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Abstract—In this paper, an overload and short circuit protection method is proposed for voltage source 

inverter based Uninterruptible Power Supply (UPS) system. In order to achieve high reliability and availability 

of the UPS, short circuit and overload protection scheme are necessary. When overload or short circuit happens, 

using the proposed control method, the amplitude of the output current can be limited to a constant value, which 

can be set by the customer to avoid the destruction of the power converter, and to obtain a faster recovery 

performance as well. The detailed principle of the proposed protection method is discussed in this paper. It 

mainly contains three parts in the control diagram for current limit, first is the anti-windup in the voltage and 

current controllers, then the feedforward of the capacitor voltage to the current control loop, the last is the fast 

reset of the resonant part of the current controller when overcurrent happens. The procedure of developing the 

control method is also presented in the paper. Experimental results on a commercial UPS system are presented 

to verify the effectiveness of the control method. 

 
Index Terms—Uninterruptible Power Supply (UPS), short circuit, overload, overcurrent protection, voltage 

source inverter. 

 

I. INTRODUCTION 

Voltage source inverters (VSIs) are widely used in a large variety of applications, such as the Uninterruptible Power 

Supply (UPS) system, Distributed Generation (DG) system [1], and even in the electric vehicles (EVs) [1]-[9]. A VSI 

usually consists several semiconductor switches, such as IGBTs. It is estimated that about 38% of the faults in a power 

system is due to failures of switching devices [1]. High operation reliability is always required for the power inverter 

based applications, especially in a high power system [1]. 

Therefore, the fault detection and protection system occupies an important position in the UPS. Switching devices 

can be broken under overcurrent condition [2]. The typical reason of the destruction of the power switches is the 
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overheat of the chip. This kind of failure will happen if the inverter is working under overload condition or a short 

circuit fault. In order to improve the reliability of a power system, the short circuit is one of the most critical situation 

to be considered [1], [10]-[12]. This paper will focus on the overload and short circuit protection of the voltage source 

inverter based UPS system. Sometimes the inverter should remain connected even under overload or short circuit 

condition, so a control strategy is required to limit the output current [4] - [8]. With an effective overcurrent control 

method, the system can return back to normal operation as soon as the fault is cleared [9], [13], [14]. 

There are mainly two kinds of overcurrent protections methods: hardware based methods and software based 

methods. [7]. Overcurrent will happen under two different faults: fault-under-load (FUL) (at output phases) or hard 

switching fault (HSF) [2], [4], [15], [16]. When HSF happens, the load is short-circuited before running the converter. 

Under this kind of short circuit fault, the increasing rate of the current is as same as the normal turn-on condition. Differ 

from the HSF, the FUL usually happens when the converter is already running, and typically, the FUL will cause a 

higher peak current than the HSF [4]. More details of detecting FUL can be found in [15], [16]. The detailed possible 

cases for overcurrent in a three-phase inverter is listed as below [7]. 

i) FUL: Inverter is working under strong overload. 

ii) FUL: Single phase (asymmetrical fault) or three-phase (symmetrical) ground short circuit fault. 

iii) FUL: Phase to phase short circuit between two phases (asymmetrical fault). 

iv) HSF: Shoot through of any phase of the inverter. 

The HSF happens mainly because of the failure of the dead time, the problem of the PWM modulation or the problem 

of the driver circuit. This paper will focus on the protection under the condition of the FUL.  

Fast detection of overcurrent or short circuit fault is necessary to avoid the switching devices suffering from 

overheating and destruction [4]. Many kinds of short circuit protection methods for IGBTs have been proposed [1], [2]. 

It is difficult to deal with the short circuit fault since normally the switching devices will be broken in a very short time 

when it happens. Therefore, most of the existing IGBT short circuit detection and protection methods are hardware 

circuit based. Some are algorithm based. A brief review of the existing protection methods is given below. 
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A. Primary hardware protection 

Overcurrent fuses [5], relays [17]-[20], or breakers are normally adopted for the primary hardware protection in the 

power systems and are considered as a backup protection method to isolate the converter from the power transmission 

line when overcurrent happens [5], [9], [21].  

