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A B S T R A C T

Background: Adult onset growth hormone (GH) deficiency (AGDH) is a potentially underdiagnosed condition,
caused by damage to the pituitary gland. AGHD is treated with growth hormone replacement therapy. A large
variety of clinical symptoms and changes in the metabolic homeostasis can be observed and quantified. New large
animal models are needed for future drug development.
New method: In this study, we evaluate methods for a new large non-primate animal model of GH deficiency in
post pubertal G€ottingen Minipigs (minipig). Lesions in the pituitary gland were made by stereotaxic monopolar
thermo-coagulation guided by magnetic resonance imaging (MRI), and pituitary function was evaluated using
insulin tolerance test (ITT) with measurements of growth hormone secretion induced by hypoglycemia.
Results: Lesions were successfully applied to the pituitary gland without any damage to surrounding tissue
including the hypothalamus, which was confirmed by post-operative MRI and post mortem histology. Plasma
levels of GH during ITT showed no decrease in secreted levels one week after surgery compared to levels obtained
before surgery.
Comparison with existing methods: Compared to other GH insufficiency models, eloquent brain tissue is spared.
Furthermore, alternatively to rodent models, a large animal model would allow the use of human intended
equipment to evaluate disease. Using the minipig avoids social, economical and ethical issues, compared with
primates.
Conclusion: The lesions did not remove all GH production, but proof of concept is demonstrated. In addition, the
ITT is presented as a safe and efficient method to diagnose GH deficiency in minipigs.
1. Introduction

Traumatic head injuries, tumours, neurosurgical operations or other
pathological conditions in the pituitary gland may lead to AGHD. GH
levels are often the first to be affected by such conditions. AGHD is
successfully treated with GH replacement therapy (Fukuda et al., 2014;
Stochholm et al., 2006), however, AGHD is probably underdiagnosed and
thus untreated (Karaca et al., 2016) as the manifestations are clinically
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Fig. 2. The experimental setup for hypophysectomy with the minipig placed in
the stereotaxic localizer box. The active electrode (**) and return electrode (*)
are marked.
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Sheppard, 2006; Brod et al., 2014; Claessen et al., 2014; Fukuda et al.,
2014; Johansson et al., 1995; Kreitschmann-Andermahr et al., 2010;
Ros�en et al., 1993; Stochholm et al., 2007; Svensson and Bengtsson,
2009; Uzunova et al., 2015). The majority of symptoms can be alleviated
or normalized by GH replacement therapy, however, long-term surveil-
lance of side effects and individualized dose regulation is required (Drake
et al., 1998; Johannsson et al., 1997; Nilsson et al., 2007; Toogood,
2005).

Currently, however, there is no well-established adult onset non-
rodent model (Appelman-Dijkstra et al., 2014; Fukuda et al., 2014;
Gahete et al., 2016; H€oybye and Christiansen, 2015; Li et al., 2015; Miller
et al., 2010).

GH analogues should be tested in a non-rodent animal in addition to a
rodent model in order for the response to be regarded as consistent in
different species, including humans. Thus, a non-rodent, large animal
model with pituitary hormone deficiency that can be subjected to long-
term replacement therapy will be of great value in the GH research
field (Appelman-Dijkstra et al., 2014; Hansen et al., 2002; Thorsted et al.,
2016). Surgical hypophysectomy has long been the standard for inducing
pituitary hormone deficiencies in animal models and has primarily been
performed on immature pigs, rats and mice for short term monitoring
regimens. Using a temporal surgical approach, animals could not eat after
surgery, probably due to jaw-muscle and jaw-joint pain (Amet et al.,
2010; Kwak et al., 2009; Link and St Clair, 1954; Zhang et al., 2012).

The aim of this study was to test a new surgical method for inducing
AGHD in post pubertal minipig, evaluate the insulin tolerance test as
diagnostic tool in the minipigs and evaluate hormone replacement
treatment for pituitary hormones besides GH.

It is however important to remember that the model is translational,
so differences on hormonal receptors is needed to make human intended
drug testing, and further receptor analysis is important (Hinrichs et al.,
2018).

