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English abstract

This thesis deals with excitonic effects in low-dimensional semiconductors. Ex-
citons are quasi-particles present in semiconductors and insulators. They are
generated when an electron from the valence band is excited to the conduction
band, usually through photon absorption. This leaves an unoccupied state in
the valence band, called a hole. The electron and hole are attracted through
Coulomb interactions and can form a bound state with energy below the non-
interacting band gap. This bound state is called an exciton. For the usual types
of bulk semiconductors, such as III-V semiconductors, the binding energy of ex-
citons is on the order of a few meV. Thus, thermal dissociation occurs at room
temperature. In low-dimensional semiconductors the situation is different. The
reduced dimensionality and screening result in strongly bound excitons, with
binding energies on the order of 0.5-1 eV. Consequently, the optical properties
of low-dimensional semiconductors are dominated by excitonic effects. Exam-
ples of such low-dimensional semiconductors include, but are not limited to,
carbon nanotubes (CNTs), graphene nanoribbons (GRNs), hexagonal boron
nitride, and transition metal dichalcogenides (TMDs). To accurately model
the optical response of such systems, the inclusion of excitonic effects is neces-
sary. The thesis focuses on modeling two different excitonic systems: Impurity
bound excitons and Magnetoexcitons.

The majority of the results in this thesis deals with the theoretical descrip-
tion of magnetoexcitons, which are excitons in a material perturbed by an
external magnetic field. The presence of an external magnetic field severely
complicates the calculations of excitonic properties. This is, in part, because
the translation symmetry of the system is broken by the field. Recently, many
experimental studies of magnetoexcitons in both CNTs and TMDs have been
conducted and, consequently, the field of magnetoexcitons would benefit from
a theoretical study. In the thesis, the magneto-optics of CNTs, GNRs, and
TMDs are studied using a tight-binding model to describe the single-particle
properties and the Bethe-Salpeter equation to calculate excitonic properties.
Additionally, magnetoexcitons in TMDs are also studied using an equation-
of-motion approach and the Wannier model. Such quantities as the diagonal
optical conductivity, the Hall conductivity, and the diamagnetic shift are com-
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puted for the different materials.
The remaining results presented in this thesis deal with impurity bound

excitons. When materials are grown or exfoliated they will in practice always
contain impurities. In semiconductors, excitons can bind to such impurities
through electrostatic Coulomb attraction. This bound state consisting of elec-
tron, hole, and impurity is what is denoted an impurity bound exciton. Such
phenomena have been observed for several different materials, including TMDs.
In this thesis, the existence of impurity bound excitons is studied as a function
of the impurity charge. This is done for a very simple one-dimensional toy-
model, but using a rigorous mathematical approach. The results show that,
for a sufficiently small impurity charge, such a system is stable and a bound
state exists. On the other hand, it is also proven that a critical charge ex-
ists, such that when the impurity charge is larger than the critical charge no
impurity bound excitons exist.



Danish abstract

I denne afhandling behandles exciton effekter i lav-dimensionelle halvledere.
Excitoner er kvasi-partikler i halvledere og isolatorer. De genereres når en
elektron eksiteres fra et valensbånd til et ledningsbånd. Typisk sker dette ved
absorption af en foton. Dette efterlader en ubesat tilstand i valensbåndet, som
kaldes for et elektronhul. Elektronhullet og den eksiterede elektron tiltrækkes af
hinanden gennem Coulomb kræfter, hvilket resulterer i at der dannes en bundet
tilstand med lavere energi end det ikke-interagerende båndgab. Denne bundne
tilstand kaldes for en exciton. For de sædvnalige typer af halvledere, som
for eksempel III-V halvledere, er excitonens bindings energi af størrelsesorden
en til ti meV og termisk dissociation kan derfor forekomme ved stuetemper-
atur. I lav-dimensionelle halvledere er situationen anderledes. Den reducerede
skærmning og dimension giver anledning til stærkt bundne excitoner med en
typisk bindingsenergi på mellem 0.5-1 eV. Den høje bindingsenergi resulterer
i at de optiske egenskaber af lav-dimensionelle halvledere er domineret af ex-
citon effekter. Eksempler på lav-dimensionelle halvledere inkluderer kulstof
nanorør (CNTs), grafen nanoribbons, hexagonal bornitrid, og overgangsmetal
dikalkogenider (TMDs). For at kunne modellere de optiske egenskaber af så-
danne systemer korrekt er det nødvendigt at inkludere exciton effekter. I denne
afhandling fokuseres der på to forskellige exciton systemer: Excitoner bundet
til urenheder og excitoner i magnetfelter.

Størstedelen af resultaterne i denne afhandling omhandler den teoretiske
beskrivelse excitoner i magnetfelter. Udregningen af excitonernes egenskaber
kompliceres af det eksterne magnetfelt. Dette skyldes delvist at translation-
ssymmetrien af systemet brydes af det eksterne felt. I de senere år er mange
eksperimentelle studier af magnetoexcitoner i TMDs og CNTs blevet publiceret,
og området kunne derfor gavne fra et grundigt teoretisk studie. I denne afhan-
dling, studeres de magneto-optiske egenskaber af CNTs, GNRs og TMds ved
hjælp af en tight-binding model, og excitoner inkluderes gennem Bethe-Salpeter
ligningen. Derudover studeres magnetoexcitoner i TMDs også både ved hjælp
af en tilgang baseret på en bevægelses-ligning samt ved hjælp af Wannier mod-
ellen. De opnåede resultater omhandler kvantiteter som den diagonale optiske
ledningsevne, Hall ledningsevnen, og det diamagnetiske skift.
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De resterende resultater, der er præsenteret i denne afhandling, omhandler
excitoner bundet til urenheder. Når virkelige materialer bliver produceret, inde-
holder de typisk urenheder. For halvledere gælder det at excitoner kan bindes til
sådanne urenheder gennem elektrostatisk Coulomb tiltrækning. Denne bundne
tilstand bestående af elektron, hul og urenhed er hvad der kaldes en urenheds
bundet exciton. Sådanne tilstande er blevet observeret i en række forskel-
lige materialer, eksempelvis TMDs. I denne afhandling studeres eksistensen
af urenheds bundne excitoner som funktion af ladningen på urenheden. Det
er gjort for en simpel legetøjsmodel, men ved hjælp af stringente matematiske
metoder. Resultaterne viser at når ladningen på urenheden er tilstrækkeligt
lille, så kan der eksistere urenheds bundne excitoner. På den anden side, det
bevises også at en kritisk ladning eksisterer. For den kritiske ladning gælder
det, at når urenhedens ladning er større end den kritiske ladning, så eksisterer
der ikke længere urenheds bundne excitoner.
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Chapter 1

Introduction

In this chapter, a brief introduction to the topic of excitons in low-dimensional
semiconductors is given. First, the concept of an exciton is explained. Then an
overview of the development of exciton theory is provided. In the last part of
the chapter, an introduction to the specific systems and topics that are studied
in this thesis is provided. These topics include excitons in an external magnetic
field, also called magnetoexcitons, and impurity bound excitons. The rest of
the thesis is organized as follows: In Chp. 2, the theoretical foundation for the
thesis is presented. In Chp. 3, a summary of the results obtained is given. This
summary is based on the papers that were written as part of the thesis. In
Chp. 4, the conclusions of the study are drawn. Finally, in the last part of the
thesis, all papers that were published during the PhD study are provided.

To explain the concept of an exciton, consider a semiconductor or insula-
tor. At low temperature, the valence bands of such a system are completely
occupied, while the conduction bands are empty. When light is shined on the
material an electron from the valence band can be excited to the conduction
band. The excited electron leaves a single unoccupied state in the valence band
called a hole. The properties of the hole are similar to those of the electron.
However, the charge of the hole has opposite sign compared to the charge of
the electron. Due to the opposite sign, the electron and the hole are attracted
through Coulomb interactions and can form a bound state. Such an electron-
hole pair can be considered a quasi-particle with zero charge. It is exactly
this quasi-particle which is called an exciton. The energy of the exciton is
below that of the non-interacting band gap, which causes light absorption at
photon energies below the band gap energy. The difference between the non-
interacting band gap energy and the exciton energy is called the exciton binding
energy and is the energy needed for the dissociation of an exciton into a free
electron and hole. The generation of an exciton is illustrated in Fig. 1.1 for
the two-dimensional (2D) material phosphorene (monolayer black phosphorus).
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Fig. 1.1: (a) Exciton on the lattice of phosphorene. The blue (red) particle is the electron
(hole). (b) Excitation of electron to the conduction band of phosphorene by absorption of
photon with energy �ω. The excited electron and the hole in the valence band generate an
exciton. The inset illustrates the Brillouin zone of phosphorene.

Phosphorene is not one of the materials considered in the published results, but
it will be used in the thesis to illustrate certain aspects relating to excitons.

The concept of excitons was first introduced by Y. I. Frenkel in a series of
papers dealing with the transformation of light into heat in solids [1, 2]. In
these papers, he studied elementary excitations of the electronic subsystem of
a molecular crystal, and in [3] he used the term excitons to denote waves of
excitation on the crystal lattice without charge transfer. The exciton model
proposed by Frenkel, and later together with R. Peierls [4], is suited for de-
scribing excitons, which are strongly bound, have a small exciton radius, and
are typically located on a single molecule in the crystal. Frenkel’s exciton
model has been found to accurately describe excitons in organic solids, such as
pentacene and naphthalene [5].

Another approach to modelling excitons was proposed by G. H. Wannier
and N. F. Mott a few years after Frenkel’s work on excitons was published [6, 7].
In the work by Wannier and Mott, the radius of the exciton is assumed to be
very large compared to the crystal unit cell. In this setting, they proposed an
exciton model in which the effect of the lattice potential was included using the
effective mass approximation. This approach leads to an extremely simple and
useful exciton model, where the excitons are described as hydrogen-like atoms.
The only differences between the Wannier-Mott model and the hydrogen atom
are different masses and screening. Adding to the usefulness of the Wannier-
Mott model is the simplicity in which the optical response of the excitons can
be computed [8]. The model suggested by Wannier and Mott is suited for
materials with a large dielectric constant and has been found to be a good
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model for excitons in traditional bulk semiconductors such as III-V and II-VI
semiconductors [9–11].

The Frenkel and Wannier-Mott exciton models describe two extremes of
the same physical phenomenon and are still actively used in condensed mat-
ter research today. However, a general unified theory of excitons was made
possible by the equation for bound-state problems derived by E. E. Salpeter
and H. A. Bethe, the so-called Bethe-Salpeter equation (BSE) [12]. It was
later shown that this equation can be applied to describe excitons and that the
Wannier-Mott exciton model is a special case of the BSE [13]. This general
framework also allowed for calculations of the excitonic optical properties as
shown by W. Hanke in [14]. Frenkel’s model for excitons can also be expressed
as a special case of this more general theory [15]. Modern-day ab-initio calcu-
lations of excitonic effects are also based on the BSE. The typical approach for
ab-initio calculations was suggested in [16] and consists of the following steps:
(1) The single-particle properties are calculated using density functional the-
ory (DFT). (2) The electronic properties calculated using DFT are self-energy
corrected using the GW approximation [17]. (3) The excitonic properties are
computed from the GW corrected band structure using the BSE. This approach
has been found to provide very accurate estimates of the excitonic properties
for a wide number of materials, including conjugated polymers [18], carbon
nanotubes (CNTs) [19], phosphorene [20], monolayer transition metal dichalco-
genides (TMDs) [21], and various III-V semiconductors [22].

In traditional bulk semiconductors, such as type III-V and II-VI semicon-
ductors, the exciton binding energy is in the range from a few meV to tens
of meV [9–11, 22]. Therefore, when doing theoretical modelling of the optical
response of such materials, electron-hole interactions only amount to a small
correction of the single-particle properties and can typically be ignored. While
this holds for the typical bulk semiconducting materials, it is in general not
correct for low-dimensional semiconducting materials. Here, low-dimensional
materials refer to materials which can be modelled as being finite in one, two,
or three directions and infinite in the remaining directions. These types of ma-
terials include quantum dots, quantum wires, and atomically thin layers also
called monolayers. The reduced dimensionality and screening of such materials
cause the excitons to see a significant increase in binding energy [23–25]. For
some low-dimensional semiconductors, exciton binding energies up to several
eV are found [26–30]. In this case, the inclusion of excitons is no longer just a
small correction but a necessity if accurate theoretical predictions of the optical
properties are to be expected.

The topic of excitons in low-dimensional systems have grown increasingly
important in the past decades, as advancements in methods for synthesis and
production of materials have led to the discovery of a wide range of interesting
low-dimensional materials. These include both quasi-one-dimensional (quasi-
1D) materials, such as carbon nanotubes and graphene nanoribbons, and 2D
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materials, such as TMDs. Many of these new materials have shown promising
applications in areas such as electronics and optoelectronics [31–38]. However,
to use these materials for applications and even to inspire new applications, it
is necessary to have a solid understanding of the different excitonic properties
of these materials. This includes how excitons are affected by impurities in
the material and by external perturbations. The two most important external
perturbations are perturbation by an external electric and perturbation by a
magnetic field. An external electric field can be used to cause exciton disso-
ciation and to change the optical absorption associated with excitons [39–43].
Similarly, an external magnetic field can be used to probe the physical prop-
erties of excitons, such as their spatial extent and mass [44, 45]. In addition,
magnetic fields also alter the electronic and optical properties of a material
and can cause it to exhibit new optical effects. These includes the emergence
of Landau levels (LLs) in the optical-response, the magneto-optical Kerr effect,
and Faraday rotation.

1.1 This work

The goal of this thesis is to study the following two aspects of excitons in
low-dimensional semiconductor systems: Impurity bound excitons and Magne-
toexcitons. In addition to being important from the viewpoint of applications
and experimental research, they also pose interesting theoretical problems. For
various reasons, the topics studied in the thesis prove difficult to treat using
the ab-initio approach described above. Instead, other theoretical methods
must be used. These include the Wannier-Mott exciton model, also called
the Wannier model, and a framework based on a tight-binding description of
the single-particle properties coupled with the BSE to compute the excitonic
properties. In the following, an introduction to the topics studied is provided.

1.1.1 Impurity bound excitons

The first topic treated in the thesis is impurity bound excitons. In practice,
all materials, independent of the method used to produce it contains some im-
purities and defects. This can be vacancies, adatoms, dopants, and so on. In
some cases, an exciton can bind to an impurity, which is the so-called impurity
bound exciton. This has been predicted theoretically and confirmed experi-
mentally for a wide range of semiconducting materials [46–52]. The presence of
impurity bound excitons will affect both the optical response and the electronic
properties of the material. Thus, it is important to have a solid understanding
of this type of system if such materials are to be used for optoelectronics and
other applications. In the thesis, the existence of impurity bound excitons in
a 1D system is studied as a function of the impurity charge. Using a simple
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Fig. 1.2: (a) Atomic structure of a zigzag (8, 0) CNT. (b) Electronic band structure of (8, 0)
CNT calculated using the tight-binding model in [53].

Wannier model to describe the three-body system of an electron, a hole, and
an impurity, the existence of impurity bound excitons will be studied using a
rigorous mathematical approach in addition to numerical computations. To do
so, the Coulomb interactions will be modelled by Dirac delta functions. This
provides a very simple and clear description of impurity bound excitons. Due
to the simplicity of the model, the goal is not to describe excitonic properties
such as the binding energy or the size of the complex for some given material.
Instead, the goal is to provide valuable physical and mathematical insights
regarding impurity bound excitons.

In addition to the simple 1D model, the more realistic case of impurity
bound excitons in monolayer TMDs is also studied using a Wannier model. In
the case of impurity bound excitons in TMDs, the focus is on computing the
binding energy and the structure of such a complex. For this, the rigorous
mathematical approach must be replaced by numerical computations.

1.1.2 Magnetoexcitons in quasi-1D semiconductors

The next topic treated in the thesis is the effect of excitons on the magneto-
optical response of semiconducting carbon nanotubes (CNTs) and graphene
nanoribbons (GNRs). CNTs consist of carbon atoms organized in a hexagonal
lattice, which is rolled-up into a cylinder. The geometric structure of carbon
nanotubes is described by a pair of indices (n,m), which determine the diame-
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ter and the helicity of the CNT. The atomic structure and the band structure
of CNTs are illustrated in Fig. 1.2. The electronic structure of CNTs is such
that some CNTs are semiconducting and others are metallic depending on the
diameter and helicity of the CNT [54, 55]. The material was first synthesized
in 1991 by S. Iijima [56], and subsequently, several improved manufacturing
methods have been developed [57–59]. Due to the exceptional physical prop-
erties exhibited by CNTs, the system has been the subject of a large amount
of research in the past decades. The interesting physical properties of CNTs
include good conductivity, high charge carrier mobility, high surface per mass
ratio, and exceptional mechanical properties [55, 60–62]. These properties have
inspired the use of CNTs in a wide range of electronic and optoelectronic ap-
plications, including electrodes, capacitors, and light-emitting diodes [62, 63].
The optical absorption spectra are also used to evaluate the quality and pu-
rity of manufactured CNTs [64]. The excitonic binding energy and the optical
response, including excitonic effects, have been studied both theoretically and
experimentally. The reduced dimension and screening have been shown to give
rise to strongly bound excitons with binding energies on the order of several
hundreds of meV [19, 26, 65], which leads to dominant excitonic effects in the
optical response [66]. This has been studied in various theoretical frameworks,
including the Wannier model and more general ab-initio frameworks, and has
been verified experimentally [67, 68]. Perturbation by an external magnetic
field has been predicted to significantly change the optical response of CNTs.
The changes include Ajiki-Ando splitting of the absorption peaks and a Fara-
day rotation of the polarization of incoming light [69–73]. These interesting
magneto-optical phenomena have also been observed experimentally [74–80].

In contrast to CNTs, the amount of research done on the properties of
GNRs is more limited. Just as CNTs, GNRs is a carbon-based material and
can be considered as thin strips of graphene. For years GNRs were predicted
to have interesting edge-dependent electronic and optical properties [81, 82].
However, research into the properties of GNRs was limited to theoretical stud-
ies as no actual method for synthesis of the material existed. The rediscovery
of graphene by K. S. Nososelov and A. K. Geim in 2004 [83] made it possible
to construct GNRs by lithography of graphene [84]. Soon after, methods for
chemical production of GNRs were also developed [85, 86]. The geometry and
the electronic band structure of an armchair graphene nanoribbon (AGNR)
are illustrated in Fig. 1.3. Comparing to the atomic structure and the band
structure of CNTs in Fig. 1.2 it becomes apparent that the two materials have
many similarities. In practice, GNRs can be regarded as, and even produced
from, unrolled CNTs [87, 88]. The electronic properties of GNRs are strongly
dependent on the type of edges present on the nanoribbon and the width and,
similar to CNTs, can be either metallic or semiconducting [82]. This property
provides a method for tuning the electric and optical properties and have in-
spired the use of GNRs in a range of electronic applications [31, 89]. Just as in
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Fig. 1.3: (a) Atomic structure of an armchair GNR. (b) Electronic band structure of a
semiconducting armchair GNR with a width of 10 dimer calculated using the tight-binding
model in [53].

the case of CNTs, the optical response of GNRs is also dominated by excitonic
effects, with exciton binding energies in the range from 0.5 eV to more than 1
eV [27, 90, 91]. The effect of an external magnetic field on the properties of
GNRs has also been studied theoretically and has been found to cause changes
in both the optical and electronic properties of GNRs [92–94].

The existing theoretical studies of the magneto-optical response of CNTs
and AGNRs is either performed in the independent particle approximation, i.e.
without excitonic effects, or important magneto-optical properties, such as the
Hall conductivity, are disregarded. The Hall conductivity is intimately related
with the magneto-optical Kerr effect and the Faraday rotation. In the thesis,
the effect of excitons on the magneto-optical response of CNTs and AGNRs is
studied using a tight-binding model to describe the single-particle properties
of CNTs and AGNRs perturbed by a magnetic field. The excitonic effects are
included by using the BSE. The work on magnetoexcitons in quasi-1D materials
will also be useful when the related problem of magnetoexcitons in 2D systems
is considered later in the thesis.

1.1.3 Magneto-optics of transition metal dichalcogenides

The final topic considered in the thesis is magnetoexcitons and magneto-optics
of monolayer TMDs. Monolayer TMDs is one of several different 2D semicon-
ducting materials discovered in the wake of the exfoliation of graphene in 2004.
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Fig. 1.4: (a) Hexagonal crystal lattice of a monolayer TMD. The red dots and grey dots
correspond to transition metal atoms and chalcogen atoms, respectively. The shaded blue
area correspond to the primitive unit cell. (b) Structure of the primitive monolayer TMD
unit cell. (c) Brillouin zone of monolayer TMDs. (d) Band structure of WSe2 calculated
using the tight-binding model in [95]. The blue and red lines correspond to spin up and
down, respectively.

The lack of a band gap in intrinsic graphene limits the use of graphene for
transistors and optoelectronics. This led to the search for other 2D materials
with similar properties, but with a band gap. Monolayer TMDs became avail-
able when atomically thin MoS2 was successfully exfoliated in 2010 [96]. The
unit cell of TMDs consists of a single transition metal atom, typically Mo or
W, and two chalcogen atoms, usually S, Se, or Te. While bulk TMDs have
an indirect band gap, the band gap transitions from indirect to direct as the
number of layers decrease [97]. The crystal lattice, unit cell, and band struc-
ture of a monolayer TMD material are illustrated in Fig. 1.4. As illustrated
by the band structure in Fig. 1.4, the valence band is spin-split. The conduc-
tion bands are also spin-split, although the splitting is much smaller than for
the valence bands. This spin-splitting is caused by a strong spin-orbit cou-
pling in TMDs and broken inversion symmetry [98–101]. Another fascinating
property of TMDs is the possibility of selectively probing the valleys by using
circular polarized light [102, 103]. In line with other low-dimensional semi-
conducting materials, monolayer TMDs also exhibit rich excitonic effects with
exciton binding energies in the range from 0.5 eV to 1 eV [21, 104, 105]. The
properties of monolayer TMDs perturbed by an external magnetic field have
been the subject of many experimental studies. These studies have shown that
monolayer TMDs exhibit interesting magneto-optical properties, such as valley
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polarized Landau levels, valley Zeeman splitting, and excitonic diamagnetic
shifts [44, 45, 106–115].

In this thesis, magnetoexcitons and the magneto-optical properties of mono-
layer TMDs will be studied theoretically. While there has been a considerable
amount of resources devoted to the experimental study of TMDs perturbed
by an external magnetic field, the amount of theoretical work on the subject
is limited. Previous theoretical work on magnetoexcitons has been limited to
applications of the Wannier model [116]. However, the Wannier model does
not provide the correct Landau level structure and cannot be used to compute
the Hall conductivities of TMDs. To avoid these issues, a theoretical method
that goes beyond the effective mass approximation is needed. But computing
the magnetoexcitonic properties in a framework that incorporates the fully pe-
riodic 2D structure of the system is difficult computationally. The cause of
this difficulty will be explained in detail in the following chapter. In this the-
sis, two different approaches are used to overcome this. One approach uses a
Dirac-type Hamiltonian to describe the single-particle properties and then uses
an equation-of-motion approach to compute the properties of the magnetoex-
citons. The other approach is based on using a tight-binding description of a
monolayer, which is infinite in one direction and finite in the other (basically a
nanoribbon geometry). This allows for the computation of the magneto-optical
response of TMDs including excitonic effects.
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Chapter 2

Theory and Methods

This chapter will serve as an introduction to the theoretical methods and mod-
els applied in the published work. In the papers, only the most important
details of the theory are provided. To keep the thesis as self-contained as possi-
ble an in-depth introduction is provided here. The first section introduces the
tight-binding model for calculation of the electronic band structure. Many of
the published results deal with the effects of an external magnetic field. Thus,
in the first section, it is also explained how to include the effect of an exter-
nal magnetic field in a tight-binding model. In the next section, the theoretical
framework for calculating excitonic properties is introduced. This includes both
the Bethe-Salpeter equation and the Wannier model. In the final section, the
focus is on the calculation of the optical response functions.

Before delving into the actual models, a few general considerations are
made. The materials studied in this thesis consist of a very large number
of particles. Thus, a naive approach to describing the properties of such a ma-
terial would be to first try to solve the time-independent Schrödinger equation
ĤΨ = EΨ, where Ĥ is the many-body Hamiltonian given by

Ĥ =
∑
n

P̂ n

2Mn
+
∑
i

p̂i

2me
+

1

2

∑
n �=m

ZnZmV (Rn −Rm)

−
∑
n,i

ZnV (ri −Rn) +
1

2

∑
i �=j

V (ri − rj). (2.1)

Here, P̂ n, Mn and Zm are the momentum operator, mass and charge of the
n’th nuclei (in units of e), respectively, and n runs over all nuclei. Similarly,
p̂i, me, and −e are the momentum operator, mass and charge of the i’th
electron, respectively, and i runs over all electrons. Finally, V is the Coulomb
interaction potential. In an ideal world, the Schrödinger equation for the many-
body Hamiltonian can be solved and all properties of the material, including
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its geometric structure, its electrical and optical properties, and so on, could be
extracted from the solution. Unfortunately, the world is not ideal and such a
solution is not feasible mathematically or numerically. Thus, the problem has
to be simplified. Applying the Born-Oppenheimer approximation, the problem
can be simplified by assuming that the nuclei are in a stationary configuration
[117]. Then the terms in Eq. (2.1) related purely to the nuclei simply gives a
constant energy shift and, consequently, they can be disregarded. Additionally,
the term

U(ri) = −
∑
n

ZnV (ri −Rn) (2.2)

defines a periodic potential for the electrons, with same periodicity as the crys-
tal lattice. This leaves the following expression for the many-body Hamiltonian

Ĥ =
∑
i

(
p̂i

2me
+ U(ri)

)
+

1

2

∑
i �=j

V (ri − rj). (2.3)

The first term is the sum over single-particle Hamiltonians and the second term
defines the electron-electron interaction. In the next section, the tight-binding
method for solving the Schrödinger equation for the single-particle Hamilto-
nian is introduced. Thereafter, electron-electron interactions are included to
describe excitonic effects.

2.1 Tight-binding method

The theoretical outset for much of the work presented in this thesis is a tight-
binding (TB) model. The TB model is a convenient and relatively simple model
for quantum mechanics calculations. It is a semi-empirical model, meaning it is
dependent on parameters that need to be determined by fitting to either exper-
imental measurements or first-principles calculations such as density functional
theory band structures. When the TB parameters have been determined, the
model is computationally inexpensive and is suitable for calculating the elec-
tronic band structure and the single-particle wavefunctions of the chosen sys-
tem. In addition, the presence of an external magnetic field is easily included
in a TB model by the use of the Peierls substitution [118], which we will derive
in Sec. 2.1.1.

To find the tight-binding bandstructure and wavefunctions, the Schrödinger
equation Ĥ0ψ(r) = Eψn(r) for the single-particle Hamiltonian Ĥ0 should be
solved. Here, ψ is the wavefunction corresponding to the energy E. The single-
particle Hamiltonian is given by

Ĥ0 =
p2

2me
+ U(r). (2.4)

Here, p = i�∇ is the momentum operator, me is the free electron mass, and
U(r) is the periodic potential due to the crystal lattice, as defined in Eq. (2.2).
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The TB model then relies on the assumption that electrons in solids are local-
ized near the atomic cores. Thus, the wavefunction ψ(r) can be assumed to be
a linear combination of atomic orbitals. Writing ϕα(r) for the α’th orbital in
the unit cell, the TB wavefunction takes the following form

ψ(r) =
∑
α,R

CR,αϕα(r−R), (2.5)

where R denotes the unit cell location and CR,α are expansion coefficients to
be determined. The sum runs over all orbitals in the unit cell and all unit cells.
As the system is periodic, Bloch’s theorem can be applied to find

ψ(r+R′) =
∑
α,R

CR,αϕα(r−R+R′) = eik·R
′ ∑
α,R

CR,αϕα(r−R). (2.6)

The fact that the sum runs over all possible positions of unit cells gives that∑
α,R

CR+R′,αϕα(r−R) = eik·R
′ ∑
α,R

CR,αϕα(r−R). (2.7)

Thus, CR+R′,α = eik·R
′
CR,α or, equivalently, CR,α = eik·RC0,α. To ensure

normalization of the wavefunction, the expansion coefficients are chosen to be
C0,α = Cα/

√
N , where N is the number of unit cells. This gives the following

expression for the TB wavefunction

ψ(r) =
1√
N

∑
α,R

Cαe
ik·Rϕα(r−R). (2.8)

What remains is to determine the energy and the expansion coefficients. These
can be found by solving the time-independent Schrödinger equation, which can
be expressed as the generalized matrix eigenvalue problem HC = ESC. Here,
C is the vector with elements Cα, H is the Hamiltonian matrix, and S the
overlap matrix. The Hamiltonian matrix-elements are given by

Hα,β =
1

N

∑
R,R′

eik·(R−R′)〈ϕβ(r−R′)|Ĥ0|ϕα(r−R)〉

=
∑
R

eik·R〈ϕβ(r)|Ĥ0|ϕα(r−R)〉, (2.9)

where the fact that the sum runs over all possible unit cells have been used
again. Similarly, the overlap matrix-elements are found to be

Sα,β =
∑
R

eik·R〈ϕβ(r)|ϕα(r−R)〉. (2.10)

The transfer integrals tαβR ≡ 〈ϕβ(r)|Ĥ0|ϕα(r−R)〉 and the overlap integrals
sαβR ≡ 〈ϕβ(r)|ϕα(r − R)〉 are parameters, which should be found by fitting
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to experiments or to first-principles calculations. In practice, the sum over
unit cells in the Hamiltonian and overlap matrix-elements is truncated. This
is based on the assumption that only a finite number of different orbitals have
non-zero transfer and overlap integrals. Typically, only the nearest or next-
nearest neighbours are included in the model. Also, note that the generalized
eigenvalue problem HC = ESC is dependent on the wavevector k, and for
the full energy dispersion relation it should be solved for all value of k in
the Brillouin zone. In the published results of this thesis, TB models have
been used for graphene nanoribbons, carbon nanotubes and transition metal
dichalcogenides. In the next subsection, the method for including an external
magnetic field is discussed.

2.1.1 The Peierls substitution

The main part of the results presented in this thesis deals with systems per-
turbed by a magnetic field. An external magnetic field is conveniently included
in a TB model via the Peierls substitution, which is a transformation of the
transfer and overlap integrals. Due to the importance of the Peierls substitu-
tion to the work presented in the thesis, a brief derivation of the substitution
will be provided in this section. The derivation in this section follows that
in [119].

Starting from the Hamiltonian for an electron in a periodic system in
Eq. (2.4), an external magnetic field B can be included by the minimal coupling
substitution p �→ p+ eA, to get

ĤB =
(p+ eA)2

2m
+ U(r). (2.11)

Here, e is the elementary charge and A = ∇ × B is the magnetic vector po-
tential. For simplicity, the magnetic field is assumed to be static and uniform.
The same assumption was used to obtain all results relating to magneto-optics
and magnetoexcitons in Sec. 3. The main idea when deriving the Peierls sub-
stitution is to transform the basis functions in Eq. (2.8) to

ϕ̃α(r−R) = eiφ(r,Rα)ϕα(r−R), φ(r,Rα) = − e
�

∫ r

Rα

A · dl. (2.12)

Here, Rα denotes the location of the atomic site belonging to α in the unit
cell located at R and φ(r,Rα) is the Peierls phase. Applying the magnetic
Hamiltonian on the transformed basis functions gives

ĤB |ϕ̃α(r−R)〉 =
[
(p+ eA)2

2m
+ U(r)

]
eiφ(r,Rα)ϕα(r−R)

= eiφ(r,Rα)Ĥ0|ϕα(r−R)〉. (2.13)
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Fig. 2.1: Illustration of the magnetic supercell with length Lx and width Ly . The magnetic
vector potential is in the Landau gauge A = Bxŷ.

Then the transfer integral can be found to give

〈ϕ̃β(r−R′)|ĤB |ϕ̃α(r−R)〉 =
∫
dr eiφ(r,Rα)−iφ(r,R′

β)ϕα(r−R)Ĥ0ϕα(r−R)

= e−iφ(Rα,R′
β)〈ϕβ(r−R′)|Ĥ0|ϕα(r−R)〉.

(2.14)

Here, the last equality is found by using

φ(r,Rα)− φ(r,R′
β) + φ(R′

β ,Rα) = 0, (2.15)

which holds since the magnetic field is assumed to be static and uniform. A
similar expression to Eq. (2.14) is found for the overlap integrals. The expres-
sion in Eq. (2.14) shows that the inclusion of a magnetic field in a TB model
is done by transforming the transfer and overlap integrals. This is exactly the
Peierls substitution.

At first glance, the inclusion of a magnetic field by the Peierls substitu-
tion might not seem to complicate the computations of the electronic struc-
ture much. However, in general, the additional phase factor in the transfer
and overlap integrals breaks the translation symmetry of the Hamiltonian and,
consequently, complicates the situation significantly. To see this, consider a
system perturbed by a magnetic field in the positive z-direction and with a
magnetic vector potential in the Landau gauge A = Bxŷ. Then the Peierls
phase is

φ(Rα,R
′
β) ≈ −eB

2�
(Y ′

β − Yα)(X
′
β +Xα). (2.16)

The factor of (X ′
β +Xα) is the cause of the broken periodicity of the Hamilto-

nian. If the system is only periodic in a single direction (i.e. quasi-1D systems),
the translation symmetry can be retained by orienting the periodic direction
of the system with the direction of the magnetic vector potential. Then the
situation is no more complicated than for the unperturbed (B = 0) system. In
contrast, when the system is periodic in more than one direction (i.e. 2D or 3D
systems) this possibility no longer exists and another approach is needed. For
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such a system, the idea is to introduce a magnetic supercell, which is illustrated
in Fig. 2.1. The length of the supercell Lx should be chosen in such a way that
the couplings illustrated in Fig. 2.1 obeys the relation

φ(Rα + Lx,R
′
β + Lx) = φ(Rα,R

′
β) + 2π, (2.17)

where Lx = Lxx̂. Inserting Eq. (2.16) in Eq. (2.17) and isolating for B gives

B = 2π
�

eLx(Yα − Y ′
β)
. (2.18)

The relation in Eq. (2.18) shows that the magnetic field strength is inversely
proportional to the size of the magnetic supercell. Consequently, for experi-
mentally obtainable magnetic fields a very large magnetic supercell is needed.
Depending on the material parameters, a magnetic field on the order of 10 T
corresponds to a magnetic supercell with many thousand atoms. As each atom
corresponds to at least one band in the electronic band structure, the number
of bands in a system perturbed by a magnetic field will be huge. These many
bands essentially correspond to Landau levels. This is at the core of many of
the numerical difficulties related to the treatment of magneto-optics and mag-
netoexcitons. In the next section, electron-electron interactions are included
and the framework for calculating excitonic properties is introduced.

2.2 Excitonic effects

With the single-particle properties described by the tight-binding model in the
previous section, it is now time to the include electron-electron interactions,
more specifically excitonic effects. First, the Bethe-Salpeter equation (BSE)
for an electron-hole pair is derived. The derivation is based on an equation-
of-motion (EOM) approach and follows that of [120] and [121]. The outset
is the Hamiltonian in Eq. (2.3). However, as excitons are typically generated
by absorption of light, a light-matter interaction term is also added to the
Hamiltonian. In second-quantization the full Hamiltonian can be expressed as

Ĥ = Ĥ0 + ĤI + Ĥee, (2.19)

Ĥ0 =
∑
k

Eka
†
kak, (2.20)

ĤI = −E(t) ·
∑
kl

dkla
†
kal, (2.21)

Ĥee =
1

2

∑
klmn

Vklmna
†
ka

†
l aman. (2.22)

Here, the sums run over all single-particle states, Ek is the single-particle en-
ergy, a†i and aj are the fermion creation and annihilation operators, respectively,
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E(t) is the electric field, and dkl is the dipole matrix-elements given by

dkl = −e
∫

drψ∗
k(r)rψl(r). (2.23)

Here, ψk is the single-particle wavefunction corresponding to Ek. Finally, Vklmn

is given by

Vklmn =

∫∫
drdr′ψ∗

k(r)ψ
∗
l (r

′)V (r− r′)ψm(r′)ψn(r), (2.24)

where V is the electron-electron interaction potential. For 3D systems, the
potential is the usual Coloumb potential. However, for low-dimensional sys-
tems the potential should be modified to correctly account for the reduced
dimensionality. In quasi-1D systems, an Ohno-type potential has been found
to provide accurate predictions of the excitonic properties [122]. Similarly,
the Keldysh potential is a suitable a description of Coulomb interactions in
monolayers [123, 124]. The Keldysh potential has the following form [123]

V (r) =
π

2r0

[
H0

(
κ|r|
r0

)
− Y0

(
κ|r|
r0

)]
, (2.25)

where r0 is a material dependent screening length, κ is the average dielec-
tric constant of any potential capping and substrate materials, H0 is a Struve
function, and Y0 is a Neumann function.

The idea is to try to solve the EOM for the density matrix, which is defined
ρij = 〈a†iaj〉. The EOM reads

− i�
d

dt
ρij =

〈
[Ĥ, ρij ]

〉
. (2.26)

The commutator relation on the right-hand side can be computed using the
anti-commutator relations for the fermion creation and annihilation operators.
Computing the commutators give

〈[Ĥ, ρij ]〉 = (Ei − Ej)ρij − E(t) ·
∑
l

(dliρlj − djlρil)

+
∑
lmn

(
Vlmni〈a†l a†manaj〉 − Vjlmn〈a†ia

†
l aman〉

)
. (2.27)

The next step is to apply the random phase approximation 〈a†ka
†
l aman〉 =

ρlmρkn − ρkmρln and introduce the self-interaction corrected energies

Ẽn = En +
∑
l

(Vnlln − Vnlnl)δl,v, (2.28)
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where δl,v is one if state k is occupied and zero otherwise. Using the above,
the EOM now reads

−i� d
dt
ρij =(Ei − Ej)ρij − E(t) ·

∑
l

(dliρlj − djlρil)

+
∑
lmn

(Vlmni − Vmlni)(ρmn − δl,iδm,nδm,v)ρlj

−
∑
lmn

(Vjmnl − Vjmln)(ρmn − δl,jδm,nδm,v)ρil. (2.29)

The first and third electron-electron interaction terms in Eq. (2.29) correspond
to exchange terms while the second and fourth terms correspond to direct
terms [15]. It is worth noting that in practice the Coulomb interaction in the
direct terms is screened by the surrounding electrons, while in the exchange
terms it is not. The exchange terms will be neglected in the following.

The rest of the derivation will be restricted to the relevant case where the
single-particle states are Bloch states. Then all states are identified by a band
index n and a wavevector k. Introducing the bra-ket notation |nk〉 = ψnk(r),
the electron-electron interaction matrix elements in Eq. (2.24) can be rewritten
as

Vabcd =
1

Ω

∑
q

V(q)〈aka|eiq·r|dkd〉〈bkb|e−iq·r|ckc〉

=
1

Ω

∑
q

V(q)Iaka,dkd
Ibkb,ckcδkd,ka−qδkc,kb+q (2.30)

Here, Ω is the system volume, V(q) is the Fourier transform of V (r), and
Imk,nk′ = 〈mk|ei(k−k′)·r|nk′〉 are the Bloch overlaps. In addition, the assump-
tion that the density matrix is diagonal with respect to the wave vector is made,
i.e. ρiki,jkj = ρijkiδki,kj . This assumption is based on the fact the dipole ap-
proximation allows only vertical transitions. Then the EOM is reduced to

−i� d
dt
ρijk =Ẽijkρijk − E(t) ·

∑
l

(dlikρljk − djlkρilk)

− 1

Ω

∑
lmnk′

V(k′ − k) [Imk′,ikIlk,nk′(ρmnk′ − δl,iδm,nδm,v)ρljk

− Ijk,nk′Imk′,lk(ρmnk′ − δl,jδm,nδm,v)ρilk] , (2.31)

where Ẽijk = Ẽik − Ẽjk. The EOM is solved by expanding in orders of the
electric field, i.e. ρijk =

∑
N ρ

(N)
ijk , and solving perturbatively by iteration.

The case of interest in this thesis is the first-order equation. Assuming a cold
clean semiconductor, the zero’th-order density matrix elements are given by
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ρ
(0)
vv′k = δv,v′ and ρ(0)cc′k = ρ

(0)
vck = ρ

(0)
cvk = 0. Then, the EOM for ρ(1)cvk reads

−i� d
dt
ρ
(1)
cvk = Ẽcvkρ

(1)
cvk − E(t) · dvck − 1

Ω

∑
mnk′

V(k′ − k)Imk′,ckIvk,nk′ρ
(1)
mnk′ .

(2.32)

The first order change in band occupation may be assumed to be negligible,
i.e. ρ(1)cc′k and ρ(1)vv′k can be set to zero. Finally, by applying the Tamm-Dancoff
approximation to decouple the resonant and non-resonant part, Eq. (2.32) is
simplified to

−i� d
dt
ρ
(1)
cvk =

∑
c′v′k′

Hcvk,c′v′k′ρ
(1)
c′v′k′ − E(t) · dvck, (2.33)

where

Hcvk,c′v′k′ = Ẽcvkδcvk,c′v′k′ − 1

Ω

∑
c′v′k′

V(k′ − k)Ic′k′,ckIvk,v′k′ . (2.34)

The full EOM in Eq. (2.33) will be used to find the optical response with exci-
tonic effects in Sec. 2.3. Finding the solutions to the homogeneous equation, i.e.
setting E(t) = 0 in Eq. (2.33), corresponds to solving the eigenvalue problem

HehΨn = EnΨn, (2.35)

where Heh is the matrix with elements given by Eq. (2.34) and Ψn is the
exciton wavefunction corresponding to the exciton energy En. The exciton
wavefunction is expressed in a basis of singlet excitations |vk → ck〉, i.e. Ψn =∑

cvk Ψ
(n)
cvk|vk → ck〉. The eigenvalue problem in Eq. (2.35) corresponds to the

BSE for the special case of Bloch states.
Note, that the BSE couples pairs of valence and conduction bands at differ-

ent k-points. Consequently, if the system consists of Nv(c) valence (conduction)
bands and the Brillouin zone is discretized by Nk points, then the size of the
eigenvalue problem is NcNvNk. This scaling relation of the problem makes the
BSE very computationally demanding to solve for anything more than sim-
ple systems. The scaling, combined with the number of bands in a system
perturbed by a magnetic field, is at the core of the difficulties related to the
computation of excitonic effects on the magneto-optical response of 2D and 3D
systems.

2.2.1 The Wannier model

In this section, a brief derivation of the Wannier model will be given. The Wan-
nier model can be expressed as a special case of the BSE and is an extremely
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useful model as it provides a clear physical interpretation of the concept of exci-
tons. Besides, the model can easily be generalized to describe magnetoexcitons,
trions, or impurity bound excitons.