B. Driver circuit based hardware protection 

Another kind of hardware protection strategy is based on the characteristic of the switching devices under different 

working mode [3], [22]-[26]. Typically, there will be a detection and protection logic circuit integrated into the driver 

circuit to turn-off the switching devices under fault condition. The common used detection or protection methods are 

shown below. 1) VCE or VDS voltage monitoring [6], [22]. 2) VGE or VCE voltage monitoring [26]-[29]. 3) Gate-charge 

monitoring [30], [31]. 4) Collector current monitoring[32]-[34]. 

C. Main power circuit based hardware protection or combined with modified algorithm control method 

In some other literatures, the protection methods are based on modifying the main power circuit by adding auxiliary 

protection circuit or using different control method in the software under fault condition. The concept of the protection 

in [5] is using an auxiliary switch, connected along with driving circuit, between the positive rail of the DC bus 

capacitors and the collector/drain terminal of the upper switching transistor. The disadvantage is that the complexity 

of the circuit is increased given that auxiliary drive circuit need to be incorporated for switching the protecting transistor 

[5]. Also in [5], it proposed another protection method called linear current protection method, which contains more 

auxiliary switches and resistors for the protection circuit. This method will increase the cost and the volume of the 

system; also will increase the power loss because of the auxiliary components. In [35], it proposed a protection method 

based on a 12-pulse thyristor rectifier bridge to cut off the DC bus when overcurrent happens. It presented a protection 

method based on fuse on the DC bus in [36]. In [37], it proposed a hardware based method, which is called hardware 

hysteresis circuit that used to detect the fault and then limit the current; additionally, it will transfer from voltage control 

mode (VCM) to current control mode (CCM) once the fault happens. 

D. Algorithm based overload or short circuit protection method 

The overcurrent control strategy in [7] is based on generating new current reference according to a current limit 

function, an auxiliary control loop, and a look up table is used to store the original current reference. In [8], a current 
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limiting method was proposed based on a hysteresis comparator circuit and switched to current controlled mode after 

overcurrent happens. The main disadvantage of this control method is complexity of the auxiliary current control mode, 

and it has a longer response time as the authors mentioned in [8], and it need to design a hysteresis comparator circuit 

for each phase. In [38], it proposed a protection method called triple-loop short circuit limiter. However, from the 

simulation and experimental result, the limited output current value was not accurate and the recover after fault 

clearance was slow. In [39], it proposed a protection method based on virtual impedance, it has the same problem as 

[38], and it is not effectiveness for short circuit fault since it is not discussed in [39]. Similar to [7], a current limiting 

method based on a lookup table was proposed in [40] for a single phase inverter. The difference is that it will generate 

new voltage reference other than current reference when overload happens to decrease the output voltage, thus to limit 

the output current. The drawback is that it does not provide a fixed limited current when different level of overload 

happens, then it cannot guarantee the safety of the system. Moreover, it does not provide short circuit protection 

capability. In [41], two kinds of interesting short circuit protection methods were proposed, which are only algorithm 

based. However, there are problems with both of the two methods. More details about it are described in Section II.B 

when compare to the proposed method in this paper.  

Some other short circuit protection methods are presented in [42]-[43]. The inverter will change to CCM from VCM 

when short circuit happens. This kind of methods are highly rely on the fault detection algorithm. The switch of the 

two modes cannot be instantaneous if there is delay in the detection or after the fault is cleared. In addition, it will 

occupy more resources in the controller since it must provide two kinds of operation modes, VCM and CCM, which 

will increase the cost of a system when choosing a higher-level controller. 

In this paper, an algorithm based overcurrent protection method for power inverters is proposed, which is suitable 

for both overload and short circuit conditions at output phases. The control strategy contains some basic technologies, 

such as the anti-windup loop in the PR controller and the voltage feedforward control, but it is not enough to have a 

fast and accurate overcurrent protection. The reset of the resonant regulator has been added in the control when 

overcurrent happens. The key point is that we found that all of these three parts are necessary to obtain a satisfying 

overcurrent protection performance. It is easy to implement into the existing inverter control scheme by just adding 

some lines in the code. Compared with the abovementioned protection methods, it does not need auxiliary circuit, 

sensors or changing of control logic with only VCM. Therefore, it is suitable for high power application design to 
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decrease the cost and increase the power density as well. In addition, the protection logic is not to shut down the system 

immediately when overload or short circuit happens. It intends to limit the output current to a preset constant value 

inside the SOA of the switching devices during a period of time, which is an important point to evaluate the reliability 

and availability of a UPS system, especially when a critical load is supplied. More details of the proposed method is 

presented in Section II. 

