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Abstract: The modeling of stator and rotor faults is the basis of the development of online monitoring
techniques. To obtain reliable stator and rotor fault models, this paper focuses on dynamic modeling
of the stator and rotor faults in real-time, which adopts a multiple-coupled-circuit method by using a
winding function approach for inductance calculation. Firstly, the model of the induction machine
with a healthy cage is introduced, where a rotor mesh that consists of a few rotor loops and an end
ring loop is considered. Then, the stator inter-turn fault model is presented by adding an extra branch
with short circuit resistance on the fault part of a stator phase winding. The broken rotor bar fault is
then detailed by merging and removing the broken-bar-related loops. Finally, the discrete models
under healthy and faulty conditions are developed by using the Tustin transformation for digital
implementation. Moreover, the stator and rotor mutual inductances are derived as a function of the
rotor position according to the turn and winding functions distribution. Simulations and experiments
are performed on a 2.2-kW/380-V/50-Hz three-phase and four-pole induction motor to show the
performance of the stator and rotor faults, where the saturation effect is considered in simulations by
exploiting the measurements of a no load test. The simulation results are in close agreement with the
experimental results. Furthermore, magnitudes of the characteristic frequencies of 2f 1 in torque and
(1 ± 2s)f 1 in current are analyzed to evaluate the stator and rotor fault severity. Both indicate that the
stator fault severity is related to the short circuit resistance. Further, the number of shorted turns and
the number of continuous broken bars determines the rotor fault severity.

Keywords: motor modeling; stator faults; rotor faults; short circuit; broken rotor bar; winding
function approach; saturation effect

1. Introduction

It is reported that 37% of stator faults and 10% of rotor faults occur in induction motors in industry
applications [1]. In the early stage, most of the stator faults and rotor faults are caused by turn-to-turn
insulation failures [2] and broken bar faults [3], respectively. There are many factors that result in
stator and rotor faults, including thermal, mechanical, and environmental stresses. For instance, it was
indicated in [4] that the insulation degradation of stator windings is the main cause for stator inter-turn
faults, where the thermal stress is the most recognized factor for the ultimate insulation failure [5].
Other reasons such as partial discharges (PD) [5] also lead to the insulation decrease, especially
in applications with voltage source inverters. Furthermore, in [5] and [6], it has been illustrated
that the rotor faults are developed from manufacturing defects, thermal and mechanical stresses.
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The thermal expansion can lead to rotor internal misalignment or shaft bending, which will cause rotor
unbalancing [7]. To address the fault issues, stator and rotor fault diagnosis methods based on signal
processing technologies, modeling or parameters, and artificial intelligence have been developed in
the literature. Nevertheless, to explore the degradation of the induction motor performance and to
release the online monitoring, reliable models of stator and rotor faults are of importance.

Accordingly, a stator fault model in steady state was introduced in [8], and however, it is not
suitable for the analysis of the dynamic performance. In [9], the stator fault in the natural a-b-c reference
frame was established by considering the stator parameters as a function of the three short-circuited
windings. In [10–13], an extra branch with short-circuit-resistance was added on the fault part with
shorted turns of stator windings, where the stator fault model at the d-q-0 reference frame has been
further derived to separate the healthy and faulty components in the equations. In addition, [14]
describes the stator fault model in the d-q-0 stationary reference frame, where the parameter changes
due to faults are calculated in detail. However, the space harmonics due to the non-sinusoidal
distribution of stator windings are not considered.

Most rotor fault models are based on the winding function approach, where the rotor cage is
considered as a mesh that contains rotor loops (the number of rotor loops is equal to the number of
rotor bars) and an end ring loop [15–17]. In [6], the steady state rotor fault was analyzed by merging
the double rotor loops of the two adjacent loops, whose currents flow through the broken bar. Here,
in this case, the stator current consists of the components of the main frequency and fault sidebands.
Similarly, [18] analyzed the transient performance of cage induction motors under stator and rotor
faults, where the rotor fault is simulated by modifying the column and row elements of the rotor loop
related to the broken bar. Furthermore, [17] proposed a symmetrical components theory to simplify
the analysis of the unbalance of the three-phase power system for rotor broken bar fault detection.
In addition, the modeling of rotor fault was presented in [19–21] by considering a resistance ∆Rr added
on the d- or q-axis rotor resistance of the healthy rotor to break the rotor symmetry at the two-phase
rotor rotation axis.