The derivation of the Wannier model relies on a number of important ap-
proximations [15]. The first assumption is that the bands are decoupled, thus,
only a single pair of valence and conduction bands are included in the model.
Next, the effective mass approximation is applied to write the conduction and
valence band energies as

Ẽck = Eg +
�
2|k|2
2m∗

e

, Ẽvk = −�
2|k|2
2m∗

h

, (2.36)

where Eg is the band gap energy and m∗
e(h) is the electron (hole) effective

mass. Finally, the Bloch overlaps are assumed to be diagonal in band-index
and independent of k, i.e. Ink,mk′ = δn,m. Applying these approximations to
the BSE in Eq. (2.35), the following equation is found

�
2|k|2
2μ

Ψ
(n)
cvk − 1

Ω

∑
k′

V(k′ − k)Ψ
(n)
cvk′ = (En − Eg)Ψ

(n)
cvk, (2.37)

where μ = 1/(m∗
e +m

∗
h) is the exciton effective mass. Converting the sum over

k′ to an integral and taking the inverse Fourier transform, the following real
space differential equation is obtained[

− �
2

2μ
∇2 − V (r)

]
Ψ(n)(r) = (En − Eg)Ψ

(n)(r), (2.38)

where r is the relative electron-hole coordinate, En is the exciton energy shifted
by the band gap energy and Ψ(n)(r) is the inverse Fourier transform of Ψ(n)

cvk.
The differential equation in Eq. (2.38) is the Wannier model for excitons. Upon
inspection of Eq. (2.38) it becomes apparent that, in the Wannier model, ex-
citons are mathematically similar to the hydrogen atom. The only difference
being the effective mass and the screening of the Coulomb potential. One of
the main advantages of the Wannier model is the relative ease in which the
model can be generalized to describe more complex systems. In the following,
the Wannier model is generalized to include an external magnetic field and to
describe three-body systems such as impurity bound excitons. These are the
cases of relevance to the work in this thesis.

For the case where the system is perturbed by an external magnetic field,
the effect of the field can be included by the minimal coupling substitution
p �→ p−qA, just as in the previous section on the Peierls substitution. However,
the Wannier model does not rely on translation symmetry, as the periodic
potential due to the atomic nuclei is accounted for in the effective mass. This
simplifies the problem of treating magnetoexcitons significantly. The resulting
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Fig. 2.2: Sketch of a two-dimensional three-body system. The red ball is a particle with
charge κ and mass M , the blue ball is an electron, and the yellow ball is a hole. The
coordinates re and rh are relative to the particle with charge κ. When M = ∞ the system
corresponds to an impurity localized exciton, and when M = m∗

e(h)
and κ = ±e it corresponds

to either a positively or negatively charged trion.

Schrödinger equation is given by[
1

2m∗
e

(i�∇e + eA)2 +
1

2m∗
h

(i�∇h − eA)2 − V (r)

]
Ψ(n) = EnΨ

(n). (2.39)

Using the symmetric gauge A = 1
2B×r for the magnetic vector potential, then

the Hamiltonian in Eq. (2.39) can be shown to be unitarily equivalent to the
following Hamiltonian [125]

Ĥ = − �
2

2M
∇2

R − �
2

2μ
∇2

r +
e�

2μ
B · l̂+ e2

8μ
(B× r)2 − V (r), (2.40)

where M = m∗
e +m∗

h and r and R are the usual relative and center-of-mass
coordinates, respectively. Note, that the relative and the center-of-mass terms
in Eq. (2.40) are decoupled. The eigenvalue problem involving Ĥ can be solved
by expanding the exciton wavefunction in a suitable basis and solving it as
a matrix eigenvalue problem. This model of magnetoexcitons is very simple
and quite useful. However, it also suffers from some shortcomings, which are
highlighted in the published results of the thesis, where it is used for comparison
with more advanced models.

The Schrödinger equation in Eq. (2.38) can also be generalized to a three-
body problem. In this case, the model is capable of modelling both trions
and impurity bound excitons. Trions are bound states of either two holes and
an electron or two electrons and a hole. Thus, they are related to excitons
but have different properties, e.g. they carry charge and have half-integer spin
values. The Schrödinger equation for an impurity bound exciton system takes
the following form[

−− �
2

2m∗
e

∇2
e −

�
2

2m∗
h

∇2
h − V (re − rh)− κV (re) + κV (rh)

]
Ψ(n) = EnΨ

(n),

(2.41)
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where re(h) is electron (hole) coordinate relative to the impurity and κ > 0

is the charge of the impurity. In Eq. (2.41) the impurity has been assumed
to have infinite mass. This effectively cancels the kinetic term related to the
impurity. The impurity bound exciton system is illustrated in Fig. 2.3. For
the case of trions, the third particle would have finite mass and the situation
would be slightly more complicated.

2.3 Optical response

In this section, expressions for the linear optical response with and without
excitons are derived. In particular, the linear optical conductivity will be de-
termined by solving the EOM derived in Sec. 2.2.

The optical response is determined from the expectation value of the current
density J(t), which can be defined as J(t) = ∂〈P̂ (t)〉/∂t. Here, P̂ (t) is the
polarization density operator, with expectation value given by

〈P̂ (t) =
1

Ω

∑
cvk

(dcvkρcvk + dvckρvck) , (2.42)

here Ω is either the system volume or area depending on the type of system.
Then, up to first-order in the electric field, the current density is given by

J(t) =
1

Ω

∑
cvk

(
dcvk

∂

∂t
ρ
(1)
cvk + dvck

∂

∂t
ρ
(1)
vck

)
, (2.43)

The linear optical conductivity tensor elements σij(ω) are then defined by the
relation

Ji(ω) = σij(ω)Ej(ω), (2.44)

where i, j ∈ {x, y, z}, and Ji(ω) and Ej(ω) are elements of the Fourier transform
of the current density and the electric field, respectively. Thus, to determine
σij(ω) the first-order density matrix must be found.

2.3.1 Single-particle response

First, the single-particle optical conductivity is determined. Ignoring the electron-
electron interactions in Eq. (2.33), the single-particle EOM for ρ(1)cvk is

− i�
d

dt
ρ
(1)
cvk = Ecvkρ

(1)
cvk − E(t) · dvck. (2.45)

By Fourier transforming from time to frequency domain, isolating for ρ(1)cvk, and
transforming back to time domain, the density matrix is found to be

ρ
(1)
cvk =

1

2π

∫
dωe−iωtE(ω) · dvck

Ecvk − �ω
. (2.46)
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Inserting this expression in Eq. (2.43) and using the definition of the linear
optical conductivity, the tensor elements are found to be

σij(ω) = − iω
Ω

∑
cvk

(
d
(i)
cvkd

(j)
vck

Ecvk − �ω
+

d
(i)
vckd

(j)
cvk

Ecvk + �ω

)
. (2.47)

Here, d(i)cvk = −e〈ck|xi|vk〉 are the dipole-matrix elements in the i direction.
Using that dipole- and momentum-matrix elements are related by −e�p(i)cvk =

imeEcvkd
(i)
cvk, the final expression for the optical conductivity is

σij(ω) = − ie
2
�
2ω

m2
eΩ

∑
cvk

(
p
(i)
cvkp

(j)
vck

E2
cvk(Ecvk − �ω)

+
p
(i)
vckp

(j)
cvk

E2
cvk(Ecvk + �ω)

)
. (2.48)

This expression is used repeatedly to compute the single-particle optical re-
sponse in the published work of the thesis. It is standard to allow the frequency
ω to have a small imaginary part, i.e ω �→ ω + iΓ. The imaginary part intro-
duces phenomenological broadening of the spectrum and �Γ is typically chosen
in the range from a few meV up to 50 meV.

2.3.2 Excitonic response

Turning to the excitonic optical response, the EOM to be solved is exactly
the one given in Eq. (2.33). The situation is slightly more complicated than
in the case of the single-particle optical response. The solution of the EOM
follows that in [120]. As before, the first step is to change from time domain
to frequency domain by a Fourier transform. In frequency domain the EOM is

�ωρ
(ω)
cvk =

∑
c′v′k′

Hcvk,c′v′k′ρ
(ω)
c′v′k′ − E(ω) · dvck, (2.49)

where ρ
(ω)
cvk is the Fourier transform of ρ(1)cvk. The exciton Greens function

G
(ω)
cvk,c′v′k′ in frequency domain is then defined as the solution to

− �ωG
(ω)
cvk,c′v′k′ +

∑
c′′v′′k′′

Hcvk,c′′v′′k′′G
(ω)
c′′v′′k′′,c′v′k′ = δcvk,c′v′k′ . (2.50)

In Lehmann representation, the Greens function that solves Eq. (2.50) is given
by

G
(ω)
cvk,c′v′k′ =

∑
n

Ψ
(n)
cvkΨ

(n)∗
c′v′k′

En − �ω
, (2.51)

where Ψ
(n)
cvk are the expansion coefficients of the exciton wavefunction corre-

sponding to En and n runs over all exciton states. Applying the Greens func-
tion to solve Eq. (2.49) and transforming back to time domain, the density
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Fig. 2.3: Comparison of optical conductivity with excitons (blue) and without (red) for
phosphorene. The spectra are scaled by σ0 = e2/4�. The single-particle properties are
described by the TB model of [126]. For the excitonic calculations, the screening parameters
in the Keldysh potential were set to κ = 1 and r0 = 23.2 Å, corresponding to freestanding
phosphorene [127].

matrix is given by

ρ
(1)
cvk =

∑
n,c′v′k′

1

2π

∫
dω

Ψ
(n)
cvkΨ

(n)∗
c′v′k′

En − �ω
E(ω) · dvck. (2.52)

By inserting this expression for the density matrix in Eq. (2.43), the optical
conductivity tensor with excitonic effects are found to be

σij(ω) = − iω
Ω

∑
n

(
D

(i)
n D

(j)∗
n

En − �ω
+
D

(i)∗
n D

(j)
n

En + �ω

)
, (2.53)

where D(i)
n =

∑
cvk d

(i)
cvkΨ

(n)
cvk. As in the previous case, the optical conductivity

is written in terms of momentum-matrix elements P (i)
n =

∑
cvk p

(i)
cvkΨ

(n)
cvk. This

gives the final expression

σij(ω) = − ie
2
�
2ω

m2
eΩ

∑
n

(
P

(i)
n P

(j)∗
n

E2
n(En − �ω)

+
P

(i)∗
n P

(j)
n

E2
n(En + �ω)

)
. (2.54)

In Fig. 2.3 the real part of the optical conductivity with and without excitons
are shown for phosphorene. The spectra clearly show that the optical response
of phosphorene is dominated by excitonic effects. Similar results hold for the
materials under consideration in this thesis, as will be seen in Chp. 3.

In some cases, it is only important to know the optical response, and not
the actual exciton eigenvalues and eigenvectors. In that case, the Lanczos-
Haydock routine can be used to calculate the excitonic optical response without
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actually solving the BSE [128]. The Lanczos-Haydock routine is based on
a tri-diagonalization of the Hamiltonian matrix. By using the tri-diagonal
Hamiltonian, matrix elements of the exciton Green’s function can be evaluated
by a continued fraction. This process, however, can be truncated when the
spectrum is converged. In this manner, the computational complexity can be
reduced significantly. In some of the published papers, this approach is used
to compute the magneto-optical response.

This concludes the introduction to the theoretical framework used to ob-
tain the results presented in this thesis. A few other models and theoretical
approaches are used in the publications, but the theory presented in this chap-
ter is the foundation for most of the work. In the next chapter, a summary of
the published results obtained using the models is given.
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Chapter 3

Summary of results

This chapter contains a summary of selected results from the published papers.
The first section contains a summary of the results related to the existence of
impurity bound excitons obtained in paper A and a few previously unpublished
results. The next section consists of the results obtained relating to magnetoex-
citons and Faraday rotation in quasi-1D systems, including carbon nanotubes
and graphene nanoribbons. These results were published in paper B. Finally,
in the last section results about magneto-optics in transition metal dichalco-
genides are presented. The results present in that section are from papers C,
D, and E. Only a selection of details and results are presented here. For a
complete and in-depth presentation, the reader is referred to the papers.

3.1 Impurity bound excitons

In paper A, impurity bound excitons in a one-dimensional system are consid-
ered. Such a system is modelled by the Wannier model discussed in Sec. 2.2.1.
The model Hamiltonian used in paper A is given by

Hκ,σ = −1

2
Δ− σ

∂2

∂x∂y
− δ(x− y) + κδ(x)− κδ(y), (3.1)

where Δ = ∇2, κ is the charge of the impurity, and σ = m/(M +m). Here,
M is the mass of the impurity and m is the effective mass of the electron
and hole. Impurity bound excitons correspond to discrete eigenvalues of the
operator Hκ,σ and, consequently, the paper deals with the existence of such
discrete eigenvalues. The two extremes where κ is either sufficiently small
or large is studied using a rigorous mathematical approach based on spectral
theory for unbounded operators. The validity of the system studied in this
paper could be questioned. Obviously zero range interactions modelled by
delta distributions are unphysical and one-dimensional systems are not the most
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Fig. 3.1: (a) Comparison between the leading term derived in the paper and numerical
simulation of the ground state. (b) Illustration of the evolution of the spectrum of the
operator Hκ,0 as a function of κ. (From [130])

interesting systems. However, due to the simplicity of such models, they can
provide valuable physical insight. This is usually illustrated by the similarities
between the one-dimensional hydrogen atom with delta interactions and the
true three-dimensional hydrogen atom [129]. Similarly, one of the goals of
paper A is to provide physical insights that could prove useful when dealing
with impurity bound excitons in more realistic systems.

The two main results obtained in paper A are summarized in Theorem II.1.
and Corollary II.3 and are stated for the case where σ = 0, i.e. where the
impurity has infinite mass. Theorem II.1. deals with the case where κ is small.
The theorem gives that for κ > 0 sufficiently small, then the operator Hκ,0 has
exactly one discrete eigenvalue. In other words, for κ sufficiently small there
exists a single state corresponding to an impurity bound exciton in the system.
The leading term of the energy is found to be

E(κ) = −1

4
− 16

(
4

π
− 1

)2

κ4 +O(κ5). (3.2)

In Fig. 3.1 (a), this leading term is compared to a numerical simulation of
the ground state energy. This comparison shows that the leading term is an
accurate approximation of the energy up to κ ≈ 0.2. The ground state is also
found to be non-degenerate and decreasing if κ ∈ (0, 1/

√
2]. This corresponds

to what was observed using numerical simulations.
Corollary II.3. deals with the other extreme, i.e. where κ is sufficiently

large. The corollary gives the existence of a critical value κc, such that the
operator Hκ,0 has no discrete eigenvalues for all κ ≥ κc. This situation is
illustrated in Fig. 3.1 (b), where the evolution of the spectrum of the spectrum
is shown as a function of κ. The figure shows that, at some value critical value
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Fig. 3.2: Critical charge κc and leading coefficient β as functions of the mass fraction σ.
The two extremes σ = 0 and σ = 0.5 correspond to an impurity with infinite mass and with
mass equal to the effective mass of the other particles, respectively. (From [130])

of κ the discrete eigenvalue disappears in the essential spectrum. Numerical
simulations indicate that the true critical value is approximately κc ≈ 1.546.

The results are also generalized to the case where σ > 0, i.e. where the
impurity has finite mass. Then, for the case of κ small, the energy of the
ground state is equal to

E(κ) = − 1

4(1− σ)
− β(σ)κ4 +O(κ5), (3.3)

where the coefficient is

β(σ) :=
4
[
6σ

√
1− σ2 − (2− σ)σπ − 8σ2 cos−1

(√
1+σ√
2

)
+ tan−1

(
2σ(1−σ2)
1−2σ2

)]2
(1 + σ)(1− σ)2π2σ2

.

(3.4)
The coefficient as a function of σ is shown in Fig. 3.2. In the case of κ large,
the critical charge κc also exhibits dependence on the mass fraction σ. The
dependence is found by numerical simulations and is plotted in Fig. 3.1.

The results regarding the existence of a critical charge of the impurity,
for which no impurity bound excitons exists, can also be generalized to more
complex systems. In the following, the results are generalized to impurity
bound excitons in monolayer transition metal dichalcogenides. These results
are unpublished. Such a system can be described by the Hamiltonian Ĥ given
in Eq. (2.41), where re and rh are taken to be 2D vectors. In a strict 2D system
the usual Coulomb potential is replaced by the Keldysh potential. The discrete
eigenvalues are then determined by solving HΨ(re, rh) = EΨ(re, rh). The
results presented here were obtained by expanding the wavefunction Ψ(re, rh)

in a basis of the type

φijk(re, rh) = exp(−air2e − bjr
2
h − ck(re − rh)

2). (3.5)
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Fig. 3.3: Energies and structure of impurity bound excitons in WSe2. The top panel shows
the root-mean-square of the coordinates for the electron (black), the hole (red), and the
electron-hole (blue). The bottom panel shows energies. Here, the black line denotes the
energy of the electron-impurity subsystem and the dashed line is the exciton energy. Addi-
tionally, the blue and red lines show the ground state energy of the impurity bound exciton
calculated with the correlated basis and in the Hartree-Fock approximation, respectively.

The problem can also be solved by Hartree-Fock with a similar type of basis,
but in that case there is no correlation in the basis, i.e. ck = 0 for all k.

In the bottom panel of Fig. 3.3, the ground state energy of the impurity
localized exciton in free-standing WSe2 is shown. The energy is calculated
using both the correlated basis in Eq. (3.5) and the Hartree-Fock method. The
effective masses and the r0 parameters calculated in [131] are used. Comparing
the energies calculated with the correlated basis and the Hartree-Fock method
it is apparent that the electron-hole correlation is very important, and that
the Hartree-Fock method is not suitable for this type of problem. The critical
charge is found by determining the κ value where the energies of the impurity
localized exciton and the electron-impurity subsystem crosses, indicated by the
crossing of the blue and black lines in Fig. 3.3. The calculations show that κc ≈
1.02 and that the binding energy for an impurity with κ = 1.00 is approximately
5 meV, which is on the same order as binding energies found in experimental
measurements [132]. In the top panel of Fig. 3.3, the root-mean-square (RMS)
of the coordinates re, rh, and reh is shown as a function of κ. Recall that re(h)
denotes the position of the electron (hole) relative to the impurity. Initially,
the electron-hole system is strongly bound with a RMS of 11.8 Å. Meanwhile,
the electron and hole are weakly localized by the impurity. As the charge of
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Fig. 3.4: Geometry of CNTs and AGNRs. (a) The structure as seen in the direction of the
z-axis. (b) Side view of the structures. The AGNR is in the yz-plane. An external magnetic
field at an angle θ to the yz-plane is included. (From [53])

the impurity increases, the electron becomes increasingly localized near the
impurity while the hole becomes more delocalized. When the charge of the
impurity exceeds the critical charge, the hole is completely delocalized and the
electron is strongly localized near the impurity with an RMS of 7.6 Å. This
illustrates the structure of impurity localized excitons.

3.2 Magnetoexcitons in quasi-1D systems

In paper B, different aspects of excitonic effects on the magneto-optical response
of single-walled carbon nanotubes (CNTs) and armchair graphene nanoribbons
(AGNRs) were studied. The study of magneto-optics in quasi-1D systems is
interesting for several reasons. First, there are a number of interesting experi-
mental studies of the magneto-optical response of CNTs performed in extremely
high magnetic fields (up to 370 T) [75–80]. This allows for experimental obser-
vation of interesting physical phenomena, such as the exciton peak splittings
caused by brightening of dark exciton states. This splitting is called the Ajiki-
Ando splitting. These strong magnetic field measurements also provide the
means for verification of theoretical methods. Secondly, some magneto-optical
properties of CNTs and AGNRs have previously only been studied in the inde-
pendent particle approximation and, consequently, lack a theoretical treatment
where excitonic effects are included. This includes the Hall conductivities and
Faraday rotation. Finally, the study of magnetoexcitons and magneto-optics in
CNTs and AGNRs is of interest since the 1D nature of the systems makes the
numerical computations less expensive. Consequently, the systems are useful
test systems for theoretical methods. This also inspired the use of nanoribbons
as a theoretical tool to describe the response of monolayer transition metal
dichalcogenides in paper E, as will be discussed in Sec. 3.3.

The geometry of the systems studied in paper B is illustrated in Fig. 3.4.
The geometric structure of CNTs is governed by the indices (n,m), which
determine the diameter of the tube and the helicity. For AGNRs, the notation
N -AGNR is used to denote to describe a specific AGNR with N dimer lines
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Fig. 3.5: Real part of the optical conductivity tensor. The top and bottom rows show the
parallel-polarized and cross-polarized absorption, respectively, of selected CNTs and AGNRs
at different magnetic field strengths. The dashed lines correspond to the single-particle
response and the solid lines correspond to excitonic response. (From [53])

in the unit cell. The single-particle properties of both materials are described
by a non-orthogonal nearest-neighbor tight-binding model. The magnetic field
is introduced using the Peierls substitution as described in Sec. 2.1.1 and the
excitonic effects are calculated using the BSE. In contrast to the derivation in
Sec. 2.2, here the exchange term is included in the BSE, as this is important
to obtain the correct ordering of bright and dark exciton states. The optical
response of both CNTs and AGNRs is calculated using the Lanczos-Haydock
routine mentioned in Sec. 2.3.

In Fig. 3.5, the diagonal optical conductivities of both CNTs and AGNRs
are shown for a number of different CNTs, AGNRs, and magnetic fields. Both
results with (solid lines) and without excitons (dashed lines) are shown. By in-
spection of the figure, it is evident that the effect of even very strong magnetic
fields on the cross-polarized absorption (Reσyy) of CNTs and AGNRs is negligi-
ble. In contrast, strong magnetic fields significantly alter the parallel-polarized
absorption (Reσzz) of both CNTs and AGNRs. For CNTs both the single-
particle and excitonic response exhibit a splitting of the absorption peaks. In
the unperturbed case, the valence and conduction bands of CNTs are two-fold
degenerate. The degeneracy of the bands is lifted by the magnetic field, and
this is exactly the cause of the splitting of the absorption peaks in the single-
particle spectra. The size of the split is dependent on the CNT diameter and, as
apparent from Fig. 3.5, increases as the nanotube diameter increases. For the
excitonic response, the cause of the splitting is more complicated. The inclusion
of electron-electron interactions lifts the degeneracy partially and causes three
different exciton states. As shown in paper B, only one of these states is opti-
cally active at zero field but, as the magnetic field strength is increased, another
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Fig. 3.6: Hall conductivity for 10-AGNR and 16-AGNR at 10 T and 30 T. Both the single-
particle response (dashed lines) and the excitonic response (solid lines) are shown. (From [53])

state, which was previously dark, becomes optically active. This is what is ob-
served as splitting of the absorption peaks in the excitonic response of CNTs.
The splitting observed in paper B is consistent with the splitting observed in
other theoretical studies [70, 71] and in experimental measurements [77–80].
The inclusion of electron-hole interactions also causes a significant decrease in
the cross-polarized absorption. This has been shown to be due to strong de-
polarization effects [72]. Turning to the parallel-polarized absorption of the
AGNRs, the spectra exhibit no splitting of the absorption peaks but instead
show the emergence of a new absorption. This effect is also dependent on the
width of the nanoribbon, for wider nanoribbons the effect increases.

While the effect of an external magnetic field on the diagonal optical con-
ductivities is only observable at very large magnetic fields, the situation is com-
pletely different for the off-diagonal conductivities. The off-diagonal conductiv-
ities, also called the Hall conductivities, of CNTs and AGNRs, are identically
zero when there is no magnetic field. By perturbing with an external magnetic
field, the systems obtain finite Hall conductivities. These, in turn, causes the
material to exhibit Faraday rotation of the polarization state of incoming light.
In Fig. 3.6, the Hall conductivities with and without excitonic effects of both
10-AGNR and 16-AGNR are shown. The spectra clearly show the importance
of including excitons when modelling the optical response, since excitonic ef-
fects significantly change the Hall conductivities. Additionally, the spectra in
Fig. 3.6 also reveal that the Hall conductivities scale linearly with magnetic
field strength. It is also clear that this scaling behavior holds for quite strong
magnetic fields. This important relation makes it possible to extrapolate the
Hall conductivity spectra presented here to various magnetic field strengths.
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Fig. 3.7: Hall conductivity for (5, 0) and (8, 0) CNTs in both a parallel and a perpendicular
magnetic field. The right y-axis shows the Verdet constant. The dashed lines are the single-
particle response and the solid lines are the excitonic response. (From [53])

In Fig. 3.7, the Hall conductivities of CNTs in a perpendicular (θ = π/2)
and a parallel (θ = 0) magnetic field are shown. The plots again underline
the fact that when excitonic effects are included in the calculations the optical
response changes drastically. Just as in the case of AGNRs, the magnitude
of the excitonic response is smaller than the single-particle response. This in
contrast to what is observed for the parallel-polarized absorption where the
excitonic response had a larger magnitude than the single-particle response.
The explanation for this is found in the strong depolarization effects in the
y-direction. As mentioned previously, the finite Hall conductivities of AGNRs
and CNTs in a magnetic field causes the system to exhibit Faraday rotation.
The Faraday rotation angle φ for a weak magnetic field in the z-direction can
be computed from

φ =
l

2cε0

nReσxy − κImσxy
n2 + κ2

ρ. (3.6)

Here, is the propagation length of the light, c is the speed of light, ε0 is the
vacuum permittivity, n + iκ is the complex refractive index (at B = 0), and
ρ is a volume fraction of either AGNRs or CNTs. Due to the linear scaling of
the Hall conductivities with magnetic field, the Faraday rotation angle can be
written as φ = V lBρ, where V is the so-called Verdet constant. The Verdet
constant for CNTs in an aqueous solution is also shown in Fig. 3.7.

The final results obtained in paper B relate to the low magnetic field prop-
erties of excitons. When the magnetic field is sufficiently weak, the shift in
exciton binding energy due to the magnetic field goes like B2, where B is the
magnetic field strength. This quadratic shift in exciton binding energy is called
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Fig. 3.8: (a-c) Diagmagnetic shift coefficient of the ground state bright exciton as a function
of width or chiral indices of (a) AGNRs in perpendicular fields and CNTs in (b) parallel
magnetic fields and (c) perpendicular magnetic field. (d-f) Exciton probability distribution
with the hole located near the center of the unit cell for (d) 10-AGNR in a perpendicular field,
(e) (8, 0) CNT in a parallel field and (f) (8, 0) CNT in a perpendicular field. The top plots in
(d-f) show the nearest neighbor averaged change in the exciton probability distribution with
magnetic field. (From [53])

the diamagnetic shift and is expressed as ΔEdia = σB2, where σ is called the
diamagnetic shift coefficient. The diamagnetic shift coefficient is an important
quantity as it can be used to make an experimental evaluation of the size of ex-
citons. In the top row of Fig. 3.8 the diamagnetic coefficient of a wide number of
different CNTs and AGNRs is shown. For CNTs and AGNRs in a perpendicu-
lar field, the coefficients are negative and decrease as the systems size increases.
This shows that the exciton binding energy increases with magnetic field. In
contrast, CNTs in a parallel field have a positive diamagnetic coefficient. Thus,
the binding energy of exciton in CNTs perturbed by a parallel magnetic field
decrease when the field strength increases. This conclusion is supported by
the exciton probability distributions shown in the second row of Fig. 3.8. The
probability distribution is computed by fixing the position of the hole on an
atomic site near the center of the unit cell and then calculating the probability
of the electron being on the different atomic sites of the system. Considering
the change in the probability distribution of CNTs in a parallel field, it is clear
that the magnetic field causes the exciton to become more delocalized.

The results presented here have served to elucidate the magneto-optical and
excitonic properties of AGNRs and CNTs. While the materials share many sim-
ilarities, the work in paper B also uncovered differences in the magneto-optical
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Fig. 3.9: Sketch of the system considered in papers C and D. A monolayer TMD perturbed
by an external magnetic field directed perpendicular to the monolayer. The TMD may be
encapsulated by dielectric materials. (From [133])

response. In addition, this work also inspired the use of a similar theoreti-
cal approach in paper E, where the magneto-optical properties of TMDs were
considered.

3.3 Magneto-optics of transition metal dichalco-
genides

This section is a review of the results obtained in papers C, D, and E. The focus
of these papers are different properties of monolayer TMDs perturbed by an
external magnetic field. In paper C the aim is to describe the binding energy
of magnetoexcitons using an equation-of-motion (EOM) approach. In paper
D, the EOM approach is applied to compute the magneto-optical response
of TMDs without excitonic effects. Finally, paper E is an extension of the
approach used to compute the magneto-optical response of quasi-1D systems
in paper B. Here, a nanoribbon geometry is used to approximate the magneto-
optical properties of monolayer TMDs including excitonic effects. By increasing
the width of the nanoribbon system, the properties of the nanoribbon system
are shown to converge to those of a fully periodic 2D monolayer system.

3.3.1 Equation of motion approach

In this section, the results from papers C and D are presented. The papers deal
with magneto-optics and magnetoexcitons in monolayer TMDs. The system
under consideration is sketched in Fig. 3.9. Here, a monolayer of TMD is
perturbed by an external magnetic field perpendicular to the TMD. In contrast
to most of the other work in this thesis, these papers apply a Dirac-type model
to describe the single-particle properties of TMDs at the K and K ′ valleys of
the Brillouin zone. If the monolayer is placed in the xy-plane and the magnetic
field is in the positive z-direction, then the effective single-particle Hamiltonian
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Fig. 3.10: Single-particle energies at the K and K′ valleys of MoS2, calculated for for B = 0
T (dashed lines) and B = 600 T (solid lines). Blue and red lines indicate spin up and down,
respectively. (From [133])

in the Landau gauge can be written as

ĤB = vF (τσxpx + σy(py + eBx)) + Δτ,sσz + ξτ,sI, (3.7)

where vF is the Fermi velocity, τ = ±1 is the valley index, σi are the Pauli
matrices with i ∈ {x, y, z}, pα are the momentum operators with α ∈ {x, y}, I
is the 2D identity matrix, and Δτ,s and ξτ,s are the mass and on-site energy,
respectively.

The wavefunctions and energies of the Hamiltonian ĤB can be found ana-
lytically, both in the perturbed and unperturbed case. Figure 3.10 shows the
single-particle energies at the K and K ′ valleys of MoS2. When the magnetic
field is finite, the energy bands are replaced by discrete Landau levels (LLs),
which are given by

En,λ
τ,s = λ

√
Δ2

τ,s + n(�ωc)2 + ξτ,s. (3.8)

Here, n is the integer Landau level index, λ = ± indicate conduction (+) or
valence band (−) states, and �ωc is the cyclotron energy. The Landau level
index has to obey the relation n ≥ (1 + τλ)/2. This results in the existence
of Landau levels with n = 0 in the valence band at the K valley and in the
conduction bands at the K ′ valley. This can also be observed in Fig. 3.10.

The aim of paper C is to accurately predict the energy of excitons in TMDs
perturbed by a magnetic field. The approach used to compute magnetoexci-
tonic properties is similar to the approach used to derive the BSE in Sec. 2.2.
The main idea is to solve Heisenberg’s equation of motion for the density ma-
trix pηα,α′ = 〈c†α,ηcα′,η〉. Here, c†α,η and cα′,η are the usual fermionic creation
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Fig. 3.11: Plot of τs = ±1 band gaps of monolayer TMDs, calculated for κ = 1. The
uncorrected (black) and exchange self-energy corrected (red) band gaps are shown as a func-
tion of magnetic field. In addition, the exchange self-energy correction to the band gaps,
ΔΣτs = Ẽτs

g − Eτs
g , is plotted (blue). The blue lines refer to the blue axes, while the rest

refer to the black axes (From [133])

and annihilation operators, respectively. Additionally, α is the set of indices
{n, λ, ky} and η = {τ, s}. Then Heisenberg’s EOM reads

− i�
d

dt
pηα,α′ =

〈
[Ĥ, c†α,ηcα′,η]

〉
. (3.9)

Here, Ĥ is the full Hamiltonian, which is given as the sum of the single-particle
Hamiltonian, the light-matter interaction Hamiltonian, and the electron-electron
interaction Hamiltonian. Computing the commutator on the right-hand side of
Eq. (3.9) allows for the derivation of the BSE for magnetoexcitons in TMDs. In
paper C, the terms of the commutator in Eq. (3.9) corresponding to excitons
and exchange self-energy corrections are included. The exchange self-energy
correction results in an increase of the non-interacting band gap and is neces-
sary for accurate theoretical predictions of the exciton transition energy. The
corrected and uncorrected band gaps of the four usual TMDs are shown as a
function of the magnetic field strength in Fig. 3.11. The plots show that the
increase in band gap due to the exchange self-energy correction is on the order
of 1 eV for the four typical TMDs. Additionally, the plots also show that the
correction to the band gap is approximately linear in magnetic field and that
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Fig. 3.12: The squared eigenvector elements of the A exciton in MoS2 in a magnetic field
of 100 T. The elements have been normalized such that the largest elements is unity. (From
[133])

the magnetic field dependence is minor relative to the corrected band gap.

Transition energies Exciton energies
TMD κ EOM Exp., B = 0 T Exp., B ≈ 65 T EOM Wannier
MoS2 1.00 1.918 -0.620 -0.617

1.55 1.907 1.895 [113] 1.896 [113] -0.491 -0.489
MoSe2 1.00 1.516 -0.526 -0.513

1.55 1.512 1.660 [109] -0.419 -0.409
WS2 1.00 2.042 -0.559 -0.520

1.55 2.030 2.039 [114] 2.040 [114] -0.426 -0.392
WSe2 1.00 1.761 -0.511 -0.468

1.55 1.755 1.744 [112] -0.393 -0.357
3.30 1.721 1.732 [44] 1.733 [44] -0.229 -0.197
4.50 1.700 1.723 [115] 1.724 [115] -0.177 -0.144

Table 3.1: Theoretical and experimental transition and exciton energies for the A exciton
in TMDs with different dielectric environments. All theoretical energies are computed at 100
T. The full table is available in [133].

As explained in Sec. 2.2, the computation of magnetoexcitons in a fully
periodic 2D system is difficult numerically. The main reason for using the
effective Hamiltonian in Eq. (3.7) instead of a tight-binding Hamiltonian is the
fact that the analytically derived wavefunctions of ĤB allow for a reduction
in the numerical computations. Some relevant quantities and expressions can
be computed or simplified without the use of numerical methods as shown in
the paper. This lightens the computational load significantly. However, the
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Fig. 3.13: Convergence of the A exciton energy in MoS2 in a 100 T magnetic field. The
dashed blue line correspond to the exciton energy computed from a Wannier model. (From
[133])

Fig. 3.14: Plot of the corrected band gap (red line), exciton transition energy (blue line
and green diamonds), and exciton energy (black line) versus κ for MoS2 in 100 T magnetic
field. The blue line is the sum of the red and black lines. (From [133])

BSE in paper C couples LLs in the valence bands with LLs in the conduction
bands. As the single-particle Hamiltonian allows for an infinite number of LLs,
it is important to determine which and how many couplings are needed in the
BSE to obtain accurate magnetoexcitonic properties. In Fig. 3.12, the squared
eigenvector elements of the A exciton of MoS2 is shown. The plot shows that
for each valence-type LL only a few of the couplings to conduction-type LLs are
significant. In order to verify this, the convergence of the A exciton transition
energy as a function of the number of LLs included in the BSE is also studied.
In Fig. 3.13 the convergence is illustrated. The black line corresponds to the
case where all couplings are included (up to a cut-off in valence and conduction
type LLs of Nv = Nc). The red line corresponds to the case where only the
most significant couplings are included (with a cutoff in valence type LLs of
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Nv). The plot shows that the exciton energy is slightly overestimated when
only the most significant couplings are included. However, the computational
complexity is decreased to the point where convergence of the exciton transition
energy can be obtained.

Using the approach outlined above, the exciton energy and the transition
energy of the A and B excitons in TMDs perturbed by a magnetic field are
computed. These values are compared to experimentally measured transition
energies and to exciton energies found using a Wannier model. The results for
the A exciton are summarized in Table 3.1. The results for the B exciton is
available in paper C. In general, there is a very good agreement between the
experimental measurements and the transition energies computed using the
EOM. The largest discrepancy is for MoSe2 where the difference is almost 150
meV. There is also a good agreement between the exciton energies computed
using the Wannier model and the EOM approach, with differences ranging from
a few meV to 50 meV.

Finally, the effect of the dielectric environment on the exciton transition
energy was studied. As mentioned, both excitonic effects and an exchange
self-energy correction is included in the computations in paper C. Both of the
effects contribute to the transition energy of excitons in TMDs. The exciton
transition energy can be found by adding the band gap energy and the exciton
energy. The exchange self-energy causes an opening of the band gap. The size
of the self-energy correction decreases as the screening from the surroundings
increase. This is illustrated by the red line in Fig. 3.14, which shows the
corrected band gap versus κ. Recall that κ is the average of the dielectric
constant of the encapsulating materials. Similarly, the exciton energy increases
when κ increases. This is illustrated by the black line in Fig. 3.14. These two
counteracting effects cause the exciton transition energy two exhibit minimal
dependence on the dielectric environment as illustrated both by the Wannier
results (the blue line) and the EOM results (the green diamonds) in Fig. 3.14.
This concludes the summary of the results from paper C.

In paper D, the single-particle magneto-optical response of monolayer TMDs
was studied. Using the EOM approach, expressions for the elements of the
optical susceptibility tensor were derived. The outset was the same effective
Hamiltonian for the single-particle properties as in Eq. (3.7). Using the ex-
pressions for the wavefunctions, the dipole matrix elements were computed
analytically. The dipole matrix elements showed that the only allowed optical
transitions from a LL with index n are those to LLs with index n ± 1. Us-
ing these optical selection rules, the expressions for the susceptibility tensor
elements were simplified and can be computed numerically for weak magnetic
fields with relative ease. In contrast, when using a TB model the calculation of
the magneto-optical response is much more expensive computationally and it
can be difficult to go to magnetic fields weaker than 50 T. Paper C treats the
magneto-optical response of both undoped and doped monolayer TMDs. The
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Fig. 3.15: Diagonal magneto-optical response in a doped MoS2 monolayer (μ = 1 eV) in a
50 T magnetic field. In (a), the tensor element χxx is plotted as a function of the photon
energy (results in the inset are roughly independent of the temperature T ); (b) and (c) show
the valley and spin breakdown of the absorptive part of χxx at zero temperature; (d) is a
schematic of the optical transitions between LLs. (From [134])

results relating to the undoped regime are at most interesting from a qualitative
point of view, since the optical response of undoped TMDs are dominated by
excitonic effects. However, as discussed in the paper, if the system is doped suf-
ficiently the excitons are effectively screened. Thus, the single-particle results
presented in paper D are expected to hold in the doped regime.

In Fig. 3.15 (a), the diagonal susceptibility element χxx is plotted for doped
(μ = 1 eV) monolayer MoS2 in a magnetic field of 50 T. This corresponds to the
situation where the Fermi level is approximately 0.2 eV above the zero’th LL
in K ′ valley. The diagonal susceptibility of the doped system exhibit a temper-
ature dependence seen in the undoped regime. This temperature dependence
can be explained by the schematic in Fig. 3.15 (d). In the schematic, the dashed
blue line indicates the Fermi level. For a cold semiconductor (T = 0 K), only
the transitions corresponding to the green arrows are allowed. In this case,
the spectrum features a step structure due to the spin-orbit splitting of the
valence bands. However, at room temperature (T = 300 K) this step structure
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Fig. 3.16: (a) Hall susceptibility χyx versus photon energy, in a doped (μ = 1 eV) monolayer
MoS2 at zero temperature and for a field of 50 T. (b)–(e) Valley and spin breakdown of the
real [(b), (c)] and imaginary [(d), (e)] parts of (a), divided in the intraband [(b), (d)] and
interband [(c), (e)] transitions. (From [134])

is smeared out. This is due to the fact that the finite temperature allows more
optical transitions (illustrated by the yellow arrows in the schematic). This
temperature dependence is one of the interesting phenomena found relating to
the magneto-optical response of doped TMD monolayers.

Another interesting magneto-optical property of doped monolayer TMDs is
the possibility of creating a spin and valley imbalance in TMDs using linearly
polarized light. At T = 0 K, the lowest energy interband peak is only half
the magnitude of the other peaks on the same plateau. In general, each peak
is due to four difference transitions. However, in the case of doped TMDs at
T = 0 K, two of the transitions are not allowed by the Pauli exclusion principle.
These transitions are illustrated by the dashed yellow arrow in the schematic in
Fig. 3.15 (d). These blocked transitions are the cause of the reduced magnitude
of the first interband peak. In paper D, it is shown that the half-height peak
is actually due to just a single transition happening for a distinct combination
of spin and valley. This is also illustrated in the breakdown of the spin and
valley contributions in Fig. 3.15 (c). This provides a method for probing a
single combination of valley and spin with linearly polarized light, similar to
what can be done using circularly polarized light for undoped and unperturbed
monolayer TMDs. Finally, for doped TMDs, a significant contribution from
intraband transitions is also present. This is illustrated in the inset of Fig. 3.15
(a) and Fig. 3.15 (b).

In the doped regime, the perturbed monolayer TMDs have finite Hall sus-
ceptibility, i.e. χyx �= 0. In paper D, analytical expressions for the interband
and intraband Hall susceptibility are derived. These expressions hold in the
case where the temperature and the Fermi level are such that optical transitions
involving the 0 LL are Pauli blocked. In Fig. 3.16 (a), the Hall susceptibility
is illustrated for doped MoS2. Considering the spin and valley breakdown of
the Hall susceptibility in Figs. 3.16 (b-e), it is clear that the significant con-
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Fig. 3.17: (a) Tight-binding couplings in the NNN-TB model for a monolayer TMD. (b) Unit
cell for an armchair TMD nanoribbon, where a is the lattice constant. (c) Band structure of
WSe2. Blue and red lines correspond to spin-up and -down, respectively. (d) Brillouin zone
of monolayer TMD. (From [95])

tributions to the interband part of the Hall susceptibility come from the K
valley. The explanation for this is the same as for the half-peak in the diagonal
susceptibility. In addition to the results presented here, paper D also contains
results about the exchange self-energy correction of the LLs and the response to
circularly polarized light. In the following subsection, results about the effect of
excitons on the magneto-optical properties of monolayer TMDs are presented.

3.3.2 From nanoribbons to 2D response

Paper E aims to include excitonic effects in the magneto-optical response of
TMDs. In this sense, the work in paper E is the natural extension of the work
presented in papers C and D. However, as have been mentioned previously,
the calculation of excitonic effects in the magneto-optical response of a fully
periodic 2D system is unfeasible. To circumvent this problem, a nanoribbon
geometry is used in paper E. Then, the excitonic effects on the magneto-optical
response of the nanoribbon system can be computed using the same method-
ology as in paper B. By increasing the width of the nanoribbon it is possible
to approximate the magneto-optical response with excitonic effects of a fully
periodic 2D system.

The TB couplings used to describe monolayer TMDs is illustrated in Fig. 3.17
(a). Using these couplings, both the different spin-splitting of the valence band
and the broken electron-hole symmetry is included in the single-particle prop-
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Fig. 3.18: Single-particle linear optical conductivity, calculated for B = 130 T and with a
broadening of 25 meV. (From [95])

erties. The resulting band structure of a monolayer TMD is shown in Fig. 3.17
(c). The same TB coupling is also used for the nanoribbon. The nanoribbon
unit cell is illustrated in Fig. 3.17 (b). The computational load could have been
reduced by using a nanoribbon with zigzag edges since the number of atoms
in a similarly sized unit cell is less than in the armchair unit cell. However,
nanoribbons with zigzag edges proved to have dominant edge effects. Thus,
using the armchair nanoribbon geometry was necessary to avoid these effects.