The rest of this paper is organized as below: in Section II, the proposed protection method is discussed in detail, and 

the analysis is presented; in Section III, the experimental results are provided; then the conclusion is given in IV. 

II. THE PROPOSED PROTECTION METHOD 

The proposed overload and short circuit protection method is algorithm based. In the control scheme, an output 

voltage feedforward loop is added, and when overcurrent happens, no matter it is because of overload or short circuit 

at the output phases, the output of the resonant part of the current controller will be reset to zero, which will prevent 

the output currents exceed the limited value. The using of the output voltage feedforward will give a fast response of 

the protection progress by suppressing the effect of the capacitor voltage. In addition, anti-windup loop is also added 

in the resonant controller, which is also needed for a fast and accurate current limit when overload or short circuit 

happens. Analysis and more details about the protection control scheme will be discussed below. 

A. The control scheme 

For a three-phase UPS system, the output is typically organized to be able to work with single phase or three phases 

to make it suitable for different kinds of loads, at the same time to have a more flexible system. So in this paper the 

control is under abc stationary coordinates frame, which is more convenient to test the effectiveness of the control 

strategy phase by phase or three-phase together.  

Fig. 1 shows the topology of the NPC three-phase three-level inverter with an LC filter at the output side. Fig. 2 

shows the control scheme used in this paper. Conventionally, the anti-windup loops are added in the voltage and current 

PR controllers to avoid the windup possibility of the resonate controller. However, based on this kind of control, it is 

not enough to have a great performance of overload and short circuit protection. In the proposed control scheme, in 

order to have a fast and accurate current limit under overload or short circuit conditions, if the output current exceeds 

the limited value, the resonant part of the PR controller in current control loop will be reset to zero. Additionally, 

compared with the conventional voltage and current control loops, the filter capacitor voltage Vc is feedforward to the 
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output of the current control loop. With the coordination of the three parts in the control scheme, which are the anti-

windup loops in the voltage and current controllers, the capacitor voltage feedforward control and the reset of the 

resonant part of the current controller when overcurrent happens, a fast and accurate current limit performance can be 

obtained. By the feedforward of the capacitor voltage, when overcurrent happens, especially under short circuit 

condition, one can suppress the influence of the capacitor voltage to the output current. The reset of the resonator of 

the current controller can reduce the modulation waveform quickly to the limited value to avoid the inverter going into 

uncontrollable condition or the overshoot of the current. Each of the three parts plays an important role for the current 

limit under overload or short circuit condition. 

 
Fig. 1. Topology of the NPC inverter. 

Fig. 3 shows the simplified linear control model for the voltage inverter in the UPS. In which, GV(s) represents the 

transfer function of the voltage controller; GI(s) represents the transfer function of the current controller, and GPWM(s) 

represents the transfer function of the inverter. Defining that: 

2 2
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V PV

K s
G s K

s 
= +

+
, 

2 2
( ) RI

I PI

K s
G s K

s 
= +

+
, 

1
( )

1 1.5
PWM PWM

s

G s K
T

=
+

                                   (1) 

where KPV and KRV are the proportional and resonate coefficients of the voltage PR controller, respectively; KPI and KRI  

are the proportional and resonate coefficients of the current PR controller, respectively; and for the three-level voltage 

source inverter, the gain KPWM  equals to Vdc/2. Moreover, in order to suppress the influence of the fluctuation of the 

DC bus voltage, the DC bus voltage will always be considered in the control, the PWM signal will be divided by Vdc/2 

before sending to the driver circuit. So that the gain of the path from the output of the current controller to the inverter 

output, from the point PWM* to the point VXO(s) (X=A, B, C) in Fig.2, will be one. Accordingly, a unit feedforward 

control is applied in this paper, F(s)=1. 
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Fig. 2. The control diagram considering overload and short circuit protection. 

 

Fig. 3. A simplified linear model of the control. 

B. The analysis of the overload and short circuit protection method 

It is necessary to analyze the PR controller for explaining the proposed control method since it plays an important 

part in the control. The diagram of the general PR controller is shown in Fig.4. The transfer function of the PR controller 

is shown below. 