2. Methods

2.1. Choice of animal model

The Danish Animal Expectorate (“Dyreforsøgs tilsynet”) ethically
approved the experiments.

The minipig is a relevant model in GH deficiency research due to the
anatomical, physiological and to some extent hormonal (Louveau and
Gondret, 2004) resemblance to humans and the well characterized
anatomical and physiological similarities (Lind et al., 2007). In humans,
hypophysectomy by a transsphenoidal approach is performed routinely,
but access by this route is hindered by the snout and tight jaw of the pig
(Pinar et al., 2015; Solari et al., 2014). Four minipigs were included in the
present study. To ease the procedures and reduce stress in the pigs, they
Fig. 1. Study design. Open square: analgesic, B
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were accustomed to interactions with humans by petting and time spent
in their pen with researchers. Animals were housed in adjacent pens with
snout contact to neighbouring animals. The minipigs were fed (special
Diets Services-pellets(SDS)) strictly based on animal weight and had
water ad libitum. Prior to surgery, the animals were fasted for 16 h. They
were housed at 20 �C air ventilation with 50–55% humidity, and with a
day/night cycle of 12 h.

2.2. Study design

Catheters were inserted one week prior to the pituitary surgery and
ITTs were performed 3 days before and 7 days after pituitary surgery. The
minipigs received hormone replacement therapy in the week from the
pituitary surgery to the final ITT. Analgesics were given for 3 days after
the catheter insertion and for 4 days after the pituitary surgery as illus-
trated in Fig. 1. The minipigs were euthanized after the last ITT by
anaesthesia with 0,6 ml/kg Zoletil mixture and a subsequent pentobar-
bital overdose in the catheter.

2.3. Surgical procedure

A magnetic resonance imaging (MRI) guided stereotactic electro-
coagulation approach was chosen based on previous research (Bjarkam
et al., 2009, 2004; Glud et al., 2017) (Fig. 2). The minipigs were sedated
lack dots: hormone replacement therapy.



L.H. Ørstrup et al. Heliyon 5 (2019) e02892
with 10 ml of Midazolam (B. Braun, 5 mg/ml) SC before transportation
from the animal facility to the surgical facility. Prior to oro-pharyngeal
intubation (using a tube size 4–6 depending on weight and anatomy)
anaesthesia was initiated using 5–10 ml IV of 70%Midazolam (B. Braun,
5 mg/ml) and 30% S-Ketamine (Pfizer, 25 mg/ml). Furthermore 5 ml
Cefuroxim IV (150 mg/ml) was used as prophylactic preoperative anti-
biotic, and 1 ml buprenorphine (Temgesic®) (0.3 mg/ml) IM was
administered as pain relief before the procedure (Ettrup et al., 2011).

The minipigs were ventilated manually until stabile respiration was
established, and then automatically ventilated with a mixture of air and
O2 (60%/40%) and 0.5–2.5% Sevofluran (Baxter) to maintain the gen-
eral anaesthesia. During transportation in the facility the anaesthesia was
maintained using propofol (Propofol "B. Braun”) infusion (2–5 mg/kg/
min). The sedated and intubated minipig was placed and fixed in a ste-
reotactic localizer box (NeuroLogic Mark2, Denmark).

Local analgesia of the Zygoma region (the temple) was obtained by
infiltration of 2.5 ml 5% Lidocaine (SAD) prior to fastening of the MRI-
compatible localizer box with titanium screws. A fiducial marker was
placed as previously described (Glud et al., 2017). The minipig were MRI
scanned next door to the operation facility, and brain MRI's were
3D-reconstructioned in order to localize the pituitary gland using ste-
reotaxic surgery planning software (Surgiplan, Elekta). The trajectory,
angle and depth of the pituitary gland were calculated. Stereotactic
sideplanes were taken off the localizer box, and an arc based stereotaxic
frame was mounted, converting it into a stereotaxic arc-based frame with
micromanipulator (Bjarkam et al., 2009).