Reliable stator and rotor fault models are very important to achieve online faults detection.
With this consideration, this paper focuses on the dynamic modeling of stator and rotor faults.
The influence of space harmonics and magnetizing saturation is investigated, which is suitable for any
excited voltage and any arrangement of stator windings. The rest of the paper is organized as follows.
Section 2 introduces models of healthy systems, stator and rotor faults based on the winding function
method. Section 3 proposes an improved method for stator-rotor mutual inductance calculation in
real-time based on the winding function and turn function distributions with respect to the rotor
position. Section 4 demonstrates the simulation results of the stator and rotor faults, where the severity
of stator and rotor faults under different cases are further analyzed (i.e., the torque and current spectrum
analysis). Section 5 shows the experimental results on a 2.2-kW/380-V/50-Hz induction motor under
healthy, stator and rotor faulty conditions, where the saturation is considered as a coefficient related to
the magnetizing flux. The conclusion of this paper is presented in Section 6.

2. Stator and Rotor Fault Models

As aforementioned, the fault models are crucial for online monitoring of induction motors.
For simplicity, the following assumptions are considered: (a). It is assumed that the motor is supplied
by a balanced three-phase voltage source; (b) The air gap is uniformed, and the motor has no eccentricity;
(c) Rotor bars are insulated to each other, and there is no inter-bar current. With those assumptions,
voltage and flux expressions of a three-phase induction motor with nb rotor bars can be derived, which
will be presented in the following.

2.1. Modeling of Healthy Induction Motors

The equivalent circuit of the rotor cage is described as a mesh, which is shown in Figure 1. Here,
Rb and Lb are the rotor bar resistance and leakage inductance, respectively; Re and Le are the resistance
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and leakage inductance of the end ring segment, respectively; ir1 and ir2 represent the currents of the
first and second rotor loop, respectively; ie is the end ring current. It can be observed in Figure 1 that
the arbitrary rotor loop comprises of two adjacent rotor bars, together with the end ring segments.
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Figure 1. Equivalent circuit of the rotor cage with multiple-coupled-loops.

According to the above mesh model, the first rotor loop can be described as

(pLb + Rb)
(
ir1 − irnb

)
+ (pLe + Re)ir1 + (pLb + Rb)(ir1 − ir2) + (pLe + Re)(ir1 − ie) (1)

where irnb represents the current of the nb-th rotor loop and “p” is the derivation operation. Then,
it can be simplified as

(2Rb + 2Re)ir1 −Rbir2 −Rbirnb −Reie + p
[
(2Lb + 2Le)ir1 − Lbir2 − Lbirnb − Leie

]
(2)

Next, the couplings to other rotor loops and to stator phases are considered, which leads to the
following voltage equation:

0 = (2Rb + 2Re)ir1 −Rbir2 −Rbirnb −Reie + pλr1 (3)

λr1 =
[
(2Lb + 2Le)ir1 − Lbir2 − Lbirnb − Leie

]
+ [Lr1saisa + Lr1sbisb + Lr1scisc] +

[
Lr1r1ir1 + Lr1r2ir2 + . . .+ Lr1rnb irnb + Lr1eie

]
(4)

in which λr1 is the flux of the first rotor loop, Lr1sx is the mutual inductance between the first rotor loop
and phase x in the stator (x = A, B, C), Lr1rj is the mutual inductance of the first to jth rotor loop (j = 1, 2,
. . . , nb), Lr1e is the mutual inductance between the first rotor loop and the end ring, and Lr1e = 0.

The voltage and flux expressions of the rest rotor loops can be obtained in the same way. Moreover,
for the end ring, its current does not couple with stator phases, and thus,

0 = nbReie −Reir1 −Reir2 + . . .−Reirnb + pλe (5)

λe = nbLeie − Leir1 − Leir2 − . . .− Leirnb (6)
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The aforementioned rotor mesh shows that there are nb rotor loop currents and an end ring loop
current, along with three-phase stator currents. There are (nb + 4) un-known currents in total for a
healthy three-phase induction motor with nb rotor bars. Therefore, the healthy motor model can be
described as

(1) Voltage equations {
usabc = Rsabcisabc + pλsabc
0 = Rrir + pλr

(7)

where,

usabc =


usa

usb

usc

, Rsabc =


Rs 0 0
0 Rs 0
0 0 Rs

, isabc =


isa

isb

isc

,λsabc =


λsa

λsb

λsc



Rr =



2(Rb + Re) −Rb 0 0 . . . −Rb −Re

−Rb 2(Rb + Re) −Rb 0 . . . 0 −Re

0 −Rb 2(Rb + Re) −Rb . . . 0 −Re

0 0 −Rb 2(Rb + Re) . . . 0 −Re
...

...
...

...
...

...
...

−Rb 0 0 0 . . . 2(Rb + Re) −Re

−Re −Re −Re −Re . . . −Re nbRe


, ir =



ir1

ir2

ir3

ir4
...

irnb

ie


,λr =



λr1

λr2

λr3

λr4
...

λrnb

λe


with Rs being the stator resistance of the symmetry stator.