2 2
( ) R

PR P

K s
G s K

s 
= +

+
                                                                            (2) 

Considering an input error signal of same frequency with the PR like ( ) sin( )erroru t M t = + , the Laplace transform of 

Uerror(t) is: 

( )erroru s =  ℒ [ sin( )]M t + = ℒ 
2 2 2 2
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s

M t M t M M
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         (3) 

After the resonant part of the PR controller, see yKR(s) in Fig.4 and applying (3), it yields to: 

2 2

2 2 2 2 2 2 2 2

sin 1
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( ) 2 ( ) ( )RK R

s s
y s K M

s s s

  

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+ + + 
                                     (4). 

 
Fig. 4. Control diagram of the PR controller. 
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By using reverse Laplace transform of (4), it gives as following: 

2 2 2 2 2 2

0

cos sin 1
( ) [ (cos ) (sin ) ] sin( ) [ cos( ) sin( )]

2 2R

R
K R
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           (5). 

Take two different values of   as examples to analyze the output of resonant controller. When 0 = o , the output 

signal would be: 

cos sin 1
( ) sin( ) [ cos( ) sin( )] sin( )

2 2 2R

R
K R

K M
y t K M t t t t t t t

 
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                                (6) 

when 90 = o , the output signal would be: 

cos sin 1 1
( ) sin( ) [ cos( ) sin( )] [ cos( ) sin( )]

2 2 2R

R
K R

K M
y t K M t t t t t t t t

 
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 

 
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 
            (7) 

It can be noticed that the output increases with time until the input signal is zero, when adopted in a control 

architecture, the final value of the resonant controller will be a constant with a zero steady state error if the controller 

is well tuned. The resonant controller operates when an error signal is present. In addition, it can be noticed that the 

resonant controller only work with a non-zero input signal. It means that the output of the resonant controller will 

continue accumulate with the error signal over time. Therefore, a small error can become a large correction if given 

enough time. As the error is accumulated, the system will be forced to correct the error until the steady state error is 

zero. However, overshoot on the controlled signal always happens with an integral or resonant controller. To evaluate 

the effectiveness of a controller in a control diagram, some tools can be applied.  

Step response is often implemented to verify the effectiveness and stability of a control scheme [44]-[49]. Fast 

dynamic response is necessary for a power system, and it can reduce the deviation of output voltage or current during 

the transient event with effective control [44]. The unit step response is widely implemented in the power electrical 

system, it is the time behavior of the output of the system when the input changes from 0 p.u. to 1 p.u. in a short time 

but within the rated power of a system [50]. 

From a practical standpoint, knowing how the system responds to a sudden input is important because large and 

possibly fast deviations from the long-term steady state may have extreme effects on the controller and on other 

portions of the overall system dependent on this controller. In addition, the overall system cannot act until the 

controller's output settles down to some vicinity of its final state, delaying the overall system response. Formally, 

knowing the step response of a dynamical system gives information on the stability of such a system, and on its ability 

to reach one stationary state when starting from another operation point [50]. 

Normally, three useful information we can get from the step response of a system: overshoot value, settling time and 
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status at steady state. When overload or short-circuit happens, the system will go into a new operation point, from the 

load side point of view, it is like a serious load step change, more current need to be provided from the converter side. 

To protect the hardware, we need to focus on these three aspects as well: to lower the overshoot, to decrease the settling 

time from overshoot to steady state, to have an accurate current limit value at steady state. Thus, from step response 

analysis of the control strategy, it guides us a way to improve the control. 

Three different control configurations are considered to analyze the behavior of the step response of the control 

architecture: 

Case1: using only proportional controller KPI in the current control loop with the VC feedforward control, the close loop 

transfer function of the current control loop is: 

1
( )

( ) ( ) ( )
1

1 ( )

I
PI

L ref ref

PI
I

G s
KLs rLI s I s I s

Ls rL K
G s

Ls rL

+= =
+ +

+
+

                                                      (8). 

Case 2: using PR controller in the current control loop without the VC feedforward control, the close loop transfer 

function of the current control loop is: 

2 2 2 2

3 2 2 2 3 2 2 2
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where 
( ) ( )

( ) L o
C

I s I s
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−
= , accordingly, one can obtain: 
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                       (10). 