For the 2D TMD system, the optical response can be computed in the two
cases: with excitons and without magnetic field, or without excitons and with
magnetic field. Before the excitonic magneto-optical response of the nanorib-
bon system is used to approximate the full 2D response, it is necessary to en-
sure that convergence can be obtained in these two cases. Using the expression
for the optical conductivity derived in Eq. (2.48), the single-particle magneto-
optical response of MoS2 and WSe2 were computed for both the nanoribbon
geometry and a fully periodic 2D geometry. The first row of Fig. 3.18 shows
the real part of the diagonal conductivity, corresponding to the absorption of
linearly polarized light. The plots clearly illustrate how the optical response
of the nanoribbons converge to that of the bulk 2D structure, as the width of
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Fig. 3.19: Excitonic diagonal conductivities, calculated for B = 0 T, κ = 1 and a broadening
of 50 meV. (From [95])

the ribbons increase. Both the Landau level structure in the spectra and the
magnitude of the peaks have converged for the wide nanoribbon. The second
row shows the convergence of the spin-dependent Hall conductivities. In this
case, the same convergence as for the diagonal conductivity is observed. The
final row in Fig. 3.18 shows the Hall conductivity. In this case, the convergence
is slightly worse than for the diagonal conductivity.

Turning now to the excitonic properties. In order to ensure that the exci-
tonic properties of the nanoribbons converge to those of the 2D system, it is
necessary to consider which electron-electron interaction potential is used for
the nanoribbon system. In paper B, an Ohno-type potential was used for the
quasi-1D systems. However, if an Ohno-type potential is used for the nanorib-
bon system here, the excitonic properties will not converge to the excitonic
properties of the monolayer TMD. This is due to the fact that in a 2D system,
the electron-electron interaction potential is given by the Keldysh potential.
Thus, in paper E, an effective 1D potential is derived for the nanoribbon sys-
tem, such that when the width is increased the excitonic properties of the
nanoribbon converge to those of the 2D system with the Keldysh potential.
This is done by using an integral form of the Keldysh potential. In this form,
a partial one-dimensional Fourier transform can be performed. Using this ap-
proach, the interaction matrix-elements are found to be given by

W s,s
cvk,c′v′k′ =

∑
n,m

In,sck,c′k′I
m,s
v′k′,vkU

k,k′
n,m , (3.10)

where the n,m runs over all atomic sites in the unit cell and In,sαk,βk′ are the
Bloch overlaps given by the product of the TB eigenvector elements correspond-
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Fig. 3.20: Excitonic optical conductivity versus photon energy, calculated for different
magnetic fields. The first row illustrates the difference between the optical conductivity at
a finite field strength and at 0 T. The unperturbed spectra is illustrated by the dashed grey
line. The second row is the excitonic Hall conductivities. The spectra are for nanoribbons
with N = 100 and κ = 1. (From [95])

ing to site n. The integral factors Uk,k′
n,m are given by

Uk,k′
n,m = − e2

2πLε0

∫ ∞

0

dz K0

(√
r20z

2 + Y 2
nm|k − k′|

)
e−κz. (3.11)

Here, L is the system length, K0 is a modified Bessel function of the second
kind, r0 and κ are the usual screening parameters, and Ynm is the distance in
the y-direction between sites n and m. The integral factors can be computed
efficiently numerically.

Just as in paper B, the optical response is computed using the Lanczos-
Haydock routine. The convergence of the diagonal conductivity tensor ele-
ments is shown in Fig. 3.19. Comparing to the single-particle magneto-optical
response, reasonable convergence of the excitonic optical response is obtained
for narrower nanoribbons. This is due to the additional localization caused
by the electron-hole attraction. The plots also show that the energy of the
excitons in the nanoribbons coincide with the 2D exciton energies up to a few
meV. This evidently proves the accuracy of the effective 1D potential derived
in paper E.

As shown by the previous discussion, the nanoribbon approach is able to
accurately describe both the single-particle magneto-optical response and the
unperturbed excitonic properties of a monolayer TMD. Consequently, in paper
E, the approach is assumed to also provide an accurate description of the exci-
tonic magneto-optical response of monolayer TMDs. In Fig. 3.20 the excitonic
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κ σ - BSE σ - Wannier σ - Exper.
1.00 0.22 0.13
1.55 0.24 0.15 0.18 [44]
2.25 0.27 0.17 0.25 [44]
3.30 0.31 0.19 0.32 [44]
4.50 0.36 0.23 0.24 [45], 0.31 [115]

Table 3.2: Calculated and experimental values of σ in units of μeV/T2 for the 1s state of the
A exciton in WSe2. The first column is the values calculated using the approach presented in
paper E, while the second column is values calculated using the Wannier model from paper
C.

optical conductivity of MoS2 and WSe2 is shown for different magnetic fields.
The first row of Fig. 3.20 shows the difference between Reσxx(ω) for a finite
magnetic field and for B = 0 T. The plots illustrate how the exciton peaks
experience a small blueshift as the magnetic field increases. This shift corre-
sponds to the diamagnetic shift. In paper E, the diamagnetic shift coefficients
are evaluated by fitting this shift to a quadratic function. Additionally, oscil-
lations in the high end of the photon energy range appear for strong magnetic
fields. These oscillations are due to transitions between Landau levels.

The second row in Fig. 3.20 shows the Hall conductivities. The plots show
that excitonic effects severely change the response. Comparing to the single-
particle Hall conductivities in Fig. 3.18, the excitonic effects change both the
overall structure of the spectra and increase the magnitude of the response
by one order of magnitude. This highlights the importance of a calculation
such as the one provided in paper E. Another important aspect relating to the
Hall conductivities is the fact that they are identically zero when there is no
magnetic field, i.e. σxy(B = 0) = 0. When the magnetic field is turned on the
Hall conductivities obtain a finite magnitude, which makes the relative change
in the Hall conductivities very significant.

The diamagnetic shift coefficient of the A exciton is evaluated in paper
E. In Table 3.2 the computed diamagnetic shift of the A exciton of WSe2

is compared to experimental values and to values obtained using a Wannier
model. The diamagnetic shifts are compared for a number of different dielectric
environments, corresponding to different values of κ in the Keldysh potential.
Table 3.2 shows that values computed using the nanoribbon approach are in
general closer to the experimentally measured values than the values computed
using the Wannier model.

In addition to providing insight into the effect of excitons on the magneto-
optical response of TMDs, the results presented obtained in paper E can also be
used to benchmark any future fully periodic 2D descriptions of magnetoexcitons
in TMDs.
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Chapter 4

Conclusions

With the advancements in synthesis and exfoliation of low-dimensional semi-
conductor materials, such as carbon nanotubes, graphene nanoribbons, and
transition metal dichalcogenides, the study of excitonic effects in such systems
has grown increasingly important. In this thesis, the two following aspects of ex-
citons in low-dimensional semiconductors have been studied: Impurity bound
excitons and Magnetoexcitons. The excitonic effects have been investigated
from a theoretical viewpoint using both mathematical and numerical methods.
In the following, the main conclusion obtained in the thesis is summarized.

The first topic of research was impurity bound excitons. Such a system has
a simple description in the framework of the Wannier model, and the impurity
bound exciton states correspond to the discrete eigenvalues of the Hamilton
operator. The existence of such states was studied for a 1D system with zero-
range interactions, using a rigorous mathematical approach. The existence of a
single bound state, corresponding to an impurity bound exciton, was found in
the case where the charge of the impurity was sufficiently small. The leading
term of the energy of this bound state was also derived. Considering the case
where the charge of the impurity is large, it was proven that as the charge of
the impurity surpass some critical value, then the bound state corresponding to
an impurity bound exciton cease to exist. These results were initially obtained
for a system where the impurity has infinite mass but was also generalized to
the case where the impurity has finite mass. The impurity mass dependence of
the leading coefficient of the ground state energy and the critical charge was
computed. The results for the 1D system motivated a similar study of impurity
bound excitons in monolayer transition metal dichalcogenides (TMDs), which
is currently unpublished. In this study, the results were obtained using only
numerical methods and not rigorous mathematics. In agreement with the 1D
case, the existence of a critical charge was also found for monolayer TMDs.

The second topic of research was magnetoexcitons and magneto-optics in
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quasi-1D semiconductors, more specifically carbon nanotubes (CNTs) and arm-
chair graphene nanoribbons (AGNRs). This study provided insight into how
an external magnetic field affects both the optical response and the proper-
ties of excitons. In the case of the diagonal optical conductivity, very strong
fields severely change the absorption properties of both CNTs and AGNRs. For
CNTs, a splitting of the absorption peaks was observed, while, for AGNRs a
new absorption peak emerged in the spectra. The absorption peak splitting
computed for CNTs was found to be consistent with experimental measure-
ments performed in very strong magnetic fields. These effects, however, were
only found to be observable in very strong magnetic fields (several hundreds
of T). At low magnetic field strengths, the most significant effect was found
to be the existence of finite Hall conductivities. The finite Hall conductivities
causes the systems to exhibit Faraday rotation. Faraday rotation spectra and
Hall conductivities were calculated for the systems with and without excitons.
These spectra underlined the importance of including excitons in the calcu-
lations, as they significantly change the optical response. Finally, the study
also focused on the diamagnetic shift of the exciton peaks. Diamagnetic shifts
coefficients were computed for a wide range of CNTs and AGNRs.

The final topic was the magneto-optical response of monolayer transition
metal dichalcogenides. First, an equation of motion approach was used to
compute the transition energy of magnetoexcitons. The computed transition
energy of magnetoexcitons in monolayer TMDs was compared to experimen-
tal measurements of the exciton peak positions and good agreement between
the quantities where found. In addition, the binding energies of the magne-
toexcitons were also estimated and compared results based on the Wannier
model. In general, these quantities where also in good agreement. Secondly,
the single-particle magneto-optical properties of monolayer TMDs were also
computed using an EOM approach. In the case of doped monolayer TMDs, a
method for inducing a spin and valley imbalance using linear polarized light
where described. Finally, by using a tight-binding model and the BSE, the
magneto-optical response with excitons were calculated for very wide TMD
nanoribbons. The width of the nanoribbons was such that the optical response
approximated that of a true monolayer system. Using this approach, the effect
of excitons on the Hall conductivity was computed. It was found that excitons
increase the magnitude of the Hall conductivity by almost an order of mag-
nitude (compared to the single-particle computations). Also, the diamagnetic
shift coefficient of the A exciton in monolayer TMDs were computed for differ-
ent dielectric environments. This was compared to experimental estimates of
the diamagnetic shift and a good agreement was found.
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We consider a three-body one-dimensional Schrödinger operator with zero range
potentials, which models a positive impurity with charge κ > 0 interacting with an
exciton. We study the existence of discrete eigenvalues as κ is varied. On one hand,
we show that for sufficiently small κ there exists a unique bound state whose bind-
ing energy behaves like κ4, and we explicitly compute its leading coefficient. On
the other hand, if κ is larger than some critical value, then the system has no bound
states. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4983921]

I. INTRODUCTION

In this paper, we consider a system of three one-dimensional non-relativistic quantum particles
with zero range interactions. The system models an impurity interacting with an exciton, which is
a pair made of an electron and a hole in either a semiconductor or an insulator. We want to give a
rigorous description of the existence of bound states in the cases where the impurity has either a small
or a large charge. In the small charge case, we prove the existence of a non-degenerate ground state,
and we explicitly compute its leading order behavior and compare it to numerical calculations. In the
case of a large impurity charge, we prove the existence of a critical charge above which the discrete
spectrum is absent, and we compute it numerically. The proofs of our main results are based on a
combined application of the Feshbach inversion formula and the Birman-Schwinger principle.

The bound states of a helium-like system with two negatively charged particles and a positively
charged nucleus interaction through zero range potentials were previously examined in Ref. 1 and
in Ref. 2, while the bound states of a system with a negatively charged particle and two positively
charged particles with infinite mass were examined in Ref. 3. Also, the spectral properties of the
similar, but more realistic, three-body Coulomb systems in three dimensions have been examined in
Refs. 4–6.

The choice of Coulomb interaction potential in one-dimensional systems is a non-trivial one. The
Schrödinger operator for the one-dimensional hydrogen atom with the 1/|x| Coulomb potential is not
essentially self-adjoint but has an infinite number of self-adjoint extensions, and the choice of exten-
sion and corresponding spectral properties are still the subject of active research.7–9 Other options are
to modify the Coulomb potential to get rid of the singularity10 or use zero range interactions, as used
in the present paper. One-dimensional systems and zero range interactions might seem unphysical,
but in many cases they can be used as toy models in order to avoid complicated numerical compu-
tations. In fact some three-dimensional Coulomb systems and one-dimensional systems with zero
range interactions share important spectral properties. A classical example is the analogy between
the one-dimensional hydrogen atom and the true three-dimensional hydrogen atom as described in
Ref. 11.

a)E-mail: jh@math.aau.dk

0022-2488/2017/58(5)/052106/16/$30.00 58, 052106-1 Published by AIP Publishing.



052106-2 Have et al. J. Math. Phys. 58, 052106 (2017)

Also, such simplified models naturally emerge as effective models for higher-dimensional sys-
tems submitted to various forms of confinement, for example, the one-dimensional effective models
for excitons in carbon nanotubes in Refs. 12 and 13, one-dimensional models of optical response in
one-dimensional semiconductors in Ref. 14, and the effective model for atoms in strong magnetic
fields in Refs. 15 and 16. In a similar fashion, the system we consider in this paper can be interpreted as
a model for impurity bound excitons in a one-dimensional semiconductor using the Wannier model.
Excitonic effects are known to have a significant impact on the optical properties of semiconductors,17

especially in one- and two-dimensional semiconductors where the reduced screening leads to large
exciton binding energies compared to the bandgap. For a thorough introduction to systems with zero
range potentials we refer to the book in Ref. 18.

The paper is structured as follows. In Sec. II, we present the model and comment on the main
results of the paper. In Sec. III, we specify the framework and introduce some important notation.
In Sec. IV we prove our first main result, namely, that there exists a single discrete eigenvalue for
sufficiently small impurity charge. In Secs. V and VI we prove our second main result about the
disappearance of the discrete spectrum if κ becomes supercritical.

II. THE MODEL AND THE MAIN RESULTS

Consider the system of two equal but oppositely charged particles with charge±1 and mass m, and
an impurity with charge κ and mass M. Let σ =m/(m +M) denote the mass fraction, 0 ≤ σ < 1. Using
relative atomic coordinates and removing its center of the mass, the system is formally described by
the Schrödinger operator

Hκ,σ =−1
2
Δ − σ∂x∂y − δ(x − y) + κδ(x) − κδ(y), (2.1)

on L2(R2), where Δ is the two-dimensional Laplace operator and δ is the Dirac delta distribution.
The discrete spectrum of Hκ,σ corresponds to impurity localized excitons. In the following we

state our results regarding the discrete spectrum of Hκ,σ and prove them in Secs. IV, V, and VI. The
situation is sketched in Fig. 1(a) where we see the ground state energy and the essential spectrum
for σ = 0. The essential spectrum of Hκ,0 will be derived in Sec. III, but as illustrated by the shaded
area in the figure, its bottom stays equal to �1/4 on the closed interval [0, 1/

√
2], while for larger κ,

it equals −κ2/2.
The first result concerns the existence and behaviour of a discrete eigenvalue of Hκ,0 =: Hκ when

κ ∈ (0, 1/
√

2].

Theorem II.1. If κ > 0 is sufficiently small, the operator Hκ has precisely one discrete
eigenvalue and its leading order behaviour is

E(κ)=−1
4
− 16

(
4
π
− 1

)2
κ4 + O(κ5). (2.2)

Furthermore, the energy E(κ) is non-degenerate and decreasing if κ ∈ (0, 1/
√

2]; hence, the operator
Hκ has at least one discrete eigenvalue on this interval.

The behaviour κ4 of the leading order of E(κ) (for κ sufficiently small) equals the weak coupling
asymptotic of the ground state energy of one-dimensional Schrödinger operators with zero-mean
potentials as was shown in Ref. 19. Also, the binding requirement (that κ should be sufficiently small)
is similar to one of the two binding requirements that were found in Ref. 5 for the three-dimensional
Coulomb system.

In Fig. 1(b) the leading behavior of the discrete eigenvalue given in Theorem II.1 is compared
to a numerical calculation of the smallest discrete eigenvalue of Hκ . The numerical calculations are
done using a similar method to what was presented in Ref. 1. The figure shows that they agree well
for κ below 0.25.

The results can be generalized to hold for 0 < σ < 1 as well. If κ is sufficiently small, the operator
Hκ,σ has a single discrete eigenvalue, and the leading behavior of this discrete eigenvalue E is
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FIG. 1. In (a), a plot of the ground state energy is given as a function of the impurity charge κ. (b) is a comparison of the
leading term of the discrete eigenvalue and the numerically calculated discrete eigenvalue.

calculated to be

E(κ)=− 1
4(1 − σ)

− β(σ)κ4 + O(κ5),

where

β(σ) := 4

[
6σ
√

1 − σ2 − (2 − σ)σπ − 8σ2 cos−1
(√

1+σ√
2

)
+ tan−1

(
2σ(1−σ2)

1−2σ2

)]2

(1 + σ)(1 − σ)2π2σ2
(2.3)

when 0 < σ < 1/
√

2. The solution can be extended to the range 1/
√

2 ≤ σ < 1 by choosing another
branch of tan−1.

For κ ≥ 1/
√

2 we have the following results.

Theorem II.2. Let Hκ,κ̃ be the self-adjoint operator formally described by

Hκ,κ̃ =−1
2
Δ − δ(x − y) + κ̃δ(x) − κδ(y) (2.4)

on L2(R2). Given any κ̃ > 1, there exists κM such that Hκ,κ̃ has no discrete eigenvalues for all κ ≥ κM .
Furthermore, given any 0 < κ̃ < 1, there exists some κM such that Hκ,κ̃ has at least one discrete
eigenvalue for all κ ≥ κM .

As a consequence of the previous two theorems, we will also prove the following corollary.

FIG. 2. Plot of the critical charge and the κ4 coefficient of the discrete eigenvalue against the mass fraction σ.
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Corollary II.3. Let Hκ be the operator in (2.1). Then there exists a critical charge of the impurity,
which we will denote κc, such that the discrete spectrum of Hκ is non-empty for all 0 < κ < κc and
empty for κ ≥ κc.

Using numerical simulations to calculate the smallest discrete eigenvalue of Hκ , we see that at
κ ≈ 1.546 the ground state energy hits the essential spectrum. Thus, we expect that the true κc is
close to 1.546. In Fig. 2 a numerical calculation of the critical charge κc is plotted against the mass
fraction σ. We see that as the mass of the impurity decreases, the critical charge is increased, and
thus bound states exists for impurities with larger charges. We have also plotted the coefficient β in
(2.3) against the mass fraction, and we see that the coefficient decreases as the mass of the impurity
decreases.

III. THE FRAMEWORK

In this section, we introduce the framework we use to study the discrete spectrum of Hκ,σ . This
framework has been used in Refs. 2 and 20, and we refer to those papers for more details.

We define Hκ,σ as the unique self-adjoint operator associated to the sesquilinear form

Q(f , g) =
1
2
〈∇f , A∇g〉L2(R2) − 〈f (x, x), g(x, x)〉L2(R)

+ κ〈f (0, y), g(0, y)〉L2(R) − κ〈f (x, 0), g(x, 0)〉L2(R),
(3.1)

on H1(R2) × H1(R2), where H1(R2) is the Sobolev space of first order and A ∈R2×2 is the matrix

A=

[
1 σ

σ 1

]
. (3.2)

Let ψ ∈H1(R2) and let e ∈R2 be a unit vector. We define the trace operator τe : H1(R2)→L2(R)
by (τeψ)(s) :=ψ(se). Let us write τ := (τe1 , τe2 , τe12 ) as an operator defined on H1(R2) with values in
[L2(R)]3 := ⊕3

i=1L2(R), where {e1, e2} is the canonical basis in R
2 and e12 = 1/

√
2(e1 + e2). Then

Hκ,σ is

Hκ,σ =−1
2
Δ − σ ∂

2

∂x∂y
+ τ∗gτ, (3.3)

where g := diag{−κ, κ,−1} ∈R3×3.
As a direct application of the Hunziker-Van Winter Zhislin (HVZ) theorem21 and a consequence

of the signs of the potential terms in (2.1) the following lemma holds.

Lemma III.1. The essential spectrum of Hκ,σ is[
min

{
− 1

4(1 − σ)
,− κ

2

2

}
,∞
)

.

The essential spectrum of Hκ,0 is illustrated by the shaded area in Fig. 1(a). Write the operator
in (2.1) as Hκ,σ =H0,σ − Vκ , where

H0,σ :=−1
2
Δ − σ ∂

2

∂x∂y
, Vκ := δ(x − y) − κδ(x) + κδ(y).

If R(z) denotes the full resolvent operator (Hκ,σ − z)−1 and R0(z) denotes the resolvent (H0,σ − z)−1,
then by Krein’s formula,

R(z)=R0(z) − R0(z)τ∗(g−1 + τR0(z)τ∗)−1τR0(z), z ∈ ρ(H0,σ) ∩ ρ(Hκ,σ). (3.4)

Define
Gκ,σ(z) := g−1 + τR0(z)τ∗. (3.5)

It can be shown that E < inf σess(Hκ,σ) belongs to the discrete spectrum of Hκ if and only if Gκ,σ(E)
is not invertible. Note that Gκ,σ(z) is a 3 × 3 operator valued matrix which acts on [L2(R)]3 and its
entries are z dependent. We will denote the elements of τR0(z)τ∗ by
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τR0(z)τ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
T0,σ T1,σ T ∗2,σ

T1,σ T0,σ T ∗2,σ

T2,σ T2,σ T3,σ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.6)

The integral kernel of R0(z) is

R0(x, y, z)=
1

2π2

∫
R

2

eik ·(x−y)

|k|2 + 2σk1k2 − 2z
dk1 dk2. (3.7)

Using the integral kernel of R0(z) in the Fourier representation, we can explicitly calculate the integral
kernels of the elements in τR0(z)τ∗ (the first and the last operators are multiplication operators in
Fourier space),

T̂0,σ(s)=
1√

(1 − σ2)s2 − 2z
, (3.8)

T̂1,σ(s, t)=
1
π

1

s2 + t2 + 2σst − 2z
, (3.9)

T̂2,σ(s, t)=
1
π

1

t2 + (s − t)2 + 2σt(s − t) − 2z
, (3.10)

T̂3,σ(s)=
1√

(1 − σ2)s2 − (1 − σ)4z
. (3.11)

From these expressions, it is easy to see that the operators in (3.6) are bounded if Re(z)< 0, and their
norms go to zero when Re(z)→−∞.

IV. PROOF OF THEOREM II.1

We are now ready to prove the first of our main results, i.e., the existence of a single discrete
eigenvalue of Hκ =Hκ,0 when κ becomes sufficiently small. In the following we will also denote Ti ,0

by Ti.
Assume that κ < 1/

√
2. In that case, it follows from Lemma III.1 that any discrete eigenvalues

E ∈R must satisfy E <−1/4. Moreover, E is a discrete eigenvalue of Hκ if and only if the operator
Gκ(E) is not invertible. Define G̃κ(E) := κ−1Gκ(E) for κ > 0, then G̃κ(E) is invertible when Gκ(E) is
invertible. In matrix representation we can write G̃κ(E) as

G̃κ(E)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−𝟙 0 0

0 𝟙 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ κ

⎡⎢⎢⎢⎢⎢⎢⎢⎣
T0 T1 T ∗2
T1 T0 T ∗2
T2 T2 −𝟙 + T3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.1)

where 𝟙 denotes the identity operator on L2(R). In order to find the values E where the inverse of
G̃κ(E) does not exist, we use Feshbach’s formula (see Equations (6.1) and (6.2) in Ref. 22) to reduce
the dimension of the operator pencil we are trying to invert.

Let Π be the orthogonal projection such that Π[L2(R)]3 is isomorphic to L2(R), and ΠG̃κ(E)Π
� − κ + κT3. The congruence symbol simply means that ΠG̃κ(E)Π can be identified with −κ + κT3

on L2(R). Let Π⊥ := 𝟙 − Π correspond to the orthogonal subspace Π⊥[L2(R)]3 which is isomorphic
to [L2(R)]2. Then, we get

Π⊥G̃κ(E)Π⊥ �
⎡⎢⎢⎢⎢⎣
−𝟙 0

0 𝟙

⎤⎥⎥⎥⎥⎦ + κ
⎡⎢⎢⎢⎢⎣

T0 T1

T1 T0

⎤⎥⎥⎥⎥⎦ . (4.2)

The next lemma gives conditions under which the inverse of Π⊥G̃κ(E)Π⊥ exists as an operator on
Π⊥[L2(R)]3.

Lemma IV.1. There exists K > 0 such that R(E) := [Π⊥G̃κ(E)Π⊥]−1 exists in Π⊥[L2(R)]3 for all
E <−1/4 and 0 < κ <K .



052106-6 Have et al. J. Math. Phys. 58, 052106 (2017)

Proof. We rewrite Π⊥G̃κ(E)Π⊥ as

Π⊥G̃κ(E)Π⊥� �
⎡⎢⎢⎢⎢⎣
𝟙 0

0 𝟙

⎤⎥⎥⎥⎥⎦ + κ
⎡⎢⎢⎢⎢⎣

T0 T1

T1 T0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
−𝟙 0

0 𝟙

⎤⎥⎥⎥⎥⎦��
⎡⎢⎢⎢⎢⎣
−𝟙 0

0 𝟙

⎤⎥⎥⎥⎥⎦ . (4.3)

The operators T0 and T1 are uniformly bounded on L2(R) for E <−1/4. Thus, we can choose a
constant K > 0 such that ������κ

⎡⎢⎢⎢⎢⎣
T0 T1

T1 T0

⎤⎥⎥⎥⎥⎦
������< 1, (4.4)

for all E <−1/4 and 0 < κ <K . Then the inverse Π⊥G̃κ(E)Π⊥ exists for all 0 < κ <K and E <−1/4.
Additionally, we can write R(E) as a Neumann series

R(E) �
⎡⎢⎢⎢⎢⎣
−𝟙 0

0 𝟙

⎤⎥⎥⎥⎥⎦ +
∞∑

j=1

(−1)jκj
⎡⎢⎢⎢⎢⎣
−𝟙 0

0 𝟙

⎤⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎣

T0 T1

T1 T0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
−𝟙 0

0 𝟙

⎤⎥⎥⎥⎥⎦��
j

, (4.5)

for all 0 < κ <K . �

By Feshbach’s formula and Lemma IV.1, there exists K sufficiently small such that if 0 < κ <K
and E <−1/4, the inverse of G̃κ(E) exists if and only if the inverse of

SW (E)=ΠG̃κ(E)Π − ΠG̃κ(E)Π⊥R(E)Π⊥G̃κ(E)Π, (4.6)

exists as an operator restricted to the proper subspace. Using the matrix representation we can write
SW (E) as

SW (E) � 𝟙 − T3 − κ
[

T2 T2

]
R(E)

⎡⎢⎢⎢⎢⎣
T ∗2
T ∗2

⎤⎥⎥⎥⎥⎦ , on L2(R). (4.7)

Note that the contribution to SW (E) from the first term of R(E) in (4.5) is zero. To find the values where
the inverse of SW (E) does not exist on L2(R), we use the following version of the Birman-Schwinger23

principle.

Proposition IV.2. Let E <−1/4 and let SW (E) be given by (4.7). There exist two bounded oper-
ators V1 : [L2(R)]2→L2(R) and V2 : L2(R)→ [L2(R)]2 such that SW (E)�1 exists if and only if the
inverse of

𝟙2 − κV2(𝟙 − T3)−1V1 (4.8)

exists on [L2(R)]2, where 𝟙2 is the identity operator on [L2(R)]2. We call the operator in (4.8) for the
Birman-Schwinger operator.

Proof. Let Ψ ∈ L2(R) and define V2 : L2(R)→ [L2(R)]2 as

V2Ψ=R(E)
⎡⎢⎢⎢⎢⎣

T ∗2Ψ
T ∗2Ψ

⎤⎥⎥⎥⎥⎦ . (4.9)

By the boundedness of R(E) and T ∗2 , it follows that V2 is a bounded operator. Furthermore, let
Ψ= [Ψ1,Ψ2] ∈ [L2(R)]2 and define the operator V1 : [L2(R)]2→L2(R) by

V1Ψ=T2Ψ1 + T2Ψ2. (4.10)

The operator V1 is bounded since T2 is bounded. Using V1 and V2 it is possible to rewrite the operator
SW (E) on L2(R) as

SW (E)= 𝟙 − T3 − κV1V2 = (𝟙 − κV1V2(𝟙 − T3)−1)(𝟙 − T3),

since the bounded inverse of 𝟙 − T3 exists on L2(R) for all E <−1/4. Consequently SW (E) exists if
and only if (𝟙 − κV1V2(1 − T3)−1)−1 exists on L2(R). But for any fixed κ we can choose E sufficiently



052106-7 Have et al. J. Math. Phys. 58, 052106 (2017)

negative such that ‖κV1V2(𝟙 − T3)−1‖ < 1 and we can expand in a Neumann series

(𝟙 − κV1V2(𝟙 − T3)−1)−1 =
∑
j=0

κj[V1V2(𝟙 − T3)−1]j.

Using resummation, we obtain that if E is sufficiently negative we have

SW (E)−1 = (𝟙 − T3)−1 + κ(𝟙 − T3)−1V1

(
𝟙2 − κV2(𝟙 − T3)−1V1

)−1
V2(𝟙 − T3)−1. (4.11)

Both the left-hand and the right-hand sides define meromorphic functions for Re(E)<−1/4; hence,
we can use the right-hand side to extend SW (E)�1 everywhere where the Birman-Schwinger operator
exists. This proves one implication.

Conversely, if we define

A := κV2(𝟙 − T3)−1V1,

Equation (4.11) implies

κV2SW (E)−1V1 =A + A(𝟙 − A)−1A=−𝟙 + (𝟙 − A)−1

or

(𝟙 − A)−1 = 𝟙 + κV2SW (E)−1V1. (4.12)

Now we can extend (𝟙 − A)−1 using the right-hand side. This concludes the proof. �

Let V1 and V2 be as in the above proof. Then the discrete eigenvalues E of Hκ for 0 < κ <K
are those E <−1/4 for which the inverse of the Birman-Schwinger operator (4.8) does not exist on
[L2(R)]2. In Fourier representation, the operator (𝟙 − T3)−1 is given by multiplication with

1√
2π

(
1 − 1√

s2 − 4E

)−1

=
1√
2π

2

s2 − 4E − 1
+

1√
2π

+
1√
2π

1√
s2 − 4E + 1

. (4.13)

The first term on the right hand side has a singularity at E = �1/4. As κ becomes small, any
possible discrete eigenvalues will be close to �1/4, and thus we expect the singular term to be the
significant contribution. To simplify notation we define ε :=−4E−1> 0. Taking the Fourier transform
of each term on the right-hand side of (4.13), we get the integral kernel of (𝟙 − T3)−1,

(𝟙 − T3)−1(x, y)=
1√
ε

e−
√
ε |x−y | + δ(x − y) +

1
2π

∫
R

eis(x−y)

√
s2 + ε + 1 + 1

ds

=
1√
ε
−
∫ |x−y |

0
e−
√
εs ds + δ(x − y) +

1
2π

∫
R

eis(x−y)

√
s2 + ε + 1 + 1

ds. (4.14)

From (4.14) we see that there are four contributions to V2(𝟙 − T3)−1V1. We will show that the operators
that we get from the three last terms in (4.14) are uniformly bounded for ε > 0. Only the second term
may pose problems due to its linear growth, while the third term is the distribution kernel of the
identity operator and the fourth term is multiplication by a uniformly bounded function in Fourier
space for ε > 0.

We show that the operator corresponding to the second term is uniformly bounded. By the
construction of V1 and V2, the contribution that might be problematic is the operator with the integral
kernel

0 ≤C(x, y)=
∫
R

2
T ∗2 (x, t) �

∫ |t−t′ |

0
e−
√
εs ds��T2(t ′, y) dt dt ′, (4.15)

since the other factors from V1 and V2 are bounded. We will show that C(x, y) is the integral kernel of a
Hilbert-Schmidt operator. To do that, we need the following result which is based on the Paley-Wiener
theorem.24
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Lemma IV.3. There exists α > 0 sufficiently small such that the kernels T2(x, y)eα |x | , T ∗2 (x, y)eα |y | ,
T1(x, y)eα |y | , and T1(x, y)eα |x | are in L2(R2) uniformly in ε > 0.

Proof. We will show that T2(x, y)eα |x | ∈ L2(R2) using the Paley-Wiener theorem. The proofs for
the other integral kernels are similar and therefore not included. To apply the Paley-Wiener theorem,
we must show that T̂2(s, t) can be analytically continued to a subset of the type

{ξ ∈C2 : |Im(ξ)| < a} ⊂C2,

for some a > 0. Write s = s1 + is2 and t = t1 + it2, with s1, s2, t1, t2 ∈R, then

T̂2(s, t)=
1
π

1

t2
1 − t2

2 + 2it1t2 + (s1 − t1)2 − (s2 − t2)2 + 2i(s1 − t1)(s2 − t2) + ε + 1
.

This function has no poles for t2 and s2 satisfying t2
2 + (s2 − t2)2 < 1, and is analytic on the subset{

ξ ∈C2 : |Im(ξ)| < 1
2

}
⊂C2.

Take η = (s2, t2) ∈R2 such that |η | < 1/2 and define δ := ε + 1− t2
2 − (s2 − t2)2. By the choice of η, we

get δ > 0, and the norm

‖T̂2(· + iη)‖2
L2(R2)

≤ 1

π2

∫
R

2

1(
t2
1 + (s1 − t1)2 + δ

)2 ds1 dt1 =
1
πδ
<∞.

Thus, ‖T̂2,0(· + iη)‖L2(R2) <∞ for all such η ∈R2. Then the Paley-Wiener theorem implies that

eα
√

x2+y2
T2(x, y) ∈ L2(R2) for all α < 1/2. This concludes the proof of T2(x, y)eα |x | ∈ L2(R2). �

We are now ready to show that C(x, y) is an integral kernel of a Hilbert-Schmidt operator. To do
that, we use the following inequality:

C(x, y) ≤
∫
R

2
T ∗2 (x, t)|t |T2(t ′, y) dt dt ′ +

∫
R

2
T ∗2 (x, t)|t ′ |T2(t ′, y) dt dt ′, (4.16)

which follows from the definition of C(x, y) and the inequality
∫ |t−t′ |

0
e−
√
εs ds ≤ |t − t ′ | ≤ |t | + |t ′ |.

We will show that the last the term in (4.16) is in L2(R2) (the proof that the first term is also in L2(R2)
is identical). Note that the integral is separable and∫

R
2

T ∗2 (x, t)|t ′ |T2(t ′, y) dt dt ′ =: F(x)G(y).

We will show that F, G ∈ L2(R). Applying the Cauchy-Schwarz inequality with respect to the t-integral
and using Lemma IV.3, we find

‖F‖2L2(R) =

∫
R

�����
∫
R

T ∗2 (x, t) dt
�����
2

dx =
∫

R

�����
∫
R

T ∗2 (x, t)eα |t |e−α |t | dt
�����
2

dx

≤Cα

∫
R

2
|T ∗2 (x, t)|2e2α |t | dt dx <∞, (4.17)

for α > 0 sufficiently small. Similarly

‖G‖2L2(R) =

∫
R

�����
∫
R

|t ′ |T2(t ′, y) dt ′
�����
2

dy ≤Cα

∫
R

�����
∫
R

e
α
2 |t′ |T2(t ′, y) dt ′

�����
2

dy

=Cα

∫
R

�����
∫
R

e−
α
2 |t′ |eα |t

′ |T2(t ′, y) dt ′
�����
2

dy ≤ C̃α

∫
R

2
e2α |t′ | |T2(t ′, y)|2 dt ′ dy <∞,

again for α > 0 sufficiently small. We conclude that C(x, y) ∈ L2(R2) uniformly in ε > 0.
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Using the expansion in (4.14), the integral kernel of the Birman-Schwinger operator is

𝟙2 − κ
∫
R

2
V2(x, t)[(𝟙 − T3)−1](t, t ′)V1(t ′, y) dt dt ′ = 𝟙2 − κ√

ε
|Ψ〉 〈Φ| + κBε(x, y), (4.18)

where Bε(x, y) is the integral kernel of the uniformly bounded operator for ε > 0 that comes from the
non-singular terms of (4.14). Also

Φ(y) :=
∫
R

V1(x, y) dx, Ψ(x) :=
∫
R

V2(x, y) dy. (4.19)

The functions Ψ and Φ are in L2(R) and let us prove this for Ψ. From the above definition and from
(4.9), we see that it is enough to prove that ∫R T ∗2 (x, t)dt belongs to L2(R). But this is exactly what
we did in (4.17).

By the usual factorization trick, the operator in (4.18) is invertible if and only if

𝟙2 − κ√
ε
|Ψ〉 〈Φ|(𝟙2 + κBε)−1

is invertible. The later operator is not invertible if and only if ε is a zero of the following function:

(0,∞) � ε �→ 1 − κ√
ε
〈Φ|(𝟙2 + κBε)−1 |Ψ〉 ∈R.

Introduce the new variable r2 = ε. The above function has a positive root ε0 if and only if the map

[−1, 1] � r �→ fκ(r) := κ〈Φ|(𝟙2 + κBr2 )−1 |Ψ〉 ∈ [−1, 1]

has a positive fixed point r0 > 0 and r0 =
√
ε0.

It is not difficult to extend the methods we used for proving that Bε was uniformly bounded
in ε > 0 in order to show that actually all the ε dependent quantities are norm differentiable with
globally bounded derivatives on ε > 0. Thus fκ becomes a contraction if κ is small enough and its
unique fixed point r0 can be computed by iteration starting from r = 0.

Using the definitions of V1 and V2 (in which we put ε = 0 or equivalently E = �1/4) we can
calculate the inner product 〈Φ,Ψ〉 to get

〈Φ,Ψ〉|ε=0 = 8κ

(
4
π
− 1

)
+ O(κ2)> 0.

Thus r0 ∼ κ〈Φ,Ψ〉 ∼ κ2 > 0 if κ is small enough which leads to ε0 = r2
0 ∼ κ2〈Φ,Ψ〉2 ∼ κ4. Consequently,

the leading order behaviour of the discrete eigenvalue E(κ) of Hκ for κ sufficiently small is

E(κ)=−1
4
− 16

(
4
π
− 1

)2
κ4 + O(κ5),

where we used the formula ε =−4E − 1> 0. This concludes the first part of the proof of Theorem
II.1.

We will now prove that the ground state energy is always non-degenerate (when it exists) by
first showing that the heat semigroup e−tHκ is positivity improving. Some key formulas from Ref. 25
give the explicit expression of the heat kernel of − d2/ dy2 + κδ(y) from which we conclude that the
integral kernel of

e−t(− 1
2Δ+κδ(y))(x, y; x′, y′)= et 1

2
d2

dx2 (x, x′)e−t(− 1
2

d2

dy2 +κδ(y))
(y, y′), t > 0

is positive and point-wise smaller than et 1
2Δ(x, y; x′, y′). Applying the analogue of the Dyson formula

between e−tHκ and e−t(− 1
2Δ+κδ(y)) (one has to be careful when deriving it due to the singularity of

the delta “potentials”), we see that the integral kernel of e−tHκ is larger than or equal to that of
e−t(−Δ+κδ(y)); hence, it is also positivity improving. The Perron-Frobenius theorem26 then guarantees
the non-degeneracy of the lowest eigenvalue of Hκ , provided that such an eigenvalue exists.
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In order to prove that a discrete eigenvalue exists for all κ ∈ (0, 1/
√

2), we first need to extend our
previous analysis to negative κ’s. It is not difficult to see from the expression of Hκ that the previous
existence result also holds for small negative κ � 0 as well. The family Hκ is analytic of type B in the
sense of Kato. The regular analytic perturbation theory allows one to extend the construction of a real
analytic ground state energy E(κ) from a neighborhood of κ � 0 to some maximal open intervals I±,
respectively, included in (0, 1/

√
2) and (−1/

√
2, 0). The only reason for which the right endpoint of

I+ might not go all the way to 1/
√

2 is that E(κ) might start increasing and eventually hit the bottom
of the essential spectrum (i.e., �1/4) at some κ+ < 1/

√
2. We will show that this is not possible.

Fix ε > 0 small enough for which we know that E(±ε) exist. Then we can construct two families
of real analytic normalized eigenvectors Ψκ on I±, starting from some given eigenvectors at κ =±ε .

The operator which implements the interchange of x with y is denoted by U and acts as (Uf )(x,
y) = f (y, x). It is unitary and U = U�1. Moreover, we have

UHκU−1 =H−κ , HκU−1Ψ−κ =E(−κ)U−1Ψ−κ .

This shows that E(−κ) is also an eigenvalue for Hκ , hence E(κ) ≤ E(−κ). By a similar argument we
also obtain that E(−κ) ≤ E(κ); hence, E(κ)=E(−κ) as long as they exist. Moreover, there must exist
a unimodular complex number eiφ(k) (the phase can be chosen to be smooth on |κ | > ε) such that

Ψκ(x, y)= eiφ(k)Ψ−κ(y, x), κ ∈ I±. (4.20)

All the quantities defined above are smooth if κ � 0, but the eigenvectors are not a priori κ-
differentiable in the H1(R2) norm, only in L2(R2). We can formally apply the Feynman-Hellmann
formula to the quadratic form and get

E ′(κ)=
∫
R

(|Ψκ(x, 0)|2 − |Ψκ(0, x)|2)dx. (4.21)

The rigorous proof of this identity is based on the following identity:

1
1 + αE(κ)

= 〈Ψκ , (1 + αHκ)−1Ψκ〉, 0 < α� 1,

in which we now can differentiate with respect to κ in the norm topology and after that take the limit
α ↓0.

We will now show that there cannot exist a κ ∈ I+ such that E ′(κ)> 0. Assume the contrary
and consider such a κ. Define the vector Φ(x, y)=Ψ−κ(y, x) and choose κ′ ∈ I+ with κ′ > κ. Φ is a
normalized vector which belongs to the form domain of Hκ′ . First using the min-max principle and
second (4.20), we have

E(κ′) ≤ 〈Φ, Hκ′Φ〉=E(κ) + (κ′ − κ)
∫
R

(|Φ(t, 0)|2 − |Φ(0, t)|2)dt.

