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Abstract—Although the use of cellular networks to serve
drones has been investigated in several recent works, the path loss
or shadowing variation is still relatively unexplored. The varia-
tion and its dynamic behaviour is of importance in characterizing
the reliability of the drone communication link, but difficult to
assess by experimental means on a large scale. The main goal
of this paper is to study the feasibility of ray tracing models to
accurately predict shadow fading variations at different heights,
so that the shadow fading correlation distances for the UAV
channel can be found in both vertical and horizontal directions,
without the need of performing extensive field measurement
campaigns. For that, predictions obtained through a ray tracing
tool are compared to field measurements in an urban scenario.
Our results show that with accurate 3D maps, the tool is useful
for predicting the dynamics of the UAV propagation channel,
and therefore can be used partly as a substitute for field
measurements.

Index Terms—Ray tracing, UAVs, drone, aerial vehicles,
shadow fading, urban measurements, propagation prediction,
field measurement, drone communication.

I. INTRODUCTION

The 5th Generation (5G) New Radio (NR) cellular system
is expected to serve a wide range of services. Mission-critical
communications, where reliability and a short-time response
of the system is needed typically for safety reasons [1], is
expected to be one of those services. Some examples would
include vehicle-to-everything (V2X) communications, railway
communications or the Command and Control (C2) link for
unmanned aerial vehicles (UAVs). All the three examples are
characterized by high mobility. Long-Term Evolution (LTE)
and 5G networks investigations for meeting the requirements
of such type of communication [2]-[4] have been carried out.

The application of interest in this paper is the use of LTE/5G
for serving the control link of UAVs. There are multiple
UAV uses such as transport of medical goods, rescue services,
inspection of telecommunications infrastructure, to name a few
[5]. All the mentioned use cases are more attractive if a UAV
can fly Beyond Visual Line-Of-Sight (BVLOS) of the con-
troller, i.e., allowing the UAV to be controlled from a remote
pilot location. For public safety reasons, it is expected that
reliability will be a major requirement for BVLOS operation.
One of the consequences of this requirement is that the drones,
as they are also commonly known, need to be connected to a
flight control unit, through the C2 link, which carries mainly
flight-related information. The existing cellular networks are a

potential option to provide such communication, since their
coverage is ubiquitous, and they are already serving many
cellular network users, and therefore provide a cost-efficient
option. Connection reliability in cellular networks is impacted
not only by the coverage provided, but also by the dynamic
behaviour of the coverage, for what concerns both desired
and interfering signals. The dynamics impact for example the
radio mobility which determines cell selection, reporting and
handovers.

There are already several publications such as [6]-[8] where
the radio performance of drones when using cellular networks
for the C2 link and some potential interference mitigation
schemes are studied. A path loss model for the radio chan-
nel between the UAV and cellular networks is proposed in
[6],[8],[14]. This height dependent model, based on measure-
ments, suggests a path loss exponent and shadowing which
decrease as the UAV height increases. Whereas path loss char-
acterises the (static) large-scale effect, it is also important to
consider and model the temporal and/or spatial dynamic effects
in propagation, to realistically evaluate connection reliability
when the drone moves through airspace. These dynamic effects
are typically characterised by the standard deviation, and the
correlation properties of shadow fading. There is a need to
have more empirical evidence for the study of correlation
properties of the radio channel in aerial scenarios. However,
achieving this purely by experimental procedure is difficult,
given the practicalities in conducting drone flights, particularly
in urban environments.

In this paper, we present a large-scale study at different
heights, with a multiple transmitters scenario, on the accuracy
of the ray tracing tool when predicting shadowing variations
by comparing it to field measurements.

The paper is organized as follows: Section II introduces the
ray tracing models analysed in this study, the measurement
setup and the scenario. Results, discussion and conclusions
are followed, respectively, in Sections III, IV and V.

II. METHODOLOGY

A. Field Measurements

To be able to compare ray-tracing predictions with real
channel measurement samples, field measurements were re-
quired. Two measurement campaigns were performed in a live
LTE network in the 1800 MHz frequency band: a drive test



Fig. 1. Measurement route (in green) in Aarhus (Denmark), including LTE
network sites location provided by a local operator.