(2) Flux equations {
λsabc = Lsabcisabc + Lsrir

λr = Lrir + Lrsisabc
(8)

where,

Lsabc =


Lsasa Lsasb Lsasc

Lsbsa Lsbsb Lsbsc

Lscsa Lscsb Lscsc

, Lsr =


Lsar1 Lsar2 Lsar3 Lsar4 . . . Lsarnb 0
Lsbr1 Lsbr2 Lsbr3 Lsbr4 . . . Lsbrnb 0
Lscr1 Lscr2 Lscr3 Lscr4 . . . Lscrnb 0

, Lrs = LT
sr

Lr =



Lr1r1 + 2(Lb + Le) Lr1r2 − Lb Lr1r3 Lr1r4 . . . Lr1rnb − Lb −Le

Lr2r1 − Lb Lr2r2 + 2(Lb + Le) Lr2r3 − Lb Lr2r3 − Lb . . . Lr2rnb −Le

Lr3r1 Lr3r2 − Lb Lr3r3 + 2(Lb + Le) Lr3r4 − Lb . . . Lr3rnb −Le

Lr4r1 Lr4r2 Lr4r3 − Lb Lr4r4 + 2(Lb + Le) . . . Lr4rnb −Le
...

...
...

...
...

...
...

Lrnbr1 − Lb Lrnbr2 Lrnbr3 Lrnbr4 . . . Lrnbrnb + 2(Lb + Le) −Le

−Le −Le −Le −Le . . . −Le nbLe


in which Lsisj is the mutual inductance between phase i and phase j (i = a, b, c; j = a, b, c); the way of
other definitions is the same as that of the first loop. It should be noted that the stator and rotor mutual
inductances depend on the rotor position during motor operation.

(3) Torque and speed equations

Te = 0.5iT
sabc

dLsabc
dθm

isabc + 0.5iT
sabc

dLsr

dθm
ir + 0.5iT

r
dLrs

dθm
isabc + 0.5iT

r
dLr

dθm
ir (9)

Te = J
dωm

dt
+ TL (10)

where Te and TL are the electromagnetic torque and load torque, respectively, ωm and θm are the
mechanical angular speed and angle, respectively, and J is the inertia of the motor.

Substituting Equation (8) into (7), the healthy motor can be described by the vector given as[
usabc

0

]
=

[
Rsabc pLsr

pLrs Rr

][
isabc

ir

]
+

[
Lsabc Lsr

Lrs Lr

]
p
[

isabc
ir

]
(11)
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2.2. Modeling of Stator Faults

If a stator fault is presented in the motor, an extra branch with short circuit resistance Rf will be
added on the short part in the stator winding, as shown in Figure 2. The current if flows through
the short circuit resistance Rf, and thus, the current of the fault part in the stator winding is (isa-if)
according to the Kirchhoff’s current law.
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fR

fi

sasa2R

( )−sa fi i

sai

sasa1R

Figure 2. Representation of the stator winding inter-turn short branch.

Figure 2 further shows that the stator fault is located at phase A. The parameters related to faulted
turns are considered to be proportional to the number of shorted turns nsf. For example, the stator
resistance of the shorted part is ksfRs (ksf = nsf/zs, and zs is the total number of stator slots), whereas the
resistance of the healthy part is (1 − ksf)Rs. Hence, the voltage equations of the stator phase A and
shorted circuit are derived as

usa = (1− ksf)Rsisa + ksfRs(isa − if) + dλsa/dt (12)

Rfif = ksfRs(isa − if) + dλf/dt (13)

Notably, other equations related to the shorted phase should be updated accordingly. As a
consequence, the vector of the stator fault model can be simplified as

usabc
0
0

 =


Rsabc Rsf pLsr

Rfs Rff pLfr
pLrs pLrf Rr




isabc
if
ir

+


Lsabc Lsf Lsr

Lfs Lff Lfr
Lrs Lrf Lr

p


isabc
if
ir

 (14)

where Rsf =
[
−ksfRs 0 0

]T
, Rff = −(ksfRs + Rf), Lsf =

[
−ksf(Lms + Lls) 0.5ksfLms 0.5ksfLms

]T
,

Lff = −k2
sf(Lms + Lls), Lfr = ksfLsar (Lsar =

[
Lsar1 Lsar2 Lsar3 Lsar4 . . . Lsarnb 0

])
, and Rfs =

−RT
sf, Lfs = −LT

sf, Lrf = −LT
fr.