In (9), it is clearly showing that, without VC feedforward control, the influence of the capacitor voltage to the inductor 

current cannot be eliminated. In (10), the term Io(s) can be seen as an external interrupt. 

Case 3: in order to decoupling the capacitor voltage VC(s) and the inductor current IL(s), VC feedforward control is 

added into the current control loop, then the close loop transfer function of the current control loop will be: 

2 2

3 2 2 2

1
( )

( ) ( ) ( )
1 ( ) ( ) ( )

1 ( )

I
PI RI PI o

L ref ref
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+ ++= =
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                    (11). 
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In (11), it can be noticed that the influence from the capacitor voltage to the inductor current is eliminated. 

The unit step response analysis using Matlab for the abovementioned three cases, the result is shown in Fig.5 using 

the parameters shown in Table I. It can be noticed that without the VC feedforward control in case 2, there is a big 

overshoot at the very beginning, and the waveform oscillated with time at steady state. It could be foreseen that without 

VC feedforward control, when serious overload or short circuit happens, there would be a giant overshoot in the output 

current, and it will oscillate at steady state. However, with VC feedforward in case 3, the performance of both overshoot 

suppression and settling time can be improved. In addition, one important discovery is that if VC feedforward is applied 

with only P controller as shown in Case 1, there is no overshoot in the output, which makes clear that the behavior of 

the resonant controller causes the overshoot. 

Thus from Case 1, a very positive hint to additional improve the performance of overcurrent protection, resetting the 

output of the resonator of current controller to zero when overcurrent happens, which can prevent the current going 

into uncontrollable state. 

TABLE I 

Parameters of the controllers and hardware circuits in the experiments 

Coefficient Parameters Value 

Fundamental frequency ωo 314 rad/s 

Filter capacitor Cf 60µF 

Filter inductor Lf 200µH 

Equivalent series resistance (ESR) of filter inductor  rL 0.06Ω 

Proportional part of the voltage controller KPV 0.8 A/V  

Resonant part of the voltage controller KRV 1000 As/V 

Proportional part of the current controller KPI 1.25 V/A 

Resonant part of the current controller KRI 600 Vs/A 

Preset current amplitude limit value Ilimit 20A 

Nominal output voltage Vref 230Vrms 

Switching frequency fs 20kHz 

Digital signal processer (DSP) -- TMS320F28377D 
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zoomed-in 

 

Fig. 5. Step response of different control configurations. 

The overshoot is caused by the rapid accumulation of error. This large error is accumulated by the general integrator. 

This is called “integral wind-up”. So anti-windup loop is often adopted with the PI or PR controller to suppress the 

influence of the windup. Assume that an error exists, the resonator will accumulate this error over time. Therefore, the 

output of the accumulator slowly rises. The overshoot is exacerbated by high resonant gain. Unfortunately, the effect 

is also observed with low gains. The system may or may not settle at the set point. The operation of the resonator may 

be improved by disabling the accumulation action if the output voltage is above a particular point. Therefore, a fast 

reset the output of the resonant controller is essential when overload or short circuit happens. 

As a conclusion of the proposed control scheme for a fast overload and short circuit protection, it mainly contains 

three parts: the anti-windup loop in the PR controller, the output voltage feedforward control, and the fast reset of 

resonant controller of current control loop. Each part plays an important role for a quick dynamic response when 

overload or short circuit happens. 

Compares to the methods in [40]-[43], when applying the method in this paper, the healthy phase will not be 

influenced by the fault phase, and the phase angle of both voltage and current will not be changed, only the current 

amplitude is limited to a preset value. In addition, the proposed method in this paper is capable for both overload, phase 

to ground short circuit and phase to phase short circuit faults, while it only discussed one of them in other papers.  
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Among the algorithm based methods, the methods that proposed in [41] can provide overload protection, and phase 

to ground short circuit protection but without phase to phase short circuit protection, which is used to compare with 

the method in this paper. A table is provided in [41] to show the performance of the two methods, which is extended 

to compare with the presented method in this paper that is shown in Table II. From the table, it can be noticed that even 

the healthy phase will be influenced when fault happens, and the current limited value is not accurate, it varies under 

different cases. Simulation and experimental results that provided in [41] show the phenomenon as well. When 

applying the method in this paper, the healthy phase will not be influenced by the fault phase. In addition, the phase 

angle of both voltage and current will not be changed, only the current amplitude is limited to a preset value, which is 

fixed and accurate. It is only depend on different preset values for different rated power of UPS systems. The healthy 

phase will not be influence by the fault phase as well when asymmetric overload or phase to phase short circuit happens, 

which is not shown in the table. In addition, the method in this paper is valid for the three kinds of over current fault, 

while the methods in [41] are only valid for two of them. 