Local analgesia of the epidermis and dermis in the midline on the
minipig's forehead was obtained by infiltration of 2.5 ml 5% lidocaine
(Lidocain “SAD”). A midline incision to the bone (4–6 cm) was placed
guided by the stereotactic arch, before a craniectomy was made using a
high-speed electrical drill (Midas Rex, Medtronic). Dura was gently
opened using a size 11 scalpel and a custom-made tube (5 mm in
diameter) with a blunt stylet was inserted between the frontal lobes,
avoiding lesions to the large blood vessels and between the two hypo-
thalami on the calculated trajectory to the pituitary gland. When the
pituitary gland was reached in sella turcica, the stylet was removed, a
monopolar electrode (Medtronic) was inserted and a 30 s coagulation
impulse was fired twice (1 A and 30 V, Maxireg 762, Weir Electronics).
Electric potential and current was chosen based on previous pilot egg-
yolk and cadaver experiments. To ensure adequate haemostasis, the
tube stayed in place for 5 min after the last coagulation impulse. If signs
of bleeding would appear (blood in the tube), a 10 s coagulation impulse
would have been repeated until haemostasis, however, no bleeding was
noted. The tube was removed and the skin was closed using one-layer
single dissolvable sutures (Vicryl 2–0, Ethicon). Post-operative anal-
gesia consisted of 1 ml buprenorphine (Temgesic®) (0.01 mg/kg) IM and
flunixinmeglumin (Finadyne® vet)(2.2 mg/kg). Procainpenicillin
(Penovet) 300.000 IE/ml (3.5 ml per 50 kg) was used as postoperative
antibiotic treatment. Animals were postoperatively re-scanned using
same method as previously to visualize the coagulation and any adverse
effects. After MRI-scanning the inhalation anaesthesia was stopped, and
the pigs were allowed to wake up. The intubation tube was removed at
the first observed gag reflex and the pigs were transferred to an obser-
vation pen, until standing upright and starting eating. After the surgical
procedure, the animals were transferred to the stables for pain relief
treatment, general recovery observation and further handling. Pain relief
treatment in addition to the treatment given during anaesthesia consisted
of buprenorfin (Vetergesic) (0.01 mg/kg) three times and meloxicam
(Metacam) (0.02 ml/kg) one time daily for 4 days. Signs of side effects
from the surgery were expected to include impaired sight, blindness or
other signs of brain damage. However, no signs of side effects were noted
and the pigs began eating immediately after recovering from anaesthesia.

2.4. Hormonal replacement therapy

As the entire pituitary gland was expected to be affected by the
3

surgery, other pituitary hormones than GH were considered for
replacement therapy to ensure animal welfare after the surgery (Prab-
hakar and Shalet, 2006; Veldhuis, 2013). The lack of prolactin,
follicle-stimulating hormone, luteinizing hormone or oxytocin was not
expected to affect welfare within 7 days. Lack of adrenocorticotropic
hormone, thyroid-stimulating hormone and anti-diuretic hormone could
induce discomfort if abolished by the surgery, thus, the minipig received
25 mg cortisol and 3 μg desmopressin daily as well as 0.25 mg
hydro-thyroxine twice weekly. This was done without verifying the need,
based on the experimental and animal welfare protocol.

2.5. Evaluation of surgery – diagnostic testing

To be able to infuse drugs and obtain blood samples in a stress free
manner during the diagnostic procedure, a semi-permanent catheter was
placed. The catheters were inserted into the jugular vein through the ear
vein (Careflow without extension 20G, 20cm Argon ref.681644.) under
sedation one week prior to pituitary surgery as described (Larsen et al.,
2002). Furthermore oral meloxicam (Metacam) administered in the food
(0.02 ml/kg, 24 h coverage) was administered once daily for 3 days. The
catheters were flushed with sterile saline daily through-out the study.
The insulin tolerance test (ITT), the golden standard of GH deficiency
diagnostic testing in humans, was used to evaluate the surgical proced-
ure. Measure of GH content in plasma without a prior challenge is not
sufficient to diagnose GHD, as GH is secreted in a pulsatile manner, in
particular during night time (Gill et al., 1999; Kargi and Merriam, 2013).
Also, IGF-1 plasma concentrations in a blood sample are unreliable as
diagnostic tool as there can be an overlap between the IGF-1 levels of
GHD patients and healthy controls (Fukuda et al., 2014). Insulin-induced
hypoglycaemia results in increased stimulation of GH secretion from the
pituitary gland and GH can be detected in blood samples obtained
frequently for 90 min after insulin administration. The ITT was per-
formed after an overnight fast with ad libitum access to water. A bolus of
0.6 nmol/kg insulin (Actrapid, Novo Nordisk, Denmark) was given IV
and blood samples were obtained at -5, 5, 10, 20, 30, 40, 50, 60, 75 and
90 min after dosing for determination of GH, insulin and glucose con-
centrations as described below.