2.3. Modeling of Rotor Faults

When a rotor bar broken fault is presented in the induction motor, the broken bar is removed
from the loop, as shown Figure 3, where the first rotor bar is broken. It can be seen from Figure 3 that
the two adjacent rotor loops surrounding the broken bar are combined into one rotor loop, and the
combined loop can be described as:

(pLb + Rb)
(
i′r1 − irnb

)
+ 2(pLe + Re)i′r1 + (pLb + Rb)

(
i′r1 − ir3

)
+ 2(pLe + Re)

(
i′r1 − ie

)
(15)

which can be simplified as

(2Rb + 4Re)i′r1 −Rbir3 −Rbirnb − 2Reie + p
[
(2Lb + 4Le)i′r1 − Lbir3 − Lbirnb − 2Leie

]
(16)

where ir1’ is the current of the combined rotor loop when the rotor bar broken is presented. Thus,
considering the inductances, the voltage and flux equations of the combined rotor loop are described as

0 = (2Rb + 4Re)i′r1 −Rbir3 −Rbirnb − 2Reie + pλr1 (17)
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λr1 =
[
(2Lb + 4Le)i′r1 − Lbir3 − Lbirnb − 2Leie

]
+

[
L′r1saisa + L′r1sbisb + L′r1scisc

]
+

[
L′r1r1i′r1 + L′r1r3ir3 + . . .+ L′r1rnb

irnb + L′r1eie
]

(18)

in which Lr1sa’, Lr1sb’, Lr1sc’ are the mutual inductance between the combined rotor loop and stator
phase A, B, and C respectively, and it has relationships of Lr1sa’ = Lr1sa + Lr2sa, Lr1sb’ = Lr1sb + Lr2sb,
Lr1sc’ = Lr1sc + Lr2sc; Lr1r1’, Lr1r3’, . . . , Lr1rnb’, Lr1e’ are the self and mutual inductances of the first rotor
loop, similarly, Lr1rj’ = Lr1rj + Lr2rj (j = 1, 2, . . . ). It can be observed from Equations (17) and (18) that
the voltage and flux of the combined first loop are equivalent to the case by adding the parameters of
the second column and line of the parameter matrices under healthy condition to the first column and
line with further simplification.
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Figure 3. Representation of the rotor cage mesh when the first rotor bar is broken.

Therefore, the vector expression of the rotor broken bar model is given as[
usabc

0

]
=

[
Rsabc pLsr

pLrs Rr

][
isabc

ir

]
+

[
Lsabc Lsr

Lrs Lr

]
p
[

isabc
ir

]
(19)

where ir =
[

i′r1 ir3 ir4 . . . irnb ie
]T

Rr =



2(Rb + 2Re) −Rb 0 . . . −Rb −2Re

−Rb 2(Rb + Re) −Rb . . . 0 −Re

0 −Rb 2(Rb + Re) . . . 0 −Re
...

...
...

...
...

...
−Rb 0 0 . . . 2(Rb + Re) −Re

−2Re −Re −Re . . . −Re nbRe


Lsabc =


Lsasa Lsasb Lsasc

Lsbsa Lsbsb Lsbsc

Lscsa Lscsb Lscsc

, Lsr =


L′sar1 Lsar3 Lsar4 . . . Lsarnb 0
L′sbr1 Lsbr3 Lsbr4 . . . Lsbrnb 0
L′scr1 Lscr3 Lscr4 . . . Lscrnb 0

, Lrs = LT
sr
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Lr =



L′r1r1 + 2(Lb + 2Le) L′r1r3 L′r1r4 . . . L′r1rnb
− Lb −2Le

L′r3r1 Lr3r3 + 2(Lb + Le) Lr3r4 − Lb . . . Lr3rnb −Le

L′r4r1 Lr4r3 − Lb Lr4r4 + 2(Lb + Le) . . . Lr4rnb −Le
...

...
...

...
...

...
L′rnbr1 − Lb Lrnbr3 Lr(nb−1)r4 Lrnbrnb + 2(Lb + Le) −Le

−2Le −Le −Le . . . −Le nbLe


2.4. Discretization

To realize the above healthy and faulty models in MATLAB/SIMULINK, the digital implementation
of these models should be considered. The above derived models involve in a large amount of matrix
calculations, and thus, it is necessary to find a suitable discrete method to reduce further computation
cost and improve calculation accuracy. Currently, the well-known discrete methods include the
first order forward/backward Euler methods, Tustin transformation, and Runge–Kutta method.
Among those, the Tustin transformation not only has higher computation accuracy, but also has a
lower calculation cost. It can be expressed as

s =
2
Ts

1− z−1

1 + z−1
(20)

where Ts is the sampling period. Then, the model of the healthy, stator and rotor fault motors can be
written as the following uniformed expression

u(t) = Φ1i(t) + Φ2
d
dt i(t)⇒

u(z) = Φ1i(z) + Φ2
2

Ts
1−z−1

1+z−1 i(z)
(21)

with u(t) and i(t) being the voltage and current vector matrix; Φ1 and Φ2 representing the state matrix
that depend on the models. Therefore, the discrete model is given as

ik = Φ−1
1

[
−Φ2ik−1 +

Ts

2
(uk + uk−1)

]
(22)

in which ik and ik−1 are the current vectors at the kth and (k − 1)th steps, respectively; uk and uk−1 are
the voltage vectors at the kth and (k − 1)th sampling instant.