Taking the limit κ′ ↓ κ in (E(κ′) − E(κ))/(κ′ − κ) leads to

E ′(κ) ≤
∫
R

(|Φ(t, 0)|2 − |Φ(0, t)|2)dt. (4.22)

Due to (4.20) we have |Φ(t, 0)|2 = |Ψκ(0, t)|2 and |Φ(0, t)|2 = |Ψκ(t, 0)|2; hence, (4.21) implies that
∫
R

(|Φ(t, 0)|2 − |Φ(0, t)|2)dt =−
∫

R

(|Ψκ(t, 0)|2 − |Ψκ(0, t)|2)dt =−E ′(κ). (4.23)

Introducing this identity back into (4.22), we obtain E ′(κ) ≤ 0. We conclude that E ′(κ) ≤ 0 for all
κ ∈ I+, hence E(κ) ≤ E(ε)<−1/4 for κ ∈ I+ which insures the existence of a positive minimal distance
between E(κ) and the essential spectrum. Consequently, the right endpoint κ+ of I+ cannot be smaller
than 1/

√
2 because in that case E(κ+) := limκ↑κ+ E(κ) would be an eigenvalue, thus I+ could be

extended a bit to the right of κ+ by analytic perturbation theory. Hence the operator Hκ must have at
least one eigenvalue for 0 < κ ≤ 1/

√
2. This concludes the proof of Theorem II.1.
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V. PROOF OF THEOREM II.2

In this section we prove the second main result, namely, that if κ̃ > 1 is fixed, then Hκ,κ̃ has no
discrete eigenvalues for κ in a connected neighborhood of +∞. The proof is based on a similar method
as used in Sec. IV.

Since Hκ and Hκ,κ̃ only differ in the positive interaction term while the bottom of the essential
spectrum is given by the negative interaction terms, we have that σess(Hκ,κ̃)=σess(Hκ). We assume
that κ ≥ 1/

√
2. Then Lemma III.1 implies that

σess(Hκ,κ̃)=

[
− κ

2

2
,∞
)

.

The framework described in Sec. III is easily generalized to the operator Hκ,κ̃ . Consequently,
E <−κ2/2 is a discrete eigenvalue of Hκ,κ̃ if and only if the inverse of the operator Gκ,κ̃(E) does
not exist on [L2(R)]3, where Gκ,κ̃(E) is given by

Gκ,κ̃(E)= g−1 + τR0(E)τ∗,

and τR0(E)τ∗ is as before but g is changed to diag{−κ, κ̃,−1}. To study when the operator Gκ,κ̃(z) is
invertible, we scale it using the unitary operator Uκ which acts on L2(R) by [Uκ f ](x)=

√
κf (κx). We

have

[Uκ T̂1(E)U∗κ f ](x)=
1
πκ

∫
R

1

x2 + y2 − 2E
κ2

f (y) dy.

Define a rescaled energy ε :=−2E/κ2 > 1. Thus Uκ T̂1(E)U∗κ = 1
κ T̂1(−ε). Equivalent results hold for

T̂0, T̂2, T̂ ∗2 and T̂3. Consequently, the operator Gκ,κ̃(E) is unitarily equivalent to the operator,

Gκ,κ̃(−ε) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
− 1

κ 0 0

0 1
κ̃ 0

0 0 −𝟙

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

1
κ

⎡⎢⎢⎢⎢⎢⎢⎢⎣
T0(−ε) T1(−ε) T ∗2 (−ε)
T1(−ε) T0(−ε) T ∗2 (−ε)
T2(−ε) T2(−ε) T3(−ε)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5.1)

As mentioned the strategy, we apply to show the absence of discrete eigenvalues is basically
the same as in Sec. IV, i.e., some applications of Feshbach’s formula and the Birman-Schwinger
principle. So we begin by choosing the orthogonal projection Π on [L2(R)]3 which satisfies

ΠGκ,κ̃(−ε)Π � 1
κ

⎡⎢⎢⎢⎢⎣
−𝟙 + T0(−ε) T1(−ε)

T1(−ε) κ
κ̃ + T0(−ε)

⎤⎥⎥⎥⎥⎦ , (5.2)

on Π[L2(R)]3. We will also need the projection on the orthogonal subspace of Π[L2(R)]3, which is
defined by Π⊥ := 𝟙 − Π.

Lemma V.1. Let Gκ,κ̃(−ε) be given by (5.1). Then R(ε) := [Π⊥Gκ,κ̃(−ε)Π⊥]−1 exists as a bounded
operator on the proper subspace for all ε > 1 and κ > 1/

√
2.

Proof. By the definition ofΠ⊥ we haveΠ⊥Gκ,κ̃(−ε)Π⊥�−𝟙+ κ−1T3(−ε). We need to check the
invertibility of 𝟙− κ−1T3(−ε) on L2(R). In the Fourier representation, this operator is a multiplication
operator with the function (

1 − 1
κ

1√
s2 + 2ε

)−1

. (5.3)

Thus, the norm ‖κ−1T3‖ < 1/(κ
√

2) ≤ 1 for all κ ≥ 1/
√

2 and ε > 1. Consequently, Π⊥Gκ(−ε)Π⊥ is
invertible on L2(R) for all κ > 1/

√
2 and ε > 1. �

By Feshbach’s formula and Lemma V.1, the inverse of Gκ,κ̃(−ε) exists if the inverse of

SW (ε) :=ΠGκ,κ̃(−ε)Π − ΠGκ,κ̃(−ε)Π⊥R(ε)Π⊥Gκ,κ̃(−ε)Π (5.4)
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exists as an operator on [L2(R)]2. In order to simplify notation, we stop writing the explicit dependence
on ε of the various T -operators. We get the following expression for SW (ε):

SW (ε)�
⎡⎢⎢⎢⎢⎣
−𝟙 + T0 T1

T1
κ
κ̃ + T0

⎤⎥⎥⎥⎥⎦ +
1
κ

⎡⎢⎢⎢⎢⎣
T ∗2
T ∗2

⎤⎥⎥⎥⎥⎦
(
𝟙 − 1
κ

T3

)−1 [
T2 T2

]
. (5.5)

To find the conditions for the inverse of SW (ε) to exist on [L2(R)]2, we apply Feshbach’s formula
again. Consequently, we need to define another pair of orthogonal projections Π̃ and Π̃⊥ := 𝟙− Π̃ on
[L2(R)]2 such that

Π̃SW (ε)Π̃� − 𝟙 + T0 +
1
κ

T ∗2 (𝟙 − κ−1T3)−1T2 on L2(R). (5.6)

Lemma V.2. Let SW (ε) be given by (5.5), and let Π̃⊥ be the orthogonal projection on [L2(R)]2

such that

Π̃⊥SW (ε)Π̃⊥ �
κ

κ̃
+ T0 +

1
κ

T ∗2 (𝟙 − κ−1T3)−1T2, (5.7)

on L2(R). Then R̃(ε) := [Π̃⊥SW (ε)Π̃⊥]−1 exists on the proper subspace for all κ ≥ 1/
√

2 and ε > 1.

Proof. The proof follows from the fact that T0 and κ−1T ∗2 (𝟙 − κ−1T3)−1T2 are bounded and

positive for all κ ≥ 1/
√

2 and ε > 1. �

Lemma V.2 and Feshbach’s formula implies that the inverse of Gκ,κ̃(ε) exists if the inverse of

S̃W (ε) � 𝟙 − T0 − 1
κ

T ∗2 (𝟙 − κ−1T3)−1T2 + Wκ,κ̃(ε) (5.8)

exists as an operator on L2(R), where

Wκ,κ̃(ε) :=D� κκ̃ + T0 +
1
κ

T ∗2

(
𝟙 − 1
κ

T3

)−1

T2��
−1

D, (5.9)

D :=T1 +
1
κ

T ∗2

(
𝟙 − 1
κ

T3

)−1

T2. (5.10)

The idea is to apply the Birman-Schwinger principle to study for which values of ε > 1 and κ ≥ 1/
√

2
the inverse of S̃W (ε) does not exist on L2(R). Before we do that we rewrite S̃W (ε) a bit. Factorizing
κ/κ̃ in Wκ,κ̃(ε) we can write

S̃W (ε) � 𝟙 − T0 +
1
κ

W̃κ,κ̃ , (5.11)

where

W̃κ,κ̃ =−T ∗2

(
𝟙 − 1
κ

T3

)−1

T2 + κ̃D�𝟙 +
κ̃

κ
T0 +

κ̃

κ2
T ∗2

(
𝟙 − 1
κ

T3

)−1

T2��
−1

D. (5.12)

We are now ready to construct the Birman-Schwinger operator for S̃W (ε) given by (5.11).

Proposition V.3. Let S̃W (ε) be as in (5.11), and let κ̃ > 0 be fixed, κ ≥ 1/
√

2 and ε > 1. Then
there exists bounded operators V1 : [L2(R)]2→L2(R) and V2 : L2(R)→ [L2(R)]2 such that S̃W (ε) is
invertible if and only if

𝟙2 +
1
κ

V2(𝟙 − T0)−1V1 (5.13)

is invertible on [L2(R)]
2
.

Proof. The proof is almost identical to the proof of Theorem IV.2, so we will only describe the
construction of V1 : [L2(R)]2→L2(R) and V2 : L2(R)→ [L2(R)]2. We need V1 and V2 to have the
property that

V1V2 = W̃κ,κ̃ .
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Let Ψ ∈ L2(R) and let D be as in (5.10). Define the operator V2 : L2(R)→ [L2(R)]2 by

V2Ψ=

⎡⎢⎢⎢⎢⎢⎢⎣
−
(
𝟙 − 1

κ T3

)− 1
2 T2Ψ(

𝟙 + κ̃
κ T0 + κ̃

κ2 T ∗2
(
𝟙 − 1

κ T3

)−1
T2

)−1/2
DΨ

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.14)

Similarly, let Φ= [Φ1,Φ2]T ∈ [L2(R)]
2
. We define the operator V1 : [L2(R)]

2→L2(R) by

V1Φ=

[
T ∗2
(
𝟙 − 1

κ T3

)− 1
2 , κ̃D

(
𝟙 + κ̃

κ T0 + κ̃
κ2 T ∗2
(
𝟙 − 1

κ T3

)−1
T2

)−1/2 ] ⎡⎢⎢⎢⎢⎣
Φ1

Φ2

⎤⎥⎥⎥⎥⎦
=T ∗2

(
𝟙 − 1
κ

T3

)− 1
2

Φ1 + κ̃D�𝟙 +
κ̃

κ
T0 +

κ̃

κ2
T ∗2

(
𝟙 − 1
κ

T3

)−1

T2��
−1/2

Φ2. (5.15)

For Ψ ∈ L2(R) we find that V1V2Ψ is given by

V1V2Ψ= W̃κ,κ̃Ψ

and we have our factorization. �

The strategy to show an absence of discrete eigenvalues is to find a necessary condition which
any eigenvalue must satisfy, and then show that for every fixed κ̃ > 1 and for any κ larger than some
value κM (depending on κ̃) the above necessary condition cannot be satisfied.

The first important remark is that both V1 and V2 have finite limits when κ→∞, uniformly in
ε > 1. Thus the operator in (5.13) is always invertible if ε is larger than some value εκ > 1. Moreover,
this εκ converges to 1 when κ goes to infinity. Therefore we know a priori that the points where
(5.13) might not be invertible on [L2(R)]

2
must obey ε ∈ (1, 2) if κ is larger than some value κ1. Let

us expand the integral kernel of (𝟙 − T0)−1 around the threshold ε = 1 and introduce the variable λ
(see below) to find the following:

(𝟙 − T0)−1(x, y)=
1
λ
− |x − y| + δ(x − y) +

1
2π

∫
R

eis(x−y)

√
s2 + 1 + 1

ds + O(λ), λ :=
√
ε − 1. (5.16)

Using this expansion of the integral kernel, the Birman-Schwinger operator (5.13) can be written as

𝟙2 +
1
κ

|Ψ〉 〈Φ|
λ

+
1
κ

B, (5.17)

where the operator B is given by the product of V2, the non-singular terms of (5.16) and V1. Using
the same approach as in Sec. IV, we can show that B is uniformly bounded for λ> 0 and κ ≥ 1/

√
2.

Furthermore, |Ψ〉 and 〈Φ| in (5.17) is given by

|Ψ〉 :=
∫
R

V2(x, x′) dx′, 〈Φ| :=
∫
R

V2(y′, y) dy′, (5.18)

and Ψ and Φ can be shown to be in L2(R2) using Lemma IV.3. Let us rewrite the Birman-Schwinger
operator in (5.17),

𝟙2 +
1
κ

|Ψ〉 〈Φ|
λ

+
1
κ

B= �𝟙2 +
1
κ

|Ψ〉 〈Φ|
λ

[
𝟙2 +

1
κ

B

]−1��
(
𝟙2 +

1
κ

B

)
. (5.19)

But since B is uniformly bounded in both λ> 0 and κ > 1/
√

2, there exists some κ2 ≥ κ1 > 1/
√

2 such

that if κ > κ2 we have that
(
𝟙2 + κ−1B

)−1
exists on [L2(R)]

2
for all λ> 0. Consequently, for κ > κ2

the inverse of the Birman-Schwinger operators exists at λ ∈ (0, 1) if and only if

�𝟙2 +
1
κ

|Ψ 〉 〈 Φ|
λ

[
𝟙2 +

1
κ

B

]−1��
−1

, κ > κ2 (5.20)
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exists. Using Feshbach’s formula with a rank-1 projection constructed from |Ψ〉 we get the only
values of 0 < λ< 1 where (5.20) might not exist are those which solve

λ +
1
κ

〈
Φ,

[
𝟙2 +

1
κ

B

]−1

Ψ

〉
= 0, κ > κ2. (5.21)

Thus if κ > κ2, any discrete eigenvalue of Hκ,κ̃ has to have a corresponding λ ∈ (0, 1) which is a
solution to (5.21).

Let us define the function

f (λ, κ) :=

〈
Φ,

[
𝟙2 +

1
κ

B

]−1

Ψ

〉
, λ ∈ [0, 1], κ ≥ κ2.

We are interested in finding possible values of λ ∈ (0, 1) where the graphs of f (λ, κ) and −κλ cross
each other. The function f is jointly uniformly continuous. Moreover, by explicit computation we
obtain

lim
κ→∞ f (0, κ)= 2π

(
κ̃

∫
R

T̂1(0, s)2 ds −
∫

R

T̂ ∗2 (0, s)T̂2(s, 0) ds

) ���λ=0
= κ̃ − 1. (5.22)

Thus there exists κ3 > κ2 such that

f (0, κ) ≥ (κ̃ − 1)/2, κ > κ3.

From the uniform continuity of f, we obtain the existence of some δ ∈ (0, 1) such that

f (λ, κ) ≥ (κ̃ − 1)/4> 0, λ ∈ (0, δ), κ > κ3. (5.23)

Moreover, |f (λ, κ)| is bounded by some constant K for all λ and κ. This implies that if κ > κ3, the
value of f (·, κ) is positive on (0, δ) and is larger than �K on [δ, 1). At the same time, −λκ is negative
on (0, δ) and less than −κδ on [δ, 1). Define κM =max{κ3, K/δ}. Then the two graphs cannot intersect
each other if κ > κM and this completes the proof of absence of eigenvalues.

Now let us consider the case 0 < κ̃ < 1. All our previous considerations remain true up to and
including the identity (5.22) where now κ̃ − 1< 0, hence

f (0, κ) ≤ (κ̃ − 1)/2 < 0, κ > κ3. (5.24)

Also, as before, f (λ, κ) ≥ −K for all λ and κ.
Consider the function g(λ, κ)= λκ + f (λ, κ) with λ ∈ [0, 1]. We have g(0, κ)= f (0, κ)< 0 while

g(1, κ)= κ+ f (1, κ) ≥ κ−K > 0 provided κ >K . Thus g(·, κ) must have a zero in (0, 1), and this proves
the existence of discrete spectrum for all κ >K .

VI. PROOF OF COROLLARY II.3

We can now prove the final result, i.e., the existence of a critical charge κc which has the
property that for every 0 < κ < κc, the operator Hκ has at least one discrete eigenvalue, while if κ ≥ κc
the discrete spectrum is empty.

The proof has three steps. First, we show that there exists some κ1 ≥ 1/
√

2 such that Hκ1 has
no discrete spectrum. Second, we show that given such a κ1, the operator Hκ has empty discrete
spectrum for all κ ≥ κ1. Third, we show that κc is the smallest of all such κ1.

Step 1. Let κ > 1/
√

2 and consider the operator Hκ,2, i.e., with κ̃ = 2 > 1. Theorem II.2 implies
the existence of a κM > 1/

√
2 such that Hκ,2 has no discrete eigenvalues if κ > κM .

We know that the operators Hκ and Hκ,2 have the same essential spectrum. Additionally, we have
that

Hκ ≥Hκ,2 if κ ≥ 2, (6.1)

where the inequality should be understood in the sense of quadratic forms. If κ1 = κM +1, the operator
Hκ1,2 has no discrete spectrum, hence (6.1) and the min-max principle imply that the discrete spectrum
of Hκ1 is empty.
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Step 2. We will now show that the discrete spectrum of Hκ with κ ≥ κ1 is also empty. Define the
unitary operator Uκ : L2(R2)→L2(R2) by (UκΨ)(x, y)= κΨ(κx, κy). Then by direct calculation

U−1
κ HκUκ = κ

2H̃κ , H̃κ :=−1
2
Δ − δ(y) + δ(x) − 1

κ
δ(x − y).

Using the HVZ theorem we can prove that for κ ≥ 1/
√

2 the essential spectrum of H̃κ is [−1/2,∞).
Additionally, due to the sign of the κ-dependent term we have

H̃κ ≥ H̃κ1 , if κ ≥ κ1.

The operator H̃κ1 = κ
−2
1 U−1

κ1
Hκ1 Uκ1 has no discrete spectrum. Since the bottom of the essential spec-

trum of H̃κ is constant in κ and equals �1/2, the min-max principle implies that H̃κ has no discrete
spectrum and the same holds true for Hκ .

Step 3. The set S consisting of all the κ1’s considered in the previous two steps is bounded from
below by 1/

√
2 due to Theorem II.1. Let κ′ ≥ 1/

√
2 be the infimum of S. Assume that κ′ does not

belong to S. Then there would exist a ground state with energy E(κ′)<−κ′2/2. Using the analytic
perturbation theory, we could extend this ground state energy to a small interval centered at κ′; thus,
κ′ would not belong to the closure of S, contradiction.

Thus S = [κ′,∞) and κc = κ′. In fact, this proof provides us with an alternative characterisation
of κc, i.e. κc is the right endpoint of the open interval of κ’s for which a ground state exists.

VII. CONCLUSIONS

In this paper, we considered the discrete spectrum of the Schrödinger operator for a one-
dimensional three-body system with Dirac delta potentials, which models an impurity interacting
with an exciton. We have proven that for κ close to zero, there exists a single non-degenerate bound
state which behaves like κ4, and we have explicitly calculated the coefficient of the leading term. The
ground state survives when κ ∈ (0, 1/

√
2), but for some charge κc > 1/

√
2, the ground state energy

hits the essential spectrum, and no bound states of the system exists for κ ≥ κc. We cannot give an
explicit value for κc, but numerical calculations indicate that κc ≈ 1.546.

A future project is to study a related system of an impurity and two oppositely charged particles
with multiplicative potentials in both one and two dimensions. While the results are expected to be
somehow similar, the technical tools one needs to use are quite different.
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Themagneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is
studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained
and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show
field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly,
for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the
emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role
in the optical response of both materials, particularly for the off-diagonal tensor elements.
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I. INTRODUCTION

Single-walled carbon nanotubes (CNTs) and graphene
nanoribbons (GNRs) are prominent quasi-one-dimensional
carbon-based structures defined geometrically as cylindrical
tubes and thin strips of graphene, respectively. The two
materials are intimately related, since GNRs can be regarded
as (and produced from) unrolled CNTs [1,2]. Moreover, both
materials have a large number of potential applications in
various areas of electronics and optoelectronics [3–6]. The
reduced dimensionality and screening of narrow GNRs and
small radius CNTs lead to excitons with binding energy on
the order of a few hundred meV [7–10]. Therefore, excitons
have a strong impact on the optical response of both CNTs [9]
and GNRs [11,12] and must be accounted for in models of the
optical response.
Excitons are sensitive to a number of external perturbations,

such as electric and magnetic fields. For instance, magnetic
fields can be used as an effective tool to probe various
properties of excitons, including their transport [13] and spatial
extent [14]. Additionally, an accurate understanding of the
dynamics of magnetoexcitons reveals details of the role played
by magnetic fields in optoelectronic devices [15,16]. The
electronic and optical properties of CNTs in the presence of a
static magnetic field were considered theoretically in a series
of papers by Ando [17–19], and the results were later verified
experimentally [20–26]. However, the off-diagonal elements
of the conductivity tensor were not evaluated in these papers.
The presence of an externalmagnetic field breaks time-reversal
symmetry and results in finite off-diagonal conductivity ele-
ments [27], also called the Hall conductivities. Calculating the
off-diagonal conductivity for CNTs and GNRs is one of the
objectives in the present paper. The Hall conductivity gives
rise to the optical Hall effect manifesting itself as Faraday

*jh@nano.aau.dk

rotation [28] of the electromagnetic field, which is important
for several electro-optic applications [29,30]. The Faraday
rotation for CNTs [28] and GNRs [31] has been calculated
in the independent-particle approximation. But, as discussed
above, this approximation is not well suited to describe the
optical response of CNTs andGNRs. The solution is to include
excitonic effects, which we do in the present work.
With respect to GNRs, the amount of theoretical work is

rather limited compared to the case of CNTs. The available
works either focus on GNRs in the presence of a magnetic
field without excitons [32,33] or the converse [11,12] (i.e.,
including excitons but not an external magnetic field). In
the present work, we improve upon this by calculating the
magnetoexcitonic response for a range of GNRs.
An additional interesting aspect of quasi-one-dimensional

systems, including CNTs, GNRs, and conjugated polymers, is
that these can serve as convenient test systems for theoretical
methods. Recent years have seen an increase in experimental
work on magnetoexcitonic effects in two-dimensional semi-
conductors such as transition metal dichalcogenides [34–37].
In this class of materials, a number of challenges limit theoret-
ical models of magnetoexcitons to effective-mass models [38].
In comparison, quasi-one-dimensional systems are much less
computationally demanding. As a consequence, it is possible
to obtain an accurate description of magnetoexcitons in these
systems. Thus, we will present calculations of all the elements
of the linear optical conductivity tensor for a number of
different CNTs and GNRs. Our calculations are based on
a tight-binding model that provides the independent-particle
properties, while the excitonic properties are obtained from
the Bethe-Salpeter equation.

II. THEORETICAL MODELS

In this section, we will briefly describe the applied theo-
retical models and computational tools. The GNR and CNT
structures are illustrated in Fig. 1. In general, both GNRs
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FIG. 1. (a) CNT and GNR structures as seen in the direction of
the z axis. (b) Side view of the CNT and GNR structures. The GNR
structure is parallel to the yz plane, with a magnetic field at an angle
θ to the yz plane and in the xz plane.

and CNTs exist in a variety of geometries. Hence, GNRs are
characterized by their width and edge type, whereas CNTs are
defined by their chiral index (n,m) that, in turn, determines
diameter and chirality [39]. However, in the present work,
we limit ourselves to zigzag CNTs with chiral indices (n,0)
for n ∈ N+, and armchair GNRs characterized by the number
of dimer lines N across the ribbon, which we denote by
N -AGNRs. We ignore any effects of geometrical relaxation
of edge atoms. For calculation of the independent-particle
energies and wave functions, we apply a nonorthogonal π -
electron nearest-neighbor tight-binding (TB) model. Studies
have shown that the single-particle properties of carbon-based
materials, e.g., graphene, CNTs, and GNRs, are well described
by π -electron TB models [39,40]. The choice of a nonorthog-
onal (in contrast to the usual orthogonal) TB model is made to
break the electron-hole symmetry, as electron-hole symmetry
results in Hall conductivities that are identically zero [27,28].
The external magnetic field is introduced via the minimal

substitution of the momentum operator p̂ �→ π̂ = p̂ + eA,
where A denotes the magnetic vector potential, related to
the magnetic field B via B = ∇ × A. In a TB model, the
substitution gives rise to a Peierls phase factor in the hopping
integrals t such that t �→ tij = teiφij , with the Peierls phase
given by [41]

φij = e

h̄

∫ Rj

Ri

A · dl, (1)

where Ri and Rj denote the location of atoms at site i and j ,
respectively. For periodic systems inmore than one dimension,
the phase factor necessarily breaks the translation symmetry.
However, given an appropriate choice of gauge, the translation
symmetry can be preserved in one-dimensional (1D) systems.
This fact is responsible for the relative tractability of 1D
magnetoexcitons, in contrast to two and three dimensions (2D,
3D). The appropriate gauge depends on the direction of the
magnetic field. As illustrated in Fig. 1, we take the long axis
along z and consider a magnetic field B = B(sin θ x̂ + cos θ ẑ),
where θ is the angle between field and long axis, and B = |B|
is themagnetic field strength. For this geometry, the symmetry-
preserving gauge is

A = −By(cos θ x̂ − sin θ ẑ). (2)

Below, however, we only consider parallel (θ = 0) and per-
pendicular (θ = π/2) magnetic fields. Moreover, for GNRs
we only consider perpendicular fields, since the electronic

structure and optical response of GNRs are unaffected by a
parallel field.

A. Excited states

Using the independent-particle energies and wave func-
tions, the exciton states of the systems can be found by solving
the Bethe-Salpeter equation (BSE) [7,42,43]. The excited
states |exc〉 can be expanded as

|exc〉 =
∑
cvk

�cvk|vk → ck〉, (3)

where �cvk are the expansion coefficients, and |vk → ck〉 are
the singlets of singly excited states between the valence (v) and
conduction (c) bands at k. Using the expansion of the excited
states in Eq. (3), the BSE is expressed as

Ecvk�cvk +
∑
c′v′k′

Kcvk,c′v′k′�c′v′k′ = Eexc�cvk, (4)

Kcvk,c′v′k′ := Wcvk,c′v′k′ − 2Vcvk,c′v′k′ ,

where Eexc is the exciton energy, Ecvk = Eck − Evk , Vcvk,c′v′k′

is the exchange matrix element, andWcvk,c′v′k′ is the Coulomb
interaction matrix element. We follow Ref. [44] and calculate
the exchange and Coulomb interaction matrix elements using
an Ohno-type potential, which has been shown to produce
results that compare well with more advanced models and
experiments for quasi-1D systems [44]. In this approximation,
the bare electron-hole interaction takes the form

v(re − rh) = −U

[
1+

(
4πε0U

e2

)2
|re − rh|2

]− 1
2

, (5)

where re and rh are the position of the electron and hole,
respectively, and U = 11.3 eV is the Hubbard energy [45].
The screened Coulomb interaction matrix elements are then
calculated using W (re − rh) = v(re − rh)/ε, where ε is the
screeningparameter. TheCoulomb term is screenedbyboth the
self-screening and the screening from the surrounding media.
Similarly, the exchange matrix elements can be calculated
using W (re − rh) = v(re − rh)/εexc, where εexc denotes the
screening of the exchange term. According to Ref. [46], the
exchange term should only be screened by the surrounding
media; thus we have that εexc < ε.
It is worth noting that the dimension of the eigenvalue

problem in Eq. (4) is given by Nc × Nv × Nk , where Nc,Nv ,
and Nk are the number of conduction bands, valence bands,
and k points, respectively. Even for a reasonably small system
such as the (8,0) CNT, which has 32 atoms in the unit cell and
a k grid with 150 points, the Bethe-Salpeter matrix (BSM) has
dimension 38 400× 38 400. Thus, using this method for typi-
cal chiral CNTs such as (6,5) CNTs with unit cells containing
several hundred atoms is computationally unfeasible.

B. Optical response

The evaluation of the optical conductivity tensor, in the
presence of electron-hole interactions, follows that ofRef. [47].
The many-body momentum operator acting on the many-body
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ground state is

|Pi〉 := P̂i |0〉 =
√
2
∑
cvk

pi
cvk�cvk, (6)

where |0〉 is themany-body ground state and P̂i andpi
cvk are the

many-body momentum operator and the single-particle mo-
mentummatrix elements in direction i ∈ {x,y,z}, respectively.
Ignoring the nonresonant terms of the optical conductivity
tensor, the real part of the tensor elements can be expressed
as [47]

Reσij = − e2

m2ωA
Im〈Pi |Ĝ(h̄ω)|Pj 〉, (7)

where h̄ω is the photon energy, Ĝ(h̄ω) is the many-body
Green’s function, and A is the cross-sectional area of the
system, where the height of the ribbon and the wall thickness
of the tubes is taken to be d = 3.35 Å [48]. In terms of the
many-body Hamiltonian Ĥ , the Green’s function Ĝ(h̄ω) is
defined by

Ĝ(h̄ω) := lim
η→0+

1

h̄ω − Ĥ + iη
. (8)

To increase the numerical stability, we use a finite η ≈ 1 meV
in Eq. (8), and to add additional broadening to the spectra
obtained by Eq. (7), we convolute with a Lorentzian line-shape
function having a width 
.
The off-diagonal tensor elements, i.e., σij for i �= j , are

the so-called Hall conductivities. This notation stems from
the fact that, if the off-diagonal tensor elements are finite, the
system exhibits the optical Hall effect, in analogy to the electric
Hall effect in the static case. The optical Hall effect is closely
related to the Faraday rotation of a material [27,28], whereby
the polarization plane of light rotates as the wave propagates
in the material under the influence of a magnetic field. The
Faraday rotation for a weak magnetic field in the z direction
reads [27]

φ = l

2cε0

nReσxy − κImσxy

n2 + κ2
ρ, (9)

where l is the propagation distance of the light, c is the speed
of light, ε0 is the vacuum permittivity, ρ is an effective volume
fraction of either AGNRs or CNTs in space, and n + iκ is the
complex refractive index at B = 0. In the idealized situation,
where either CNTs or AGNRs are packed tightly in space, the
volume fraction is ρ = 1 and otherwise 0 � ρ < 1. For weak
magnetic fields the Hall conductivities are linear in B [27],
and the Faraday rotation can be expressed φ = V lBρ, where
V is theVerdet constant.Measurements of the Faraday rotation
provide a convenient experimental method for determining
the optical Hall conductivity, even at low magnetic field
strengths [49].
With regards to the diagonalization of theBSM, a significant

reduction in computation time can be obtained if one does
not need the eigenvalues and eigenstates of the BSE but only
the matrix elements of the Green’s function, which can be
calculated effectively using theLanczos-Haydock routine [50].
The routine allows for efficient evaluation of matrix elements
of the type 〈u|Ĝ|u〉 by a recursive tridiagonalization of the
Hamiltonian and subsequent evaluation of the matrix element

using continued fractions. When convergence of the continued
fractions is obtained, the calculations can be truncated. For
evaluation of the Hall conductivities involving off-diagonal
matrix elements of the type 〈v|Ĝ|u〉, one can make use of the
relation

〈v + iu|Ĝ|v + iu〉 = 〈v|Ĝ|v〉 + 〈u|Ĝ|u〉 + i2Im〈v|Ĝ|u〉
(10)

and the similar relation for 〈v + u|Ĝ|v + u〉 to find the real
part of 〈v|Ĝ|u〉.

III. RESULTS AND DISCUSSION

In this section, we present and discuss binding energies
and optical response of magnetoexcitons for a range of CNT
and GNR geometries. All results have been obtained using
t = −3.0 eV for the hopping integral and s = 0.1 for the
overlap in the TB model. The spectra are normalized by a
factorσ0 = e2/dh̄ and convolutedwith aLorentzian line-shape
function with a broadening of 0.08 eV. Convergence of the
Lanczos-Haydock routine was obtained after 2000 iterations.
The screening of the Coulomb matrix elements is set to
ε = 3.5, corresponding to CNTs in an aqueous solution [9].
For the exchange term, we find that a value of εexc = 2.5 is
appropriate, similarly to what was used in Ref. [44]. As our
primary interest is a qualitative description of the effect of
an external magnetic field on the excitonic response, we have
used the same screening for the GNR calculations. So far,
experimental absorption spectra for AGNRs are only available
for AGNRs deposited on some type of metal [51,52]. Metal
substrates strongly screen the Coulomb interaction and, hence,
suppress the excitonic effects significantly.
We begin our presentation of the results by focusing on

the real part of the diagonal optical conductivity elements σzz

and σyy , denoting the parallel-polarized and cross-polarized
absorption, respectively. The first and second column in Fig. 2
show the absorption spectra for (8,0) and (5,0) CNTs, respec-
tively. In the considered photon energy range, there are two
dominant peaks in the parallel-polarized exciton absorption of
CNTs in the absence of magnetic fields. The peaks correspond
to the first and second subband transitions and are typically
denoted E11 and E22. These spectra show the same features as
spectra obtained using more advanced ab initio methods [42].
When the magnetic field becomes sufficiently strong, the

Ajiki-Ando (AA) [18,19] splitting of the excitonic peaks in
the σzz spectra can be observed. Without Coulomb effects
(the dashed lines in Fig. 2), the splitting of the absorption
peaks is caused by a field-assisted lifting of the twofold
degenerate valence and conduction bands. Coulomb effects,
i.e., excitons, lift the degeneracy partially and result in three
exciton states: two nondegenerate (one dark and one bright)
and a dark state, which is twofold degenerate [45]. The zero-
field energy difference between the nondegenerate bright and
dark exciton states is denoted bd . The observed splitting of
the exciton absorption peak is then caused by the magnetic
field brightening the nondegenerate dark exciton state and
increasing the energy separation. The energy difference bd

was reported in Refs. [19,43] to be proportional to 1/d2t , where
dt is the CNT diameter. Similarly, both the field-dependent
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FIG. 2. Real part of the independent-particle (dashed lines) and excitonic (solid lines) diagonal conductivities σzz and σyy of (5,0) and
(8,0) CNTs, and 10- and 16-AGNRs. The colors of the spectra correspond to the same magnetic field strengths in all plots. For the CNTs, the
magnetic field is oriented in the parallel direction, while for GNRs it is oriented in the perpendicular direction.

increase in the energy splitting and the field-dependent change
in oscillator strength of the bright and dark excitons depend
on the CNT diameter [18,19]. The field-dependent increase in
the energy splitting is proportional to dt , while the changes
in oscillator strength of the bright and dark excitons are
dampened when bd is increasing[18]. Consequently, the
observed splitting is not as clear for the (5,0) CNTs as for the
(8,0) CNTs. For experimental observation of the AA splitting,
one would need to use either large-diameter CNTs [20–22]
or very strong fields [26], as illustrated here. The splitting we
observe in the BSE results is comparable to what was reported
in Refs. [18] and [19] using the k · p model, and what was
observed experimentally for (6,5) CNTs in Ref. [26]. The
AA splitting is only observed in parallel fields. The diagonal
conductivities of CNTs in the presence of a perpendicular field
do not show any significant change in fields up to 500 T and
are therefore not shown.
Turning now to the diagonal conductivity tensor elements

of AGNRs in perpendicular fields, the parallel- and cross-
polarized absorption spectra are shown in the third and the
fourth column of Fig. 2. The unperturbed spectra show two
dominant exciton peaks similar to what was obtained using
ab initio methods [7,12]. We reuse notation and denote the
peaks by E11 and E22. As the magnetic field strength is
increased, the E11 peak is shifted to lower energies, and the
shift of the peak is accompanied by a decrease in oscillator
strength. Similarly, the E22 peak is shifted to higher energies
and the oscillator strength of that peak is also decreased.
Simultaneously, a new peak between the E11 and E22 peaks
emerges for strong magnetic fields. We also observe that the
effect is stronger for the wider AGNR, which is caused by
the increased magnetic flux through the wider unit cell. Since
there exists no experimental results regarding the optical re-
sponse of magnetoexcitons in AGNRs yet, we cannot validate
these changes in the spectra. But we expect that if AGNRs
could be deposited on a nonmetallic material and aligned, the

change in the absorption spectrum could be measured in an
experimental setup similar to that described in Ref. [26]. A
common feature of both CNTs and AGNRs is that the effect of
the magnetic field on the cross-polarized absorption is negligi-
ble and only causes small changes in the spectra. In addition,
the inclusion of electron-hole interaction effects dampens the
cross-polarized absorption due to strong depolarization [53].
The changes in the parallel-polarized absorption spectra

are further elucidated in Fig. 3, which shows the smallest
eigenvalues of the BSE for (8,0) CNTs and 10-AGNRs. The
line color illustrates the optical intensity (oscillator strength)
of the state associated with the eigenvalue. Figure 3(a) shows
the lowest eigenvalues as a function of field strength for (8,0)
CNTs in a parallel field. When there is no magnetic field,
all but two of the exciton states are degenerate and only a
single state is optically active. But, as the field strength is
increased, the energies are altered and one of the dark excitons
becomes optically active. This is what we observed as the
splitting of the absorption peaks in Fig. 2. The field also lifts
the degeneracy of the exciton states, and some eigenvalues
are raised above the band-gap energy. We also see that the
band gap of CNTs is affected by the external magnetic field
and, e.g., in the case of (8,0) CNTs it decreases linearly.
Whether the band gap increases or decreases with magnetic
field depends on the family of CNTs considered [54]. Our
results show a value of bd ≈ 41 meV at B = 0 T and a
linear increase at high fields with a slope of approximately
0.54meV/T.Comparing our results to the experimental results
in Refs. [20–26], we see a larger value of bd and a smaller
field-dependent increase in the splitting. As mentioned, this is
due to the smaller diameter of the CNTs under consideration
in this paper. If we compare to (6,5) CNTs and use the
1/d2t and dt scaling on our results, we find bd ≈ 28 meV
and a linear increase in the splitting of 0.65 meV/T at high
fields. These values agree reasonably with experimental values
[20–26]. Figure 3(b) shows the eigenvalues for 10-AGNR in
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FIG. 3. Exciton energies as a function of magnetic field strength.
The color of the lines in both plots corresponds to the relative optical
intensity in the z direction, and the dashed red line is the band-gap
energy. (a) Exciton energies of an (8,0) CNT in a parallel field. (b)
Exciton energies of a 10-AGNR in a perpendicular field.

a perpendicular field. When the magnetic field strength is
increased, the state associatedwith theE11 transition decreases
in oscillator strength. Simultaneously, the oscillator strength of
a state above the gap (at about 1.14 eV) is increased. Similar to
what was observed for CNTs, the band gap of AGNRs is also
altered by the magnetic field but not in a linear manner.
We now consider the Faraday rotation and Hall conduc-

tivities. In Figs. 4 and 5, the off-diagonal conductivities
of CNTs and AGNRs, respectively, are shown. Generally,
the off-diagonal optical conductivities are identically zero if
there is no magnetic field to break time-reversal symmetry.
Additionally, the electron-hole symmetry must be broken as
clarified in Ref. [27], which is why a small overlap was
included in the TB model. This could also have been achieved
by including interactions beyond nearest neighbors in the TB
model. Assuming that the complex refractive index in Eq. (9)
is dominated by the surrounding media, the expression for
the Faraday rotation of CNTs in an aqueous solution can be
simplified to φ ≈ lReσxyρ/(2ncε0). This holds, since n � κ

for water in the photon energy range where CNTs show
absorption [55]. Consequently, the contribution of the CNTs
to the Faraday rotation is proportional to the real part of the
Hall conductivities. In Fig. 4, the real part of σxy for CNTs

FIG. 4. Independent-particle and excitonic results for the disper-
sions of the Verdet constant and the real part of the off-diagonal
conductivities of (5,0) and (8,0) CNTs for different directions of the
magnetic field and B = 10 T.

in a parallel field and the real part of σzy for CNTs in a
perpendicular field are shown, as well as the dispersion of
the Verdet constant. The nonexcitonic results for Reσxy and
the Verdet constant agree with Ref. [28]. But, in line with
expectations, the excitonic effects significantly alter the Hall
conductivities and the Faraday rotation. The plots clearly show
that excitons must be included in a correct description of the
Faraday rotation in CNTs. The other off-diagonal parts of the
conductivity tensor are zero except for σxy in a perpendicular
field, but this contribution is 3 orders of magnitude smaller
than σxy in a parallel field. Thus, even for magnetic fields that

FIG. 5. Real part of the independent-particle and excitonic off-
diagonal conductivities of 10- and 16-AGNRs in a perpendicular
magnetic field.
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FIG. 6. (a–c) Diamagnetic coefficient of the low-energy bright exciton as a function of width or chiral indices for semiconducting families
of (a) AGNRs in perpendicular fields and CNT in (b) parallel magnetic fields and (c) perpendicular magnetic field. (d–f) Exciton probability
distribution with the hole located near the center of the unit cell for (d) 10-AGNR in a perpendicular field, (e) (8,0) CNT in a parallel field, and
(f) (8,0) CNT in a perpendicular field. The top plots in (d–f) show the nearest-neighbor averaged change in the exciton probability distribution
with magnetic field.

are not perfectly aligned with the axis of the CNT, the σxy

conductivity is going to be dominated by the part related to the
parallel field.
For AGNRs in a perpendicular field, the only finite Hall

conductivity is σzy , which is shown in Fig. 5. The AGNR
off-diagonal spectra underline the fact that the inclusion
of excitonic effects is necessary for an accurate theoretical
description of the optical response of AGNRs. For the mag-
netic field strengths considered in this paper, the off-diagonal
conductivity scales linearly with field strength and the overall
shape of the off-diagonal conductivity remains unchanged.
This scaling holds true for both CNTs and AGNRs when the
direction of themagnetic field is perpendicular to the directions
of the off-diagonal element.
Finally, for the low-energy bright excitonwe have evaluated

both the diamagnetic coefficient and the exciton probability
distribution. In real space, the exciton wave function can be
written in the form�exc(re,rh). We fix the position of the hole
rh at an atom in themiddle unit cell, and so the excitonprobabil-
ity distribution can be expressed as PB(z) =∑ |�exc(r,rh)|2,
where we sum over contributions with identical z coordinates
and the subscript B denotes the magnetic field dependence.
The diamagnetic shift Edia is the second-order change in
exciton binding energy [56], i.e.,Edia = σB2, where σ is the
diamagnetic coefficient. In Fig. 6, the diamagnetic coefficient
for different semiconducting families of AGNRs and zigzag
CNTs, the exciton probability distributions and the nearest-
neighbor averaged change in exciton probability distributions

are shown. Figure 6(a) shows the diamagnetic coefficient of
AGNRs in the presence of a perpendicular field. The negative
coefficient σ < 0 shows that the binding energy of the ground-
state exciton will increase as a function of field strength. In
contrast, Fig. 6(b) shows that CNTs in a parallel magnetic
field see a decrease in the binding energy for increasing field
strength. The explanation for this observation is found in the
geometries: The electron and hole in CNTs are restricted to
the tube, and the parallel magnetic field increases the delocal-
ization of the exciton wave function as illustrated by Fig. 6(e),
where we see a decrease in the electron concentration around
the hole. Consequently, the binding energy is decreased. On
the other hand, the magnetic field increases the localization
of the exciton wave function in AGNRs in a perpendicular
field [see Fig. 6(d)] and the binding energy is increased. The
increase in binding energy for AGNRs is in line with what is
observed for monolayer materials [34]. Figure 6(c) shows the
diamagnetic coefficient for CNTs in a perpendicular field. The
results show that the shift changes from positive to negative
as the tube radius increases. When the tube radius is large, the
effect of the perpendicular magnetic field on the excitons will
resemble that of AGNRs in a perpendicular field.