Blood samples:
Whole blood was placed in 8 mM EDTA-coated tubes on ice until

centrifugation at 4000 rpm, 4 �C for 10 min for plasma collection.
Glucose concentrations were measured in whole blood using EKF Biosen
Autoanalyser (EKF diagnostic GmbH, Barleben, Germany). Insulin, GH
and IGF-1 plasma concentrations were determined by beads-based
luminescence oxygen channeling immuno assays as described in (Poul-
sen and Jensen, 2007; Thorsted et al., 2016; Ullman et al., 1996).

The blood glucose concentrations were monitored during the test by
hand-held devices (Accu-chek, Roche, Denmark) to monitor blood
glucose concentration and diagnose hypoglycaemia. The pigs were
constantly and carefully observed for clinical signs of hypoglycaemic
shock such as shaking, vomiting and loss of continuousness. Mild to
moderate hypoglycaemia indicated by search for food in the bedding
material and drooling, was considered acceptable without any inter-
vention. However, no clinical signs of hypoglycemic shock or treatment-
requiring hypoglycemia were observed.

2.6. Histology

Brains and pituitary gland were removed as previously described
(Bjarkam et al., 2017).The pituitary regions were fixed by immersion in a
4% paraformaldehyde solution (pH 7.4) for 24 h, placed in 30% sucrose
solution for 72 h, and frozen in isopentane cooled with dry ice. The
sample was kept frozen during cryosectioning into 40 μm horizontal
sections (except for pig 2, which was sectioned sagittally, see Fig. 3B2)
and directly mounted on microscopic slides. Finally, the sections were
stained with haematoxylin and eosin, dehydrated in alcohol and xylene,
mounted with Depex, and coverslipped.



Fig. 3. Macroscopic and microscopic pictures of the pituitary gland after
removal from sella turcica. The damaged tissue is marked with red arrows. Left
panel: Pictures with the number 1 show the macroscopic Right Panel: Pictures
with the number 2 are pictures of histological sections. Pictures labelled A are
from pig 1, B are from pig 2, C are from pig 3, and D are from pig 4.
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2.7. Statistical considerations

The current study is a proof-of-concept study. Four pigs were sub-
jected to the procedure without sham-operated controls. GH and IGF-1
concentrations were assessed before and after surgery.
Fig. 4. MR images of a representative pig be

4

3. Results

3.1. Magnetic resonance imaging scans before and after surgery

MR images were obtained before and after the pituitary surgery and a
representative image is seen in Fig. 4. The images suggested a successful
surgery as the bright signal from the pituitary gland and surrounding
blood vessels in the image to the left (blue arrow) was diminished in the
post-surgical image on the right (blue arrow).
3.2. Circulating levels of insulin, glucose and GH during ITTs

In the ITT, the elimination of insulin was initiated immediately after
administration and completed after about 30 min. High insulin levels
caused plasma glucose levels to drop to about 2 mM 10–30 min after
administration of insulin.

GH secretion was detected in all pigs with maximum at 30–50 min
after insulin administration in the ITT before (Fig. 5A) and after (Fig. 5B)
surgery.

Our study did not show statistical differences between GH AUC before
and after surgery. Pig 1 to 3 had unaffected or increased GH AUC after
surgery (Fig. 6A), while pig 4 have decreased GH levels compared to
before surgery. Mean IGF-1 concentrations before and after surgery was
not statistically different. IGF-1 concentrations were decreased in pigs
1–3 and increased in pig 4 (Fig. 6B).