3. Inductance Calculations

The inductances in the derived motor models are crucial for computation. The rotor bar leakage
inductance Lb and end ring leakage inductance Le can be easily calculated through the geometric
parameters of the machine. The relevant inductances can be calculated by using the winding function
method. The induction motor studied in this paper is a three-phase four-pole machine, which has
36 stator slots and 28 rotor bars. Each stator phase has six coils, and each coil has 42 turns, and
thus, the total number of turns of one stator phase is 252 turns. According to the winding function,
the inductances are calculated, which will be detailed in the following.

3.1. Stator Inductances Calculation

The turn function and winding function distribution for self and mutual inductances calculation
of the stator phase A is shown in Figure 4. Furthermore, the inductances in the matrix Lsabc can be
calculated according to

LAB = µ0rl
∫ 2π

0
nA(φ,θ)FB(φ,θ)g−1(φ,θ)dφ (23)

which describes the inductance calculation expression of coil A to coil B. Here, in (23), µ0 is the air gap
permeability; r is the inside radius of the stator core; l is the length of the stator core; nA is the turn
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function of coil A; FB is the winding function of coil B; g is the length of the air gap, which is constant if
the eccentricity is ignored.
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3.2. Rotor Inductance Calculations

In order to calculate the rotor inductances, the rotor loop is taken as a coil and it has only one turn.
Figure 5 presents the turn functions (TF) and winding functions (WF) for the inductance calculation of
the rotor loop 1. Figure 5a shows the TF and WF of the rotor loop 1, and thus, the self-inductance can
be calculated according to the TF and WF. It can be observed from Figure 5b that the winding function
of the rotor loop 14 is the result of the shift of the WF of the rotor loop 1 to the right by 14 × 2π/28.
Similarly, the WF of the kth rotor loop can be obtained by shifting the angle of k × 2π/28. Hence, all the
mutual inductances of rotor loops can be obtained, as shown in Figure 6, which gives the calculated
inductances of the rotor loop 1. It can be observed in Figure 6 that the mutual inductances are negative,
and their values are identical.
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where α is the angle between two adjacent rotor slots; Ns and Nr is the number of turns of a stator 
and rotor coil, respectively, with Nr = 1; Q is the pitch of stator coil. It can be seen in Figure 7 that 
the position of the rotor loop 1 related to the stator phase A determines the overlapping area for the 
inductance calculation according to the TFs and WFs distribution. Consequently, Table 1 gives the 
derived mutual inductance expressions and its derivation, as a function of the rotor position. The 
mutual inductances between stator phases to other rotor loops are identical, as given in Table 1, but 
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where α is the angle between two adjacent rotor slots; Ns and Nr is the number of turns of a stator 
and rotor coil, respectively, with Nr = 1; Q is the pitch of stator coil. It can be seen in Figure 7 that 
the position of the rotor loop 1 related to the stator phase A determines the overlapping area for the 
inductance calculation according to the TFs and WFs distribution. Consequently, Table 1 gives the 
derived mutual inductance expressions and its derivation, as a function of the rotor position. The 
mutual inductances between stator phases to other rotor loops are identical, as given in Table 1, but 
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3.3. Transient Mutual Inductance bewteen Stator Phases and Rotor Loops Calculation

The mutual inductance calculation of stator phases to rotor loops is important, but it is difficult
because the rotor position changes when the motor is running. In order to realize the real-time
calculation of mutual inductances, the TF and WF with 0 ≤ θm < 2π/18-α are shown in Figure 7. Here,
the mutual inductance can be calculated as

Lsar1 =
µ0rl

g

∫ θm

0 Ns
(
−
α

2π

)
Nrdφ+

µ0rl
g

∫ π
18
θm

Ns
(
1− α

2π

)
Nrdφ+

µ0rl
g

∫ θm+α
π
18

2Ns
(
1− α

2π

)
Nrdφ

+
µ0rl

g

∫ 2π
18
θm+α

2Ns
(
−
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g
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18
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where α is the angle between two adjacent rotor slots; Ns and Nr is the number of turns of a stator
and rotor coil, respectively, with Nr = 1; Q is the pitch of stator coil. It can be seen in Figure 7 that
the position of the rotor loop 1 related to the stator phase A determines the overlapping area for
the inductance calculation according to the TFs and WFs distribution. Consequently, Table 1 gives
the derived mutual inductance expressions and its derivation, as a function of the rotor position.
The mutual inductances between stator phases to other rotor loops are identical, as given in Table 1,
but they are shifted by a certain number of angles that depend on their relative positions. For example,
the mutual inductances between the stator phase B and C to the rotor loop 1 are shifted to the right by
2π/3 and 4π/3, respectively.
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when 0 ≤ θm < 2π/18-α.