IV. SUMMARY

To summarize the work presented in this paper, we used a
TBmodel and subsequently solved theBSE to study the optical
properties of CNTs and AGNRs in the presence of a static
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magnetic field. In both cases, pronounced excitonic effects
are observed. We have shown that the optical absorption of
AGNRs is significantly altered by a strong perpendicular field,
while a strong parallel field alters the optical absorption of
CNTs. For CNTs we see a field-dependent splitting of the
exciton absorption peaks, caused by brightening of a dark
exciton state, while a perpendicular field gives rise to a new
absorption peak in AGNRs. We also calculated the different
nonzero Hall conductivities, including excitonic effects for
both CNTs and AGNRs. The calculations show that excitonic
effects are essential for a correct evaluation of the off-diagonal

conductivities and, hence, for the Faraday rotation. Finally, we
have illustrated how the magnetic field changes the band gap,
the exciton eigenvalues, and the localization of the exciton.
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Using an equation of motion (EOM) approach, we calculate excitonic properties of monolayer transition
metal dichalcogenides perturbed by an external magnetic field. We compare our findings to the widely used
Wannier model for excitons in two-dimensional materials and to recent experimental results. We find good
agreement between the calculated excitonic transition energies and the experimental results. In addition, we find
that the exciton energies calculated using the EOM approach are slightly lower than the ones calculated using
the Wannier model. Finally, we also show that the effect of the dielectric environment on the magnetoexciton
transition energy is minimal due to counteracting changes in the exciton energy and the exchange self-energy
correction.

DOI: 10.1103/PhysRevB.99.035416

I. INTRODUCTION

The first use of an external magnetic field to study exci-
tons and the electronic structure in thin-film transition metal
dichalcogenides (TMDs) was published in 1978 [1]. Since
then, the study of magnetoexcitons has been an active field
of research. With the recent emergence of monolayer TMDs,
research in this area has undergone a rapid development, due
in part to the interesting electronic and optical properties
of monolayer TMDs [2–4], including large exciton binding
energies on the order of 0.5–1 eV [5–7]. Additionally, ex-
citing magneto-optical phenomena of monolayer TMDs [8–
10] have inspired novel applications, for which a detailed
understanding of the effect of a magnetic field on the excitons
is necessary. These phenomena include the valley Zeeman
effect, a magnetic field assisted lifting of the degeneracy of
the inequivalent K and K ′ valleys [11–13]. This control of
the degeneracy could prove useful in the area of valleytronics
[14]. Another phenomenon lending itself to possible optical
applications is Faraday rotation [15], which has also been
observed in monolayer TMDs perturbed by a magnetic field
[16,17].
In addition to potential applications, perturbation by an

external magnetic field provides experimental insight into the
properties of excitons, such as their spatial extent [18,19] and
the effect of the dielectric environment [20]. Using strong
magnetic fields of up to 65 T, the Zeeman valley effect and
diamagnetic shift of the excitonic states have been measured
for the four most common monolayer TMDs: MoS2 [21,22],

*jh@nano.aau.dk

MoSe2 [19,21,23], WS2 [24,25], and WSe2 [20,26]. The
analysis of such experimental results would benefit from
a thorough theoretical study of the effect of an external
magnetic field on excitons. But while there is a plethora of ex-
perimental results on magnetoexcitons, there have been fewer
theoretical studies. The difficulties related to a theoretical
description of magnetoexcitons in two-dimensional materials
is, in part, due to the magnetic field breaking the translation
symmetry. In one-dimensional systems, translation symmetry
can be retained by choosing a suitable gauge for the magnetic
vector potential [27], but in two- and three-dimensional
systems that option is not available.
The standard theoretical approach has been to use an

effective mass model such as the Wannier model [28], where
the effective mass is calculated from the band structure of the
unperturbed system. Using this approach, results regarding
the binding energy of excitons, trions, and biexcitons in
monolayer TMDs perturbed by a magnetic field were recently
published in Ref. [29]. But with no other theoretical models
for magnetoexcitons in 2D materials, it can be difficult to
validate the effective mass model. In addition, the effective
mass model does not take into account the unique Landau
level structure of monolayer TMDs [8,10], which affects
the magneto-optical response. In this paper, we provide an
alternative approach for describing magnetoexcitons, which
does not depend on the effective mass approximation. The
approach is an extension of the equation of motion (EOM)
method in Ref. [7] to the case in which the TMDs are per-
turbed by an external magnetic field. This model has several
advantages, which include accounting for the Landau level
structure of TMDs, allowing coupling between distinct bands
and valleys, and providing a more self-contained theoretical

2469-9950/2019/99(3)/035416(13) 035416-1 ©2019 American Physical Society
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framework. The EOM approach can also be used to calcu-
late the optical response and was previously used to include
second-order effects in the electric field in Ref. [30].
The present paper is structured as follows: In Sec. II, we

introduce the single-particle Hamiltonian, which will serve
as the outset for our study. In Sec. III, the EOM approach
is briefly introduced. Section IV contains the definition of
the electron-electron interaction Hamiltonian, as well as the
derivation of the EOM for the excitonic problem. Section V
serves to introduce the Wannier model, which we will use for
comparison with the results obtained in the EOM approach.
Finally, in Sec. VI our results are presented and compared to
recent experiments.

II. SINGLE-PARTICLE HAMILTONIAN

In this section, we present the system and the single-
particle Hamiltonian, which is the outset for our study of
magnetoexcitons. The system is illustrated in Fig. 1. A mono-
layer TMD material, possibly deposited on some dielectric
substrate with relative dielectric constant κa and capped by
a dielectric with relative dielectric constant κb, is perturbed
by a uniform static magnetic field perpendicular to the TMD.
Under absorption of an incident photon with energy h̄ω an
exciton is generated. The properties of the exciton, i.e., size
and energy, are affected by the magnetic field.
To describe magnetoexcitons in monolayer TMDs, we

need an accurate description of the single-particle properties
of unperturbed TMDs. For that purpose, we apply the effec-
tive Hamiltonian from Ref. [3]. This effective Hamiltonian
describes a massive Dirac system, and has been found to
reproduce the band structure of monolayer TMDs in the low-
energy range around the direct band gaps in the K and K ′
valleys, including the spin-orbit splitting of the bands. For a
monolayer in the xy plane the Hamiltonian is given by

Ĥ0 = vF (τσxpx + σypy )+ �τ,sσz + ξτ,sI, (1)

where vF is the Fermi velocity, τ = ±1 is the valley index
(+1 for the K valley and −1 for the K ′ valley), σi are the
Pauli matrices with i ∈ {x, y, z}, px and py are the canonical
momentum operators, I is the 2× 2 identity matrix, and �τ,s

and ξτ,s are the valley- and spin-dependent mass and on-site

Incident light - ħω

B

FIG. 1. Sketch of the system under consideration: Excitons in
a monolayer TMD material perturbed by a uniform static magnetic
field perpendicular to the monolayer. The monolayer may be encap-
sulated between a dielectric substrate and a capping material.

TABLE I. Parameters of the effective Hamiltonian for the four
common types of TMDs. The mass parameters and the Fermi ve-
locities are taken from Ref. [2] and the spin-orbit couplings are
from Ref. [31]; both sets of parameters were calculated from first
principles. An alternative set of parameters is provided in Ref. [4].

� (eV) h̄vF (eV Å
−1
) �V

soc (eV) �C
soc (eV)

MoS2 0.797 2.76 0.149 − 0.003
MoSe2 0.648 2.53 0.186 − 0.022
WS2 0.90 4.38 0.430 0.029
WSe2 0.80 3.94 0.466 0.036

energy, respectively. The mass and on-site energy are given by

�τ,s = � − τs
�1

2
, ξτ,s = τs

�2

2
, (2)

where s = ±1 (+1 for the spin up and −1 for spin down),
�1 = (�V

soc − �C
soc)/2, and �2 = (�V

soc + �C
soc)/2. The pa-

rameters vF , �, �V
soc, and �C

soc are material dependent, and
found by fitting to first-principles band structure calculation
[2,31]. The material parameters used in this paper are pro-
vided in Table I. The single-particle energy bands are the
eigenvalues ετ,s of Ĥ0, which are given by

ετ,s = ±
√

h̄2v2F |k|2 + �2
τ,s + ξτ,s . (3)

Note that the eigenvalues only depend on the product
τs = ±1, and not on τ and s as individual parameters. The
eigenvalues of MoS2 are plotted as dashed lines in Fig. 2. We
observe that the energy dispersion shows spin-orbit splitting
of both valence and conduction bands and that the K and K ′
valleys are inequivalent due to spin.

FIG. 2. Single-particle spectrum at theK andK ′ valleys of MoS2
with (solid lines) and without (dashed lines) magnetic field. Red and
blue indicate spin up and spin down, respectively. The Landau level
spectrum is plotted for a very high magnetic field (600 T) to make
it possible to distinguish the individual Landau levels. Qualitatively
similar features are found at lower magnetic field strengths.

035416-2
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The next step is the inclusion of a perpendicular magnetic
field B. The magnetic field is introduced using the minimal
coupling substitution p �→ p + eA, where p is the momentum
operator, −e is the electron charge, and A is the magnetic
vector potential, related to the magnetic field by ∇ × A = B.
Using the Landau gauge, A = Bxŷ, the effective perturbed
Hamiltonian is

ĤB = vF [τσxpx + σy (py + eBx)]+ �τ,sσz + ξτ,sI. (4)

The eigenvalues and eigenfunctions of ĤB can be found by
expressing ĤB in terms of creation and annihilation operators
[8,32], and then expanding the eigenfunctions in a basis of
harmonic oscillator eigenfunctions. We find that the eigenval-
ues and the normalized eigenfunctions are given by

En,λ
τ,s = λ

√
�2

τ,s + n(h̄ωc )2 + ξτ,s, (5)

�
n,λ
τ,s,ky

(r) = eikyy√
Ly

�n,λ
τ,s (x̃). (6)

Here, n � (1+ τλ)/2 is the integer Landau level (LL) index,
λ = ± indicates the type of LLs (+ for conduction type
LLs and − for valence type LLs), h̄ωc = √

2h̄vF / lB is the
cyclotron energy, lB = √

h̄/(eB ) is the magnetic length, Ly

is the length of the system in the y direction, and the spinor
wave function is

�n,λ
τ,s (x̃) = 1√

2

(
Bn,λ

τ,s φn−(τ+1)/2(x̃)

Cn,λ
τ,s φn+(τ−1)/2(x̃)

)
. (7)

Here, x̃ = x + l2Bky , φn(x̃) are the usual harmonic oscillator
eigenstates, and Bn,λ

τ,s and Cn,λ
τ,s are normalization constants

given by

Bn,λ
τ,s = λ

√
1+ λαn

τ,s, Cn,λ
τ,s =

√
1− λαn

τ,s, (8)

where αn
τ,s = �τ,s/

√
�2

τ,s + n(h̄ωc )2. The harmonic oscilla-
tor eigenstates are given by

φn(x̃) = 1√
2nn!

(
1

πl2B

) 1
4

e
− x̃2

2l2
B Hn

(
x̃

lB

)
, (9)

where Hn are the physicist’s Hermite polynomials, which are
defined by

Hn(x) = (−1)nex2 dn

dxn
e−x2 . (10)

Note that the energies En,λ
τ,s define a discrete set of LLs that

have a degeneracy corresponding to the number of distinct ky

values. The Landau level spectrum of MoS2 is plotted (solid
lines) in Fig. 2. From Fig. 2 and the allowed values of n,
we see that a LL with n = 0 is only allowed when τ �= λ.
This gives rise to a magnetic-field-dependent increase of the
band gap. Finally, the valley Zeeman splitting [12] is not
included in the effective Hamiltonian ĤB . It could have been
by adding additional terms to ĤB [33], but since the focus of
the present paper is on the excitonic effects, it is ignored for
simplicity.

A. Dipole matrix elements

In this section, the dipole matrix elements for the single-
particle wave functions are calculated. In addition to being
necessary for calculating the optical response, the dipole ma-
trix elements provide information about the optical selection
rules, which can be used to exclude some dark transitions from
our excitonic calculations. This speeds up the numerical stud-
ies performed below by a significant factor. The interaction
of the system with the incident light is included, within the
dipole approximation, via the interaction Hamiltonian

HI = −d · E (t ) = er · E (t ). (11)

Here, d = −er is the dipole moment operator and E (t ) the
time-dependent electric field of the light. By construction,
transitions between different valleys and different spins are
not allowed. We introduce some notation to simplify the
expressions. Let α be shorthand for {n, λ, ky} and η for
{τ, s}; then the dipole matrix elements are written as dα→α′

η =
〈�n,λ

τ,s,ky
|d|�n′,λ′

τ ′s ′,k′
y
〉, where �

n,λ
τ,s,ky

are the single-particle eigen-

states of ĤB . For the dipole matrix elements in the x direction,
we find

dα→α′
η,x = −eδky,k′

y

〈
�n,λ

τ,s

∣∣x∣∣�n′,λ′
τ,s

〉
= −eδky,k′

y

〈
�n,λ

τ,s

∣∣[ĤB, x]
∣∣�n′,λ′

τ,s

〉
E

n,λ
τ,s − E

n′,λ′
τ,s

. (12)

The commutator is simply [ĤB, x] = −ih̄vF τσx . A similar
expression holds for the commutator with y. Consequently,
the dipole matrix elements are found to be

dα→α′
η = eh̄vF δky,k′

y

2�E
n,λ
n′,λ′

[
Bλ,n

τ,s Cn′,λ′
τ,s

(−iτ

1

)
δn−τ,n′

− Bn′,λ′
τ,s Cn,λ

τ,s

(
iτ

1

)
δn+τ,n′

]
. (13)

Here, �E
n,λ
n′,λ′ := En,λ

τ,s − En′,λ′
τ,s . The nonzero dipole matrix

elements correspond to the bright interband transitions.
Equation (13) shows that the allowed interband transitions
from a LL with index n are to LLs with index n′ = n ± 1 and
at the same ky points.

III. EQUATION OF MOTION APPROACH

The excitonic properties will be calculated using an EOM
approach similar to that of Ref. [7], which is an extension
of the method introduced to describe the magneto-optics of
graphene in a cavity in Ref. [34]. The approach relies primar-
ily on writing and solving Heisenberg’s equation of motion,
which is given by

−ih̄
∂ρ̂

∂t
= [Ĥ , ρ̂]. (14)

Here Ĥ , is the full Hamiltonian including ĤI , and ρ̂ is the
density matrix for the states of ĤB .
To compute the density matrix, we introduce the cre-

ation and annihilation operators ĉ†α,η(t ) and ĉα,η(t ), which,
respectively, create or annihilate an electron in state �η

α ≡
�

n,λ
τ,s,ky

(recall that α is short for {n, λ, ky} and η is short
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for {τ, s}). The creation and annihilation operators obey the
usual anticommutator relations. Using these operators, we can
express the single-particle Hamiltonian and the light-matter
interaction Hamiltonian as

ĤB (t ) =
∑
α,η

Eη
αρ̂η

α,α (t ), (15)

ĤI (t ) = −E (t ) ·
∑
α,α′,η

dα→α′
η ρ̂

η

α,α′ (t ), (16)

where ρ̂
η

α,α′ (t ) = ĉ†α,η(t )ĉα′,η(t ) are elements of the density
matrix in a basis of the eigenstates of ĤB . Note that only a
few of the terms in the sum over α′ give nonzero contributions
to ĤI due to the optical selection rules from Sec. II.
Solving Heisenberg’s EOM exactly as expressed in

Eq. (14) is not possible. Consequently, we take the expectation
value on both sides of Eq. (14) with respect to the equilibrium
state, and get the following EOM for the expectation value:

−ih̄
∂

∂t
p

η

α,α′ = 〈[Ĥ , ρ̂
η

α,α′
]〉
, (17)

with p
η

α,α′ = 〈ρη

α,α′ 〉. Note that the diagonal elements α = α′

define a new electron distribution. The commutators of ĤB

and ĤI with the density matrix are calculated in Appendix A
and can be used to calculate the single-particle optical re-
sponse as in Ref. [35]. We now turn to the problem of
including electron-electron interactions in the Hamiltonian
and then find the excitonic states by solving Eq. (17).

IV. ELECTRON-ELECTRON INTERACTIONS

From this point on, we consider the full Hamiltonian
given by Ĥ = ĤB + ĤI + Ĥee, where the electron-electron
interaction Hamiltonian is defined by

Ĥee = 1

2

∫
dr1dr2ψ̂†(r1)ψ̂†(r2)U (r1 − r2)ψ̂ (r2)ψ̂ (r1).

(18)

Here, the integrals also cover spin, U (r) is the electron-
electron interaction potential defined below, and ψ̂ (r) is the
field operator, given by

ψ̂ (r) =
∑
α,η

ĉα,η�
η
α (r). (19)

Here and in the following, we drop the explicit time depen-
dence of ĉα,η(t ) and ρ̂

η

α,α′ (t ) to simplify notation.
Although monolayer TMDs are not strictly 2D materials,

the electrons are effectively confined to move in two dimen-
sions by the negligible thickness of the layer [6,7]. Conse-
quently, instead of the usual Coulomb potential, we model the
electron-electron interaction U (r) by the Keldysh potential
[36], which is valid for strict 2D systems. In momentum space

TABLE II. Parameters used in the calculation of the excitonic
properties for the four common types of TMDs. The first and second
columns contain the reduced exciton masses for the spin-up and spin-
down bands, respectively. The third column is the in-plane screening
length, and is taken from Ref. [6].

μτ,+1 (me) μτ,−1 (me) r0 (Å)

MoS2 0.380 0.418 41.4
MoSe2 0.355 0.417 51.7
WS2 0.159 0.199 37.9
WSe2 0.170 0.223 45.1

the Keldysh potential has the following simple form [36–38]:

U (q) = e2

2ε0

1

q(κ + r0q )
, (20)

where q = |q|, ε0 is the vacuum permittivity, r0 is a material-
dependent in-plane screening length, and κ = (κa + κb )/2 is
the average of the relative dielectric constant of the substrate
and the capping material. The in-plane screening lengths are
related to the in-plane polarizability, and can be calculated
from a first-principles band structure. The parameters used
in this paper were calculated in Ref. [6] and are listed in
Table II. It is worth mentioning that the Keldysh potential
previously has been used successfully to describe various
excitonic properties of TMDs [6,7,46,47].
Before calculating the commutator of Ĥee with the density

matrix and solving the Heisenberg EOM, we will rewrite
Ĥee slightly. Assuming that the electron-electron coupling
between different valleys is negligible, the Ĥee can be written
as

Ĥee = 1

2

∑
τ, s, s ′
α1, α2
α3, α4

Uτ,s,s ′
α1α4,α2α3

ĉ†α1,τ,s ĉ
†
α2,τ,s ′ ĉα3,τ,s ′ ĉα4,τ,s , (21)

where two of the summations over spin cancel because of the
spin integrals in Eq. (18), and the so-called Coulomb integrals
are

Uτ,s,s ′
α1α4,α2α3

= 1

4π2

∫
d2qU (q)Fτ,s

α1,α4
(q)Fτ,s ′

α2,α3
(−q). (22)

Here, Fτ,s
α,α′ (q) are structure factors defined as

F
τ,s
α,α′ (q) =

∫
d2reiq·r[�α

τ,s (r)
]∗

�α′
τ,s (r). (23)

An explicit expression for the structure factors is provided in
Appendix B. Using Eq. (21), we calculate the commutator of
the full Hamiltonian with the density matrix in Appendix A
and find that the EOM in Eq. (17) can be written as

(
E

η

α′ − Eη
α − ih̄

∂

∂t

)
p

η

α,α′ =
∑
α1, α2

α3

pη
α1,α3

(
U

τ,s,s
α′α3,α1α2p

η
α,α2

− Uτ,s,s
α1α,α2α3

p
η

α2,α′
)− E (t ) ·

∑
α′′

(
dα′′→α

η p
η

α′′,α′ − dα′→α′′
η p

η

α,α′′
)
. (24)
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Here, Eη
α ≡ E

τ,s
n,λ and the expectation value of the four-body

operator in Ĥee has been truncated at the random phase
approximation (RPA) level [39]. Comparing the EOM to what
was found in Ref. [7], we see that the general form of the
equation is equivalent to the expression for a system with an
arbitrary number of bands. In the following subsections, we
keep only the terms of Eq. (24), which are of first order in the
electric field and collect the terms corresponding to the ex-
change self-energy corrections and electron-hole interactions.

A. Exchange self-energy corrections

In this section, we briefly touch upon the exchange self-
energy corrections caused by the electron-electron interac-
tions. The term exchange should be understood in the sense
of the Hartree-Fock approximation, where there are two
corrections to self-energy: the Hartree correction, which is
canceled by the interaction with the positive background (see
Appendix A), and the exchange correction.
Although exchange self-energy corrections are not the

main focus of this work, it is still important to include them if
we hope to accurately describe the transition energy of the ex-
citons. This is because the self-energy correction has a strong
impact on the value of the single-particle gap. In Appendix A,
the first-order terms that result in a renormalization of the LLs
are collected. It is found that the self-energy-renormalized
LLs, Ẽη

α , are given by

Ẽη
α = Eη

α − �η
α, �η

α =
∑
α′

f
(
E

η

α′
)
U

τ,s,s
α′α,αα′ . (25)

Here, �η
α is the exchange self-energy correction and f (E)

is the Fermi-Dirac distribution. We calculate the exchange
self-energy correction using the structure factors from
Appendix B. Converting the sum over ky to an integral, the
exchange self-energy can be written as∑

α′
U

τ,s,s
α′α,αα′f

(
E

η

α′
) =

∑
n′,λ′

f
(
E

η

n′,λ′
)
I

η

λ′n′,λn, (26)

where the integrals are defined as

I
η

λn,λ′n′ = 1

16π2

∫
d2qU (q)e− l2

B
q2

2
∣∣J η

λn,λ′n′ (q)
∣∣2. (27)

Here, J η

λn,λ′n′ is the function defined in Eq. (B4). The integral
in Eq. (27) is simplified by the fact that U (q) and |J η

λn,λ′n′ (q)|2
only depend on q = |q|, meaning that the angular integral
simply gives a factor of 2π . In the remainder of the paper,
we assume that the system is undoped, i.e., the Fermi level
is in the band gap, and that T = 0 K. This implies that the
sum in Eq. (26) only runs over the valence-type LLs, which
simplifies the numerical calculations.
For graphene described in the Dirac approximation, the

exchange self-energy correction has been found to diverge
logarithmically when summing over an infinite number of va-
lence LLs [40]. We have observed the same type of divergence
numerically for the expression in Eq. (26). Consequently, a
cutoff Ncut of the summation over LLs has to be introduced.
In Ref. [41] (see also Ref. [42]), the cutoff was calculated for
graphene by equating the concentration of electrons in Ncut

LLs to that in the filled valence band. The same approach can

be used for TMDs and we find a cutoff equal to

Ncut = πl2B

�0
, (28)

with �0 = √
3a2/2 the area of the primitive unit cell of the

TMD. Taking a = 3.2Å for all four TMDs [43], we get a
cutoff equal to Ncut ≈ 2.33× 104/B T.

B. Excitonic effects

Finally, using the exchange self-energy corrected LLs,
we proceed to calculating the excitonic effects of TMDs
perturbed by an external magnetic field. As shown in
Appendix A, the excitonic states can be found by solving the
first-order equation(

Ẽ
η

α′ − Ẽη
α − ih̄

∂

∂t

)
p

η,1
α,α′

=
(∑

α1,α2

U
τ,s,s
α′α2,α1αpη,1

α1,α2
− E (t ) · dα′→α

η

)
�f

η

α′,α, (29)

where�f
η

α′,α = f (Eη

α′ )− f (Eη
α ). As in Ref. [7] the excitonic

transition energies can be calculated by solving the homoge-
neous equation, i.e., setting E (t ) = 0. Changing from time to
frequency domain, we get the homogeneous equation

(
Ẽ

η

α′ − Ẽη
α − E

)
p

η

α,α′ =
∑
α1,α2

U
τ,s,s
α′α2,α1αpη

α1,α2
�f

η

α′,α. (30)

Here, p
η

α,α′ should be understood as the Fourier transform

of p
η,1
α,α′ and E is the exciton transition energy for a fixed

combination of spin and valley. The excitonic states are the
interband solutions of Eq. (30), i.e., where α and α′ corre-
spond to valence and conduction states, respectively. Thus,
we assume that to be the case. Additionally, the sum over α1
and α2 can be split into two contributions: one where α1 and
α2 are valence and conduction states, respectively, and one
where the converse holds. We denote these cases the resonant
contribution and the nonresonant contribution, respectively. In
the following, we keep only the resonant contribution. It has
been shown in Ref. [7] that this is a valid approximation.
To clearly distinguish the valence and conduction states,

we write αv and αc for α1 and α2 in Eq. (30), respectively.
Setting ky = k′

y (which corresponds to ignoring the dark non-
vertical transitions; see Sec. II A), we simplify the right-hand
side of Eq. (30) by writing

∑
αv,αc

U
τ,s,s
α′αc,αvα

pη
αv,αc

≈
∑
nv,nc

∫ ∞

−∞
dqyKτ,s,s

n′nc,nvn
(qy − ky )

×pη
nv,nc

(qy ). (31)

Here, we write the approximate sign to indicate the approxi-
mations discussed above, and we denote pη

αv,αc
by p

η
nv,nc

(ky )
for the case in which the ky values associated with αc and αv

are equal. The different λ parameters are fixed by the previous
assumptions and are not written explicitly. The electron-hole
interaction kernel Kτ,s,s

n′nc,nvn
is calculated using the structure
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FIG. 3. Electron-hole interaction kernels plotted for MoS2 in a
magnetic field of 100 T. The kernels are plotted for the K valley,
spin up, and (n, n′, nv ) = (0, 1, 0).

factors and is found to be

Kτ,s,s
n′nc,nvn

(qy ) = 1

16π2

∫ ∞

−∞
dqxU (q)e− l2

B
|q|2
2

× J
τ,s
+n′,+nc

(q)J τ,s
−nv,−n(−q), (32)

where the integral over qx must be performed numerically.
This finally implies a homogeneous first-order equation given
by (

Ẽ
η

α′ − Ẽη
α − E

)
p

η

n,n′ (ky )

=
∑
nv,nc

∫ ∞

−∞
dqyKτ,s,s

n′nc,nvn
(qy − ky )p

η
nv,nc

(qy ). (33)

Equation (33) corresponds to the Bethe-Salpeter equation for
electron-hole pairs [44], and it can be written as an eigenvalue
problem with eigenvalues E by discretizing the integral over
qy . The size of the eigenvalue problem scales as NkNcNv ,
where Nk is the number of points used to discretize the
integral, and where Nc and Nv are the number of conduction
and valence LLs, respectively. It is clear that only if the
electron-hole kernel decays sufficiently fast with increasing nc

and nv can we hope to solve Eq. (33), since that would imply
that the sums over nc and nv can be truncated. Fortunately,
the kernel does decay quite fast in nc and nv , as illustrated for
nc in Fig. 3. In the next section, we turn our attention to an
alternative (and nonmicroscopic) description of the excitonic
properties of TMDs.

V. WANNIER MODEL

In this section, we briefly introduce the Wannier model
[28] for excitons. The Wannier model is based on the ef-
fective mass approximation for a single pair of valence and
conduction bands. For a two-dimensional semiconductor in a
perpendicular magnetic field (using the symmetric gauge for
the magnetic vector potential), the operator describing zero
angular momentum excitons, i.e., s-type states, is [45]

Ĥex = − h̄2

2μ
∇2 + e2B2

8μ
r2 − U (r). (34)

Here, μ is the reduced effective mass, ∇2 is the 2D
Laplace operator, r is the relative electron-hole distance, and
U (r) is the electron-hole interaction potential given as the

real-space representation of Eq. (20). Taking the inverse
Fourier transform of Eq. (20), we find

U (r) = e2

8ε0r0

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
, (35)

with r = |r|, H0 the Struve function, and Y0 a Bessel function
of the second kind.
For a direct comparison of the Wannier model with the

solutions to Eq. (33), we want to use the same parameters
in both models. Thus, we calculate the effective mass from
the eigenvalues of the unperturbed single-particle operator Ĥ0.
Expanding the eigenvalues in Eq. (3) around |k| = 0, we find
that the effective mass of an electron or hole in the τ valley
and with spin s is

m∗
τ,s = |�τ,s |

v2F
. (36)

The effective masses of electrons and holes are equal due to
the symmetric conduction and valence bands. The reduced
effective mass is then μτ,s = m∗

τ,s/2, for which the values for
the four common TMDs are given in Table II.
The s-type excitons, corresponding to bright excitons [46],

can be found by solving the eigenvalue problem Ĥexψ (r ) =
Eexcψ (r ), where Eexc is the exciton energy. We solve it by
expanding ψ (r ) in a basis of Bessel functions, more specif-
ically the basis φi (r ) = J0(λir/R), where λi is the ith zero
of the Bessel J0 function and r � R. This basis corresponds
to introducing an infinite barrier at r = R, but this should not
affect the results as long as R is sufficiently large. The same
basis was recently used to describe the Stark shift of excitons
in monolayer TMDs [46,47].

VI. RESULTS

In this section, our results are presented and discussed.
In addition, we devote some attention to the computational
approaches applied. All results were obtained using the pa-
rameters in Tables I and II. Evaluating the integrals in the
exchange self-energy correction, i.e., Eq. (27), is done using
an adaptive quadrature and a numerical high-precision library
[48]. This approach, although computationally expensive, is
found to provide accurate results for the rapidly oscillating
integrands that occur when n and n′ are large. In contrast,
since the sum in Eq. (33) can be truncated at reasonably low
values of nc and nv , as illustrated by Fig. 3, the integral in
the electron-hole kernel can be evaluated using the Gauss-
Hermite quadrature. For the calculation of excitonic energies
using the Wannier model, we use 400 basis functions and fix
R at R = 20 nm. The kinetic and magnetic matrix elements
can be calculated analytically in this basis, while the potential
matrix elements are computed numerically using a Gauss-
Legendre quadrature.
First, we consider the exchange corrections. We denote the

exchange self-energy corrected and the uncorrected band gaps
as Ẽτs

g and Eτs
g , respectively. The Ẽτs

g and Eτs
g band gaps are

plotted in Fig. 4 as a function of magnetic field for τs = +1,
i.e., spin up at the K valley or spin down at the K ′ valley.
The results show that the self-energy correction gives rise to
an opening of the band gap on the order of 0.8 to 1.0 eV.
Similar values hold for the τs = −1 gaps. We find smaller
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FIG. 4. Plot of τs = +1 band gaps of suspended monolayer TMDs, i.e., taking κ = 1. The uncorrected (black) and exchange self-energy
corrected (red) band gaps are shown as a function of magnetic field. In addition, the exchange self-energy correction to the band gaps,
��τs ≡ Ẽτs

g − Eτs
g , is plotted (blue). The blue lines refer to the blue axes, while the rest refer to the black axes.

exchange self-energy corrections than those of Ref. [7] for the
case of unperturbed monolayer TMDs. The explanation for
this discrepancy is twofold: First, we use a different parameter
set. Second, the cutoffs that are used are different. But, as
will be shown later, our approach results in exciton transition
energies that match experiments quite well.
Considering the magnetic field dependence of the band

gaps, we see that the uncorrected band gaps calculated using
the LL energies in Eq. (5) vary linearly with magnetic field
for the field range in Fig. 4. We also find a linear magnetic
field dependence of the exchange self-energy correction to the
band gap with slopes of 5.57 μeV/T for MoS2, 7.76 μeV/T
for MoSe2, 20.0 μeV/T for WS2, and 19.3 μeV/T for WSe2.
The slopes are for τs = +1 states, but similar slopes hold for
the τs = −1 states. This apparent linear behavior of ��τs =
Ẽτs

g − Eτs
g can be explained by studying the expression in

Eq. (26). For small B, it can be shown using Eqs. (27) and
(B4) that the integrals I

η

λn,λ′n′ are proportional to
√

B, for
all λ, λ′, n, and n′. If we can show that I

η

−0,−n′ − I
η

+1,−n′ is
proportional to (n′ + 1)−3/2 as a function of n′, the result is a
linear behavior of ��τs since

��τs ∝
√

B

Ncut∑
n′
(n′ + 1)− 3

2 ≈
√

B

∫ Ncut+1

1
dn′n′− 3

2

≈ 2
√

KB. (37)

Here, the last approximation holds for a cutoff of the type
Ncut = K/B, with K some constant, and for small B. The

inset in Fig. 5 shows I
η

−0,−n′ − I
η

+1,−n′ on a log-log scale for
MoS2, with B = 100 T and τs = +1. Fitting with a linear
function, we find a power of q = −1.33± 0.03 covering the
range from 20 T to 100 T. Thus, an approximately linear
behavior of the exchange self-energy correction is expected.

FIG. 5. Convergence of the transition energy of the A exciton in
MoS2 in a 100 T field. The black line refers to the situation where all
LLs up to a cutoffNv = Nc are included and the red line refers to the
situation where only significant transitions are included, i.e., of the
type nv to nc ∈ [nv − 1, nv + 3]. The dashed blue line is the exciton
transition energy calculated. Finally, the inset shows the integrals
I

η

−0,−n′ − I
η

+1,−n′ on a log-log scale for τs = +1.
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FIG. 6. Plot of the squared eigenvector of the A exciton in
MoS2 in an external field of 100 T at ky = 0. The elements of the
eigenvector have been normalized, such that the largest norm is unity.
The plot shows that only a few transitions are significant, and that
they are centered around transitions allowed by the optical selection
rules.

In photoluminescence and spectroscopy experiments, it
is typically the exciton transition energy and not the ex-
change self-energy corrected band gap that is measured. But
demonstrating that the exchange self-energy correction is
approximately linearly in the magnetic field is important if
the diamagnetic shift of the exciton transition energy is used
to estimate the exciton size, as was done in Refs. [18,20,22].
Any finite quadratic dependence of the exchange self-energy
correction would result in errors in the estimates of the exciton
sizes. Although the results presented here do not exclude finite
quadratic terms in the exchange self-energy correction, they
appear to be small enough that any error in the estimation of
the exciton size should be negligible.
Turning our attention to the exciton states, we note that

it is difficult to separate the bright and dark exciton states
calculated in the EOM approach, since Eq. (33) mixes dark
and bright transitions. This difficulty might be resolved by
writing the magnetic vector potential in the symmetric gauge
in ĤB and repeating the derivations in Sec. IV, but this study is
left for future work. At the present time, we will instead focus
on the exciton with the lowest transition energy, also called
the ground state exciton. We follow convention and denote
the spin up and down ground state excitons at the K valley as
A and B, respectively. Similarly, we have A′ and B ′ excitons
in the K ′ valley. In the absence of valley Zeeman splitting,
the A and A′ excitons are energetically degenerate and the
same holds for the B and B ′ excitons. Consequently, in the
following, only theA and B excitons are considered. In Fig. 6,
the squared eigenvector of theA exciton in MoS2 is plotted for
ky = 0. The plot shows that the significant transitions between
LLs are where nv couples to nc = nv + 1, which coincides
exactly the bright transitions according to Sec. II A. We also
find that the same holds for the B exciton. Consequently, the
A and B excitons must be bright.

When solving Eq. (33), discretizing the integral over qy

using a Gauss-Hermite quadrature with Nk = 300 nodes has
been found to result in good convergence. If we then include
the first 15 valence and conduction LLs in the summation
in Eq. (33), the resulting matrix has size 67 500× 67 500
and is at the limit of what we can handle numerically. But
for these values the exciton transition energy has not yet
converged, as illustrated for the A exciton in MoS2 by the
black line in Fig. 5. Alternatively, we can utilize that only
a few transitions are significant in the exciton ground state,
as was demonstrated in Fig. 6. In fact, calculating the norm
of the eigenvector where only transitions of the type nv to
nc ∈ [nv − 1, nv + 3] have been included, we find that the
squared overlap is only 2% less than unity. Including only
these significant transitions allows us to include more valence
LLs and, as illustrated by the red line in Fig. 5, obtain a
better convergence. The cost is a small error on the order
of a few meV. The numerical difficulties associated with
including a high number of LLs in the excitonic calculations
result in a restriction on the magnetic field strength used
hence: as the magnetic field strength decreases, more LLs
need to be included in the calculations to secure sufficiently
converged results. Eventually, the current computational re-
strictions limit us to magnetic fields above 100 T.
Turning to the exciton transition energies, it has been

shown in Refs. [19,22] that for magnetic fields in the range
considered here the transition energies Eτ can be approxi-
mated by

Eτ = E0 + μgB + τμZB + σdiaB
2, (38)

with τ the valley index, E0 the zero-field exciton transition
energy, μgB the field-dependent change in band gap, τμZB

the valley Zeeman shift, and finally σdiaB
2 the diamagnetic

shift. Since the valley Zeeman shift is not included in our
single-particle Hamiltonian, the transition energies found by
solving Eq. (33) can be approximated by E = E0 + μgB +
σdiaB

2. To allow for comparisons between the theoretical
and the experimentally measured exciton transition energies,
we average the experimentally measured exciton transition
energies from the K and K ′ valleys to remove the valley
Zeeman splitting, i.e., use E = (E+1 + E−1)/2.
The exciton transition energies of the A and B excitons

are presented in Table III. In columns three and four, we
show the theoretical transition energies, which were calcu-
lated by solving Eq. (33). Columns five and six contain the
experimental exciton transition energies when there is no
external magnetic field. In columns seven and eight, we show
the experimental exciton transition energies at approximately
65 T. Comparing the zero-field transition energies with the
experimental transition energies in columns seven and eight,
we see that the exciton transition energies exhibit a minimal
dependence on the magnetic field. In fact, experiments predict
that the quadratic diamagnetic shift is on the order of only a
few meV [18,22] for a magnetic field of 100 T. Consequently,
we can compare the calculated transition energies to the
measured transition energies in a system with no magnetic
field. Table III shows that the transition energies of MoS2,
WS2, and WSe2 are very well captured by our model, with
differences on the order of 10 meV. The calculated results
for MoSe2 differ more from the experimental results, with
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TABLE III. Theoretical and experimental transition and exciton energies for A and B excitons in TMDs with different dielectric
environments. All theoretical energies are computed at 100 T.

Transition energies Exciton energies

EOM Experimental, B = 0 T Experimental, B ≈ 65 T EOM Wannier

TMD κ A B A B A B A B A B

MoS2 1.00 1.918 2.076 −0.620 −0.632 −0.617 −0.632
1.55 1.907 2.066 1.895 [22], 1.948 [21] 2.042 [22], 2.092 [21] 1.896 [22], 1.948 [21] 2.044 [22], 2.094 [21] −0.491 −0.504 −0.489 −0.503

MoSe2 1.00 1.516 1.735 −0.526 −0.542 −0.513 −0.533
1.55 1.512 1.730 1.660 [13] −0.419 −0.434 −0.409 −0.428

WS2 1.00 2.042 2.467 −0.559 −0.584 −0.520 −0.555
1.55 2.030 2.453 2.039 [25], 2.045 [22] 2.442 [25], 2.453 [22] 2.040 [25], 2.046 [22] 2.442 [25], 2.454 [22] −0.426 −0.450 −0.392 −0.424

WSe2 1.00 1.761 2.216 −0.511 −0.535 −0.468 −0.505
1.55 1.755 2.209 1.744 [12] −0.393 −0.417 −0.357 −0.391
3.30 1.721 2.173 1.732 [20] 1.733 [20] −0.229 −0.247 −0.197 −0.224
4.50 1.700 2.152 1.723 [18] 1.724 [18] −0.177 −0.192 −0.144 −0.168

the calculated transition energy being approximately 150 meV
below the experimental transition energy. This discrepancy
indicates a problem with the material parameters used and not
the method, as the results agree well for the three other types
of materials.
In the final four columns of Table III, the exciton energies

calculated using the EOM approach and the Wannier model
are presented. For the EOM method, the exciton energies are
found from Eexc = E − Ẽg , where E is the exciton transition
energy found by solving Eq. (33) and Ẽg is the exchange self-
energy corrected band gap. Comparing the results, we see that
all the exciton energies calculated using the EOM approach
are below the Wannier results. That is to be expected since
the EOM approach relies on less strict approximations. The
differences between the calculated energies are quite small
and vary from a few meV to 50 meV. Thus, if errors in this
range are acceptable, the Wannier model provides a useful
model for excitons in monolayer TMDs.
Finally, we also consider the effect of changing the di-

electric environment of the TMDs, i.e., varying the screening
parameter κ in the potentials in Eqs. (20) and (35). The effect
is illustrated in Fig. 7 for MoS2 in a magnetic field of 100 T.
The figure shows that the exchange self-energy corrected
band gap decreases while the exciton energy increases as a
function of κ . These two counteracting effects result in exciton
transition energies, which only exhibit minimal dependence
on the dielectric environment, as illustrated by the blue line
and green squares in Fig. 7. This effect has previously been
demonstrated in TMDs with no external magnetic field [49],
but Fig. 7 illustrates that it still holds for systems in the
presence of a perpendicular magnetic field. This phenomenon
further underlines the importance of including the exchange
self-energy corrections in a self-contained model. We find that
similar results hold for the other TMDs.
Comparing the EOM method and the Wannier model, we

see that both have advantages and disadvantages. The EOM
method provides a self-contained framework, including the
unique LL structure and a higher accuracy of the exciton
energies. The disadvantage is that the numerical computations
are demanding and, as a consequence, small magnetic fields
cannot be considered. For the Wannier method, the numerical

calculations are relatively simple and arbitrary magnetic field
strengths can be considered. The disadvantages are that for
some systems the accuracy is lower than the EOMmethod and
that only the excitonic properties are described. The Wannier
model provides no information about the unique LL structure,
the band gap, or the field-dependent change of the band
gap. Consequently, the choice between the EOM method and
the Wannier method depends on the application, and which
aspects are deemed important.