The hormonal replacement treatment during the week after surgery
was successfully tolerated via functioning IV catheters and pieces of
apple with embedded oral tablets.
3.3. Histological evaluation

The macroscopic evaluation of the pituitary tissue prior to histolog-
ical processing revealed that the pituitaries were not completely abol-
ished by the electrocoagulation but clearly showed that all four
pituitaries were targeted by the electrocoagulation; pig 1 had no evident
burn on the surface, however, the surface was clearly scared by the
electrocoagulation. Pig 2, pig 3, and pig 4 showed obvious burns from the
electrocoagulation on the surface (see Figs. 3A1-D1 and 7A-D).

The histological sections showed that for all four pituitaries, the tissue
was accurately targeted, and the effect of the electrocoagulation could be
seen also on the microscopic level (see Fig. 3A2-D2). Histological sections
from pig 1 showed only small defects in the tissue (altered area in the
centre and coagulated spots). Sections from pig 2 showed significant
fore (A) and after (B) pituitary surgery.



Fig. 5. GH plasma concentrations levels duing ITT before (A) and after (B) surgery.

Fig. 6. Area under the curve of GH during the ITT and IGF-1 concentrations before and after surgery. A: Area under the curve (AUC) GH B: IGF-1 concentrations before
and after surgery.

Fig. 7. Higher magnification of pituitary gland with
examples for evaluation. A: Visualizing vacuoles and
erythrocytes trapped after damage from electro-
coagulation. B: At the right hand side of the picture,
discolorations at the area of entrance of the electro-
coagulation probe. Haematoma is seen between the
adeno and neuro lobes. C: Corresponding slide to B,
but stained for growth hormone. Again at top right
hand side, a small haematoma at the entrance of
electrocoagulation probe, and qualitative signs of
discoloration near the entrance of electrocoagulation
probe. For D: scale bar 1 mm.
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damage to the central portion of the gland across the entire length of the
border between the anterior and posterior lobe of the pituitary. Pig 3 had
a damaged area in the most posterolateral part of the anterior lobe near
5

the border to the posterior lobe. Pig 4 was targeted in the lateral part of
the border between the anterior and posterior lobe (see Fig. 3A2-D2 and
7A-D).
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Fig. 8. Plasma levels of glucose and insulin during ITTs before (A) and after (B) surgery. Insulin (blue triangles) on the left y-axis and glucose (black dots) on the right
y-axis.
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4. Discussion

The aim of the present study was to evaluate methods for a large
animal model of AGHD.

The MRI scans show that the precise targeting of the stereotaxic frame
system was impeccable and successfully avoided vital brain structures
ensuring the long-term survival of the pigs. The targeted area found
visible on the MRI scans seemed to implicate affection to most of the
pituitary volume. However, the histological sections (Fig. 3) revealed
that the applied electrical current was inadequate to eliminate the entire
pituitary gland, as desired. The size of the obtained hypodense area on
the post operativeMRI-scans that presumably corresponded to damage of
tissue might be overestimated due to blood coagulates and oedema in
surrounding tissue. It can be speculated that other MRI sequences for the
postoperative scan might constitute a more reliable evaluation of the
effect of electrocoagulation if it would be possible to distinguish between
tissue destruction, blood coagulates, and oedema. Another proposition
for future studies is the use of another translational-model modality than
electrocoagulation for the tissue destruction such as the gamma knife
LINEAC, radio frequency ablation or proton beam radiosurgery. The
technique enables a precise preoperative dose planning and delivers
highly focused and intense beams of radiation to the target with great
ability to spare surrounding tissue. An alternative modality could also be
a catheter that can be introduced via the micromanipulator arm and then
inflated to exert mass effect on the pituitary. Furthermore, gene transfer
via e.g. AAV-vectors and gene-lowering might be an option in future
models. In this setup, we chose the electrocoagulation due to its avail-
ability for the research group. With future anaesthetics with little or no
interference on the metabolism, it might even be possible to perform
continuous physiological test, while manipulating the pituitary gland.