Therefore, the mutual inductances of the rotor loop 1 to the stator phase A will be progressively
in phase around the rotor periphery. Then, the mutual inductances can be obtained by using the
above derivations, which can be plotted as shown in Figure 8. Furthermore, the derivation to the rotor
position is shown in Figure 9.
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Figure 8. Mutual inductance between the stator and the rotor loop.
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Table 1. Mutual inductance and its derivation with respect to rotor position.

Rotor Position Mutual Inductance The Derivation
to Rotor Position The Derivation to Time
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4. Simulation Results

To analyze the impact of stator and rotor faults, the proposed fault models are simulated on a
2.2-kW/380-V/50-Hz induction motor, whose parameters are given in Table 2. The motor is supplied
by a balanced sinusoidal voltage (380-V/50-Hz). The simulation results for the stator faults and rotor
faults are presented in the following section.
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Table 2. Motor parameters.

Parameters Values Parameters Values

l 90.2 mm Rb 5.9187 × 10−5 Ω
g 0.3 mm Lb 4.387 × 10−7 H
r 49 mm Re 6.5 × 10−6 Ω

Rs 2.6953 Ω Le 1.994 × 10−8 H
Lls 0.0113 H

4.1. Stator Faults

Figure 10 shows the currents of the stator phases under healthy and faulty conditions. It can
be observed from Figure 10a that the currents are balanced for a healthy motor. Observations of
the currents in Figure 10b indicate that the magnitudes of currents are not equal. More specifically,
the current magnitude of the phase B is smaller than that of the phases A and C. Furthermore,
the currents in Figure 10c are notably unbalanced compared to the currents in Figure 10b, where the
current of the phase B is significantly lower.Energies 2020, 13, x FOR PEER REVIEW 12 of 21 
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Figure 10. Currents of stator phases for 5 turns shorted stator fault with different fault resistances.

It has been reported that stator faults result in negative currents in the stator [22], which will
produce 2f 1 (f 1 is the fundamental frequency) components in the power [23] and electromagnetic
torque [24]. According to the measurements, the torque is calculated and further analyzed through the
fast Fourier transform (FFT) technique. Figure 11 illustrates the torque spectrum of the induction motor
under healthy and stator fault conditions. It can be observed in Figure 11 that the torque magnitude at
100 Hz (2f 1) of the healthy motor is very small compared to the short-circuit fault motor. In addition,
the torque magnitude at 100 Hz with Rf = 0.1 Ω is higher than that with Rf = 1 Ω, i.e., it is less serious
for a larger Rf. Therefore, it can be concluded from the simulations that the stator fault severity is
related to the short circuit resistance Rf. That is, the smaller Rf is, the more serious the impact is.

Furthermore, if Rf is fixed at 0.1 Ω, changing the number of shorted turns, the currents under
different shorted turns can be obtained, as shown in Figure 12. Comparing the currents in Figures
12b and 12c, it can be observed that the currents in Figure 12c are unbalanced, where the current of
the phases A and C in Figure 12c is increased. However, in this case, the current of the phase B is
decreased, when compared with Figure 12b.
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Figure 11. Torque spectrum for 5 turns shorted stator fault cases with different fault resistances (top:
health, middle: Rf = 1 Ω, bottom: Rf = 0.1 Ω).
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Figure 12. Currents of stator phases for Rf = 0.1 Ω with different shorted turns.

Figure 13 further shows the torque spectrum of the stator fault, where the torque magnitudes
at 100 Hz (2f 1) of 1-turn (1T) and 5-turn (5T) shorted motors are increased compared to the healthy
stator. It also can be seen in Figure 13 that the 5-turn shorted stator has a higher torque magnitude
than the 1-turn shorted stator. Therefore, the stator fault severity is related to not only the short circuit
resistance, but also the number of the shorted turns.
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Figure 13. Torque spectrum for Rf = 0.1 Ω with different shorted turns (top: health, middle: 1 turn
shorted, bottom: 5 turns shorted).

4.2. Rotor Faults

One broken rotor bar and three broken rotor bars faults are investigated in the simulation according
to the above derived rotor faults model. The stator currents are shown in Figure 14. It can be observed
in Figure 14 that the magnitudes of the currents of one broken rotor bar motor slightly vary in the
simulation period when compared with the healthy condition. For the three broken rotor bars case,
the magnitude pulsation is more obvious, as shown in Figure 14.
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Figure 14. Stator currents of phases in the induction motor under the healthy, one broken bar and three
broken bar conditions (top: health, middle: 1 broken bar, bottom: 3 broken bars).