Table II Comparison with the methods in [41] 

Items                      Methods Method I in [41] Method II in [41] Method in this paper 

Output 

current 

Healthy phase zero pre-fault current pre-fault current, will 

not be influenced by 

fault phase 

Fault phase The current limiting references 

with reverse phase angle and 

required current limiting 

magnitude, varies current limit 

value under different cases, 3

Ilimit, 2Ilimit or between the range 

[Ilimit, 3 Ilimit] 

The current limiting 

references with regulated 

phase angle and required 

current limiting magnitude, 

varies current limit value 

under different cases, 3

Ilimit, 2Ilimit or between the 

range [Ilimit, 3 Ilimit] 

Limited amplitude 

without changing the 

phase angle. Limited to 

the preset value 

according to the 

customers’ 

application. 

Output 

voltage 

Healthy phase zero 86.6% of rated voltage 

(phase angle changed as 

shown in [41] 

Rated voltage without 

changing the phase 

angle 

Fault phase zero zero zero 

Valid for fault types 
Overload, phase to ground 

short cirvuit 

Overload, phase to ground 

short cirvuit 

Overload, phase to 

ground short circuit, 

phase to phase short 

circuit 

III. EXPERIMENTAL RESULTS 

In order to verify the effectiveness of the proposed overload and short circuit protection method for three phase 

voltage source inverters, experiments have been developed by the real UPS system in Salicru S.A. Three cases of FUL 
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that cause overcurrent conditions mentioned in the introduction were considered: i) overload, ii) phase to ground short 

circuit, and iii) phase to phase short circuit. The configuration of the control and platform is shown in Table I. Fig. 6 

shows the NPC three-phase three-level inverter based UPS platform. Parameters of the filters and controllers are shown 

in Table I. 

 
Fig. 6. The prototype of the NPC three-phase three-level topology based UPS platform. 

Fig. 7 shows the waveform of normal working condition. Sinusoidal waveform of output voltage is obtained, which 

is the basic requirement of a UPS system. Fig. 8 shows the waveform when overload happens. It can be seen that when 

a strong load, which is beyond the limit, was suddenly connected to the inverter, the output current will be limited to 

the preset constant value. Under unknown overload condition, the output current is still controllable to avoid damage 

of the load and the UPS itself. The other phenomenon that should be mentioned is that the UPS system will not be shut 

down when overload happens, it is necessary for some of critical loads, such as telecommunication systems, network servers, 

database system, and medical equipment. 

Fig. 9 and Fig. 10 depict the waveforms when the UPS transfer from normal working condition to overload condition. 

It is clearly showing the reset operation of the resonant regulator of the current controller in the DSP when overload 

happens, which shows the same phenomenon of the simulation results. In addition, it shows an accurate current limit 

performance since the current is limited to the preset value of 20A. The waveform looks good during the transient time 
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that demonstrate a good performance of the presented current limit control scheme. 

Fig. 11 and Fig. 12 give the experimental results when phase to ground short circuit fault happens. It shows the 

dynamic performance of the cases from normal to short circuit and the reverse. The output current can be limited to 

the preset value quickly and went back to normal operation when the fault was cleared as expected.  

Fig. 13 shows the results when the UPS operated under normal working condition with three-phase load. Fig. 14 and 

Fig. 15 depict the waveforms when symmetric overload happens in three phases. It is a serious case from no load to 

overload condition directly; however the current can still be limited to the preset value quickly and accurately by using 

the proposed method. It shows the effectiveness of the presented control method. It should be noticed that the results 

of Phase C was not shown in the experimental results since there are no more channels on one oscilloscope. Fig. 16 to 

Fig. 18 are the experimental results when phase to phase short circuit fault happens. It can be noticed that the fault 

happened on the two phases will not influence the normal operation of the other healthy phase, and it can go back to 

normal operation quickly when the fault was cleared, very similar results are obtained as shown in the simulation. The 

consistency of the simulation and experimental results further shows the effectiveness and the availability of the 

proposed method. 