Fig. 2. Measurement set up for the drone campaign.

campaign at ground level and an airborne campaign with a
drone at different heights. Both campaigns were performed
in a small area of approximately 0.25 km2 in the city center
of Aarhus, in Denmark, where 17 different locations where
measured. The studied area is hilly, and the terrain elevation
in the topographic maps varies between 0 m and 27 m. As
it is show in Fig. 1, the network in this area consists of 23
tri-sectorial sites with heights between 15 m and 60 m and
average Inter-Site Distance (ISD) of 470 m. Full information
of the cells including antenna tilt, orientation, etc., provided
by the network operator was used for the study.

In both measurement campaigns, the car and the drone were
equipped with the Rohde & Schwarz FreeRider system [12].
The scanner was equipped with an external omnidirectional
antenna, mounted on the rooftop of the car, and respectively,
extending about 50 cm above the drone fuselage and rotor
plane, as it is shown in Fig. 2. The GPS position was logged
for each measured Reference Signal Received Power (RSRP)
sample.

B. Ray Tracing Model

Two different propagation models available in the AWE
WinProp tool are studied: the Dominant Path Model (DPM)
and the Intelligent Ray Tracing (IRT). The Authors in [10]
describe the algorithm of DPM for an urban scenario, which
consists of the determination of the dominant path contributing
to the power reaching the receiver. They present the general
performance of DPM at ground level and compare it with IRT,
which considers all significant possible contributions of the
different rays reaching the receiver [11]. It is a one-transmitter
study, where results show that DPM considerably reduces
computation time respect to IRT, and that mean value and
standard deviation of the difference between measurements
and predictions is not only equal but sometimes better with
DPM.

For this analysis we used average signal power predictions
from WinProp, which mainly depend on the propagation expo-
nents settings: before and after breakpoint Line Of Sight (LOS)
and Obstructed-LOS (OLOS). Since WinProp offers the pos-
sibility to tune these parameters by using field measurements,
those obtained from the campaigns mentioned in Section II-
A were used to calibrate the models. The 3D maps (including
building shapes and terrain topography of the area) used in the
ray tracing tool to perform this study cover an area of 8.5 km2

with 5m resolution around the campaign area. The building
database includes 10019 buildings, where the minimum height
is 43 m and the maximum height is 146 m. First, calibration of
the propagation exponents was performed for ground level and
all the different heights, separately. Calibration in WinProp is
a standard procedure and it is performed automatically [9].
It calculates the Minimum Mean Squared Error (MMSE) of
the difference between measurements and predictions. The
scanner samples were converted from RSRP to signal power
and further averaged over 5 m, to match with the 3D maps
resolution.

We show in Table I the 50%-ile value of the signal power
distributions of measurements and predictions before and after
calibration for the ground level case. For both cases, the
models provide a better estimation of the signal power after
calibration.

Calibration was performed for both DPM and IRT models,
and the results for both models were analysed before and
after calibration. For IRT, we first ran predictions using the
default WinProp values for ground level. As the difference
between calibrated DPM and default WinProp IRT propagation
exponents for the ground level case was minimum, we decided
to use the calibrated DPM propagation exponents to run

TABLE I
50 %-ILE OF SIGNAL POWER DISTRIBUTIONS FOR MEASUREMENTS AND
PREDICTIONS - DPM AND IRT MODELS BEFORE/AFTER CALIBRATION

Before Calibration After Calibration
Measurements -72.1

DPM -84.9 -72.1
IRT -66.3 -72.2



TABLE II
PROPAGATION EXPONENTS FOR DPM/IRT PREDICTIONS

Ground Level 10 m, 15 m, 30 m
DPM IRT DPM/IRT

LOS exp. 2.6 2.8 2.2
OLOS exp. 2.7 2.9 2.4

LOS exp. after breakpoint 3.5 3 3.3
OLOS exp. after breakpoint 4 3 3.3

IRT predictions at different heights. Results after calibration
improved slightly only for the ground level case, whereas for
the different heights the results worsened. For this reason, IRT
propagation exponents shown in Table II are the calibrated
values for ground level case only. For the different heights,
the parameters used for IRT were the same as for DPM
corresponding to the same height.