It is proven that the rotor asymmetry can cause (1 ± 2s)f 1 sidebands in the stator current [25,26],
where s is the slip. The current spectrums of the healthy and broken rotor bar motors are analyzed, as
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presented in Figure 15. It is indicated in Figure 15 that the (1 ± 2s)f 1 component in the healthy current is
negligible, while the (1 ± 2s)f 1 component in the motor current of three broken rotor bars is larger than
that of the one broken rotor bar. Therefore, it can be seen that the (1 ± 2s)f 1 component is produced in
the rotor fault, where the number of continuous broken bars determines the severity of rotor faults.
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Figure 15. Current spectrums of the healthy and rotor fault motors.

5. Experimental Results

Experimental tests are performed on a 2.2-kW/380-V/50-Hz induction motor in this paper under
healthy, stator and rotor faults conditions. The stator inter-turn fault motor is provided through
shorting the addition taps connected to the stator coils, and the rotor broken bar fault is created by
drilling holes in contiguous rotor bars. When the induction motor with the stator or rotor asymmetry
is excited by the balanced sinusoidal voltage source, the motor currents and speed are measured for
further analysis and assessment.

5.1. Healthy Motors

The experimental results of the stator currents are shown in Figure 16, when the balanced
sinusoidal voltage is applied in the healthy induction motor. The performance is also compared with
the simulation results. It can be observed from Figure 16 that the current magnitude in the experimental
tests is larger than that in simulations. The difference between simulation and experimental results is
due to the existence of the magnetizing saturation.
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Figure 16. Comparison of simulation and experimental currents under the healthy motor condition.

More specifically, in the motor steady-state equivalent circuit, the saturation is explained as the
deviation of magnetizing inductance. Thus, the saturation can be included in terms of adjusting the value
of magnetizing inductance in the motor-equivalent-circuit-based model. In general, the magnetizing
inductance can be described as a function of magnetizing current, in which their relationship can be
fitted as a function through the measurements of no-load tests. It should be noted that the magnetizing
current cannot be calculated directly.

Thus, this paper proposes to impose the magnetizing flux λm for the Lm calculation, and
subsequently, to realize the analysis of the saturation effect in the proposed multiple-coupled-circuit
models in simulations. The first step is to calculate λm in the simulation; then, the magnetizing current
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Im is obtained through the function of Im and λm based on offline no-load tests; finally, Lm is calculated
according to Lm = λm/Im, and thus, ksat is induced to define the coefficient of the saturation effect as

ksat = Lm/Lm0 (24)

where Lm is the adjusted magnetizing inductance according to the three calculation steps; Lm0 is
the magnetizing inductance without saturation, which can be obtained using the winding function
approach. Furthermore, the calculated ksat is used to adjust the inductances in matrices of Lsabc, Lsr,
and Lr.

The whole procedure with the consideration of saturation effect in simulations is summarized as
Figure 17. When the saturation effect is considered in the models, the currents are obtained, as shown
in Figure 18. It can be observed that the currents from simulations and experimental tests are well in
agreement with each other. That is, the method to impose the magnetizing flux shown in Equation (24)
is validated.
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Figure 17. Procedure for inductances correction considering the saturation effect.
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Figure 18. Simulation and experimental currents considering the magnetizing saturation.

5.2. Stator Faults

The stator currents of the five-turn shorted fault under different short circuit resistances are
measured and shown in Figure 19. Figure 19a shows the appearance of the unbalance of three
phase currents even for the healthy motor, which is caused by the unavoidable unbalanced three
phase voltages in the experiments. When analyzing Figure 19b, it is known that there is no apparent
distinction with respect to Figure 19a. In contrast, it is observed from Figure 19c that the unbalance of
the currents is significant, where Rf is ten times smaller compared to Figure 19b.



Energies 2020, 13, 133 16 of 20

Energies 2020, 13, x FOR PEER REVIEW 16 of 21 

 

Figure 17. Procedure for inductances correction considering the saturation effect. 

 

Figure 18. Simulation and experimental currents considering the magnetizing saturation. 

5.2. Stator Faults 

The stator currents of the five-turn shorted fault under different short circuit resistances are 
measured and shown in Figure 19. Figure 19a shows the appearance of the unbalance of three 
phase currents even for the healthy motor, which is caused by the unavoidable unbalanced three 
phase voltages in the experiments. When analyzing Figure 19b, it is known that there is no apparent 
distinction with respect to Figure 19a. In contrast, it is observed from Figure 19c that the unbalance 
of the currents is significant, where Rf is ten times smaller compared to Figure 19b. 

 

Figure 19. Stator currents of healthy, and 5-turns shorted with different short-circuit resistance in 
the induction motor. 