 

Fig. 7. Normal operation with single-phase load, CH1: Output voltage; CH4: Output current. 
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Fig. 8. Overload happens with single-phase load, CH1: Output voltage; CH4: Output current. 

 

Fig. 9. Single phase from normal to overload condition, CH1: Output voltage; CH2: Resonant output of current 

controller in DSP; CH3: Inductor current; CH4: Output current. 
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Fig. 10. Overload happens with single-phase load, CH1: Output voltage; CH2: Resonant output of current controller 

in DSP; CH3: Inductor current; CH4: Output current. 

 

Fig. 11. Single phase from normal to phase to ground short circuit, CH1: Output voltage; CH4: Output current.  
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Fig. 12. Phase to ground short circuit condition switch to normal working condition on single-phase, CH1: Output 

voltage; CH4: Output current. 

 

Fig. 13. Three-phase load normal working condition, CH1: Phase A output voltage; CH2: Phase A output current; 

CH3: Phase B output current; CH4: Phase C output current. 
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Fig. 14. Overload happens with three-phase load, CH1: Phase A output voltage; CH2: Phase B output voltage; CH3: 

Phase A output current; CH4: Phase B output current. 

 
Fig. 15. Three-phase overload switch to no load condition, CH1: Phase A output voltage; CH2: Phase B output 

voltage; CH3: Phase A output current; CH4: Phase B output current. 
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Fig. 16. Normal operation to phase to phase short circuit, CH1: Phase A output voltage; CH2: Phase A output 

current; CH3: Phase B output current; CH4: Phase C output current. 

 

Fig. 17. Phase to phase short circuit to normal operation, CH1: Phase A output voltage; CH2: Phase A output current; 

CH3: Phase B output current; CH4: Phase C output current. 
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Fig. 18. Normal operation to phase to phase short circuit, CH1: Phase A output voltage; CH2: Phase B output 

voltage; CH3: Phase A output current; CH4: Phase B output current. 

Finally, current limit tests when UPS inverters operate in parallel have been developed. Two different current limit 

values have been selected to verify the effectiveness. Fig. 19(a) shows the results when the current limit value is 24A, 

Fig. 19(b) depicts the results when the current is limited to 100A when stronger load is connected. From the results, 

we can notice that an accurate current limit performance can be obtained even when inverters operate in parallel. 
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(a) 

 
(b) 

Fig. 19. Current limit results when UPS inverters operate in parallel, CH1: Phase A voltage of inverter 1; CH2: Phase 

A voltage of inverter 2; CH3: Phase A current of inverter 1; CH4: Phase A current of inverter 2. (a) 24A current 

limit, (b) 100A current limit. 

IV. CONCLUSION 

This paper presents a control method to ensure overload and short circuit protection in voltage source inverters based 
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UPS systems. With the proposed control method, UPS output current can be limited to a reference value within the 

safe operation area, so that when overload or short circuit happens instantaneous voltage drop occurs. The proposed 

solution compared with the state-of-the-art ones is superior in terms of accuracy and validity under more kinds of 

overcurrent issues, while being compatible with advanced current/voltage tracker regulators based on resonant 

controllers. Furthermore, as a sharp contrast with the existing techniques, the proposed approach is not only robust to 

symmetric three-phase faults but also the asymmetric single-phase overload/short-circuit conditions in a three-phase 

system, and the healthy phase will not be disturbed by the fault phase. Another brilliant feature is that as opposite to 

conventional techniques in which the control has to switch between voltage to current mode once overload/short-circuit 

occurs, and back to voltage mode once the fault is cleared, is that the proposed controller does not have to switch 

between operation modes, which may lead to instabilities or oscillatory transients. In this approach, once the fault is 

cleared, the UPS system can go quickly back to normal operation conditions without changing the control mode, 

operating all the time as a voltage controlled source. Experimental results on a commercial UPS platform have been 

implemented to verify the effectiveness of the proposed control method. 
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