VII. SUMMARY

In summary, starting from a Dirac-type Hamiltonian de-
scribing the band structure of monolayer TMDs around the K

and K ′ points, we have introduced an external magnetic field
and then included electron-electron interactions to account
for the exchange self-energy corrections and excitons. In this

1 2 3 4
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FIG. 7. Plot of the corrected band gap (red line), the exciton
transition energy (blue line and green diamonds), and the exciton
energy (black line) as a function of the relative dielectric constant of
the surrounding medium for MoS2, with B = 100 T and τs = +1.
The exciton transition energy calculated from the Wannier results
(blue line) is the sum of exciton energy (black line) and the corrected
band gap (red line), i.e., E = Ẽg + Eexc.
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setup, we used the EOM approach to find the low-energy A

and B excitons. Our results were compared to the popular
Wannier model for excitons and recent experimental results.
When comparing with the Wannier model, we found that

the A and B exciton energies match quite well. Conse-
quently, the EOM method validates the Wannier model in this
case. The exciton energies only exhibit a small dependence
on the magnetic field (up to a few meV for realistic field
strengths), but the optical properties are expected to change
significantly. These changes include optical transitions be-
tween discrete LLs, which depend strongly on the magnetic
field, and a finite optical Hall conductivity giving rise to
Faraday rotation in TMDs. Thus, we will focus on the optical
properties of magnetoexcitons in future projects. We also ex-
pect to see more pronounced differences between the optical
response calculated using the EOM approach and the Wannier
model.
Comparing the calculated transition energies with the ex-

perimental values, we also found a very good agreement.
This shows that the exchange self-energy correction is central
if accurate theoretical calculations of the exciton transition
energies are needed. Finally, we considered the effect of the
dielectric environment on the exciton transition energy. We
found that increasing the dielectric constant of the environ-
ment causes a decrease in the corrected band gap and an
increase in the exciton energy. These two counteracting effects
cause a minimal dependence of the exciton transition energies
on the dielectric environment. This holds for both the EOM
method results and transition energies calculated from the
Wannier model results.
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APPENDIX A: COMMUTATOR RELATIONS
AND THE EQUATION OF MOTION

In this section, we present the commutator relations be-
tween Ĥ = ĤB + ĤI + Ĥee and the density matrix, as well
as the relevant equation of motion. First, we calculate the
commutator relations using the following relation:[

ρ̂η
α1,α2

, ρ̂η′
α3,α4

] = ρ̂η
α1,α4

δα2,α3δη,η′ − ρ̂η
α3,α2

δα1,α4δη,η′ . (A1)

Applying this relation to the first two terms of the commutator
[Ĥ , ρ

η

α,α′ ], we find[
ĤB, ρ̂

η

α,α′
] =

∑
α′′,η′

E
η′
α′′
[
ρ̂

η′
α′′,α′′ , ρ̂

η

α,α′
]

(A2)

= (Eη
α − E

η

α′
)
ρ̂

η

α,α′ (A3)

and[
ĤI , ρ̂

η

α,α′
] = −E (t ) ·

∑
α1,α2,η′

dα1→α2
η′

[
ρ̂η′

α1,α2
, ρ̂

η

α,α′
]

(A4)

= −E (t ) ·
∑
α′′

(
dα′′→α

η ρ̂
η

α′′,α′ − dα′→α′′
η ρ̂

η

α,α′′
)
. (A5)

In the commutator relation between the electron-electron in-
teraction Hamiltonian and the density matrix, the following
commutator relation is useful:

[
ĉ
†
α1,τ,s ′ ĉ

†
α2,τ,s ′′ ĉα3,τ,s ′′ ĉα4,τ,s ′ , ĉ

†
α,τ ′,s ĉα′,τ ′,s

] = δτ,τ ′
(
ĉ†α1,τ,s ĉ

†
α2,τ,s ′′ ĉα3,τ,s ′′ ĉα′,τ,sδα,α4δs,s ′ + ĉ

†
α1,τ,s ′ ĉ

†
α2,τ,s

ĉα′,τ,s ĉα4,τ,s ′δα,α3δs,s ′′

− ĉ†α,τ,s ĉ
†
α2,τ,s ′′ ĉα3,τ,s ′′ ĉα4,τ,sδα′,α1δs,s ′ − ĉ

†
α1,τ,s ′ ĉ

†
α,τ,s ĉα3,τ,s ĉα4,τ,s ′δα′,α2δs,s ′′

)
. (A6)

Applying Eq. (A6) to the [Ĥee, ρ̂
η

α,α′ ] commutator, we find[
Hee, ρ̂

η

α,α′
] =

∑
s ′, α1
α2, α3

{
Uτ,s,s ′

α1α,α2α3
ĉ†α1,τ,s ĉ

†
α2,τ,s ′ ĉα3,τ,s ′ ĉα′,τ,s − U

τ,s,s ′
α′α1,α2α3 ĉ

†
α,τ,s ĉ

†
α2,τ,s ′ ĉα3,τ,s ′ ĉα1,τ,s

}
, (A7)

where we also used the relation

Uτ,s,s ′
α1α4,α2α3

= Uτ,s ′,s
α2α3,α1α4

. (A8)

Collecting the terms in Eqs. (A3), (A5), and (A7), we can now write Heisenberg’s equation of motion for the full Hamiltonian
including electron-electron interactions. To write Eq. (17), we compute the expectation value of the commutator relations keeping
terms that are of first order in the electric field. While the expectation values of Eqs. (A3) and (A5) are found by straightforward
calculation, we apply the random phase approximation (RPA) [39] to find〈[

Hee, ρ̂
τ,s
α,α′
]〉 = ∑

s ′, α1
α2, α3

{
Uτ,s,s ′

α1α,α2α3

(
pτ,s ′

α2,α3
p

τ,s
α1,α′ − δs,s ′pτ,s

α1,α3
p

τ,s
α2,α′

)− U
τ,s,s ′
α′α1,α2α3

(
pτ,s ′

α2,α3
pτ,s

α,α1
− δs,s ′pτ,s

α2,α1
pτ,s

α,α3

)}
, (A9)
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where p
τ,s
α,α′ = 〈ρ̂τ,s

α,α′ 〉. Terms allowing mixing of spins correspond to the Hartree terms in Hartree-Fock theory. They are canceled
by the interaction with the positive background [50] and, as a result, the expectation value has the following form:〈[

Hee, ρ̂
τ,s
α,α′
]〉 = ∑

α1,α3

pα1,α3

∑
α2

(
U

τ,s,s
α′α3,α1α2p

τ,s
α,α2

− Uτ,s,s
α1α,α2α3

p
τ,s
α2,α′

)
. (A10)

This gives the following EOM for the expectation value:(
E

η

α′ − Eη
α − ih̄

∂

∂t

)
p

η

α,α′ =
∑
α1, α2

α3

pη
α1,α3

(
U

τ,s,s
α′α3,α1α2p

η
α,α2

− Uτ,s,s
α1α,α2α3

p
η

α2,α′
)− E (t ) ·

∑
α′′

(
dα′′→α

η p
η

α′′,α′ − dα′→α′′
η p

η

α,α′′
)
. (A11)

The final step is to expand the expectation values in orders of the electric field and collect first-order terms in Eq. (A11). The
zeroth order of the expectation value can be expressed using the Fermi-Dirac distribution

p
η,0
α,α′ = f

(
Eη

α

)
δα,α′ , (A12)

where f (E) is the Fermi-Dirac distribution. Consequently, the first-order equation is(
E

η

α′ − Eη
α − ih̄

∂

∂t

)
p

η,1
α,α′ =

(∑
α1,α2

U
τ,s,s
α′α2,α1αpη,1

α1,α2
− E (t ) · dα′→α

η

)
�f

η

α′,α +
∑
α1,α2

f
(
Eη

α1

)(
U

τ,s,s
α′α1,α1,α2p

η,1
α,α2

− Uτ,s,s
α1α,α2α1

p
η,1
α2,α′

)
,

(A13)

where �f
η

α′,α = f (Eη

α′ )− f (Eη
α ) and p

η,1
α,α′ is the first-order term of the expectation value. We rewrite the last term on the

right-hand side to isolate the exchange self-energy correction

∑
α1,α2

f
(
Eη

α1

)(
U

τ,s,s
α′α1,α1,α2p

η,1
α,α2

− Uτ,s,s
α1α,α2α1

p
η,1
α2,α′

) = �
η

α′ − �η
α +

∑
α1

f
(
Eη

α1

)⎛⎝∑
α2 �=α′

U
τ,s,s
α′α1,α1α2p

η,1
α,α2

−
∑
α2 �=α

Uτ,s,s
α1α,α2α1

p
η,1
α2,α′

⎞
⎠,

(A14)

where �η
α is the exchange self-energy correction given by

�η
α =

∑
α1

f
(
Eη

α1

)
Uτ,s,s

α1α,αα1
. (A15)

The remaining terms in Eq. (A14) correspond to density terms and will be disregarded in this work. Thus, the first-order EOM
for the expectation value of the density matrix reads(

Ẽ
η

α′ − Ẽη
α − ih̄

∂

∂t

)
p

η,1
α,α′ =

(∑
α1,α2

U
τ,s,s
α′α2,α1αpη,1

α1,α2
− E (t ) · dα′→α

η

)
�f

η

α′,α, (A16)

with Ẽη
α = Eη

α − �η
α . The interband solutions to the system of first-order differential equations in Eq. (A16) give the excitonic

states.

APPENDIX B: STRUCTURE FACTORS

In this section, we find an explicit expression for the structure factors F
τ,s
α,α′ defined in Eq. (23). The explicit expression allows

for a numerical evaluation of the Coulomb integrals in Eq. (22). Inserting the expression for the single-particle wave function,
Eq. (6), in the structure factors, we find

F
τ,s
α,α′ =

∫
d2r

ei(qy−ky+k′
y )y

Ly

eiqxx
[
Bn,λ

τ,s Bn′,λ′
τ,s φnτ,− (x̃)φn′

τ,− (x̃
′)+ Cn,λ

τ,s Cn′,λ′
τ,s φnτ,+ (x̃)φn′

τ,+ (x̃
′)
]
, (B1)

where the notation is x̃ = x + l2Bky , x̃ ′ = x + l2Bk′
y , nτ,− = n − (τ + 1)/2, and nτ,+ = n + (τ − 1)/2. For each term of Eq. (B1),

we calculate an integral of the type

∫
dxeiqxxφn(x̃)φn′ (x̃ ′) = exp

(
− l2B (ky − k′

y )
2 + l2Bq2x

4
+ iqx

l2B

2
(ky + k′

y )

)√
n<!

n>!

(
ilBqx + lB sgn(n − n′)(ky − k′

y )√
2

)n>−n<

×Ln>−n<

n<

(
l2Bq2x + l2B (ky − k′

y )
2

2

)
, (B2)
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where n> = max{n, n′}, n< = min{n, n′}, and Lm
n are associated Laguerre polynomials. The detailed calculation of the integral

in Eq. (B2) was provided in Ref. [51]. The previous expression allows us to write the structure factors as

F
τ,s
α,α′ (q) = πδ(qy − ky + k′

y )

Ly

exp

(
− l2B |q|2

4
+ iqx

l2B

2
(ky + k′

y )

)
J

τ,s
λn,λ′n′ (q), (B3)

where the function J
η

λn,λ′n′ is defined as

J
τ,s
λn,λ′n′ (q) =

(
ilBqx + lB sgn(n − n′)qy√

2

)n>−n<

[√
[n< − (τ + 1)/2]!
[n> − (τ + 1)/2]!B

n,λ
τ,s Bn′,λ′

τ,s L
n>−n<

n<−(τ+1)/2

(
l2B |q|2
2

)

+
√
[n< + (τ − 1)/2]!
[n> + (τ − 1)/2]!C

n,λ
τ,s Cn′,λ′

τ,s L
n>−n<

n<+(τ−1)/2

(
l2B |q|2
2

)]
. (B4)

The expression for the structure factors in Eq. (B3) is used to calculate both the excitonic properties and the exchange self-energy
corrections.
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We study the optical properties of semiconducting transition metal dichalcogenide monolayers under the
influence of strong out-of-plane magnetic fields, using the effective massive Dirac model. We pay attention to the
role of spin-orbit-coupling effects, doping level, and electron-electron interactions, treated at the Hartree-Fock
level. We find that optically induced valley and spin imbalance, commonly attained with circularly polarized
light, can also be obtained with linearly polarized light in the doped regime. Additionally, we explore an
exchange-driven mechanism to enhance the spin-orbit splitting of the conduction band, in n-doped systems,
controlling both the carrier density and the intensity of the applied magnetic field.
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I. INTRODUCTION

The discovery of two-dimensional (2D) systems whose
quasiparticles are described in terms of a Dirac theory [1] has
been one of the major breakthroughs over the last two decades
in condensed matter physics and has fueled research in the
area of 2D materials [2,3]. Graphene, that features gapless
Dirac cones in the neighborhood of the Fermi energy [4],
is a paradigmatic example. Interestingly, there are also 2D
semiconductors that require a description through a massive
Dirac equation [5,6], instead of a Schrödinger-type model.
Whereas both Dirac and Schrödinger theories would yield
similar energy bands, their wave functions and linear response
are distinct. The massive Dirac Hamiltonian comprises a
finite Berry curvature that entails an unconventional Hall re-
sponse [7]. The Landau level spectrum of massive Dirac elec-
trons features valley-dependent zeroth Landau levels aligned
with either the valence or the conduction bands [8]. These
properties are absent for Schrödinger quasiparticles.
The effective picture in terms of a gapped Dirac Hamilto-

nian provides a unifying description of materials that, from
the chemical point of view, are quite different. For instance,
whereas for graphene the Dirac states are made of pz or-
bitals [4], for transition metal dichalcogenides they are made
of dx2−y2 and dxy orbitals in the valence band and dz2 in the
conduction band [5,9].
In this work, we study the optical response of mas-

sive Dirac systems under the influence of applied out-of-
plane magnetic fields. We focus on the case of transition
metal dichalcogenide (TMD) monolayers MX 2, where M =
Mo,W and X = S,Se, whose magneto-optical properties

*goncalo.catarina@inl.int
†On leave from Departamento de Física Aplicada, Universidad de
Alicante, 03690 San Vicente del Raspeig, Spain.

have attracted considerable interest both from the experi-
mental [10–13] and theoretical [14,15] sides. These direct-
band-gap semiconductors are the object of intense scrutiny
because of their strong light-matter coupling [16,17], strong
spin-orbit interactions [5,9], rich excitonic effects [18–21],
and potential applications in the emergent field of valleytron-
ics [22,23]. Nevertheless, our results can be easily adapted to
other systems described by a massive Dirac equation, such as
gapped graphene [24,25], silicene and related materials [26],
or antiferromagnetic honeycomb semiconductors [27].
The effects of orbital coupling to an external out-of-plane

magnetic field, as well as spin-orbit interactions, are explicitly
taken into account. Electron-electron interactions are consid-
ered at the Hartree-Fock level, but electron-hole attraction
and corresponding excitonic effects are left for a companion
publication [28].
The rest of this paper is organized as follows. In Sec. II,

we introduce the physical system and its model Hamiltonian,
which forms the basis for the whole work. Section III contains
the formalism used to calculate the magneto-optical proper-
ties, in particular the derivation of the electric susceptibility
response function. The analysis of the results is presented in
Sec. IV for the longitudinal susceptibility, in Sec. V for the
transverse susceptibility, and in Sec. VI for the response to
circularly polarized light. Section VII is devoted to the cal-
culation of the exchange self-energy corrections. Additional
technical details are provided in the Appendices.

II. MODEL HAMILTONIAN

We consider a single-layer TMD in the xy plane with a per-
pendicular uniform magnetic field pointing in the z direction.
The crystal structure consists of a hexagonal lattice of trigonal
prismatic unit cells, each of them containing one transition
metal atom and two chalcogens. The resulting hexagonal
Brillouin zone has two inequivalent sets of three equivalent

2469-9950/2019/99(12)/125405(17) 125405-1 ©2019 American Physical Society
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FIG. 1. Representation of the physical system. (a) Light is
shinned into a transition metal dichalcogenide (TMD) monolayer
subject to a perpendicular magnetic field B, uniform in space and
time. (b), (c) The TMD crystal structure consists of a hexagonal
lattice [top view shown in (c)] of trigonal prismatic unit cells (b),
each of them containing one transition metal atom (big gray spheres)
and two chalcogens (small red spheres); in (c), the blue region marks
the unit cell of the crystal, defined by the primitive vectors a1 and a2.
(d) Corresponding (hexagonal) Brillouin zone, defined in reciprocal
space by the primitive vectors b1 and b2, with the Dirac points K and
K ′ indicated.

corners, the so-called K and K ′ valleys (or Dirac points). Due
to the absence of an inversion center, the valley index provides
an additional discrete degree of freedom for carriers in this
system. The physical system is depicted in Fig. 1.
In the low-energy regime, the electronic properties of TMD

monolayers are often described by a massive Dirac Hamil-
tonian around the valleys [5,14,29,30]. Spin-orbit coupling
(SOC) splits both the valence and conduction bands, with
opposite spin splittings at the two valleys, preserving time-
reversal symmetry thereby and leading to the so-called spin-
valley coupling [5]. The magnitude of SOC splitting in the
valence and conduction bands is different, on account of their
different atomic orbital breakdown. The spin splitting of the
valence band is of the order of hundreds of meV whereas, in
the conduction band, it is smaller than few tens of meV [29].
Moreover, different TMD materials yield different relative
signs of spin splitting in the conduction and valence bands
at a given valley [29]. In these systems, SOC commutes with
the spin operator Sz. As a result, it can be introduced in a
phenomenological manner [20,31] by redefining the Dirac
mass, including a valley (τ ) and spin (s) dependency � →
�τ s, and adding an offset energy term ξτ s, defined below.
In the presence of a uniform out-of-plane magnetic field

B = B0ẑ, the single-particle Hamiltonian for each valley and
spin subspace is thus written, in the Landau gauge, as

H τ,s
0 = vF (τσx px + σy py + eB0xσy)+ �τ sσz + ξτ s12, (1)

where τ = ± (+ for the K valley and − for the K ′), s =
↑(+),↓(−), vF is the Fermi velocity, σi (i = x, y, z) are the
Pauli matrices with eigenvalues ±1, p = (px, py) = −ih̄∇ is
the canonical electron momentum (h̄ is the reduced Planck
constant), −e < 0 is the electron charge and 12 is the 2× 2
identity matrix. The Pauli matrices and the identity matrix act
on the space of the highest-energy valence and lowest-energy
conduction states [5]. The explicit forms of the valley- and
spin-dependent Dirac mass �τ s and offset energy ξτ s read
as [20,31]

�τ s = � − τ s
�V
SOC − �C

SOC

4
, ξτ s = τ s

�V
SOC + �C

SOC

4
,

(2)

where �V
SOC (�

C
SOC) is the spin splitting in the valence (con-

duction) band. For B0 = 0, the band gap is given by 2�τ s.
The effective Hamiltonian (1) shows that the dependency

of the mass term on the valley and spin indices is encoded
in the product τ s. In addition, the valley index appears on its
own in the kinetic term, leading to valley-selective circular
dichroism (introduced in Sec. III C), as we discuss in Sec. VI.
We neglect Zeeman splitting, that could be easily added as an
additional term gμBB0

s
212, where g is the g factor and μB the

Bohr magneton. This term would split the energy bands of the
two spin channels by |g|μBB0 � 0.12B0 [T]meV. Compared
to the spin splitting driven by the strong SOC, this effect is,
for any reasonable scenario, negligible in the valence bands
of TMDs. As for the conduction bands, even though Zeeman
and SOC can yield comparable magnitudes for strong applied
fields, the results discussed in this paper are not substantially
affected by the absence of Zeeman splitting in the model. The
effect of higher than first order k · p terms in the Hamilto-
nian [30] has also been ignored.
Closed analytical expressions for the eigenstates of H τ,s

0
can be obtained in terms of Landau levels that fall into two
categories: the zeroth Landau level and the n �= 0 Landau
levels [8,24,32]. The eigenvalues read as

E τ,s
n,λ = λ

√
�2

τ s + 1
2 (h̄ω0)

2n + ξτ s, (3)

where ω0
2 = vF

lB
is the characteristic angular frequency (lB =√

h̄
eB0
is the magnetic length) and {n; λ} is the set of quantum

numbers that describes the energy levels of this system, in
which n is the Landau level (LL) index and λ the conduction
(C) or valence (V) band index. For the n �= 0 LLs, n =
1, 2, . . ., and λ = +(C),−(V ); the zeroth Landau level (0LL)
is obtained setting n = 0 and λ = −τ . The corresponding
wave functions yield

ψτ,s
n,λ,ky

(u, y) = eikyy√
Ly

e−u2/2√√
π lB

Cτ,s
n,λ

(
H̃nτ
(u)

iBτ,s
n,λH̃nτ +τ (u)

)
, (4)

where ky stands for the wave vector in the y direction, which is
quantized as ky = 2πny

Ly
, ny ∈ Z by applying periodic bound-

ary conditions along the y direction to a sample of length
Ly. We have also defined u ≡ x

lB
+ lBky, nτ ≡ n − 1+τ

2 , H̃n ≡
1√
2nn!

Hn for n � 0 (where Hn are the Hermite polynomials)

and H̃−1 ≡ 0. The normalization constants Cτ,s
n,λ and Bτ,s

n,λ are
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FIG. 2. Energy bands of monolayer MoSe2 in the Dirac approxi-
mation. Different colors represent different spin projections: blue for
spin up and red for spin down. Dashed lines describe the solutions
without external fields; band crossing exists in the conduction bands
because�C

SOC < 0. The application of an out-of-plane magnetic field
(B0 = 500 T in this figure) leads to the quantization of these bands
into the Landau levels (horizontal lines); the unfeasible magnitude of
B0 is set only for readability purposes, as the observed features do not
change qualitatively when working with practical values. Comparing
the energy bands of both K and K ′ valleys, only the spin projection
is interchanged, except for the zeroth Landau levels (dashed-dotted
lines).

given by

Cτ,s
n,λ =

√√√√ �̄τ s
(
�̄τ s + Ě τ,s

n,λ

)+ n

�̄τ s
(
�̄τ s + Ě τ,s

n,λ

)+ 2n
∈ R (5)

and

Bτ,s
0LL = −i, Bτ,s

n �=0,λ =
√
2n

�̄τ s + Ě τ,s
n,λ

∈ R, (6)

in which �̄τ s ≡ 2�τ s
h̄ω0

, Ě τ,s
n,λ ≡ Ē τ,s

n,λ − ξ̄τ s, Ē τ,s
n,λ ≡ 2E τ,s

n,λ

h̄ω0
, and

ξ̄τ s ≡ 2ξτ s

h̄ω0
.

The band structure implied by Eq. (3) is depicted in
Fig. 2 for the case of MoSe2. Except for Sec. VII, typical
general values h̄vF = 3.5 eV Å and � = 0.8 eV [5] are fixed
throughout the paper. Regarding the SOC parameters, each
TMD is treated in separate as there are significant differences
among different materials, for instance, on the sign of �C

SOC.
The SOC values used in this work are listed in Table I.
The properties of the 0LL eigenstates are quite different

from those of the n �= 0 LLs. The energy levels of the n �= 0
LLs depend on the product τ s, meaning that we can corre-
spond K to K ′ bands by interchanging the spin projections.
However, this does not hold for the n = 0 LLs, whose energy
is given by E τ,s

0LL = −τ�τ s + ξτ s. In fact, we see that the
K (K ′) valley hosts a valencelike (conductionlike) 0LL spin

TABLE I. List of spin-orbit-coupling (SOC) parameters �
V/C
SOC

and effective Bohr magnetons μ̃
(τ s)
B (in units of Bohr magneton μB)

for different transition metal dichalcogenide materials. The SOC pa-
rameters are taken from Ref. [29]. The effective Bohr magnetons are
calculated through the expression defined in the text. By definition,
μ̃
(τ s)
B depends on the product of valley (τ ) and spin (s).

�V
SOC(eV) �C

SOC(eV) μ̃
(τ s=+)
B (μB ) μ̃

(τ s=−)
B (μB )

MoS2 0.148 −0.003 2.11 1.92
WS2 0.430 +0.029 2.30 1.79
MoSe2 0.184 −0.021 2.15 1.89
WSe2 0.466 +0.036 2.32 1.77

doublet. This doublet is split exclusively by SOC, as the 0LLs
do not disperse with the applied magnetic field, which also
contrasts with the n �= 0 LLs.
It must be noted, however, that more elaborate calcula-

tions [15,33] reveal a valley-dependent spectrum that con-
trasts with the Dirac model. Although the valley-dependent
physics of the 0LL is captured in the same manner, these first-
principles calculations show n �= 0 LLs that are also different
for both valleys, even when SOC is ignored [33].
For most practical values of n �= 0 and B0, it is true that

�2
τ s � 1

2 (h̄ω0)
2n. Therefore, we can expand Eq. (3) in Taylor

series and obtain

E τ s
n �=0,C � � + 2μ̃(τ s)

B nB0 + τ s
�C
SOC

2
(7)

and

E τ s
n �=0,V � −

(
� + 2μ̃(τ s)

B nB0 − τ s
�V
SOC

2

)
, (8)

where we have defined the effective Bohr magneton as μ̃(τ s)
B =

eh̄
2mτ s
, in which mτ s = �τ s

v2F
is the effective electron rest mass.

From these equations, it is clear that the n �= 0 LLs disperse
linearly with n and B0, but with a slope that is controlled by
μ̃
(τ s)
B and thus yields different values for τ s = + or τ s = −
(see Table I). As a result, at a given valley, the sign of the spin
splitting between two LLs with the same n �= 0 and different
spin s can be reversed as we ramp either n or B0. This is
apparent in the conduction bands of Fig. 2 and is a direct
consequence of the fact that SOC leads to a spin-dependent
nonrelativistic mass in the Dirac theory, which in turn controls
LL dispersion.

III. MAGNETO-OPTICAL RESPONSE: FORMALISM

In this section, we introduce a general formalism to calcu-
late the magneto-optical response in metals and semiconduc-
tors: the equation of motion (EOM) method [34], a technique
based on Ref. [35] and generalized to include the effect of
external magnetic fields. The EOM method permits to derive
analytical expressions of response functions that are fully
equivalent to the Kubo formula when linear response theory is
employed and electron-electron interactions are not taken into
account. Here, we apply this formalism to the Hamiltonian
described in Sec. II and derive, within the linear response
regime, analytical expressions for the electric susceptibility
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tensor in the Cartesian basis, which are then manipulated
to explicitly address the case in which the incident light is
circularly polarized. Free carrier transitions are considered
in a first approximation, disregarding all the Coulomb in-
teractions and thus treating electrons and holes as quasifree
particles. Compared to the Kubo formula, the advantage of
the EOM method is that, by treating Coulomb effects at the
same level of the interaction with light, further corrections
can be introduced within the same formalism. In Sec. VII, we
account for Coulomb interactions at the self-energy level. The
role of excitonic effects is the main subject of a forthcoming
publication [28].

A. Dipole matrix elements

The interaction with light is included, within the dipole
approximation, via the following Hamiltonian:

HI = −d · E = er · E (t ), (9)

where r = (x, y) is the 2D position vector, d = −er is the
electric dipole moment, and E = E (t ) is the electric field
of the incident light, which is assumed homogeneous and
dependent of the time t .
The method used in this paper relies on the calculation

of the expectation value of the electric polarization density
operator with regard to the unperturbed Hamiltonian, whose
(complete) basis is α = {n; λ; ky}. Therefore, the matrix ele-
ments of the polarization density created by the dipole P = d

A
(A is the area of the system) are relevant quantities that define
optical selection rules.
The computation of the dipole matrix elements in each one

of the η = {τ ; s} subspaces, dη

α→α′ = 〈α′|d|α〉η = (dη

α′→α )
∗,

shows that only transitions between the same ky are coupled,
i.e., dη

α→α′ = δky,k′
y
dη{n′;λ′}

{n;λ} [36]. In addition, it also reveals that
the only nonzero terms are

dη{n+τ ;λ′}
{n;λ} = −eh̄vF

Eη

n,λ − Eη

n+τ,λ′
Cη

n+τ,λ′C
η

n,λBη

n,λ
(−τ, i) (10)

for n + τ � 0, and

dη{n−τ ;λ′}
{n;λ} = −eh̄vF

Eη

n,λ − Eη

n−τ,λ′
Cη

n−τ,λ′C
η

n,λ

(
Bη

n−τ,λ′
)∗
(τ, i) (11)

for n − τ � 0. The former relations embody the following
optical selection rule: for an electron with wave vector ky and
in a given LL with index n, the absorption of a photon can only
induce a transition, which can be intraband or interband, to a
state with the same wave vector and with a LL index given by
n′ = n ± 1 � 0. This well-known selection rule [25,26,34,37]
adds up to the ones imposed by construction: the decoupling
of the valleys, which is consistent with the dipole approxima-
tion, and the decoupling of the spins, which is consistent with
the lack of spin-flip terms in the Hamiltonian.

B. Electric susceptibility

Moving to the Heisenberg picture, and introducing the
(time-dependent) creation/annihilation fermionic operators in
this representation, ĉ†α,η(t )/ĉα,η(t ), the total Hamiltonian can
be written as

Ĥ (t ) = Ĥ0(t )+ ĤI (t ), (12)

where

Ĥ0(t ) =
∑
η,α

Eη
α ĉ†α,η(t )ĉα,η(t ) (13)

is the unperturbed Hamiltonian and

ĤI (t ) = −E (t ) ·
∑

η,α,α′
dη

α→α′ ĉ
†
α′,η(t )ĉα,η(t ) (14)

is the Hamiltonian that describes the dipole interaction with
light. Repeating the same procedure for the polarization den-
sity, we get

P̂(t ) = 1

A

∑
η,α,α′

dη

α→α′ ĉ
†
α′,η(t )ĉα,η(t ) (15)

and, defining the general operator T̂ η

α,α′ (t ) ≡ ĉ†α′,η(t )ĉα,η(t ),
whose EOM reads as

−ih̄
d

dt
T̂ η

α,α′ (t ) = [Ĥ (t ), T̂ η

α,α′ (t )
]
, (16)

it is apparent that the time evolution of the polarization density
operator can be achieved by solving Eq. (16).
The details regarding the technical step of solving the

above-mentioned EOM are provided in Appendix A. In short,
we start by calculating the commutator, so we can explic-
itly write the differential equation. Then, we solve for its
expectation value within the linear response approximation
and in the adiabatic regime. The outcome is the expression
for 〈P̂(t )〉 ≡ P(t ) within the former approximations.
Expressing P(t ) through its Fourier transform P(ω), we

are then able to recognize the (homogeneous and dynamical)
electric susceptibility tensor

χ (ω) =
(

χxx(ω) χxy(ω)
χyx(ω) χyy(ω)

)
(17)

via the constitutive relation P(ω) = ε0χ (ω)E (ω), where ε0
is the vacuum permittivity, ω is the angular frequency, and
E (ω) is the Fourier transform of E (t ). Putting it all together,
we conclude that χxx = χyy and χxy = −χyx, which is an
expected result for systems with C6 symmetry [38]. The final
expressions for the longitudinal and transverse susceptibilities
χxx and χyx, respectively, read as

χxx(ω) = S+(ω), χyx(ω) = iS−(ω), (18)

where S±(ω) are auxiliary functions defined as

S±(ω) ≡
∑

η

∑
{n;λ},λ′

f
(
Eη

n+1,λ′
)− f

(
Eη

n,λ

)
2π l2Bε0

∣∣dη
x

{n+1;λ′}
{n;λ}

∣∣2

×
(

1

Eη

n,λ − Eη

n+1,λ′ + h̄ω + i�

± 1

Eη

n,λ − Eη

n+1,λ′ − h̄ω − i�

)
, (19)

in which � is a phenomenological parameter that accounts
for disorder within the adiabatic approximation and f stands
for the Fermi-Dirac distribution at Fermi level μ and absolute
temperature T (see Appendix A for details). Throughout this

125405-4



OPTICAL ORIENTATION WITH LINEARLY POLARIZED … PHYSICAL REVIEW B 99, 125405 (2019)

work, we have set � = 7 meV, which is a rather low but feasi-
ble value that corresponds to samples of TMDs encapsulated
in hexagonal boron nitride and with little impurity [39,40].
The disorder parameter does not influence the results pre-
sented in this paper if the full-width at half-maximum of the
Lorentzian implicit in Eq. (19), 2�, is smaller (or at least of
the same order of magnitude) than the LL splitting, which
is roughly given by 2μ̃(τ s)

B B0 ∼ 0.2B0 [T]meV. This explains
why we have set such strong (but still feasible) out-of-plane
magnetic fields in the optical response results. For clarity
purposes, we stress that, to write χyx(ω) in its final form, we

have used that (dη
y

{n+1;λ′}
{n;λ} )

∗
dη

x
{n+1;λ′}
{n;λ} = i|dη

x
{n+1;λ′}
{n;λ} |2.

C. Circularly polarized light

Associated with the will of exploring valley-based op-
toelectronic applications, many studies deal with circularly
polarized light [41,42]. The underlying mechanism is valley-
selective circular dichroism, i.e., differential absorption of
left- and right-handed photons when comparing the contri-
butions from inequivalent valleys. This contrasts with the
usual circular dichroism, for which there is a difference in
the (overall) absorption of left-handed (σ−) and right-handed
(σ+) light. At B = 0, the massive Dirac Hamiltonian breaks
time-reversal symmetry in each valley, leading to a circular
dichroism that is valley dependent [41,43,44]. In this case, the
total circular dichroism vanishes when summing over valleys,
as time-reversal symmetry is restored. However, illumination
with circularly polarized light results in populations of excited
carriers with valley polarization. Conceptually, this permits
to access the valley pseudospin degree of freedom, the key
idea of valleytronics. In addition, because of the strong SOC,
the same mechanism also leads to an optically induced spin
imbalance in TMD materials [44]. In this work, we propose a
complementary route to induce both valley and spin polariza-
tion in TMDs with linearly polarized light. Nevertheless, for
completeness, we discuss here the case of incident circularly
polarized light, which is relevant for Sec. VI.
Assuming incident light with circular polarization, i.e.,

E (ω) = E±(ω) ≡ E0(ω)√
2
(1, e±iπ/2), where E0(ω) is the (equal)

amplitude of the two plane waves and± stands, in the point of
view of the source, for right and left polarization, respectively,
the electric susceptibility tensor is shown to be diagonal in the
circular basis, with the diagonal elements given by

χ±(ω) = χxx(ω)± iχyx(ω). (20)

This relation lays on symmetry foundations as it is valid as
long as χxx = χyy and χxy = −χyx are satisfied. Moreover, it
shows that circular dichroism is encoded in the real part of
χyx.

IV. LONGITUDINAL SUSCEPTIBILITY

We now move onto the discussion of the main features that
characterize the low-energy noninteracting magneto-optical
response in TMDs. Although Coulomb interactions are known
to be significant [10,13,21], the study of the noninteracting
limit provides reference for further analyses.
In this section, we discuss the results for the dynamical

longitudinal susceptibility χxx(ω). This quantity is directly

relevant in modeling experiments where TMDs are excited
with linearly polarized light. In addition, χxx(ω) contributes
to χ±(ω), as seen in Eq. (20). Therefore, it is also impor-
tant to interpret the response to circularly polarized light
(Sec. VI).
The evaluation of Eq. (19) requires a cutoff, as usual when

dealing with low-energy effective models. For this matter, we
establish a range of frequencies that are consistent with the
underlying k · p theory that leads to the Dirac Hamiltonian. By
construction, this theory is only valid in the neighborhood of
the high-symmetryK andK ′ points, which sets an energy win-
dow out of which the model does not work. Taking an energy
window of [−1.5, 1.5] eV, for which the upper bound lies
∼0.7 eV above the bottom of the conduction band, and bear-
ing in mind the optical selection rules, plus the Pauli exclusion
principle, we see that h̄ω � 3 eV is a suitable criterion, as
it contemplates all and only the transitions between bands
within the energy window. This provides an intrinsic cutoff
for the imaginary part of χxx(ω), given that the only bands
that contribute satisfy |Eη

n,λ − Eη

n+1,λ′ | � h̄ω. For the real part,
we have found that numerical convergence is attained with a
cutoff energy of |Ecut| ∼ 4 eV, which corresponds to a cutoff
in the LLs, ncut, that varies roughly as 4× 104(B0 [T])−1.
The analysis of the results in this section is divided into

three main categories that depend on the doping level. We first
consider the case of an intrinsic TMD, with μ lying inside
the gap. Then, we focus on the doped regime and separate
two distinct scenarios. First, we take a system on which
the 0LLs do not participate in the optical transitions. Second,
we discuss the case of a TMD n-doped (p-doped) up to the
first 0LL in the conduction (valence) band, for which the opti-
cal transitions that involve the 0LLs take a predominant role.

A. Undoped regime: Fermi level in the gap

As we discuss in Sec. V, χyx vanishes for arbitrary ω in
the undoped regime. Thus, for intrinsic TMDs, the magneto-
optical response is governed exclusively by χxx. When μ lies
in the gap, intraband transitions are Pauli blocked, as thermal
activations are negligible compared to the band gap, even at
room temperature (kBT � 26 meV for T = 300 K, compared
to gaps in the order of 2� = 1.6 eV). Therefore, in the
undoped regime, the magneto-optical response is independent
of the temperature and fully driven by interband transitions.
Figure 3 shows a plot of χxx(ω) in a neutral MoS2 for
B0 = 30 T, whose discussion follows.
The imaginary part of χxx(ω) describes photon absorption

processes, induced when the photon energy matches the en-
ergy difference between an occupied and an empty state. The
resulting curve features a structure of peaks that correspond
to interband transitions satisfying the optical selection rules,
which are summarized in Table II. It must be noted that,
although spin-valley coupling is not manifest in the LL spec-
trum due to the valley-dependent 0LLs (see Fig. 2), τ s is still
a relevant quantity to characterize transition energies, as all of
them are maintained when we change valley and spin at the
same time, even if the 0LLs are involved.
Within the frequency range T (τ s=+)

0 < h̄ω < T (τ s=−)
0 ,

where T (τ s=±)
0 = EK,±

1,C − EK,±
0LL = EK ′,∓

0LL − EK ′,∓
1,V are the tran-

sition energies that correspond to the vertical blue and red
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FIG. 3. Longitudinal susceptibility χxx , as a function of the pho-
ton energy, in monolayer MoS2 at the charge neutrality point and for
a magnetic field of 30 T (results independent of the temperature).
The imaginary part, which is directly related with optical absorption,
shows a sequence of peaks that correspond to the allowed optical
transitions. The vertical dashed lines mark the energy of the less
energetic transition for each spin-valley product: for the K (K ′)
valley, blue is for spin up (down) and red for spin down (up). The
presence of a plateau between the vertical lines is the signature of
spin-orbit-coupling effects.

lines in Fig. 3 (respectively), only two (out of four) flavors
of τ and s contribute to the absorption, namely, the ones
that respect τ s = +. For h̄ω > T (τ s=−)

0 , the absorption curve
features a second step that marks the entrance of transitions
with τ s = −. The energy splitting of the two thresholds,
given by T (τ s=−)

0 − T (τ s=+)
0 , depends explicitly on the SOC

parameters and is easily shown to vanish if and only if�V
SOC =

�C
SOC = 0. Thus, the presence of a plateau in Im{χxx(ω)} is a

direct consequence of SOC interactions.
We now discuss the intensity of the degenerate transitions,

which come in doublets for T (τ s)
0 and in quadruplets for all the

other transition energies, as depicted in Table II. The height of
the transitions is governed by the dipole matrix elements in
Eq. (19), which satisfy the identity∣∣dτ,s

x
{n+1;λ′}
{n;λ}

∣∣2 = ∣∣d−τ,−s
x

{n+1;−λ′}
{n;−λ}

∣∣2. (21)

This relation shows that “counterpart transitions,” i.e., tran-
sitions with the same energy and equal contributions to the

TABLE II. List of the allowed optical transitions in intrin-
sic transition metal dichalcogenides, organized by their energies
(T (τ s)
0 , T (τ s)

1 , . . .). The representation of the transitions that corre-
spond to each energy is separated by valley τ , for a fixed spin-valley
product (in this case given by τ s = s, where s is the spin index).
There are four degenerate transitions for every energy, except for
T (τ s)
0 , for which there are two. Transitions with equal contributions
to the optical response are presented in the same line.

K, s K ′, −s

T (τ s)
0 {0;V} → {1; C} {1;V} → {0; C}

T (τ s)
1 {1;V} → {2; C} {2;V} → {1; C}

{2;V} → {1; C} {1;V} → {2; C}
T (τ s)
2 {2;V} → {3; C} {3;V} → {2; C}

{3;V} → {2; C} {2;V} → {3; C}
T (τ s)

n>0 {n;V} → {n + 1; C} {n + 1;V} → {n; C}
{n + 1;V} → {n; C} {n;V} → {n + 1; C}

optical response, are obtained by changing valley, spin, and
also the band indexes at the same time. In Table II, we present
the counterpart transitions in the same line. It is therefore clear
that every absorption peak in Fig. 3 (which is characterized
by a given τ s product) has equal contributions from the two
possible τ and s combinations. For instance, using the notation
of Table II, this means that a peak with energy T (τ s=+)

n has
equal contributions from τ = K, s = ↑ and τ = K ′, s = ↓.
Interestingly, in the case of the quadruplets, the two pairs of

counterpart transitions are not equivalent in intensities. In fact,
the computation of the dipole matrix elements shows that one
pair of transitions is overwhelmingly stronger than the other.
This feature cannot be observed through the spin and valley
breakdown of the absorption curve because both the weak and
strong pairs of transitions are allowed in the undoped regime.
However, as we discuss in Sec. IVB, doping allows to explore
this property.
The real part of χxx(ω), which describes the reactive dielec-

tric response of the TMD, is also shown in Fig. 3. Expectedly,
for in-gap frequencies, it decays smoothly as we decrease
h̄ω below the absorption threshold. Above the absorption
threshold, it oscillates as a function of the frequency, due to
the presence of many resonant peaks in absorption.