In order to analyze the influence of the stator fault, the torque spectrums for the fault cases in 
Figure 19 are presented in Figure 20. It can be observed that the torque magnitude at 100 Hz (2f1) for 
the healthy motor is comparatively high because of the unbalanced voltage. Moreover, the torque 
magnitudes at 100 Hz under the stator faults are larger than that under the healthy condition. In 
addition, it also can be seen in Figure 19 that the lower the short circuit resistance is, the higher the 
torque magnitude at 100 Hz in the torque spectrum will be. 

1 1.05 1.1 1.15 1.2
-6

-4

-2

0

2

4

6

 

 
Simulation
Test

Time / (s)

Cu
rre

nt
/(

A
)

(a). health
f(b). 2.435= ΩR

f(c). 0.2314= ΩR

12.6 12.605 12.61 12.615 12.62

-5

0

5

Time/(s)

C
ur

re
nt

/(A
)

12.6 12.605 12.61 12.615 12.62

-5

0

5

Time/(s)

C
ur

re
nt

/(A
)

12.6 12.605 12.61 12.615 12.62

-5

0

5

Time/(s)

C
ur

re
nt

/(A
)

Figure 19. Stator currents of healthy, and 5-turns shorted with different short-circuit resistance in the
induction motor.

In order to analyze the influence of the stator fault, the torque spectrums for the fault cases
in Figure 19 are presented in Figure 20. It can be observed that the torque magnitude at 100 Hz
(2f 1) for the healthy motor is comparatively high because of the unbalanced voltage. Moreover,
the torque magnitudes at 100 Hz under the stator faults are larger than that under the healthy condition.
In addition, it also can be seen in Figure 19 that the lower the short circuit resistance is, the higher the
torque magnitude at 100 Hz in the torque spectrum will be.Energies 2020, 13, x FOR PEER REVIEW 17 of 21 
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Figure 20. Torque spectrum under stator faults (top: health, middle: Rf = 2.435 Ω, bottom: Rf = 0.2314 Ω).

The measured currents are then compared considering the different number of shorted turns with
Rf = 0.1 Ω, and the torque spectrums are further analyzed, as shown in Figures 21 and 22, respectively.
It can be observed from Figures 21 and 22 that the degree of unbalance or the torque magnitude of
100 Hz increases with the increasing of the number of shorted turns.

When comparing with the simulation results in Figures 10–13, it is known that the experimental
results agree with the simulation results. Then, it can be concluded that the stator fault severity is
related to the short circuit resistance and the number of shorted turns. The lower the short circuit
resistance is or the higher the number of the shorted turns is, the more serious the stator inter-turn
fault will become.
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Figure 21. Stator currents of different shorting turns with Rf = 0.1 Ω in the induction motor.
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Figure 22. Torque spectrum under stator faults (top: health, middle: 5 turns shorted, bottom: 20 turns
shorted).

5.3. Rotor Faults

When the rotor with broken bars in the motor is considered, the currents are measured and shown
in Figure 23. Similarly, the current spectrum is analyzed, as shown in Figure 23. It can be seen in
Figures 23 and 24 that the (1 ± 2s)f 1 component in the stator current is produced in the rotor fault
motor, where the current magnitude at (1 ± 2s)f 1 of the three broken bars rotor is larger than that of the
one broken bar rotor.
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Figure 23. Motor currents under rotor faults (top: health, middle: 1 broken bar, bottom: 3 broken bars).
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severity under various faulty cases. It can be concluded from the simulation and experimental 
results that the stator fault severity is related to the short circuit resistance and the number of 
shorted turns. Moreover, the larger the number of continuous broken bars is, the more serious the 
rotor faults will be. In all, the proposed models can be used to provide stator and rotor fault 
information in simulations with the consideration of the saturation effect, which in turn enables the 
evaluation of the fault severity of the induction motor. 
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6. Conclusions

In this paper, stator and rotor fault models considering the saturation effect were proposed based
on the winding function approach. The stator and rotor mutual inductances are crucial for the models,
and hence, how to calculate the inductance in real-time according to the proposed models was detailed
in this paper. Furthermore, the discrete model was obtained through the Tustin transformation for
digital implementation, where a uniform model was given to describe the motor model under healthy
and faulty conditions. Simulation and experimental results have demonstrated the effectiveness of
the proposed model, where the 2f 1-frequency components in the torque and (1 − 2s)f 1-frequency
components in the current were considered to assess the fault severity under various faulty cases.
It can be concluded from the simulation and experimental results that the stator fault severity is related
to the short circuit resistance and the number of shorted turns. Moreover, the larger the number of
continuous broken bars is, the more serious the rotor faults will be. In all, the proposed models can
be used to provide stator and rotor fault information in simulations with the consideration of the
saturation effect, which in turn enables the evaluation of the fault severity of the induction motor.
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