of 
cost like bandwidth, delay, estimated initial packet drop rate without wait in flow queue or message queue of a 
switch, approximate time before dropping of first packet , etc, are not considered then the problem would come 
down to simple shortest path problem in a graph. The present article COFC demonstrates importance of various cost 
components in determining overall performance of a route and its claims are strongly supported by encouraging 
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simulation results. The results show that COFC produces great energy saving by deactivating certain switches. It 
includes those links in a path that do not consume much bandwidth, and do not produce much delay.  

7. Future Scope 

 Our aim is to modify COFC in such a manner that will not overload SDN controller in case of a huge 
number of hosts and switches. If the network becomes very big, then a pool of controllers can be employed. Each 
controller will be aware of topology of certain zones in the network. The entire network can be divided into some 
hexagonal regions called zones. Each zone will consist of some hosts and switches. Certain peripheral switches will 
act as inter-zone routers. This distributed architecture will divide route-selection load among multiple controllers 
and save a lot of energy in the system. 
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path also matters. If average first-drop-time of a path is high, then it may happen that the entire session of 
communication completes before the first packet through the route can be dropped. All these contribute to energy 
efficiency of COFC than its state-of-the-art competitors. This is shown in Figure 5.  

   Figure 6 clearly illustrates the fact that when network load is low, COFC significantly saves energy than its 
competitors. For example, when network flow is close to 100, almost 86% energy is saved. The figure goes down to 
42% when number of flows is as high as 100000. As expected, energy efficiency effectiveness decreases as network 
load increases. As already mentioned, cost of a path is computed as, cost = {bandwidth×delay×init-pac-drop-rate-
no-wait×avg(first-drop-time)}. These factors, specially bandwidth, delay and init-pac-drop-rate-no-wait are very 
important constituents of cost of a path. These are neither considered by TCAM-SLP, nor by CARPO. With increase 
in number of network switches, new route options open between pairs of hosts. The links have different bandwidth, 
delay etc. This saves more cost, as shown in Figure 7.  

   As number of flows in the network increase, it may happen that after some time a switch in the optimum path 
runs out of the battery power and the link breaks. In that case, new optimum will be the next choice in min-cost-path 
table, corresponding to the same pair of source and destination nodes. As a result, cost saving decreases. Still, since 
COFC elects the optimum path based on important factors like bandwidth, delay, pac-dop-rate etc., so COFC 
produces substantial improvement in terms of cost, than its competitors. This is evident from Figure 8. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5. Percentage of energy saved per flow vs number of switches           Figure 6: Percentage of energy saved per flow vs number of flows 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Percentage of cost saved per flow vs number of switches            Figure 8: percentage of cost saved per flow vs number of flows 

6. Conclusion 

 The main strength of COFC is the estimation of cost of multiple routes between various pairs of hosts. In a 
software defined network, routes are always established through SDN controller. Main advantage of this centralized 
configuration is that SDN controller can be made aware of topology of the whole network. If different aspects of 
cost like bandwidth, delay, estimated initial packet drop rate without wait in flow queue or message queue of a 
switch, approximate time before dropping of first packet , etc, are not considered then the problem would come 
down to simple shortest path problem in a graph. The present article COFC demonstrates importance of various cost 
components in determining overall performance of a route and its claims are strongly supported by encouraging 
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simulation results. The results show that COFC produces great energy saving by deactivating certain switches. It 
includes those links in a path that do not consume much bandwidth, and do not produce much delay.  

7. Future Scope 

 Our aim is to modify COFC in such a manner that will not overload SDN controller in case of a huge 
number of hosts and switches. If the network becomes very big, then a pool of controllers can be employed. Each 
controller will be aware of topology of certain zones in the network. The entire network can be divided into some 
hexagonal regions called zones. Each zone will consist of some hosts and switches. Certain peripheral switches will 
act as inter-zone routers. This distributed architecture will divide route-selection load among multiple controllers 
and save a lot of energy in the system. 
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