During the ITT, blood levels of insulin and glucose were affected as
expected (Fig. 8) (Yuen et al., 2016). Insulin administration resulted in
hypoglycemia, which stimulated release of GH from the pituitary gland.
GH secretion was detected in all pigs with maximum at 30–50 min after
insulin administration indicating that insulin-induced hypoglycemia
stimulated release of GH in pigs and that the diagnostic tests were suc-
cessful (Fig. 5).

Although not visible on histological sections, hormone-producing
function could be affected by the electrocoagulation. Thus, it could be
speculated that induced cell damage that was not visible on the histo-
logical sections may have impaired hormone-producing function more
than expected from the histological evaluation. However, the insulin
tolerance test showed that GH AUC was unaffected or increased in pig
1–3, while it was decreased in pig 4 after surgery compared to before
surgery (Fig. 5A). This could be interpreted as unsuccessful surgeries in
pig 1–3 and successful surgery in pig 4, but the GH AUC after surgery in
pig 4 may not be different from the baseline GH AUC of pig 3 and could
thus be in the normal range. However, histological evaluation showed no
substantial damage to pig 4 compared to the other animals. Further
6

evaluation of the histological architecture of the minipig pituitary might
shed light on the optimal placement of the coagulation in order to target
specific sub-population of cells. Additional changes on the GH-IGF-I axis
might be detected in a setup with a longer post-operative evaluation
period.

Electrocoagulation was expected to cause impairment of GH secretion
and reduced hepatic IGF-1 secretion (Taheri et al., 2014). However, the
one week observation period after surgery is not considered to be suffi-
cient to wash out IGF-1 secreted before surgery, and IGF-1 would not be
optimal to evaluate the surgical procedure as it can also be affected by
other factors (t½ for IGF-J, 14–18 h) (Bielohuby et al., 2011; Clemmons,
2012). IGF-1 concentrations before and after surgery were not statisti-
cally different.

The hormonal replacement therapy was successfully tolerated and no
side effects were observed. As the surgery did not result in pituitary
dysfunction, it cannot be determined if the hormone replacement would
have been sufficient. Our approach might not be totally satisfactory
based on a final model, but a lot of the pitfalls and obstacles have been
overcome. The model setup with surgical approach and biochemical
evaluation might open up to other angles of AGHD-modelling, especially
with stereotaxic approaches.

5. Conclusions and perspectives

The capability of the minipigs to secrete GH during ITT was not
impaired by surgery. The location of and insult to the pituitary gland was
precise. Although the coagulationwas apparently too gentle, that is by far
preferred over to large ablation, due to the risk of bleeding and the
possible damage to adjacent brain areas including the hypothalamus, the
optic chiasm, the internal carotid arteries, and the basal forebrain. An
important aspect for future application of this method as a translational
model of pituitary disease is the long-time survival of the animals and the
fact that all included animals recovered well and survived until termi-
nation of the study.

The diagnostic test, ITT, successfully induced GH release from the
pituitary gland and consequently, the golden standard of diagnostic
testing for GHD in humans has been translated to a porcine model.
During the ITT, the minipigs were affected by hypoglycaemia, but no
cases of hypoglycemic shock were observed. Hormone replacement
therapy with cortisol, desmopressin and thyroxin was administered and
did not cause side effects. The protocol for intubation, anaesthesia and
analgesia for the surgery, was successful, and the minipig's natural
behaviour patterns before and after surgery did not change.

In summary — although unsuccessful in eliminating GH secretion —

the experimental setup allowed generation of a relevant platform for a
model of adult onset GHD in humans, in terms of diagnostic test, precise
targeting of the pituitary gland using MRI-guided stereotactic localiza-
tion, hormonal replacement therapy and animal analgesia, anaesthesia
and animal welfare. To generate an adult onset GHD model in minipig, a
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study of radio frequency ablation as a method to cause dysfunctional
pituitary tissue could be performed. Once a method to induce dysfunc-
tion of the pituitary tissue is developed, the animal model should be
characterised in terms of body composition, glucose tolerance, bone
mineral density, bone mineral content and others, e.g. development of
atherosclerosis and possibly cognitive function. Furthermore, the
response to GH administration should be characterised to evaluate the
minipig as a model of adult onset GHD.
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