B. Doped system with optical transitions to zeroth
Landau levels Pauli blocked

Away from charge neutrality, we find two fundamental dif-
ferences with the undoped regime. First, intraband transitions
enter into play, while some of the interband ones become Pauli
blocked. Second, the ac Hall response, given by χyx(ω), is
no longer null, as we explore in Sec. V. The carrier density
implied to get to this regime can arise either from gating or
chemical doping.
We start with the case where the 0LLs cannot participate in

the optical transitions, neither as initial nor final states. Due to
the optical selection rules, it suffices to have μ lying above
(below) both n = 1 LLs in the conduction (valence) band.
In this regime, the system is a quantum Hall insulator and
the ground state has no spin nor valley polarization. Without
loss of generality, we take the example of an n-doped MoS2,
with μ = 1 eV (∼0.2 eV above the bottom of the conduction
band), for a magnetic field of 50 T. The overview of the results
is presented in Fig. 4, and its analysis follows.
Intraband and interband absorptions occur at very different

frequencies, as observed in Fig. 4(a). The energy scale of
the intraband absorption peak is controlled by the energy
difference between two adjacent LLs in the same band,
which, using Eqs. (7) and (8), can be estimated as 2μ̃(τ s)

B B0 ∼
0.2B0 [T]meV. Even for a very large field of 50 T, we see
that the intraband peak occurs around h̄ω = 10 meV � 2�.
Thus, the discussion of the intra and interband parts of the
magneto-optical spectrum can be separated.
At T = 0, the intraband peak in absorption has contribu-

tions from a total of four transitions. These intraband tran-
sitions connect the last occupied LL, {n; λ} = {nF ; sign(μ)},
and the first empty one, {n; λ} = {nF + sign(μ); sign(μ)}, for
the four channels of τ and s. Due to spin-valley coupling,
the four transitions are divided into two nondegenerate pairs
of degenerate transitions. The valley and spin breakdown of
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(a)

(b)

(c)

(d)

FIG. 4. Longitudinal magneto-optical response in a doped
(Fermi level μ = 1 eV) monolayer MoS2, for a magnetic field of
50 T: in (a), the longitudinal susceptibility χxx is plotted as a function
of the photon energy (results in the inset are roughly independent of
the temperature T ); (b) and (c) show the valley and spin breakdown
of the absorptive part of χxx at zero absolute temperature; in (d),
a scheme of the optical transitions between the energy bands is
presented. Discussion is provided in the text.

the intraband absorption peak, presented in Fig. 4(b), shows
that the degenerate transitions yield different but comparable
intensities. In addition, it also shows that the nondegenerate
transitions cannot be resolved in energy. This is explained by
the presence of a broadening parameter � = 7 meV, which
blurs the small energy splitting between the peaks.
The broadening parameter also makes the intraband optical

spectrum robust with respect to variations in the temperature.
The small temperature dependency can be understood with
the help of the scheme in Fig. 4(d). Looking at the short
arrows, which represent intraband transitions that respect the
optical selection rules, we see that the green one marks
the only allowed transition at T = 0. At finite temperatures,
other LLs are thermally activated (blue region) and enable
more transitions (yellow arrows). The absence of a noticeable
temperature dependency is then obtained because, up to the
first Pauli blocked transitions (red arrows), the variation in
energy of these transitions is small compared to �. This is
a consequence of the highly linear dispersion of the LLs with
n in the regime �2

τ s � 1
2 (h̄ω0)

2n.
Doping introduces new features in the interband contribu-

tions to χxx(ω). First, we observe a blue-shift of the absorption

threshold, associated with the filling of LLs in the conduction
band, for the case of an n-doped system, or the depletion of
LLs in the valence band, in the case of p doping. Second,
we obtain a line shape that carries a significant temperature
dependency, as seen in Fig. 4(a). At T = 0, the line shape
features a similar double-step structure that reflects the strong
SOC. However, at room temperature, this feature is smoothed
out and the explanation is self-evident in the scheme of
Fig. 4(d). Looking at the long arrows, which mark the less
energetic interband transitions in play due to thermal activa-
tion (within the same color code as before), it is clear that,
in contrast with the intraband optical spectrum, the increase
of the temperature induces transitions that can be resolved in
energy, which in turn leads to the disappearance of a clear
double-step structure. It must be noted that our analysis does
not include the reduction of the band gap with the increase
of the temperature, expected due to thermal expansion of the
lattice that widens the bands [45].
The most intriguing difference between the doped and

undoped interband optical spectra is observed in the limit of
T = 0, whose validity is discussed below. In the doped case,
the height of the lowest-energy interband peak in absorption
is half of the others within the SOC plateau. The origin of this
“half-peak” is explained through the Pauli exclusion principle.
For a given τ s, and since 0LLs are not in play, there are in
general four degenerate interband transitions contributing to
the absorption peaks, as depicted in Table II. However, for the
half-peak, two out of the four transitions are Pauli blocked,
leading to a reduction of the intensity by half. In Fig. 4(d),
the two blocked transitions are represented by the yellow
dashed arrow, while the two allowed ones are represented
by the long green arrow [46]. In practice, the limit T = 0
is valid as long as the thermal activation does not change
considerably the occupation of the LLs that are immediately
above or below the Fermi level. This is realized for T � 0.5B0
[T]K.
Interestingly, the elimination of two out of four transitions

that results in the half-peak also provides a way to induce
both a valley and spin imbalance in TMDs using linearly
polarized light. The intensity of the four degenerate transitions
is controlled by the matrix elements, in such a way that
there are two equally strong and two equally weak oscillator
strengths, as previously mentioned in Sec. IVA. For instance,
Eq. (21) imposes that if some transition {n;V} → {n + 1; C} is
strong in the channel {τ ; s}, so it is the (counterpart) transition
{n + 1;V} → {n; C} in the channel {−τ ;−s}. Now, in the case
of the half-peak, Pauli blocking occurs for transitions that
are not counterpart of each other, which results on having
only one of the two strong transitions active. Therefore, the
resulting absorption is overwhelmingly dominated by just one
valley and one spin, as observed in Fig. 4(c). In fact, the
intensities are so different that the contribution of the weak
transition cannot be detected.
Our findings imply that driving a doped TMD with linearly

polarized light can induce a nearly perfect spin and valley
imbalance at some specific range of frequencies of the longi-
tudinal magneto-optical absorption. As we shall see in Sec. V,
the same imbalance is also verified in the transverse response.
These findings permit to envision a mechanism for optical
orientation and add value to the field of valleytronics.
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(a)

(d)

(c)

(e)

(b)

FIG. 5. (a) Hall susceptibility χyx , as a function of the photon energy, in a doped (Fermi level μ = 1 eV) monolayer MoS2 at zero absolute
temperature and for a magnetic field of 50 T. (b)–(e) Valley and spin breakdown of the real [(b), (c)] and imaginary [(d), (e)] parts of (a),
divided in the (noncanceling) contributions that come from intraband [(b), (d)] and interband [(c), (e)] optical transitions. The valley and spin
breakdown of the interband optical spectrum reveals a dominant contribution of transitions within the K valley.

C. Doped system with a single Landau level polarized

We now briefly comment on the regime where the TMD
is doped with electrons or holes up to the first 0LL in the
conduction or valence band, respectively. In this case, the
system has a spin-polarized ground state.
It is straightforward to check that, at sufficiently low tem-

peratures, a single valley and spin control can be achieved
either at the intraband part of the longitudinal absorption
spectrum or at the frequency of the less energetic transition
in the interband part. In this situation, the spin and valley
selectiveness is not nearly perfect as a consequence of ex-
tremely unbalanced dipole matrix elements (as in Sec. IVB)
but exact and based entirely on the optical selection rules. This
is strongly connected with the findings from Ref. [26].
The carrier density needed to polarize a single LL is given

by |ρ| � 2.4× 1010B0 [T] cm−2. Thus, the right combination
of carrier density and magnetic field that leads to this regime
seems within experimental reach.

V. TRANSVERSE SUSCEPTIBILITY

In this section, we undertake the analysis of the dynamical
transverse susceptibility χyx(ω), also known as Hall suscepti-
bility. As seen in Eq. (20), this quantity determines circular
dichroism. Therefore, it is relevant to model experiments
that explore the magneto-optical Kerr effect and the Faraday
rotation, for example.
At half-filling, the contributions to χyx(ω) coming from

opposite valleys have opposite signs. As a result, the total
χyx(ω) vanishes, although each valley yields a finite ac Hall
response, as demonstrated in Appendix B. Thus, the appli-
cation of an out-of-plane magnetic field, which breaks time-
reversal symmetry, is not sufficient to induce a Hall response
in intrinsic TMDs.
For doped TMDs, the transverse susceptibility is no longer

null and can be split into two terms χyx(ω) = χ intrayx (ω)+
χ interyx (ω), which are determined by intraband and interband

types of optical transitions, respectively. For simplicity, we
take T = 0 and consider a system in which the 0LLs cannot
participate in the optical transitions. This regime is realized
for T � 0.5B0 [T]K and μ > max(Eη

1,C ) or μ < min(Eη

1,V ).
Within these considerations, we obtain largely simplified ana-
lytical expressions for χ intrayx (ω) and χ interyx (ω), given by

χ intrayx (ω) = i
sign(μ)(h̄ω + i�)

π l2Bε0

∑
η

∣∣dη
x

{nμ+1;sign(μ)}
{nμ;sign(μ)}

∣∣2(
h̄ω

η
nμ

)2 − (h̄ω + i�)2
,

(22)

χ interyx (ω) = i
sign(μ)(h̄ω + i�)

π l2Bε0

∑
η

∣∣dη
x

{nμ+1;sign(μ)}
{nμ;−sign(μ)}

∣∣2(
h̄�

η
nμ

)2 − (h̄ω + i�)2
,

(23)

where nμ = nF − 1−sign(μ)
2 is introduced for convenience and

corresponds to the last occupied LL if μ > 0 or to the first
empty one if μ < 0, while

h̄ωη
nμ

= ∣∣Eη

nμ+1,sign(μ) − Eη

nμ,sign(μ)

∣∣ (24)

and

h̄�η
nμ

= ∣∣Eη

nμ+1,sign(μ) − Eη

nμ,−sign(μ)
∣∣ (25)

are the energies of the intraband and interband transitions
contributing to the Hall response, respectively. For clarity
purposes, we note that the sum over LLs, present in the
general expression for χyx(ω), is taken care of by the fact
that all the (canceling) contributions that lead to a null ac Hall
response in the undoped regime can be removed.
In Fig. 5, we present typical results in the regime for which

Eqs. (22) and (23) are valid. The doping case is the same as
the one considered in Sec. IVB. Additionally, the choice of
the parameters allows for a direct comparison of these results
with the ones obtained in Fig. 4.
In contrast to the longitudinal response, resonance peaks

are observed in the real part of the Hall susceptibility. This
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is justified by the fact that absorption is described by the
susceptibility tensor in its diagonal form [Eq. (20)], i.e., in the
circular basis. In this basis, the contribution to the imaginary
part of χ±(ω) comes from the real part of χyx(ω). Analytically,
this is also verified through Eq. (18) by the presence of an
extra overall imaginary unit when comparing the expressions
for χxx(ω) and χyx(ω).
The results shown in Fig. 5(a) imply genuine (as opposed

to valley-resolved) circular dichroism. Through Eq. (20), we
see that Re{χyx} �= 0 leads to a differential absorption of
σ+ and σ− photons. This effect is stronger at the resonant
frequencies.
The spin and valley breakdown of the Hall response,

shown in Figs. 5(b)–5(e), reveals that interband absorption is
dominated by the K valley. Due to SOC, this also implies a
spin imbalance, given that transition energies are related by
spin-valley coupling. The origin of this result is completely
analogous to the discussion of the half-peak in Sec. IVB.
As in Sec. IVC, it is straightforward to verify that, at

sufficiently low temperatures, a TMD with a single LL polar-
ized induces a (perfect) spin and valley imbalance in the Hall
response, which is based entirely on the optical selection rules.
Evidently, the transitions responsible for this phenomenon
involve the 0LLs.

VI. RESPONSE TO CIRCULARLY POLARIZED LIGHT

The thorough study of χxx and χyx presented in the last two
sections permits to address the magneto-optical response of
TMDs to circularly polarized light. Here, we focus on the ab-
sorptive part of χ±(ω) = χxx(ω)± iχyx(ω) at half-filling. In
Fig. 6, we show representative results, obtained for undoped
MoS2 and B0 = 30 T. The analysis follows.
It is apparent that the absorption of σ− (σ+) pho-

tons is dominated by the K (K ′) valley. Thus, the well-
known [41,43,44] valley-resolved circular dichroism at B0 =
0 is preserved at finite field. Given that χxx(ω) has equal
contributions from both valleys, the valley imbalance is fully

FIG. 6. Imaginary part of the susceptibility to left-handed circu-
larly polarized light χ−, as a function of the photon energy, in mono-
layer MoS2 and for a magnetic field of 30 T (results independent of
the temperature and resolved in the valley and spin contributions).
The peaks in Im{χ−}, which are directly related with absorption
of left-handed photons, reveal a valley-selective circular dichroism
towards the K valley. Results for right polarization are the same with
opposite spin and valley.

controlled by χyx(ω). This is made possible by the fact that,
in the intrinsic case, χyx(ω) is nonzero for each valley, even
though the sum over valleys yields a vanishing ac Hall re-
sponse.
To gain insight about the origin of the valley-selective

circular dichroism, we make the limit of no impurities � →
0+, and use the Sokhotski-Plemelj theorem to write

Im{χ±(ω)} = ±
∑

η

∑
{n;λ}

λ

l2Bε0

∣∣dη
x

{n+1;−λ}
{n;λ}

∣∣2
×δ
(
Eη

n,λ − Eη

n+1,−λ ∓ h̄ω
)
, (26)

where we have also used that, in the undoped regime,

f
(
Eη

n+1,λ′
)− f

(
Eη

n,λ

) = λδλ′,−λ. (27)

Looking at Eq. (26), we observe that the Dirac Delta implies
λ = C/V for right/left polarization. This relation blocks coun-
terpart transitions for the whole interband optical spectrum, in
the same way that doping blocks a specific set of counterpart
interband transitions that contribute to χxx and χyx. As a result,
we get highly unbalanced valley contributions at any ω of the
interband absorption, which are determined exclusively by the
magnitude of the dipole matrix elements.
The presence of SOC interactions is only reflected by

the splitting of the line shapes that correspond to different
spin contributions within the same valley. Thus, the valley-
selective circular dichroism is independent of SOC and only
determined by the τ dependency of the kinetic term in the
Hamiltonian.
These results show that the well-established optically in-

duced valley polarization for intrinsic TMDs [42] remains
upon application of an out-of-plane magnetic field. In ad-
dition, the analytical approach to this problem unveils that
the valley-selective circular dichroism is not a selection rule
that completely cancels absorption in one valley, but a conse-
quence of extremely unbalanced dipole matrix elements.

VII. EXCHANGE SELF-ENERGY CORRECTIONS

We now turn our attention to how the electronic and optical
properties discussed before are modified due to Coulomb
interactions. In particular, we keep track of corrections up to
the self-energy (SE) level, which lead to the renormalization
of the electronic band structure and thus affect the optical
response by changing the frequency of the transitions in play.
Since the dipole matrix elements remain identical, the main
features of the magneto-optical response of TMD monolayers
are maintained at this level of approximation. The inclusion of
these effects is carried out within the same EOM formalism.

A. Keldysh potential

In order to account for electron-electron repulsions in a 2D
landscape, we replace the typical Coulomb potential by the
Keldysh potential [47]. In the direct space, the Keldysh energy
potential between two electrons in r and r′, U (r − r′), has a
rather intricate form. In contrast, its Fourier transform yields
a more transparent expression, given by

U (q) = e2

2ε0

1

q(r0q + 1) , (28)
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where q = (qx, qy) is the transferred momentum and r0 is a
material-dependent constant that measures the deviation from
the 2D Coulomb energy potential, which is recovered making
r0 = 0.
When in presence of a dielectric medium with relative

permittivity εr , Eq. (28) is modified by the transformation
r0q + 1 → r0q + εr . For simplicity, we assume TMDs in
vacuum or suspended in air (εr � 1), thus ignoring screening
effects due to the presence of dielectric media. The magnitude
of the band renormalization so obtained is therefore an upper
limit.

B. Exchange self-energy: Analytical expressions

Disregarding coupling between different valleys, we write
the (two-particle) Hamiltonian that accounts for electron-
electron interactions as

Ĥee(t ) = 1

2

∑
τ

s, s′

∑
α1, α2
α3, α4

U τ,s,s′

α1, α2
α3, α4

ĉ†α1,τ,sĉ
†
α2,τ,s′ ĉα3,τ,s′ ĉα4,τ,s, (29)

where

U τ,s,s′

α1, α2
α3, α4

=
∫

R2

dq
(2π )2

U (q)F τ,s
α1,α4

(q)F τ,s′
α2,α3

(−q) (30)

are the Coulomb integrals and

F τ,s
α,α′ (q) =

∫
A

dr eiq·r[ψτ,s
α (r)

]†
ψτ,s

α′ (r) (31)

the structure factors. In Eq. (29), the time dependency of
the fermionic operators is omitted to shorten notation. The
exclusion of intervalley contributions is justified by the large
momentum difference between K and K ′, which implies a
large transferred momentum that in turn suppressesU (q) and,
consequently, the intervalley Coulomb integrals.
The following task is to include Ĥee(t ) in the total

Hamiltonian (12), and obtain the new (interacting) EOM.
This task boils down to the calculation of the commutator
[Ĥee(t ), T̂ η

α,α′ (t )], whose result is shown in Appendix C 1.
Among the new terms, we then identify and keep the ones
that lead to a band renormalization. Random phase approxi-
mation and linear response regime are implied in this last step
and the details regarding this manipulation can be found in
Appendix C 2. As a final result, we find that the energy bands
are renormalized as(

Eη
α

)
renorm = Eη

α + �η
α, (32)

where

�η
α = −

∑
α′

f
(
Eη

α′
)
U τ,s,s

α′, α
α′, α

(33)

are the exchange SE corrections. As usual, we observe that the
exchange corrections to energy bands with a given spin come
from electrons in bands with the same spin.
The Coulomb integrals can be reduced to one-dimensional

quadratures (see Appendix C 3 for details). At T = 0, Eq. (33)

TABLE III. List of parameters used in the numerical computa-
tion of the exchange self-energy corrections for different transition
metal dichalcogenides. Values in the first and second, third and
fourth, and last columns were taken from Refs. [5], [29], and [18],
respectively.

h̄vF (eV Å) �(eV) �V
SOC(eV) �C

SOC(eV) r0(Å)

MoS2 3.51 0.83 0.148 −0.003 41.5
WS2 4.38 0.90 0.430 +0.029 37.9
MoSe2 3.11 0.74 0.184 −0.021 51.7
WSe2 3.94 0.80 0.466 +0.036 45.1

is simplified into

�η
α = −

∑
{n′,λ′}∈occ.

Dη

{n, λ}
{n′, λ′}

Iη

{n, λ}
{n′, λ′}

, (34)

where Dη

{n, λ}
{n′, λ′}

are real constants defined as

Dη

{n, λ}
{n′, λ′}

= 1

2|n−n′|
(
Cη

n,λCη

n′,λ′
)2

, (35)

Iη

{n, λ}
{n′, λ′}

are integrals given by

Iη

{n, λ}
{n′, λ′}

= 1

l2B

∫ +∞

0

dq̄

2π
q̄2|n−n′ |+1U

(
q̄

lB

)
e−q̄2/2

×
∣∣∣∣L̃|n−n′ |
(nτ ,n′

τ )

(
q̄2

2

)
+ Bη

n,λBη

n′,λ′ L̃
|n−n′|
(nτ +τ,n′

τ +τ )

(
q̄2

2

)∣∣∣∣
2

,

(36)

and the notation {n′, λ′} ∈ occ. means that the sum runs
over occupied states only. In Eq. (36), we have defined q̄ ≡
lBq, L̃|n−n′|

(b,c) ≡
√
min(b,c)!
max(b,c)!L

|n−n′ |
min(b,c) for min(b, c) ∈ N0 (L|n−n′|

min(b,c)

are the associated Laguerre polynomials) and L̃|n−n′|
(b,c) ≡ 0 for

min(b, c) = −1. Moreover, we remind that nτ ≡ n − 1+τ
2 .

In order to evaluate Eq. (34), it is clear that a cutoff is again
required, as the summation implied extends over an infinity of
valence states. Furthermore, we have verified numerically that
the summation diverges logarithmically with the LL cutoff
ncut. Even when dealing with energy differences, this was
checked to lead to corrections that are, to some extent, cutoff
dependent. To fix ncut, we start by counting the total number
of electrons in a TMD sample of area A. At half-filling, we
get 2A/Au.c., where Au.c. =

√
3
2 a2 is the area of the hexagonal

unit cell with lattice parameter a � 3.15 Å [48]. Then, this
number is divided by 4 (to account for spin and valley) and
matched to the number of electronic states in ncut LLs. Given
the degeneracy of the LLs, A

2π l2B
, we obtain that

ncut = π l2B
Au.c.

� 24 000

B0 [T]
(37)

is the number of filled LLs per spin and valley.
In the computations that follow, we use the material-

dependent parameters listed in Table III.
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TABLE IV. Renormalization in energy of a selected set of optical transitions (described in the text) for different transition metal
dichalcogenides and a magnetic field of 10 T: bare and exchange-corrected values (computed at zero absolute temperature) separated by
commas, in the respective order. Results obtained for T K,s

{0,V}→{1,C} are equal to the ones for T K ′,−s
{1,V}→{0,C}.

T K,↑
{0,V}→{1,C}(eV) T K,↓

{0,V}→{1,C}(eV) T K,↑
{1,V}→{0,V}(meV) T K ′,∗

{0,C}→{1,C}(meV)

MoS2 1.587, 2.454 1.738, 2.717 2.4, 105.4 2.4, 103.5
WS2 1.603, 2.567 2.003, 3.024 3.6, 107.9 2.9, 105.1
MoSe2 1.380, 2.202 1.584, 2.433 2.1, 101.2 2.1, 100.7
WSe2 1.388, 2.240 1.818, 2.729 3.4, 104.9 2.6, 102.9

C. Renormalized optical transition energies

As a direct application of the calculations presented above,
we study how a selected set of optical transitions is renormal-
ized in energy due to the exchange SE corrections, at T = 0.
We consider different TMDs and focus on the following cases:
(i) Fermi level in the gap. Interband transitions:

T K,s
{0,V}→{1,C} ≡ EK,s

1,C − EK,s
0,V and T K ′,s

{1,V}→{0,C} ≡ EK ′,s
0,C − EK ′,s

1,V .
From the renormalization of these transition energies, we
obtain the renormalized energy thresholds that define the
SOC plateau observed in the absorption spectrum of intrinsic
TMDs (see Figs. 3 and 6). Evidently, the exchange-corrected
value of T K,↑

{0,V}→{1,C} = T K ′,↓
{1,V}→{0,C} corresponds to the

renormalized band gap.
(ii) System doped with electrons or holes up to the first

0LL. Intraband transitions: T K,↑
{1,V}→{0,V} ≡ EK,↑

0,V − EK,↑
1,V for p

doping, and T K ′,∗
{0,C}→{1,C} ≡ EK ′,∗

1,C − EK ′,∗
0,C for n doping, where

∗ = ↑ if�C
SOC > 0 and vice versa. In this regime, these optical

transitions lead to intraband peaks in the absorption spectrum
that are spin- and valley-selective.
In the undoped case, both the interband optical spectrum

and the exchange SE corrections are independent of T . For
doped systems, the limit T = 0 is only valid as long as T �
0.5B0 [T]K and provides an upper limit for the renormaliza-
tion of the intraband transition energies.
In Table IV, we present the results obtained for B0 = 10 T.

These results show the usual tendency of the Hartree-Fock
approximation to enhance energy gaps obtained through stan-
dard local density functional theory calculations. However, it
must be noted that, in optical spectroscopic measurements,
absorption occurs for photon energies below the exchange-
corrected values due to excitonic effects.
For intrinsic TMDs, we find a band-gap correction whose

magnitude is comparable to the renormalization of the direct
band gap in the absence of external magnetic fields [20]. In
the case of the intraband transitions between adjacent LLs, the
exchange-corrected values obtained are most likely a severe
overestimation of what should be observed in optical experi-
ments. In fact, Kohn’s theorem [49] states that the cyclotron
resonance frequency of an electron gas is not altered by
electron-electron interactions. Although this theorem ignores
the coupling to the lattice [50], far-infrared spectroscopy
probing the cyclotron frequency of the 2D electron gas formed
in silicon inversion layers [51] has revealed a good agreement
between the experiment and the independent-electron theory.
The applicability of Kohn’s theorem for Dirac electrons has
been discussed in the literature [52].

Kohn’s theorem implies the existence of interaction-
independent collective modes that are relevant for optical
spectroscopic measurements. However, this theorem does
not preclude that the quasiparticle spectrum, probed directly
through other experiments, can be strongly renormalized by
interactions. Thus, scanning tunneling microscopy (STM) or
a combination of angle-resolved photoemission spectroscopy
(ARPES) and inverse ARPES could be used to investigate
the renormalization of the LL energies due to Coulomb
interactions.

D. Renormalization of the spin-orbit splitting

We now discuss an exchange-driven mechanism to enhance
the spin-orbit splitting. Since the 0LLs do not disperse with
the magnetic field, the energy difference between the two n =
0 LLs in the conduction/valence band is given by �

C/V
SOC. As

shown in Table III, first-principle calculations predict values
of �C

SOC relatively small compared to those of �V
SOC. These

first-principle results were obtained for undoped TMDs, in the
absence of external fields. Here, we consider the renormaliza-
tion of �C

SOC, due to SE corrections, for doped systems and in
the presence of an out-of-plane magnetic field.
We take as example the case of a monolayer MoSe2,

for which �C
SOC = −21 meV in the undoped regime. At the

Hartree-Fock level, it is clear that, in order to maximize the
renormalization of this splitting, the Fermi level should lie
between the two n = 0 LLs in the conduction band. For this
matter, we consider the material doped with electrons up to the
lowest-energy 0LL. In addition, the system should be cooled
down such that there is no significant thermal activation of the
unoccupied 0LL. For the calculations, we take T = 0, which
is valid as long as kBT � �C

SOC.
In the regime described above, the energy of the unoccu-

pied 0LL is renormalized due to valence states only. On the
other hand, the energy of the polarized 0LL is renormalized
by states in the valence bands and in the 0LL itself. When
computing the difference, the dominant contribution comes
from the auto SE correction, i.e., the exchange SE correction
to the occupied 0LL due to itself. The origin of the other
contributions, which come from corrections due to the n �= 0
LLs in the valence band that do not cancel each other, can be
traced back to the presence of SOC interactions in the model.
In Fig. 7, we plot the evolution of the renormalized

spin-orbit splitting of the 0LLs in the conduction band of
MoSe2, as a function of the magnetic field. We present results
that include the complete SE corrections, the contribution
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non-interacting

FIG. 7. Spin-orbit splitting of the zeroth Landau levels (0LLs)
in the conduction band of MoSe2, renormalized by the exchange
self-energy (SE) corrections (computed at zero absolute tempera-
ture), as a function of the magnetic field. The Fermi level μ is
kept between the two spin-split 0LLs in the conduction band, such
that only the lowest-energy 0LL in the K ′ valley is polarized, as
depicted in the cartoon. The horizontal black dashed line corresponds
to the noninteracting reference, whereas the others correspond to
exchange-corrected values that include the complete SE corrections
(green solid line), the contribution of the auto SE only (brown solid
line), and a low-field second-order Taylor expansion of the former
(brown dashed line). These results reveal a large exchange-driven
enhancement of the splitting, which increases with the intensity of
the magnetic field and approaches the noninteracting value in the
limit of zero field.

of the auto SE only, and a low-field approximation of the
former (see derivations below). The carrier density implied
to keep only the lowest-energy 0LL polarized is ρ � −2.4×
1010B0 [T] cm−2. The analytical expression for the auto SE
correction reads as

�̃
η

0LL = −Dη

0LL
0LL

Iη

0LL
0LL

= − e2

4πε0

1

lB

∫ +∞

0
dq̄

e−q̄2/2

r0
lB

q̄ + 1

= − e2

4πε0

e
− l2B
2r20

2r0

[
π

i
erf

(
i

lB√
2r0

)
− Ei

(
l2B
2r20

)]
, (38)

where erf is the error function and Ei the exponential integral
function. In the limit of small B0, Eq. (38) can be simplified
making a Taylor expansion around r0

lB
= 0 which, up to second

order, yields

�̃
η

0LL � − e2

4πε0

1

r0

(√
2π

2

r0
lB

− r20
l2B

)
. (39)

The validity of Eq. (39) is controlled by the ratio r0
lB
, that scales

as 0.2
√

B0 [T] for MoSe2.
The complete SE results show a large exchange-driven

enhancement of �C
SOC: even at a moderate field of 2 T, we

obtain a renormalization in the order of 100 meV. It is also
apparent that the exchange corrections are dominated by the
auto SE contribution. Thus, it becomes clear why the spin-
orbit splitting increases with the intensity of the magnetic
field: as B0 ramps up, so it does the density of electrons in the
occupied 0LL and therefore the magnitude of the renormaliza-
tion. Expectedly, we also observe that the exchange-corrected
values approach the noninteracting reference as we decrease
the intensity of the magnetic field. This is verified analytically
through Eq. (39) by noticing the absence of zeroth-order terms
in the low-field Taylor expansion of the auto SE correction.
The predictions of the Hartree-Fock calculations have to

be contrasted with Larmor’s theorem for spin-flip collective
modes, excited with a zero-wave-vector perturbation [53].
Analogously to Kohn’s theorem, this theorem states that
electron-electron interactions do not renormalize the energy
of the q = 0 spin-flip excitations, which must be equal to
gμBB0. However, the theorem only holds for systems where
the total spin is conserved, which is clearly not the case for
TMDs, on account of the strong SOC interactions. On the
other hand, vertex corrections are likely to reduce the large
spin-flip energies predicted at the Hartree-Fock level [54]. In
any case, experiments that probe the quasiparticle spectrum,
such as STM and ARPES, might be able to capture the large
shifts predicted by our calculations.

VIII. DISCUSSION AND CONCLUSIONS

We have provided a thorough theoretical study of the
optical properties of semiconducting TMD monolayers, de-
scribed within the massive Dirac model, under the influence
of strong out-of-plane magnetic fields that quantize the energy
spectrum into a set of LLs. We have analyzed in detail the
longitudinal and transverse optical response, in both doped
and undoped regimes, paying attention to the breakdown of
the contributions coming from different spins and valleys. We
have also addressed the role of electron-electron interactions,
treated at the Hartree-Fock level.

A. Limits of the model

Here, we briefly discuss some limitations of the model
Hamiltonian applied in this work. First, atomistic calcula-
tions [15,33] show a valley symmetry breaking of the LL
spectrum that is not captured through Dirac models. Thus, the
resulting magneto-optical spectra should feature a valley split-
ting of the peaks. Second, we have ignored the paramagnetic
shift of the valence bands associated to the coupling between
the magnetic field and the valley-dependent atomic orbital
momentum Lz = τ2 of the highest-energy valence states [9].
This results in another valley-dependent contribution. Third,
we have also ignored Zeeman splitting, that can be easily
added to our results. Finally, we have not considered exci-
tonic effects, that are expected to have a strong impact in
the optical response. These are the scope of an incoming
publication [28]. At charge neutrality, the excitonic effects not
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considered in this work are known to renormalize strongly
the optical response functions. Therefore, our results in the
undoped regime are meant to be taken, at most, as a qualita-
tive description. However, in the doped case, we expect our
analysis to be robust against exciton formation. To sustain
this statement, we first note that the exciton size in TMDs
monolayers are not strongly affected by the presence of an
out-of-plane magnetic field [28]. Then, we compare the B = 0
exciton size, typically in the order of a few nanometers [20],
with the 2D Thomas-Fermi screening length, which we have
estimated to be ∼0.17 nm and independent of the carrier
density. These numbers lead us to conclude that excitons in
TMDs are effectively screened in any doped regime for which
the Thomas-Fermi approximation holds.

B. Main results

We now summarize our main results. At B = 0, TMDs are
known to present valley-dependent circular dichroism [42]:
photons with a given circular polarization induce transitions
in a valley-selective manner. This permits to induce optical
valley orientation. Given that TMDs have strong SOC interac-
tions, valley orientation also implies spin orientation in these
materials. In this work, we have found that the application
of an out-of-plane magnetic field preserves these effects,
although the resulting optical spectrum contains a much richer
structure.
In the case of doped TMDs, the application of the magnetic

field brings two main features that are absent in the undoped
regime: (1) The lowest-energy peak in χxx(ω) has dominant
contributions from optical transitions within a single spin and
valley [see Fig. 4(c)]. As a result, at that energy, linearly
polarized light can induce both a valley and spin imbalance.
This provides a mechanism for optical orientation, attained
with linearly polarized light. (2) The ac Hall response is finite,
as shown in Fig. 5(a). This implies a net circular dichroism,
i.e., a net difference in absorption of σ+ and σ− photons.
The main consequences of the exchange SE interactions

are the following: (1) In the intrinsic case, the effective band
gap is severely renormalized, resulting in a larger value. (2)
In n-doped systems with a spin-polarized ground state, our
calculations show a strong exchange-driven renormalization
of the spin-orbit splitting of the 0LLs in the conduction band,
which exceeds 100 meV for B0 = 2 T.
These results point out the strong influence of electron-

electron interactions in the electronic and optical properties of
doped TMDs. Future work will address spin and valley Stoner
instabilities driven by Coulomb interactions in doped TMDs
(see, for instance, Ref. [55]).
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APPENDIX A: SOLUTION FOR THE NONINTERACTING
EQUATION OF MOTION

Due to the optical selection rules, the solution for the time
evolution of the polarization density operator can be broken
down into the problem of solving the EOM of a specific set
of general operators T̂ η

α,α′ (t ) ≡ ĉ†α′,η(t )ĉα,η(t ). Introducing the
notation

ĉα,η(t ) ≡

⎧⎪⎨
⎪⎩
Ĉn, n � 1 ∧ λ = C
V̂n, n � 1 ∧ λ = V
â0, {n; λ} = 0LL

(A1)

where the dependency on t, ky, and η is omitted to compress
notation [56], the relevant set of pair of operators reads as
follows:
(1) â†0Ĉ1, â†0V̂1 and Hermitian conjugates, for transitions

that involve the 0LLs;
(2) Ĉ†n V̂n+1, Ĉ†n+1V̂n and the Hermitian conjugates, for in-

terband transitions between n �= 0 LLs;
(3) Ĉ†n Ĉn+1, V̂†n V̂n+1 and the Hermitian conjugates, for in-

traband transitions between n �= 0 LLs.
In what follows, we will keep track of only one of these

pairs, â†0Ĉ1. The derivation for the others follows straight-
forwardly and the final result is trivial to generalize, as we
mention below.
After some straightforward algebra, the EOM for â†0Ĉ1

yields

h̄

i

d

dt
(â†0Ĉ1) = [Ĥ0(t ), â†0Ĉ1]+ [ĤI (t ), â†0Ĉ1], (A2)

where

[Ĥ0(t ), â†0Ĉ1] = (Eη

0LL − Eη

1,C
)
â†0Ĉ1 (A3)

and

[ĤI (t ), â†0Ĉ1] = −E (t ) · [dη{1;C}
0LL (Ĉ

†
1 Ĉ1 − â†0â0)+ dη{1;V}

0LL V̂†1 Ĉ1
− dη{1;C}

{2;V}â
†
0V̂2 − dη{1;C}

{2;C}â
†
0Ĉ2
]
. (A4)

In order to simplify the previous EOM, we start by taking
its average with respect to the unperturbed Hamiltonian Ĥ0(t )
and then approximate 〈ĉ†α,η(t )ĉα,η(t )〉0 � 〈ĉ†α,ηĉα,η〉0, where
ĉ†α,η/ĉα,η are the creation/annihilation fermionic operators in
the Schrödinger representation. The first simplification occurs
because the expectation value of the time-independent number
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operator yields the Fermi-Dirac distribution

〈ĉ†α,ηĉα,η〉0 = f
(
Eη

n,λ

) = 1

eβ(Eη

n,λ−μ) + 1 , (A5)

where μ is the Fermi level and β ≡ 1/(kBT ) (kB is the Boltz-
mann constant and T the absolute temperature). In addition to
that, we use the fact that the average value of the terms which
connect either (a) the same n but different λ, or (b) LL indexes
that differ from ±2, is null. This leads to

h̄

i

d

dt
〈â†0Ĉ1〉0 = (

Eη

0LL − Eη

1,C
)〈â†0Ĉ1〉0

−E (t ) · dη{1;C}
0LL

[
f
(
Eη

1,C
)− f

(
Eη

0LL

)]
. (A6)

Regarding the validity of the approximations, both procedures
are consistent with an expansion of the polarization density
up to the first order in the electric field and are therefore valid
within the linear response theory.
To solve Eq. (A6), we first express the electric field through

its Fourier transform E (ω), where ω is the angular frequency.
Then, considering the adiabatic regime, meaning that the

external fields are switched on very slowly, we get

〈â†0Ĉ1〉0 =
∫

R

dω

2π
E (ω) · dη{1;C}

0LL

f
(
Eη

1,C
)− f

(
Eη

0LL

)
Eη

0LL − Eη

1,C + h̄ω
e−iωt ,

(A7)

where we have imposed all averages to be null at t0 (t0 being
the initial time in which the perturbation is turned on) and
made t0 → −∞, arguing that we have waited long enough
for the transient terms to become negligible. In Eq. (A7), the
substitution h̄ω → h̄ω + i�, � → 0+ is implied due to the
adiabatic limit. A finite empirical broadening parameter �

is typically considered to account for disorder effects. As a
final remark, we stress that this solution is straightforwardly
generalizable for all the other pairs of operators. For example,
if we want the expression for 〈Ĉ†n V̂n+1〉0, we change from 0LL
to {n; C} and from {1; C} to {n + 1;V} in the right-hand side
of Eq. (A7).
With the previous results, we can write the expectation

value of the polarization density operator as

〈P̂(t )〉0 =
∑

η

∑
ky

∑
{n; λ}
{n′; λ′}

∫
R

dω

2π
e−iωt

f
(
Eη

n′,λ′
)− f

(
Eη

n,λ

)
A

(
dη{n′;λ′}

{n;λ}
)∗ E (ω) · dη{n′;λ′}

{n;λ}
Eη

n,λ − Eη

n′,λ′ + h̄ω

=
∑

η

∑
{n;λ},λ′

∫
R

dω

2π
e−iωt

f
(
Eη

n+1,λ′
)− f

(
Eη

n,λ

)
2π l2B

[(
dη{n+1;λ′}

{n;λ}
)∗ E (ω) · dη{n+1;λ′}

{n;λ}
Eη

n,λ − Eη

n+1,λ′ + h̄ω
+ dη{n+1;λ′}

{n;λ}
E (ω) · (dη{n+1;λ′}

{n;λ}
)∗

Eη

n,λ − Eη

n+1,λ′ − h̄ω

]
,

(A8)

where we have performed a trivial summation over ky, which yields the degeneracy of the LLs, A
2π l2B
. In addition, we clarify that

the final expression is obtained employing the optical selection rules and rearranging the summations in a convenient manner.

APPENDIX B: DEMONSTRATION THAT χyx(ω) = 0 AT HALF-FILLING

We want to prove that

χyx(ω) = i
∑

η

∑
{n;λ},λ′

f
(
Eη

n+1,λ′
)− f

(
Eη

n,λ

)
2π l2Bε0

∣∣∣dη
x

{n+1;λ′}
{n;λ}

∣∣∣2
(

1

Eη

n,λ − Eη

n+1,λ′ + h̄ω + i�
− 1

Eη

n,λ − Eη

n+1,λ′ − h̄ω − i�

)
(B1)

vanishes at half-filling.
Given that kBT � 2� (even at room temperature), the Pauli exclusion principle implies that only interband transitions are

allowed. As a consequence, we have

f
(
Eη

n+1,λ′
)− f

(
Eη

n,λ

) = λδλ′,−λ. (B2)

Using this result, we can write

χyx(ω) =
∑

η

χη
yx(ω), (B3)

with

χη
yx(ω) = i

∑
{n;λ}

λ

2π l2Bε0

∣∣∣dη
x

{n+1;−λ}
{n;λ}

∣∣∣2
(

1

Eη

n,λ − Eη

n+1,−λ + h̄ω + i�
− 1

Eη

n,λ − Eη

n+1,−λ − h̄ω − i�

)
. (B4)

In general, χη
yx(ω) is not null, meaning that each valley and spin channel yields a finite Hall response. However, when

summing over η, the contributions cancel out. In particular, the contribution from {τ ; s} cancels out with the one from {−τ ;−s},
i.e., χτ,s

yx (ω) = −χ−τ,−s
yx (ω). To show this in a rigorous manner, it is helpful to take Eq. (B4) and split the sum over LLs in the

cases n = 0, for which {n; λ} = {0;−τ }, and n �= 0, for which the sum runs over n > 0 and λ = ±. Accordingly, we write
χη

yx(ω) = χ
η

yx
0LL

(ω)+ χ
η

yx
n �= 0

(ω). (B5)
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Now, we make use of the identity that relates counterpart transitions, Eq. (21), along with the general relation

E τ,s
n,λ − E τ,s

n+1,−λ = −(E−τ,−s
n,−λ − E−τ,−s

n+1,λ
)
, (B6)

to show that

χτ,s
yx
0LL

(ω) = i
−τ

2π l2Bε0

∣∣dτ,s
x

{1;τ }
{0;−τ }

∣∣2( 1

E τ,s
0,−τ − E τ,s

1,τ + h̄ω + i�
− 1

E τ,s
0,−τ − E τ,s

1,τ − h̄ω − i�

)

= i
τ

2π l2Bε0

∣∣d−τ,−s
x

{1;−τ }
{0;τ }

∣∣2( 1

E−τ,−s
0,τ − E−τ,−s

1,−τ − h̄ω − i�
− 1

E−τ,−s
0,τ − E−τ,−s

1,−τ + h̄ω + i�

)

= −χ−τ,−s
yx
0LL

(ω), (B7)

χτ,s
yx

n �= 0

(ω) = i
∑

n>0,λ=±

λ

2π l2Bε0

∣∣dτ,s
x

{n+1;−λ}
{n;λ}

∣∣2( 1

E τ,s
n,λ − E τ,s

n+1,−λ + h̄ω + i�
− 1

E τ,s
n,λ − E τ,s

n+1,−λ − h̄ω − i�

)

= i
∑

n>0,λ=±

−λ

2π l2Bε0

∣∣dτ,s
x

{n+1;λ}
{n;−λ}

∣∣2( 1

E τ,s
n,−λ − E τ,s

n+1,λ + h̄ω + i�
− 1

E τ,s
n,−λ − E τ,s

n+1,λ − h̄ω − i�

)

= i
∑

n>0,λ=±

λ

2π l2Bε0

∣∣d−τ,−s
x

{n+1;−λ}
{n;λ}

∣∣2( 1

E−τ,−s
n,λ − E−τ,−s

n+1,−λ − h̄ω − i�
− 1

E−τ,−s
n,λ − E−τ,−s

n+1,−λ + h̄ω + i�

)

= −χ−τ,−s
yx

n �= 0

(ω). (B8)

APPENDIX C: INTERACTING PROBLEM

1. Interacting equation of motion

The interacting EOM is obtained by adding the result of
the commutator with Ĥee(t ) in the noninteracting EOM. As in
Appendix A, we present the explicit calculations for only one
of the relevant pairs of operators, ĉ†{0LL;ky},η(t )ĉ{1;C;ky},η(t ) ≡
â†0Ĉ1. The derivation for the other pairs follows analogously.
After some straightforward algebra, we get

[Ĥee(t ), â†0Ĉ1] = &1 +&2 +&3 +&4, (C1)

where

&1 = 1

2

∑
s′′

∑
α1, α2

α3

U τ,s,s′′

α1, α2
α3, {0LL; ky}

ĉ†α1,τ,s(t )ĉ
†
α2,τ,s′′ (t )ĉα3,τ,s′′ (t )Ĉ1,

(C2)

&2 = −1
2

∑
s′

∑
α1, α2

α4

U τ,s′,s
α1, α2

{0LL; ky}, α4
ĉ†α1,τ,s′ (t )ĉ†α2,τ,s(t )ĉα4,τ,s′ (t )Ĉ1,

(C3)

&3 = 1

2

∑
s′

∑
α1

α3, α4

U τ,s′,s
α1, {1; C; ky}

α3, α4

â†0ĉ
†
α1,τ,s′ (t )ĉα3,τ,s(t )ĉα4,τ,s′ (t ),

(C4)

&4 = −1
2

∑
s′′

∑
α2

α3, α4

U τ,s,s′′

{1; C; ky}, α2
α3, α4

â†0ĉ
†
α2,τ,s′′ (t )ĉα3,τ,s′′ (t )ĉα4,τ,s(t ).

(C5)

2. Exchange self-energy terms

The interacting EOM contains four different types of
terms, as seen in Eq. (C1). We first deal with &1.
Just like in the noninteracting case, it is implicit that, within

the linear response limit, we take the average of the these
terms with respect to the unperturbed Hamiltonian. The aver-
age of &1 implies the average of the product of four fermionic
operators which, within the random phase approximation,
yields 〈

ĉ†α1,τ,s(t )ĉ
†
α2,τ,s′′ (t )ĉα3,τ,s′′ (t )Ĉ1

〉
0

= 〈ĉ†α1,τ,s(t )Ĉ1〉0〈ĉ†α2,τ,s′′ (t )ĉα3,τ,s′′ (t )
〉
0

− 〈ĉ†α1,τ,s(t )ĉα3,τ,s′′ (t )
〉
0

〈
ĉ†α2,τ,s′′ (t )Ĉ1

〉
0
. (C6)

Among these terms, the ones that lead to a band renormaliza-
tion, the so-called SE terms, are〈

ĉ†α1,τ,s(t )ĉ
†
α2,τ,s′′ (t )ĉα3,τ,s′′ (t )Ĉ1

〉SE
0

= δα1,{0LL,ky}δα2,α3〈â†0Ĉ1〉0 f
(
E τ,s′′

α2

)
− δs,s′′δα1,α3δα2,{0LL,ky}〈â†0Ĉ1〉0 f

(
E τ,s

α1

)
. (C7)

This leads to

〈&1〉SE0 = 〈&1〉Hartree0 + 〈&1〉Fock0 , (C8)

where

〈&1〉Hartree0 = 1

2
〈â†0Ĉ1〉0

∑
s′′

∑
α2

U τ,s,s′′

{0LL; ky}, α2
α2, {0LL; ky}

f
(
E τ,s′′

α2

)
(C9)

is the Hartree term and

〈&1〉Fock0 = −1
2
〈â†0Ĉ1〉0

∑
α1

U τ,s,s
α1, {0LL; ky}
α1, {0LL; ky}

f
(
E τ,s

α1

)
(C10)

is the Fock or exchange SE term.