The factor for breakpoint distance determination was set
to 2π as it is recommended in [9] for the urban case. The
initial value for the breakpoint distance is calculated using the
heights of the transmitter and receiver, and the wavelength [9].
The exponents after breakpoint distance were not determined
during calibration for above ground, and therefore they were
set to the default value set in the tool.

A summary of the overall standard deviation of the differ-
ence between measurements and predictions for the different
heights after DPM calibration is presented in Table III. As
it can be observed, the overall (including all transmitters)
standard deviation of the difference between measurements
and predictions is high compared to results in [10] even
after calibration. To explain that, we present in Table IV a
per transmitter analysis, where only some of the transmitters
used for calibration of DPM at ground level are shown.
The results in Table IV are obtained by subtracting, pixel
by pixel, measurements to predictions for each transmitter
independently. It can be noticed that, per transmitter, there
is a considerable spread of the mean values, between -6.1dB
to +14.5dB, which contributes to the overall high standard
deviation of the difference. This will be further discussed in
Section IV.

C. Shadow Fading Estimation

Once calibration was performed, we ran new predictions
with the optimal propagation exponents. The results obtained
from those predictions were used for the analysis presented in
Section III.

TABLE III
STD. DEV. OF THE OVERALL DIFFERENCE BETWEEN MEASUREMENTS AND

PREDICTIONS AFTER CALIBRATION FOR THE DIFFERENT HEIGHTS

Height # of transmitters used
for calibration Std. Dev. [dB]

Ground Level 14 10.62
10 16 12.96
15 17 11.66
30 28 8.03

TABLE IV
PER-TRANSMITTER STATISTICS OF THE DIFFERENCE BETWEEN

MEASUREMENTS AND PREDICTIONS @ GROUND LEVEL

Tramsmitter ID Mean Value [dB] Std. Dev. [dB]
A 3.5 6.5
B 10.7 7.8
C -0.1 5.0
D 14.5 4.7
E -11.5 5.7
F 5.5 5.1
G -6.1 5.0

To analyse shadow fading, distance-dependency was re-
moved from both measurements and predictions. The values
were subsequently de-trended per transmitter prediction, so
that only the variation in the local mean power level remained.
Processed like this, the resulting values are therefore propor-
tional to the shadowing in large-scale propagation.

To measure the accuracy of the predictions, we performed
cross-correlation of time sequence samples between measure-
ments and predictions. The cross-correlation coefficient, ry1y2,
used for this analysis is presented in Eq. (1), where cy1y2
represents the cross-covariance, defined in Eq. (2), of the time
series y1 and y2, and s1 and s2 are the sample standard
deviation of the time series y1 and y2, respectively, as it is
shown in Eq. (3).

ry1y2 =
cy1y2(k)

sy1sy2
; k = 0,±1 (1)

cy1y2(k) =
1

T

T−k∑
t=1

(y1,t − y1)(y2,t+k − y2); k = 0,±1 (2)

si =
√
cyiyi

(0) =
√
V ar(yi) (3)

The cross-correlation was performed for lags k = 0,±1,
where a lag corresponds to a pixel position (5m). This was
done to take into account that measurement positioning can
be off by some meters, and therefore misalign samples in the
comparison. For the results, the maximum value among the
cases with k = 0,±1 was chosen.

III. RESULTS

A. Correlation Coefficients between measurements and pre-
dictions

The correlation analysis was applied per street and trans-
mitter to get a measure for the accuracy in the prediction of
the shadowing. We consider a prediction to be sufficiently
accurate when the value obtained from cross-correlation in
Eq. (1) is higher than 0.6. We present two examples of the
measurements and predictions along a street in Figs. 3 and 4.
For these cases, cross-correlation coefficients (CC) are 0.5457
and 0.8803, respectively. As it can be seen in Fig. 3, with
a correlation value close to the limit we established (0.6),
shadow fading is well predicted since the strongest variations



Fig. 3. Example (I) of comparison of measurement and prediction along the
route. CC = 0.5457.

Fig. 4. Example (II) of comparison of measurement and prediction along the
route. CC = 0.8803.

are seen in predictions as well as in measurements and the
correlation is high in the first stretch of the street.

Figure 5 shows the CDF of the correlation coefficients of
the different combinations of street-transmitter for the whole
set of measurement data, for both DPM and IRT. Results
are presented for four different heights: ground level (1.5m),
10m, 15m and 30m. IRT performance is better than DPM in
predicting the behaviour of the measurements, as the percentile
of correlation coefficients above 0.6 is higher. Prediction
accuracy in terms of correlation behaviour, deteriorates with
height.

B. Shadowing distribution

Figure 6 shows examples of the shadow fading (SF) distri-
butions of both measurements and IRT predictions at ground
level. They both adhere reasonably to the log-normal model
with zero mean. The best-fit Gaussian is also shown for
comparison. The standard deviation of the SF predictions

Fig. 5. CDF of cross-correlation coefficients between measurements and
predictions for all measurement locations and transmitters.

Fig. 6. SF distribution for ground level measurements and IRT predictions.

(4.2dB) is lower than for the measurements (6.2dB). This is
also the observation at increased height, as shown in Fig. 7
where the mean SF standard deviation is shown versus height
the different models analysed.

Fig. 7 indicates that the mean standard deviation increases
up to about the rooftop level, approx. at 10m, where after
it decreases due to the radio path clearance [13]. The same
trend is captured by the ray tracing predictions, and therefore
seems to suggest that propagation paths in the transition zone
at rooftop level, are more diverse and dynamic than below
and above rooftop. While at ground level, the dominant paths
are mostly ”street-guided”, and above rooftop level they are
predominantly free-space, the high standard deviation at 10 m
(i.e., transition zone) suggests that there might be overlapping
of ”street-guided”, over-rooftop and free-space contributions.

IV. DISCUSSION

Two factors impact our results. Accurate predictions natu-
rally require maps which are representative. We found inac-
curacies in our 3D maps that suggest local changes in some
parts of the city in the map areas considered with respect to
real layout at the time of measurements. Inaccuracies were
identified in four different locations within the map, and the
worst case example is shown in Fig. 8. At ground level, all
the predictions with correlations lower than 0.6 have been
proven to be close to areas where there are map inaccuracies.



Fig. 7. Average SF standard deviation values over all transmitter-street
combinations.

However, the same study is difficult to carry out for the
different heights, as the transmitters observed by the drone
are sometimes far away [6].

On the other hand, there is a limited accuracy on the
building data bases [10]. The buildings are modelled as a
polygonal cylinder of uniform height, where the rooftop shape
is not being considered. This is surely affecting the above-
rooftop predictions and explains why some of the transmitters
present high mean value and standard deviation on the differ-
ence between measurements and predictions, as it is shown in
Table IV. For the same reason, shadowing variation is slightly
lower for the predictions than for the measurements, but it can
be seen in Figs. 6 and 7 that they follow the same trend.

Despite the maps inaccuracies, results show that predictions
using IRT and DPM show about the same standard deviation
versus height, but IRT is better in capturing the temporal
dynamics of the SF process. The cost of using the IRT model
is computation time, which is considerably higher than for
DPM [10].

V. CONCLUSIONS

This paper studies, by comparing with field measurements,
the feasibility of ray tracing predictions and models to accu-
rately predict shadowing variations at different heights.

From analysis and comparison of standard deviation and
correlation properties, there is a good match between pre-
dictions and measurement data, the latter covering a set of
different propagation conditions in an urban environment.

Overall, our study confirms that ray tracing tools can be used
to obtain more empirical evidence and a better knowledge of
the UAV radio channel, including shadow fading correlation
properties, which play a key role in the mobility management
algorithms, such as handover.
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Fig. 8. Portion of the studied area: actual maps (top) and 3D database
(bottom).
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