125405-15



G. CATARINA et al. PHYSICAL REVIEW B 99, 125405 (2019)

By analogy with the Hartree-Fock approximation to the
problem of the homogeneous electron gas [54], we argue
that the Hartree term, which mixes spins, is canceled by the
electron-ion background within the jellium model. To support
this claim, we have verified that the limit B0 = 0 in 〈&1〉Hartree0
implies a null transferred momentum, i.e., δq,0. As a result, we
keep only the Fock term, which couples the same spin flavors.
Repeating the same calculations, and making use of the

identity

U τ,s,s′

α1, α2
α3, α4

= U τ,s′,s
α2, α1
α4, α3

, (C11)

it is immediate to show that 〈&2〉Fock0 = 〈&1〉Fock0 , which leads
to

〈&1 +&2〉Fock0 = −〈â†0Ĉ1〉0
∑
α1

U τ,s,s
α1, {0LL; ky}
α1, {0LL; ky}

f
(
E τ,s

α1

)
. (C12)

Similarly, we obtain

〈&3 +&4〉Fock0 = 〈â†0Ĉ1〉0
∑
α1

U τ,s,s
α1, {1; C; ky}
α1, {1; C; ky}

f
(
E τ,s

α1

)
. (C13)

We now observe that the interacting EOM is equivalent to
the noninteracting one, Eq. (A6), with a renormalized energy
difference, given by(

Eη

0LL − Eη

1,C
)
renorm = Eη

0LL − Eη

1,C +
∑
α1

f
(
E τ,s

α1

)

×
⎡
⎣U τ,s,s

α1, {1; C; ky}
α1, {1; C; ky}

− U τ,s,s
α1, {0LL; ky}
α1, {0LL; ky}

⎤
⎦. (C14)

Generalizing these results for the other pairs of operators,
we conclude that the energy bands are renormalized as(

Eη
α

)
renorm = Eη

α + �η
α, (C15)

where

�η
α = −

∑
α′

f
(
Eη

α′
)
U τ,s,s

α′, α
α′, α

(C16)

are the exchange SE corrections.

3. Coulomb integrals

The (general) expression for the exchange SE corrections,
Eq. (C16), hides multiple integrals that can be solved analyt-
ically. Here, we provide some of the technical steps that lead
to the simplification of this expression. We turn our attention
to the following integral:

I0 ≡
∫ +∞

−∞
dx eiqxx e−( x

lB
+lBk′

y )
2/2 e−( x

lB
+lBky )2/2

√
π lB

× H̃n′

(
x

lB
+ lBk′

y

)
H̃n

(
x

lB
+ lBky

)
. (C17)

This integral is relevant as its solution includes the nontrivial
steps required to calculate the structure factors that lie inside
the Coulomb integrals [see Eqs. (30) and (31)].
With the change of variables u = x

lB
+ lBk′

y, we obtain

I0 = e−l2B (q
2
y /2+iqxk′

y )I1, (C18)
with

I1 =
∫ +∞

−∞

du√
π

e−u2+lB (qy+iqx )uH̃n′ (u)H̃n(u − lBqy), (C19)

where qy = k′
y − ky is an implicit relation that comes from the

trivial integration over dy in the structure factors.
At this point, we resort to a table of integrals (Ref. [57]),

and invoke Eq. 7.377 which, with little manipulation, can be
written as

∫ +∞

−∞

du√
π

e−u2+lB (qy+iqx )uH̃n

(
u − lB(qy + iqx )

2
+ p0

)
H̃n′

(
u − lB(qy + iqx )

2
+ q0

)

= el2B(qy+iqx )2/4
√
2n′−n

√
n!

n′!
qn′−n
0 Ln′−n

n (−2p0q0), [n � n′]. (C20)

Given this relation, it is straightforward to show that

I0 = e−l2B[
q2x +q2y
4 +iqx(k′

y− qy
2 )]

√
2|n′−n|

√
min(n, n′)!
max(n, n′)!

[
lB
sign(n′ − n)qy + iqx

2

]|n′−n|
L|n′−n|
min(n,n′ )

(
l2B

q2x + q2y
2

)
. (C21)

The remaining steps required to simplify Eq. (C16) into Eqs. (34)–(36) follow straightforwardly.
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The magneto-optical response of monolayer transition metal dichalcogenides, including excitonic effects, is
studied using a nanoribbon geometry. We compute the diagonal optical conductivity and the Hall conductivity.
Comparing the excitonic optical Hall conductivity to results obtained in the independent-particle approximation,
we find an increase in the amplitude corresponding to one order of magnitude when excitonic effects are included.
The Hall conductivities are used to calculate Faraday rotation spectra for MoS2 and WSe2. Finally, we have also
calculated the diamagnetic shift of the exciton states of WSe2 in different dielectric environments. Comparing
the calculated diamagnetic shift to recent experimental measurements, we find a very good agreement between
the two.

DOI: 10.1103/PhysRevB.100.045411

I. INTRODUCTION

With the successful exfoliation of monolayers of transition
metal dichalcogenides (TMDs) [1], a new group of inter-
esting semiconducting materials became available for study
and potential applications. The characteristics of monolayer
TMDs include a direct band gap [1–3], broken inversion
symmetry [4,5], strong spin-orbit coupling [6], and strongly
bound excitons and excitonic complexes [7–10]. In addition
to these characteristics, monolayer TMDs have also been
shown to exhibit interesting magneto-optical properties such
as valley polarized Landau levels [11–13], valley Zeeman
splitting [14–18], and magnetic-field-induced rotation of the
polarization state of light [19,20]. These properties have in-
spired potential new applications in areas such as optoelec-
tronics [21] and valleytronics [22,23]. Magnetic fields have
also been used to probe exciton properties, such as effective
mass, size [24–26], and how they are affected by the dielectric
environment [27].
So far, the theoretical analysis of TMD magnetoexcitons

has relied on effective-mass models, such as the Wannier
model [10,24,27,28]. We recently validated that the Wannier
model can be used to accurately describe certain properties
of magnetoexcitons [29]. However, in the Wannier model,
the Bloch part of the wave function is replaced by a plane
wave, which makes the task of computing the single-particle
momentum matrix elements unfeasible. For the diagonal op-
tical response there is a solution to this problem [30], but for
the Hall conductivity no solution currently exists. Thus, the
Wannier model cannot be applied to the task of calculating
the Hall conductivity, which is a necessary step in computing

*jh@nano.aau.dk

the magneto-optical Kerr effect and the Faraday rotation
[31,32]. The issue can be resolved in the independent-particle
approximation (IPA) [13,33,34], but the optical properties
of TMDs are dominated by excitonic effects. Hence, for
an accurate description of the magneto-optical response of
TMDs, excitons should be included.
The main computational difficulty in going beyond effec-

tive mass models when treating magnetoexcitons is that the
external magnetic field breaks the translation symmetry of
the single-particle Hamiltonian. Depending on the choice of
magnetic vector potential gauge, translation symmetry will be
broken in at least one direction. The translation symmetry can
be restored by considering a magnetic supercell, but the size
of the supercell is inversely proportional to the magnetic field
strength [33]. Consequently, for experimentally obtainable
field strengths, a very large supercell is needed, thus making
the task of computing the excitonic properties unfeasible [35].
In the present work, we address this issue by using a system of
finite width in the direction, for which translation symmetry is
broken. This approach corresponds to considering wide TMD
nanoribbons. By increasing the size of the system in the finite
direction, we are able to recover the two-dimensional (2D)
response, including excitonic effects. Using this approach, we
then describe quantitatively the excitonic effects on both the
diagonal conductivity and the Hall conductivity of monolayer
TMDs perturbed by an external magnetic field. This allows
us to compute Faraday rotation spectra as well as excitonic
diamagnetic shifts.
The paper is structured as follows: In Sec. II, the tight-

binding model used to describe the single-particle properties
of both 2D monolayer TMDs and nanoribbons is introduced.
In this section, we also check the width convergence of
the nanoribbon optical response in the independent-particle
approximation. In Sec. III, we include excitonic effects in our

2469-9950/2019/100(4)/045411(10) 045411-1 ©2019 American Physical Society
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FIG. 1. (a) Schematic of the tight-binding couplings in the NNN-
TB model for monolayer MX 2 TMDs. (b) Unit cell of a MX 2

armchair nanoribbon of width (N − 1)a/2 and length
√
3a, where

a is the lattice constant. (c) Band structure of WSe2 along the path in
the Brillouin zone specified by the letters. The blue and red lines are
the spin-up and spin-down bands, respectively. (d) Brillouin zone of
monolayer TMD.

model and check convergence of the optical response. Finally,
in Sec. IV, the magneto-optical response including excitons
is studied using our nanoribbon model. In this section, we
also calculate the diamagnetic shift of excitons in WSe2 and
compare to recent experimental results.

II. SINGLE-PARTICLE PROPERTIES

In this section, we present the theoretical framework used
to describe the single-particle properties of monolayer TMDs
and nanoribbons. Two important characteristics of monolayer
TMDs are the broken inversion symmetry and the strong spin-
orbit coupling (SOC), which result in spin splitting of the con-
duction and valence band edge states [4,36–38]. In addition,
TMDs also exhibit broken electron-hole symmetry, which
leads to electrons and holes with different effective masses. To
describe the single-particle properties of monolayer TMDs,
we apply a tight-binding (TB) model. An orthogonal nearest-
neighbor (NN) TB model always has electron-hole symmetry.
Thus, in order to have different effective masses of electrons
and holes, we need to use either a next-nearest-neighbor
(NNN) model or include a finite overlap [31]. For this work,
we have chosen to use a NNN TB model. The couplings
used for a TMD with lattice constant a are illustrated in
Fig. 1(a). Here, γ1 and γ2 are the NN and NNN hopping terms,
respectively, and −� and � denote the on-site energies for
transition metal (M) and chalcogen (X ) atoms, respectively.
Additionally, isλMη is the SOC between NNN transition metal
atoms, where s = ±1 denotes the spin and η = ±1 [39,40].
As shown for hBN systems in [39], the value of η depends on
the rotation sense in a hexagon, η = +1 (−1) for clockwise

(counterclockwise) orientation. This also holds for TMDs
as they share the same point group as hBN [4,6,38]. For
simplicity, we assume that the SOC between chalcogen atoms
is negligible. The same couplings are used to describe both
TMD monolayers and nanoribbons. Recently, a similar TB
model was used in both the study of spin Hall effects in
monolayer TMDs [40] and to compute the optical response
of gapped and proximitized graphene [41].
We begin by considering a TMD monolayer placed in the

xy plane. The couplings described above give the following
two-band Hamiltonian for a state with wave vector k:

Ĥ =
[
� − γ2h −γ1 f
−γ1 f ∗ −� − sλMg − γ2h

]
, (1)

where

f (k) = eikxa/
√
3 + 2e−ikxa/2

√
3 cos(kya/2), (2)

g(k) = 2

[
sin

(
kxa

√
3

2
+ kya

2

)
− sin(kya)

− sin
(

kxa
√
3

2
− kya

2

)]
, (3)

h(k) = 2

[
cos

(
kxa

√
3

2
+ kya

2

)
+ cos(kya)

+ cos
(

kxa
√
3

2
− kya

2

)]
. (4)

To determine the hopping parameters γ1 and γ2, we fit to the
effective masses of electrons and holes in monolayer TMDs
extracted from first-principles calculations in Ref. [42]. When
doing this, we can assume that λM = 0. This holds since λM

is small compared to the band gap and, consequently, using a
finite λM would only give a small correction to the hopping
terms. Then, the energy bands are given by

E±(k) = γ2h(k)±
√

�2 + γ 21 | f (k)|2. (5)

By expanding E±(k) around the K point (kx, ky) =
2π (1/

√
3, 1/3)/a in the Brillouin zone [illustrated in

Fig. 1(d)], we get the following relations between the hopping
parameters and the effective masses:

3a2γ 21
8�

+ 3a2

4
γ2 = h̄2

2m∗
e

, (6)

3a2γ 21
8�

− 3a2

4
γ2 = h̄2

2m∗
h

. (7)

Here, m∗
e(h) is the effective electron (hole) mass and h̄ is the

reduced Planck constant. Solving for γ1 and γ2 in Eqs. (6) and
(7) gives the hopping parameters. The spin-dependent band
gaps at the K and K ′ points are given by Eg = 2� ∓ 3√3sλM ,
where + (−) holds at the K (K ′) point. The value of the SOC
parameter λM is determined by matching the split to the spin
splitting of the valence band edge calculated in Ref. [42]. The
resulting band structure for WSe2 is plotted in Fig. 1(c). In
Table I, we provide the complete set of parameters used for
monolayer TMDs in the present paper.
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TABLE I. Model parameters for the four common TMDs. The
on-site energy, lattice constants, and screening lengths r0 are taken
from Ref. [42]. The SOC strengths are calculated from the spin
splitting in Ref. [42], and the tight-binding couplings γ1 and γ2 are
found by fitting to the electron and hole effective masses of Ref. [42].

� (eV) γ1 (eV) γ2 (meV) λM (meV) a (Å) r0 (Å)

MoS2 1.24 1.498 8.2 14.4 3.18 44.3
MoSe2 1.09 1.359 92.5 18.3 3.32 51.2
WS2 1.22 1.661 −51.7 43.3 3.19 39.9
WSe2 1.04 1.444 −43.6 48.5 3.32 46.2

We introduce the external magnetic field by transforming
the hopping integrals according to the Peierls substitution
[43], which is simply the transformation t �→ ti j = teiφi j ,
where t is equal to either γ1, γ2, or λM . The Peierls phase
φi j is given by

φi j = e

h̄

∫ R j

Ri

A · dl. (8)

Here, e is the elementary charge,Ri andR j denote the location
of atoms at site i and j, respectively, and A is the magnetic
vector potential, related to the magnetic field by B = ∇ × A.
We take the magnetic field to be given by B = Bẑ, where B is
the magnetic field strength. For 2D systems the phase factor
evidently breaks the periodicity of the tight-binding Hamil-
tonian, but it can be restored by using a suitable magnetic
supercell [44]. As mentioned in Sec. I, the relation between
field strength and the supercell size makes the calculation of
excitonic properties unfeasible for experimentally obtainable
fields. Indeed, with the current methodology (TB+ BSE) and
computer power available, magnetoexcitonic calculations are
limited to field strengths of several thousand teslas. However,
for a nanoribbon system, which is finite in the y direction,
the Landau gauge, A = −Byx̂, does not affect the transla-
tion symmetry of the system [35]. Hence, no restrictions on
the magnetic field strength and no magnetic supercell are
required. This is the motivation for using nanoribbons as a
tool to describe the magneto-optical response of monolayer
TMDs for arbitrary magnetic field strengths. We will consider
armchair nanoribbons, which are infinite in the x direction and
have a finite width ofW = (N − 1)a/2, where N is the num-
ber of dimer lines in the y direction. The unit cell is illustrated
in Fig. 1(b). Since the nanoribbon system is finite in the x
direction, edge states are expected to exist for all nanoribbon
widths [45]. In Appendix A, we check the convergence of the
electronic structure by examining the density of states (DOS).
The edge states are found to have negligible effect on the
electronic structure for N � 200. Consequently, by increasing
N , we expect the optical response of the nanoribbons to
converge to that of the 2D system.
To calculate the linear optical conductivity, we make use

of the following expression for the spin-up and spin-down
contribution to the linear optical conductivity [33],

σ s
αβ (ω) = − ie2h̄2ω

m2A

∑
cvk

pα
cvk,s pβ

vck,s

E2cvk,s(Ecvk,s − h̄ω − ih̄�)
, (9)

FIG. 2. Single-particle linear optical conductivities versus pho-
ton energy. The spectra are calculated for B = 130 T and h̄� =
25 meV. The factor of 10−2 should be multiplied with the y axis
directly underneath. The blue lines refer to the 2D conductivities and
red and yellow lines to the nanoribbon case.

with α, β ∈ {x, y}, h̄ω the photon energy, h̄� a phenomeno-
logical broadening parameter, m the free electron mass, A =
W L the system area, where W is the system width and L is
the system length, pα

cvk,s the momentum matrix elements, and
Ecvk,s := Ec(k, s)− Ev (k, s) the transition energy. The sum
runs over all combinations of conduction (c) and valence (v)
bands and k points, and we have neglected the nonresonant
term of the conductivity. In the nanoribbon geometry, the limit
where L goes to infinity should be taken. In practice this
is done by converting the sum over k points to an integral
by using that the distance between two k points is equal to
�k = 2π/L. The linear optical conductivity tensor ele-
ments are then found by summing over spin, i.e., σαβ (ω) =
σ+

αβ (ω)+ σ−
αβ (ω). By symmetry, we have the relation

σ+
αα (ω) = σ−

αα (ω) for the diagonal elements, and σ+
αβ (ω) =

−σ−
αβ (ω) for the off-diagonal elements when B = 0 T. We

note that the expression in Eq. (9) holds for both nanoribbons
and 2D monolayers, but k denotes a scalar quantity in the
former case and a vector quantity in the latter case.
In Fig. 2, we show the real part of the optical conductivity

in the single-particle approximation for 2D monolayers and
nanoribbons. All spectra are plotted in units of σ0 = e2/4h̄
and calculated for a Brillouin zone discretized using 120 k
points. In the particular case of Fig. 2, we plot the spectra
with a broadening of 25 meV. This value is used in order to
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clearly show the different features of the optical response and
how they converge. Throughout, we focus on MoS2 andWSe2
as examples of monolayer TMDs, but similar results hold for
other types of TMDs. In Fig. 2, the spectra are computed for
a very strong magnetic field to make it possible to distinguish
the peaks due to Landau levels (LLs). The LLs are clearly
visible in both the diagonal and off-diagonal response. The
plots also illustrate the finite off-diagonal conductivities, the
so-called Hall conductivities, present when there is an external
magnetic field. Comparing the response of the N = 100 and
N = 300 nanoribbons to the bulk conductivity, we see that
for σxx(ω) and σ+

xy (ω) both nanoribbon widths capture the
qualitative features. However, the wider nanoribbons more
accurately capture the position of the higher Landau levels
and the amplitudes of the peaks. In contrast, for σxy(ω) very
wide nanoribbons are needed to obtain good convergence of
the amplitudes. This is due to the fact that σxy(ω) is the
sum of σ+

xy (ω) and σ−
xy (ω), both of which are much bigger

in amplitude than σxy(ω). Thus, while the difference between
the spin-dependent off-diagonal response of nanoribbons and
2D is small compared to the amplitude of σ+

xy (ω) it is
large compared to the amplitude of the Hall conductivity—
consequently, making the Hall conductivity susceptible to
poor convergence. The excitonic spectra are expected to show
better convergence since the optical response is dominated
by excitons and the excitons are strongly localized in TMDs
[7,8,46]. Finally, we note that the valley Zeeman splitting is
not described by the TB Hamiltonian in this paper.

III. EXCITONIC EFFECTS

In this section, we include excitonic effects in our de-
scription of TMDmonolayers and nanoribbons. The approach
follows that of Refs. [35,47]. We expand the excitonic wave
function |exc〉 in a basis of singlets formed by excitations be-
tween a single pair of spin-dependent valence and conduction
bands at k, such that the wave function is given by

|exc〉 =
∑
cvk,s

As
cvk|vks → cks〉, (10)

where As
cvk are the expansion coefficients and |vks → cks〉 the

singly excited states. Note that we only include excitations
between bands of equal spin and that k can be either a
vector or scalar quantity depending on the dimensionality
of the system under consideration. The excitonic states are
governed by the Bethe-Salpeter equation (BSE) [7], which for
the expansion in Eq. (10) take the form

Ecvk,sA
s
cvk +

∑
c′v′k′,s′

W s,s′
cvk,c′v′k′As′

c′v′k′ = EAs
cvk . (11)

Here, W s,s′
cvk,c′v′k′ is the electron-hole interaction matrix ele-

ments and E is the exciton energy. Note that we have ne-
glected the exchange term in the BSE for simplicity. Then,
the electron-hole interaction matrix elements are given by

W s,s′
cvk,c′v′k′ = 〈vks → cks|U |v′k′s′ → c′k′s′〉, (12)

where U is the electron-hole interaction potential defined
below. Performing the spin integral in Eq. (12), we find

W s,s′
cvk,c′v′k′ = δs,s′

∫∫
d3rd3r′φ∗

cks(r)φvks(r′)

× U (r − r′)φc′k′s(r)φ∗
v′k′s(r

′). (13)

Here, φαks(r) are the tight-binding states with α ∈ {c, v}.
Equation (13) shows that the spin-up and spin-down equations
decouple and can be solved independently.
In a strict 2D system the electron-hole interaction is not the

usual Coulomb potential, but instead modeled by the Keldysh
potential [48,49],

U (r) = − e2

8ε0r0

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
. (14)

Here, ε0 is the vacuum permittivity, H0 and Y0 are Struve and
Neumann functions, respectively, r = |r|, r0 is an in-plane
screening length, and κ is the average of the relative dielectric
constant of the substrate and capping material. The values of
r0 used in this paper are listed in Table I. For the strict 2D
system, a straightforward calculation of the matrix elements
in Eq. (13) can be done using the approach of Ref. [47].
For the nanoribbon geometry, additional considerations are
needed. We want the excitonic properties in the nanoribbon
geometry to converge to those of the 2D system, when the
ribbon width is sufficiently large. Thus, we need to modify
the approach of Ref. [47] to work for structures, which are
periodic in one direction, but have non-negligible width. The
details are provided in Appendix B, but the main result is that
for the nanoribbon geometry the matrix elements W s,s

cvk,c′v′k′
can be computed from

W s,s
cvk,c′v′k′ =

∑
n,m

In,s
ck,c′k′ I

m,s
v′k′,vkU

k,k′
n,m . (15)

Here n and m run over the atomic sites in the unit cell and
In,s
αk,βk′ = Cn∗

αksC
n
βk′s is the Bloch overlap given by the product

of the tight-binding eigenvector elements belonging to site n.
Finally, the integral factorU k,k′

n,m is defined as

U k,k′
n,m = − e2

2πLε0

∫ ∞

0
dzK0

(√
r20z2 + Y 2nm|k − k′|

)
e−κz,

(16)

where K0 is a modified Bessel function of the second kind
and Ynm = Yn − Ym is the difference between the y coordinates
of the atoms belonging to orbitals n and m. The integral
in Eq. (16) is computed numerically using a suitable Gauss
quadrature.
The eigenvalue problem defined in Eq. (11) can be solved

by diagonalization. Due to the decoupling of spin-up and spin-
down equations, the matrix to be diagonalized is block diago-
nal. Thus, to obtain the full solution two eigenvalue problems
of dimension NcNvNk have to be solved. Here, Nc and Nv are
the number of conduction and valence bands, respectively, and
Nk is the number of k points. For a magnetic field of 100 T the
2D magnetic supercell consists of roughly 2000 atoms, hence
making diagonalization of the BSE problem computationally
unfeasible. On the other hand, using nanoribbons as a theo-
retical tool the linear optical response converges to the bulk
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FIG. 3. Many-body diagonal conductivities versus photon en-
ergy, calculated for B = 0 T, h̄� = 50 meV, and κ = 1. The blue
lines refer to the 2D conductivities and yellow and red lines to the
nanoribbon spectra.

2D response when the nanoribbon unit cell contains roughly
200 atoms. The result is that the computations are feasible,
although still very demanding. However, if only the optical
response and not the full eigenvalue decomposition is needed
a significant reduction in computational complexity can be
obtained by using the Lanczos approach in Refs. [35,47].
The Lanczos routine is based on the fact that the real part

of the linear optical conductivity can be computed from the
expression [47]

Reσαβ (h̄ω) = − e2

m2ωA

∑
s

Im〈Pαs|Ĝs(h̄ω)|Pβs〉, (17)

with α, β ∈ {x, y}, Ĝs(h̄ω) the many-body Green’s function
given below, and Pαs given by

|Pαs〉 := P̂α|0, s〉 =
√
2
∑
cvk

As
cvk pα

cvk,s. (18)

Here, |0, s〉 is the many-body ground state, P̂α is the many-
body momentum operator, and pα

cvk,s denote the single-
particle momentum matrix elements. The many-body Green’s
function in Eq. (17) is given by

Ĝs(h̄ω) = lim
h̄�→0+

(h̄ω + ih̄� − Ĥs)
−1, (19)

where Ĥs is the many-body Hamiltonian. In practice, we
allow a small, finite h̄� to add broadening to the spectra.
The matrix elements of the Green’s function in Eq. (17) are
evaluated effectively as in Ref. [35], i.e., using the Lanczos-
Haydock routine for tridiagonalization [50]. Computationally
this is still a daunting task due to the size of the problem.
For a nanoribbon with N = 100 and using a discretization
with Nk = 120, the matrix that is to be tridiagonalized has
dimension (1.2× 106)× (1.2× 106). We reduce the size of
the problem by disregarding the top and bottom half of the

conduction and valence bands, respectively, which primarily
affect the high-energy part of the spectra.
In Fig. 3, we show the convergence of the nanoribbon con-

ductivities to the 2D response in the unperturbed case (B = 0).
The two main exciton peaks at 1.88 eV and 2.02 eV for MoS2
and at 1.37 eV and 1.82 eV for WSe2 are denoted by A and
B, respectively. The results show a good convergence for the
nanoribbon with N = 100. Both the A and B exciton peaks
coincide with the bulk results and the peaks corresponding to
the excited states also match the bulk results. The discrepancy
at high photon energies is due to our disregarding some bands
in the excitonic calculations. Regarding the amplitude of the
peaks, we see that the amplitude is close to the bulk result for
Reσxx, while the Reσyy results could be improved by using
wider nanoribbons. However, as our goal is to study the effect
of an external magnetic field on the optical response, the
convergence shown in Fig. 3 is satisfactory. Comparing to
the spectra of unperturbed TMDs in Ref. [9], we see that the
qualitative features agree well.

IV. RESULTS

In this section, we present the results obtained from the
theoretical framework of Secs. II and III. All calculations
are based on the nanoribbon geometry and are calculated
for nanoribbons with N = 100. This corresponds to a ribbon
width of 15.7 nm and 16.4 nm for MoS2 and WSe2, re-
spectively. The one-dimensional Brillouin zone is discretized
using 120 k points. For the spectra in this section, a broad-
ening of h̄� = 50 meV is used, which is at the high end
of experimentally measured broadenings [51–53]. However,
this value is needed in order to remove artifacts caused by
the finite width of the system. The framework described in
Sec. III is based on the assumption that the temperature is
0 K. However, as the thermal energy at room temperature
(≈25 meV) is smaller than the broadening, the band gap, and
the exciton binding energy, we expect the spectra presented
here to be good approximations at room temperature. It should
be noted that the band gap tends to decrease with temperature.
Consequently, the spectra should be shifted accordingly for
comparison with room-temperature measurements.
The results presented in this paper are for magnetic field

strengths of 10, 30, 65, and 130 T. Currently, measurements of
magneto-optical properties of TMDs have been performed in
fields up to 65 T and, thus, most of the results presented here
are experimentally verifiable [24,27,28]. Moreover, destruc-
tive pulsed magnets can deliver fields as high as 130 T [54].
Another interesting approach is to study TMDs placed on a
magnetic substrate. This has been shown to induce exchange
fields in the TMD monolayer equivalent to extremely high
magnetic fields [55,56].
In Fig. 4, the first row of plots shows the change of the

real part of the diagonal conductivity as a function of the
magnetic field strength relative to the zero-field case. To
illustrate this, we have plotted the difference between the
diagonal conductivity at a finite magnetic field strength and
at 0 T. The plots show that the exciton peaks in MoS2 and
WSe2 exhibit a small blueshift in response to the applied
magnetic field. This small but important phenomena is what
allows for experimental estimation of the spatial extent and
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FIG. 4. Excitonic optical conductivity versus photon energy,
for different magnetic field strengths. The first row illustrates
�Reσxx (ω), which is the difference between the diagonal conduc-
tivity at a finite magnetic field strength and at 0 T. The dashed gray
lines show the unperturbed spectra. The second row shows the Hall
conductivities at different magnetic field strengths. Spectra are for
nanoribbons with N = 100 and κ = 1. The factor 10−1 should be
multiplied with the y axis directly underneath.

effective mass of excitons. We will evaluate the size of the
shift and discuss this in detail below. In addition to the
blueshift of the peaks, the amplitudes also increase slightly
as the field strength increases. Comparing to the amplitude of
the peaks in the unperturbed spectra in Fig. 3, the increase in
amplitude due to the magnetic field is only a few percent for
a field strength of 130 T. Thus, both effects are small changes
relative to the unperturbed results. Finally, in the high-energy
part of the spectra, the results show the emergence of an
oscillating modulation appearing at strong magnetic fields.
These oscillations correspond to transitions between Landau
levels.
The second row of plots in Fig. 4 shows the Hall conduc-

tivities of MoS2 and WSe2. Similarly to the single-particle
case, the time-reversal symmetry present in the absence of an
external magnetic field ensures that the unperturbed excitonic
Hall conductivities vanish identically; that is, σxy(B = 0) = 0.
Consequently, they are not shown in Fig. 4. When time-
reversal symmetry is broken by the external magnetic field,
finite Hall conductivities are found even at small magnetic
field strengths. Thus, we have σxy(B > 0) �= 0. In other words,
the Hall conductivity goes from being identically zero to hav-
ing a finite magnitude when the magnetic field is turned on.
Hence, the relative change of the Hall conductivities is very
significant. In contrast, the relative change of the diagonal
conductivity is only minor, as σxx(B > 0)/σxx(B = 0) ≈ 1.
Comparing the excitonic magneto-optical response in Fig. 4 to
the IPA results in Fig. 2, we see that excitonic effects change
the optical response significantly. In addition to changing the
overall shape of the spectra, we also see that the excitonic
Hall conductivities are approximately one order of magnitude

FIG. 5. Plot of the Verdet constant versus photon energy for
normal incident light on a TMD monolayer in vacuum.

larger than the IPA response. Hence, for an accurate descrip-
tion of the magneto-optical properties of monolayer TMDs,
it is clearly important to account for excitons. Regarding the
magnetic field dependence of the Hall conductivities in Fig. 4,
we see that the amplitude scales linearly with the magnetic
field strength. However, as we go to stronger fields, small
changes in the shape of the spectra occur. These changes are
due to the emergence of Landau levels and additional effects
that are nonlinear in B, such as the diamagnetic shift.
The finite Hall conductivity, present when there is an ex-

ternal magnetic field, causes the system to exhibit a magneto-
optical Kerr effect (MOKE) and a Faraday effect. The MOKE
is a rotation of the polarization state of light when reflected
off the surface of a magnetized material, while the Faraday
effect is a rotation of the polarization of the transmitted light.
Here, we compute the Faraday rotation angle θ for normal
incidence of light on a single layer of TMD. The rotation angle
for a single passage of the monolayer can be approximated by
[32,57]

θ = 1

(n1 + n2)cε0
Reσxy(ω), (20)

where n1 and n2 are the refractive index of the substrate and
capping material, respectively, and c is the speed of light. The
expression in Eq. (20) is valid when σxx � σxy. As the Hall
conductivity scales linearly with B at small field strengths,
the Faraday rotation angle is often expressed as θ = V B,
where V is the so-called Verdet constant [31]. In Fig. 5, we
have computed the Verdet constant for freestanding MoS2
and WSe2. As shown by the figure, the rotation for a single
passage of the TMD monolayer is very small. However, this
could be increased by placing the monolayer in an optical
cavity in order to enhance the rotation by multiple passes
[57,58].
As mentioned in Sec. III, the electron-hole interaction

is screened by the substrate and capping materials. This
screening is described by the κ parameter, which is simply
the average of the relative dielectric constant of the substrate
and capping material. In Fig. 6, the optical conductivity of
WSe2 is shown for κ values of 1, 1.55, and 4.5. These values
correspond to WSe2 placed in vacuum, on a SiO2 substrate,
or encapsulated in hBN, respectively [27,59]. It should be
noted that an exchange self-energy correction to the single-
particle band gap exists, and this effect is not included in our
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FIG. 6. Excitonic optical conductivity versus photon energy,
calculated for WSe2 in different dielectric environments. The top
panel shows the diagonal conductivity in the unperturbed case. The
middle panel shows the change in the diagonal conductivity from
the unperturbed case to the B = 30 T case. The bottom panel shows
the Hall conductivities calculated at B = 30 T. The factors of 10−1

should be multiplied with the y axes directly underneath.

simple model. The self-energy correction decreases when the
screening from the surroundings increases [29,34]. To account
for this missing effect, the spectra in Fig. 6 are shifted by
the band gap energy. This allows us to observe changes in
exciton binding energy as a function of κ . The first plot is of
the diagonal conductivity for B = 0 T, and the results show a
blueshift of the exciton peaks as κ increases. This is due to a
decrease in the exciton binding energy as the screening from
the surroundings is increased. The binding energy decreases
from 455 meV to 160 meV as κ increases from 1 to 4.5. The
second row shows the change in the diagonal conductivity
between the unperturbed case and the B = 30 T case. The
plots show that the diamagnetic shift of the 2s exciton states
becomes harder to observe at higher values of κ , and that the
Landau levels are not affected by the dielectric environment.
Finally, the last plot is of the Hall conductivities. Here, the
same blueshift is observed as in the diagonal conductivity.
When going to the limit κ → ∞, we recover the IPA results,
as has been checked numerically.
In the low-field limit, the magnetic field dependence of

the energy of s-type excitons can be described by the relation
EB ≈ E0 + σB2, where E0 is the unperturbed exciton energy
and σ is the diamagnetic shift coefficient. The quadratic
diamagnetic shift of the exciton peaks is illustrated in Fig. 7
for the A exciton in WSe2. This coincides precisely with the
small shift observed in the diagonal conductivities in Fig. 4.
As mentioned, the value of σ is related to the spatial extent
of the exciton. The relation is given by σ = e2〈r2〉/8μ, where

FIG. 7. Diamagnetic shift of the peak associated with the 1s state
of the A exciton in WSe2. The vertical dashed lines indicate the
peak position at different magnetic field strengths. The upper panel
illustrates the fit of the function E0 + σB2 (blue line) to the peak
positions marked by the red dots.

√
〈r2〉 is the root-mean-square (rms) radius of the exciton and

μ is the reduced exciton mass. If μ is known, this relation
allows for an experimental estimate of the exciton size. As the
Lanczos method only provides the optical conductivity, and
not the exciton energies, we compute the shift coefficient by
following the exciton peak in the spectra as the field strength
changes. The shift of the exciton peak is then fitted to a
parabola, and the diamagnetic shift coefficient is found. Doing
this for the A exciton peak of freestanding WSe2, we find a σ

value of 0.22 μeV/T2. Using the same effective masses as
applied to find the TB parameters, we find an rms radius of
1.52 nm for the A exciton.
The dielectric environment is expected to affect the size

of the diamagnetic shift. Increasing κ results in less tightly
bound excitons, thus having a larger radius. This consequently
results in larger diamagnetic shift coefficients. This effect was
studied experimentally in Ref. [27]. In Table II, we summarize
our findings with regard to the effect of the dielectric environ-
ment on the diamagnetic shift coefficient. We have also in-
cluded values computed from the Wannier model presented in
Ref. [29]. The Wannier model consistently underestimates σ ,
when comparing to the experimental values and the values
computed using the nanoribbon approach. The explanation
for this is found in the fact that the Bloch overlaps are
disregarded in the Wannier model. This causes the excitons
to be more strongly bound in the Wannier framework than in
BSE framework and, consequently, have smaller diamagnetic
shift coefficients. This shows the importance of including the
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TABLE II. Calculated and experimental values of σ in units of
μeV/T2 for the 1s state of the A exciton in WSe2. The first column
gives the values calculated using the approach presented in this
paper, while the second column gives the values calculated using
the Wannier model from Ref. [29]. The κ values of 2.25 and 3.30
correspond to TMDs on a SiO2 substrate capped by polybisphenol
carbonate and hBN, respectively [27].

κ σ (BSE) σ (Wannier) σ (Expt.)

1.00 0.22 0.13
1.55 0.24 0.15 0.18 [27]
2.25 0.27 0.17 0.25 [27]
3.30 0.31 0.19 0.32 [27]
4.50 0.36 0.23 0.24 [26], 0.31 [24]

Bloch overlaps when modeling magnetoexcitons. Comparing
the diamagnetic coefficients calculated using the nanoribbon
approach to the experimental results, we observe a better
agreement.

V. SUMMARY

In summary, we have used nanoribbons as a theoretical tool
for the study of the magneto-optical response of monolayer
TMDs. We have shown that by increasing the width of the
nanoribbons the optical response will converge to that of a
2D monolayer. This has proven to be useful for including
excitonic effects in the calculation of the magneto-optical
response of TMDs, since a strict 2D calculation is not cur-
rently feasible. Beginning from a simple tight-binding model,
we added excitonic effects in the framework provided by the
Bethe-Salpeter equation. The linear optical conductivity was
calculated effectively using the Lanczos-Haydock routine. We
found that a 15–16 nm wide nanoribbon system is sufficient
for a reasonable convergence of the optical response.
Using this approach, we are able to compute the excitonic

Hall conductivity of monolayer TMDs. The calculated Hall
conductivity spectra can be used to compute Faraday rotation
in monolayer TMDs, an important magneto-optical effect.
We also evaluated the diamagnetic shift coefficient, which
provides a useful quantity for evaluating the size of excitons.
So far, the experimentally determined diamagnetic shift coef-
ficients have only been compared to theoretical results based
on effective mass models. But our approach provides the
option of going beyond effective mass models when analyzing
experimental data. We compared the theoretical diamagnetic
shift coefficient given by our calculation to values calculated
using a Wannier model and to recent experimentally deter-
mined coefficients. The comparison with the values computed
from the Wannier model showed the importance of including
Bloch overlaps, while the comparison with experimental val-
ues showed a very good agreement between our calculations
and the experimental results.
Finally, another potential use of the approach presented in

this paper is as a benchmark for future strict 2D models. As
it is currently not possible to compute the excitonic Hall con-
ductivities in any 2D model, the Hall conductivity presented
here can provide a reference when attempting to develop new
models.
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APPENDIX A: CONVERGENCE

In this Appendix, we examine the convergence of the
electronic properties of the nanoribbon system. We need to
ensure that the effect of edge states in the nanoribbon system
is negligible. This is done by studying the DOS of the nanorib-
bons and comparing to that of the 2D system. The DOS is
defined as

D(E ) = 1

A

∑
α,s,k

δ(E − Eα (k, s)), (A1)

where α runs over all bands. In practice, the δ function
in the DOS is approximated by a Lorentzian with 25 meV
broadening.
In Fig. 8 the convergence of the nanoribbon DOS is illus-

trated. For nanoribbons with N = 50 and N = 100, oscilla-
tions in the DOS due to the finite width of the system are
observed. In contrast, the DOS of the larger nanoribbons with
N = 200 and N = 300 are almost identical to the 2D DOS
except for two small small peaks around −3.3 and 3.5 eV.
One of the peaks is illustrated in the inset in Fig. 8. The peaks
corresponds to edge states in the nanoribbon system and, as
we have checked numerically, will remain a feature of the
nanoribbon DOS independently of the ribbon width. However,
the photon energy needed for transitions from an edge state to
a bulk state is approximately 4.3 eV (the energy difference be-
tween the valence edge states to the bottom of the conduction

FIG. 8. DOS versus energy for WSe2 plotted for a 2D monolayer
and different nanoribbon widths. The inset shows a zoom of the DOS
in the vicinity of the conduction edge states around 3.47 eV.
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band). Consequently, edge states will not affect the optical
response in the photon range considered in the present work.

APPENDIX B: ELECTRON-HOLE INTERACTION MATRIX
ELEMENTS FOR NANORIBBONS

In this Appendix, we will find an expression for the matrix
elements in Eq. (13) for the nanoribbon geometry. We begin
by considering the product of two tight-binding states, such
as the ones in Eq. (13). Exploiting the fact that the atomic
orbitals are localized and orthogonal, we can write

φ∗
αks(r)φβk′s(r) ≈ 1

Nuc

∑
n,X

In,s
αk,βkei(k′−k)X ϕ2n (r − Xx̂), (B1)

where Nuc is the number of unit cells, X is the location of the
unit cell in the periodic direction, In,s

αk,βk = Cn∗
αksC

n
βk′s are the

products of the tight-binding eigenvector elements belonging
to the nth atomic orbital, and ϕn are the atomic orbitals. The
X sum runs over the location of the unit cells in the periodic
direction. To evaluate the matrix elements, we need integrals
of the form

Un,m(X, X ′)=
∫∫

ϕ2n (r−Xx̂)U (r−r′)ϕ2m(r
′−X ′x̂)d3rd3r′.

(B2)

For strongly localized atomic orbitals, we can assume the
effective interaction

Un,m(X, X ′) ≈ U eff
n,m(X − X ′)

≡ − e2

8ε0r0

[
H0

(
κ
√
(X − X ′)2 + Y 2nm

r0

)

− Y0

(
κ
√
(X − X ′)2 + Y 2nm

r0

)]
. (B3)

Here,Ynm denotes the difference in y coordinates of the atomic
site belonging to orbitals n and m. This effective interaction
is validated by its ability to recover the 2D results, as shown
in the paper. In the following, it is advantageous to rewrite
U eff

n,m(X − X ′) using an integral form of the Keldysh potential
[60]. This gives

U eff
n,m(X −X ′) =− e2

4πε0

∫ ∞

0

1√
(r0z)2+(X −X ′)2+Y 2nm

e−zκdz.

(B4)

The interaction matrix elements in Eq. (13) can then be
approximated by

W s,s′
cvk,c′v′k′ ≈ δs,s′

∑
n,m

In,s
ck,c′k′I

m,s
v′k′,vk

1

L

∫
ei(k′−k)XU eff

n,m(X )dX,

(B5)

where we have converted the sum over X to an integral and L
denotes the length of the system. Finally, we have to do the X
integration, which corresponds to taking the Fourier transform
of the effective interaction. This gives

1

L

∫
ei(k′−k)XU eff

n,m(X )dX

= − e2

2πLε0

∫ ∞

0
dzK0

(√
r20z2 + Y 2nm|k − k′|

)
e−κz, (B6)

where K0 denotes a modified Bessel function of the second
kind. The remaining integral over z can be evaluated numer-
ically. Inserting Eq. (B6) into Eq. (B5), we obtain an expres-
sion for the interaction matrix elements in the nanoribbon
geometry.
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